1
|
Pham TT, Guo Z, Li B, Lapkin AA, Yan N. Synthesis of Pyrrole-2-Carboxylic Acid from Cellulose- and Chitin-Based Feedstocks Discovered by the Automated Route Search. CHEMSUSCHEM 2024; 17:e202300538. [PMID: 37792551 DOI: 10.1002/cssc.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The shift towards sustainable feedstocks for platform chemicals requires new routes to access functional molecules that contain heteroatoms, but there are limited bio-derived feedstocks that lead to heteroatoms in platform chemicals. Combining renewable molecules of different origins could be a solution to optimize the use of atoms from renewable sources. However, the lack of retrosynthetic tools makes it challenging to examine the extensive reaction networks of various platform molecules focusing on multiple bio-based feedstocks. In this study, a protocol was developed to identify potential transformation pathways that allow for the use of feedstocks from different origins. By analyzing existing knowledge on chemical reactions in large databases, several promising synthetic routes were shortlisted, with the reaction of D-glucosamine and pyruvic acid being the most interesting to make pyrrole-2-carboxylic acid (PCA). The optimized synthetic conditions resulted in 50 % yield of PCA, with insights gained from temperature variant NMR studies. The use of substrates obtained from two different bio-feedstock bases, namely cellulose and chitin, allowed for the establishment of a PCA-based chemical space.
Collapse
Affiliation(s)
- Thuy Trang Pham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore City, Singapore
| | - Zhen Guo
- Cambridge Centre for Advanced Research and Education in Singapore (CARES Ltd), 1 CREATE Way, #05-05 Create Tower, 138602, Singapore City, Singapore
- Chemical Data Intelligence (CDI) Pte Ltd, Robinson Road #02-00, 068898, Singapore City, Singapore
| | - Bing Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore City, Singapore
| | - Alexei A Lapkin
- Cambridge Centre for Advanced Research and Education in Singapore (CARES Ltd), 1 CREATE Way, #05-05 Create Tower, 138602, Singapore City, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore City, Singapore
| |
Collapse
|
2
|
Alkali-labile gangliosides. Glycoconj J 2023; 40:269-276. [PMID: 36695939 DOI: 10.1007/s10719-023-10103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The structure and properties of a group of gangliosides modified by mild alkaline treatment are discussed. We will present the occurrence and the structure of gangliosides carrying the N-acetyneuraminic acid O-acetylated in position 9, the Neu5,9Ac2, and of gangliosides carrying a sialic acid that forms a lactone ring. Starting from biochemical data we will discuss the possible biochemical role played by these gangliosides in the processes of cell signaling and maintenance of brain functions.
Collapse
|
3
|
Gangliosides and the Treatment of Neurodegenerative Diseases: A Long Italian Tradition. Biomedicines 2022; 10:biomedicines10020363. [PMID: 35203570 PMCID: PMC8962287 DOI: 10.3390/biomedicines10020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are glycosphingolipids which are particularly abundant in the plasma membrane of mammalian neurons. The knowledge of their presence in the human brain dates back to the end of 19th century, but their structure was determined much later, in the middle of the 1950s. From this time, neurochemical studies suggested that gangliosides, and particularly GM1 ganglioside, display neurotrophic and neuroprotective properties. The involvement of GM1 in modulating neuronal processes has been studied in detail by in vitro experiments, and the results indicated its direct role in modulating the activity of neurotrophin-dependent receptor signaling, the flux of calcium through the plasma membrane, and stabilizing the correct conformation of proteins, such as α-synuclein. Following, in vivo experiments supported the use of ganglioside drugs for the therapy of peripheral neuropathies, obtaining very positive results. However, the clinical use of gangliosides for the treatment of central neurodegeneration has not been followed due to the poor penetrability of these lipids at the central level. This, together with an ambiguous association (later denied) between ganglioside administration and Guillain-Barrè syndrome, led to the suspension of ganglioside drugs. In this critical review, we report on the evolution of research on gangliosides, on the current knowledge on the role played by gangliosides in regulating the biology of neurons, on the past and present use of ganglioside-based drugs used for therapy of peripheral neuropathies or used in human trials for central neurodegenerations, and on the therapeutic potential represented by the oligosaccharide chain of GM1 ganglioside for the treatment of neurodegenerative diseases.
Collapse
|
4
|
Szabo Z, Koczka V, Marosvolgyi T, Szabo E, Frank E, Polyak E, Fekete K, Erdelyi A, Verzar Z, Figler M. Possible Biochemical Processes Underlying the Positive Health Effects of Plant-Based Diets-A Narrative Review. Nutrients 2021; 13:2593. [PMID: 34444753 PMCID: PMC8398942 DOI: 10.3390/nu13082593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-based diets are becoming more popular for many reasons, and epidemiological as well as clinical data also suggest that a well-balanced vegan diet can be adopted for the prevention, and in some cases, in the treatment of many diseases. In this narrative review, we provide an overview of the relationships between these diets and various conditions and their potential biochemical background. As whole plant foods are very rich in food-derived antioxidants and other phytochemicals, they have many positive physiological effects on different aspects of health. In the background of the beneficial health effects, several biochemical processes could stand, including the reduced formation of trimethylamine oxide (TMAO) or decreased serum insulin-like growth factor 1 (IGF-1) levels and altered signaling pathways such as mechanistic target of rapamycin (mTOR). In addition, the composition of plant-based diets may play a role in preventing lipotoxicity, avoiding N-glycolylneuraminic acid (Neu5Gc), and reducing foodborne endotoxin intake. In this article, we attempt to draw attention to the growing knowledge about these diets and provide starting points for further research.
Collapse
Affiliation(s)
- Zoltan Szabo
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Viktor Koczka
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary
| | - Tamas Marosvolgyi
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary
| | - Eva Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
| | - Eszter Frank
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Eva Polyak
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Kata Fekete
- Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Attila Erdelyi
- Institute of Health Insurance, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary;
| | - Zsofia Verzar
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Maria Figler
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
- 2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
5
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
6
|
Post-Glycosylation Modification of Sialic Acid and Its Role in Virus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7040171. [PMID: 31683930 PMCID: PMC6963189 DOI: 10.3390/vaccines7040171] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sialic acids are a family of nine carbon keto-aldononulosonic acids presented at the terminal ends of glycans on cellular membranes. α-Linked sialoglycoconjugates often undergo post-glycosylation modifications, among which O-acetylation of N-acetyl neuraminic acid (Neu5Ac) is the most common in mammalian cells. Isoforms of sialic acid are critical determinants of virus pathogenesis. To date, the focus of viral receptor-mediated attachment has been on Neu5Ac. O-Acetylated Neu5Acs have been largely ignored as receptor determinants of virus pathogenesis, although it is ubiquitous across species. Significantly, the array of structures resulting from site-specific O-acetylation by sialic acid O-acetyltransferases (SOATs) provides a means to examine specificity of viral binding to host cells. Specifically, C4 O-acetylated Neu5Ac can influence virus pathogenicity. However, the biological implications of only O-acetylated Neu5Ac at C7-9 have been explored extensively. This review will highlight the biological significance, extraction methods, and synthetic modifications of C4 O-acetylated Neu5Ac that may provide value in therapeutic developments and targets to prevent virus related diseases.
Collapse
|
7
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Okerblom J, Varki A. Biochemical, Cellular, Physiological, and Pathological Consequences of Human Loss of N-Glycolylneuraminic Acid. Chembiochem 2017; 18:1155-1171. [PMID: 28423240 DOI: 10.1002/cbic.201700077] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 12/15/2022]
Abstract
About 2-3 million years ago, Alu-mediated deletion of a critical exon in the CMAH gene became fixed in the hominin lineage ancestral to humans, possibly through a stepwise process of selection by pathogen targeting of the CMAH product (the sialic acid Neu5Gc), followed by reproductive isolation through female anti-Neu5Gc antibodies. Loss of CMAH has occurred independently in some other lineages, but is functionally intact in Old World primates, including our closest relatives, the chimpanzee. Although the biophysical and biochemical ramifications of losing tens of millions of Neu5Gc hydroxy groups at most cell surfaces remains poorly understood, we do know that there are multiscale effects functionally relevant to both sides of the host-pathogen interface. Hominin CMAH loss might also contribute to understanding human evolution, at the time when our ancestors were starting to use stone tools, increasing their consumption of meat, and possibly hunting. Comparisons with chimpanzees within ethical and practical limitations have revealed some consequences of human CMAH loss, but more has been learned by using a mouse model with a human-like Cmah inactivation. For example, such mice can develop antibodies against Neu5Gc that could affect inflammatory processes like cancer progression in the face of Neu5Gc metabolic incorporation from red meats, display a hyper-reactive immune system, a human-like tendency for delayed wound healing, late-onset hearing loss, insulin resistance, susceptibility to muscular dystrophy pathologies, and increased sensitivity to multiple human-adapted pathogens involving sialic acids. Further studies in such mice could provide a model for other human-specific processes and pathologies involving sialic acid biology that have yet to be explored.
Collapse
Affiliation(s)
- Jonathan Okerblom
- Biomedical Sciences Graduate Program, University of California in San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0687, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, GRTC) and, Center for Academic Research and Training in Anthropogeny, CARTA), Departments of Medicine and Cellular and Molecular Medicine, University of California in San Diego, La Jolla, CA, 92093-0687, USA
| |
Collapse
|
9
|
|
10
|
GM1 Ganglioside: Past Studies and Future Potential. Mol Neurobiol 2015; 53:1824-1842. [DOI: 10.1007/s12035-015-9136-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
|
11
|
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
Potapenko M, Shurin GV, de León J. Gangliosides as immunomodulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:195-203. [PMID: 17713006 DOI: 10.1007/978-0-387-72005-0_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gangliosides are glycosphingolipids expressed at the outer leaflet of the plasmatic membrane of cells from vertebrate organisms. These molecules exert diverse biological functions including modulation of the immune system responses. Aberrant expression of gangliosides has been demonstrated on malignant cells. Besides expression on tumor cell membranes, gangliosides are also shed in the tumor microenvironment and eventually circulate in patients blood. Gangliosides derived from tumors posses the capability to affect the immune system responses by altering the function of lymphocytes and antigen-presenting cells and promoting tumor growth. These molecules can be considered as tumor weapons directed to attack and destroy immunosurveillance mechanisms devoted to control cancer progression.
Collapse
Affiliation(s)
- Miroslava Potapenko
- Department of Pathology, Division of Clinical Immunopathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
18
|
Sonnino S, Mauri L, Chigorno V, Prinetti A. Gangliosides as components of lipid membrane domains. Glycobiology 2006; 17:1R-13R. [PMID: 16982663 DOI: 10.1093/glycob/cwl052] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell membrane components are organized as specialized domains involved in membrane-associated events such as cell signaling, cell adhesion, and protein sorting. These membrane domains are enriched in sphingolipids and cholesterol but display a low protein content. Theoretical considerations and experimental data suggest that some properties of gangliosides play an important role in the formation and stabilization of specific cell lipid membrane domains. Gangliosides are glycolipids with strong amphiphilic character and are particularly abundant in the plasma membranes, where they are inserted into the external leaflet with the hydrophobic ceramide moiety and with the oligosaccharide chain protruding into the extracellular medium. The geometry of the monomer inserted into the membrane, largely determined by the very large surface area occupied by the oligosaccharide chain, the ability of the ceramide amide linkage to form a network of hydrogen bonds at the water-lipid interface of cell membranes, the Delta(4) double bond of sphingosine proximal to the water-lipid interface, the capability of the oligosaccharide chain to interact with water, and the absence of double bonds into the double-tailed hydrophobic moiety are the ganglioside features that will be discussed in this review, to show how gangliosides are responsible for the formation of cell lipid membrane domains characterized by a strong positive curvature.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Chemistry, Biochemistry, and Biotechnology, Center of Excellence on Neurodegenerative Disease, University of Milan, 20090 Segrate (MI), Italy.
| | | | | | | |
Collapse
|
19
|
Suzuki A. Genetic basis for the lack of N-glycolylneuraminic acid expression in human tissues and its implication to human evolution. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2006; 82:93-103. [PMID: 25873750 PMCID: PMC4323044 DOI: 10.2183/pjab.82.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 03/13/2006] [Indexed: 05/17/2023]
Abstract
Sialic acid is a family of acidic monosaccharides and consists of over 30 derivatives. Two major derivatives are N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc), and the hydroxylation of CMP-NeuAc is the rate limiting reaction for the production of NeuGc. The hydroxylation was carried out by a complex formed with hydroxylase, cytochrome b5, and NADH-cytochrome b5 reductase. Mouse hydroxylase was purified from the cytosolic fraction of the liver and its cDNA was cloned. Normal human tissues do not contain NeuGc. Human hydroxylase cDNA was also cloned and the sequence revealed that human hydroxylase has 92 bp deletion. The deletion is the cause of defective expression of NeuGc in human. Chimpanzee has intact hydroxylase gene and the 92 bp deletion occurred after the divergence of human ancestor from chimpanzee ancestor. Biochemical and molecular biological studies on the biosynthesis of NeuGc and biological functions of NeuGc are reviewed.
Collapse
Affiliation(s)
- Akemi Suzuki
- Supra-Biomolecular System Research Group, RIKEN Frontier Research System, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan ()
| |
Collapse
|
20
|
|
21
|
GOTTSCHALK A, GRAHAM ER. 6-alpha-D-Sialyl-N-acetyl-galactosamine: the neuraminidase-susceptible prosthetic group of bovine salivary mucoprotein. ACTA ACUST UNITED AC 1998; 34:380-91. [PMID: 13828537 DOI: 10.1016/0006-3002(59)90290-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
|
23
|
|
24
|
Affiliation(s)
- T Yamakawa
- Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|
25
|
|
26
|
Chamow SM, Hedrick JL. A micromethod for the estimation of oligosaccharides containing glycosidically linked sialic acid or hexoses, or both, in glycoproteins. Carbohydr Res 1988; 176:195-203. [PMID: 3416318 DOI: 10.1016/0008-6215(88)80130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The peeling reaction, the process by which oligosaccharides are degraded in alkali, was used as the basis for an assay to provide structural information about glycosidically linked oligosaccharides in glycoproteins. Glycoproteins were treated with 0.05 M NaOH at 50 degrees to induce release, and subsequent degradation ("peeling"), of glycosidically linked, but not of N-glycosydically linked, oligosaccharides. Among the degradation products generated from O-linked chains were three 3-deoxy sugar acids whose formation was correlated with certain structural features of the oligosaccharides. N-Acetylneuraminic acid was released from terminal positions in the oligosaccharides, and iso- and meta-saccharinic acids were derived from the degradation of 4-O- and 3-O-substituted hexoses, respectively. All of these sugar acids were detected colorimetrically by periodate oxidation and reaction of the product with 2-thiobarbituric acid. The ability of the method to generate 3-deoxy sugar acids was tested in 8 alkali-treated glycoproteins. 3-Deoxy sugar acids were detected only in those glycoproteins whose glycosidically linked carbohydrates contained N-acetylneuraminic acid, or 3-O- or 4-O-substituted hexoses, or both. As little as 0.12 microgram of 3-deoxy sugar acid produced from 5 micrograms of human chorionic gonadotropin was sufficient for detection. This method is novel in its ability to distinguish sialylation of glycosidically linked carbohydrates. Furthermore, it combines the specificity of beta-elimination with the sensitivity of the 2-thiobarbituric acid assay in targeting degradation products of the peeling reaction as candidates for an assay method.
Collapse
Affiliation(s)
- S M Chamow
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
27
|
Yamakawa T. Wonders in glycolipids--a historical view. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1984; 174:3-13. [PMID: 6377849 DOI: 10.1007/978-1-4684-1200-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
|
29
|
|
30
|
|
31
|
|
32
|
|
33
|
Reactions of Amino Sugars with Beta-DicarboNyl Compounds. ACTA ACUST UNITED AC 1965. [DOI: 10.1016/s0096-5332(08)60301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Schmidt JGH. �ber Netzhaut-Ganglioside*. Graefes Arch Clin Exp Ophthalmol 1964. [DOI: 10.1007/bf00679932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
35
|
Ruždić I, Juričić D. Ein Beitrag zur Kenntnis der Biogenese der Sialinsäure. Mikrochim Acta 1962. [DOI: 10.1007/bf01220355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
|
37
|
GOTTSCHALK A. Correlation between composition, structure, shape and function of a salivary mucoprotein. Nature 1960; 186:949-51. [PMID: 13828539 DOI: 10.1038/186949a0] [Citation(s) in RCA: 133] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
|
39
|
|
40
|
Condensation of Arabinose 5-Phosphate and Phosphorylenol Pyruvate by 2-Keto-3-deoxy-8-phosphooctonic Acid Synthetase. J Biol Chem 1959. [DOI: 10.1016/s0021-9258(18)69733-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
|
42
|
GOTTSCHALK A. On the Mechanism Underlying Initiation of Influenza Virus Infection. Curr Top Microbiol Immunol 1959; 32:1-22. [PMID: 13652926 DOI: 10.1007/978-3-662-42618-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
|
43
|
|
44
|
|
45
|
PIGMAN W, HAWKINS WL, BLAIR MG, HOLLEY HL. Slalic acid in normal and arthritic human synovial fluids. ARTHRITIS AND RHEUMATISM 1958; 1:151-66. [PMID: 13535311 DOI: 10.1002/art.1780010208] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
|
47
|
The Nonulosaminic Acids. ACTA ACUST UNITED AC 1958. [DOI: 10.1016/s0096-5332(08)60357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
|
49
|
|
50
|
|