1
|
Dharamsaktu D, Bharti JN, Elhence P, Rao M, Vishnoi JR, Soni SC, Rustagi N. Expression of Peroxisome Proliferator-Activated Receptor γ in Human Colorectal Carcinoma and Its Correlation with Clinicopathological Characteristics. Indian J Surg Oncol 2025; 16:685-690. [PMID: 40337037 PMCID: PMC12052650 DOI: 10.1007/s13193-024-02122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/18/2024] [Indexed: 05/09/2025] Open
Abstract
Peroxisome proliferator activator receptor γ (PPAR γ) activation may be responsible for inhibiting the growth of cancer cell lines, and drugs that activate PPAR γ may have therapeutic benefits. Therefore, a mutation in peroxisome proliferator activator receptor γ can produce carcinogenesis. This present study aims to assess the expression of PPAR γ by immunohistochemistry in colorectal carcinoma and its correlation with clinicopathological characteristics. Most of the cases were elderly males, and pelvic pain and bleeding were the predominant symptoms. Colon carcinoma was more common than rectal carcinoma. The adenocarcinoma NOS and mucinous carcinoma were the common histological types, and 40% cases showed lymph node metastasis. The PPAR γ expression was present in 61.8% of the patients, and it showed a significant correlation with lymph node metastasis and tumor location (p = 0.05 and p = 0.04). The overall survival was slightly higher but non-significant in patients with positive PPAR γ expression than negative ones (p = 0.7). The multivariate analysis revealed that nodal metastasis, lymphovascular invasion, and tumor-infiltrating lymphocytes were the independent prognostic factors for colorectal carcinoma. The PPAR γ expression showed a significant correlation with lymph node metastasis and tumor location. Thus, we hypothesized that the PPAR γ expression might affect the overall survival in colorectal cancer. However, more studies with larger sample size are required to understand the nature of colorectal cancer expressing PPAR γ which might benefit the patient therapeutically in future.
Collapse
Affiliation(s)
- Deepsikha Dharamsaktu
- Department of Pathology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Jyotsna Naresh Bharti
- Department of Pathology, All India Institute of Medical Sciences, Mangalagiri, Guntur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Meenakshi Rao
- Department of Pathology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Jeewan Ram Vishnoi
- Department of Surgical Oncology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Subash Chandra Soni
- Department of Surgical Gastroenterology, All India Institute of Medical Science, Jodhpur, Rajasthan India
| | - Neeti Rustagi
- Department of Community Medicine and Family Medicine, All India Institute of Medical Science, Jodhpur, Rajasthan India
| |
Collapse
|
2
|
Velasco-Sampedro EA, Sánchez-Vicente C, Caloca MJ. β2-Chimaerin Deficiency Favors Polyp Growth in the Colon of Apc Min/+ Mice. Molecules 2025; 30:824. [PMID: 40005135 PMCID: PMC11858732 DOI: 10.3390/molecules30040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
A Rho-GTPases are pivotal regulators of key cellular processes implicated in colorectal cancer (CRC) progression, yet the roles of their regulatory proteins, particularly GTPase-activating proteins (GAPs), remain poorly understood. This study focuses on β2-chimaerin, a Rac1-specific GAP, in Apc-driven tumorigenesis using the ApcMin/+ mouse model. We demonstrate that β2-chimaerin deficiency selectively promotes the growth of colonic polyps without influencing small intestinal polyp formation. Mechanistically, β2-chimaerin loss is associated with enhanced ERK phosphorylation, while canonical Wnt/β-catenin and E-cadherin pathways remain unaffected, suggesting its specific involvement in modulating proliferative signaling in the colon. Consistent with its tumor-suppressive role, bioinformatics analyses reveal that low β2-chimaerin expression correlates with poor prognosis in CRC patients. This study expands the understanding of Rho-GTPase regulatory mechanisms in intestinal tumorigenesis, providing a basis for future therapeutic strategies targeting Rho-GTPase pathways in CRC.
Collapse
Affiliation(s)
| | | | - María J. Caloca
- Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-UVA, 47003 Valladolid, Spain (C.S.-V.)
| |
Collapse
|
3
|
Wang C, Lv T, Jin B, Li Y, Fan Z. Regulatory role of PPAR in colorectal cancer. Cell Death Discov 2025; 11:28. [PMID: 39875357 PMCID: PMC11775197 DOI: 10.1038/s41420-025-02313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors in the digestive system, and the majority of patients are found to be in advanced stages, which is a burden to human health all over the world. Moreover, in recent years, CRC has been progressively becoming younger, with an increasing incidence mainly among patients <50 years old. Despite the increase in awareness of CRC and the continuous improvement of medical treatment nowadays, the challenge of CRC still needs to be conquered. By now, the pathogenesis of CRC is complex and not fully understood. With the deepening of research, it has been revealed that PPARs, as a transcription factor, are inextricably linked to CRC. This article outlines the mechanisms by which PPARs are involved in CRC development. An in-depth understanding of the pathways related to PPARs may provide new ways of developing effective therapies for CRC with PPARs as potential targets.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Tingcong Lv
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China.
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
4
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 PMCID: PMC12105169 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Birabaharan M, Kaelber DC, Nizet V, Zarrinpar A. Gut-derived PPAR-γ signaling and risk of bacterial enteric infection: insight from thiazolidinedione users in a US population-based study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.24.24313682. [PMID: 39398997 PMCID: PMC11469470 DOI: 10.1101/2024.09.24.24313682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background and Aims The ongoing antimicrobial resistant crisis heralds the need for new therapeutics against enteric infection. In mouse models, colon epithelial peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling limits oxygen and nitrate luminal bioavailability, thereby preventing bacterial pathogen colonization. However, whether this mechanism operates similarly in humans remains uncertain. Methods To investigate, we used the cloud-based TriNetX Analytics Platform which aggregates health records from 117 million patients across 66 US healthcare organizations, to assess the risk of bacterial enteric infection among diabetic patients prescribed thiazolidinediones, a class of PPAR-γ agonists, to other anti-diabetes medications. Results Among 85,117 thiazolidinedione users, we observed a 22-49% lower risk of bacterial enteric infections compared to users of other anti-diabetes medications. This reduction in risk was consistent across high-risk individuals, regardless of sex or age. Similar results were replicated in high-risk patients when thiazolidinedione users were directly compared to those on DPP-4 inhibitors. Conclusion These findings support the potential protective role of PPAR-γ signaling against bacterial enteric infection and call for further clinical investigation.
Collapse
Affiliation(s)
- Morgan Birabaharan
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, California, USA
| | - David C Kaelber
- Departments of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center
- Institute of Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Li Y, Yan F, Xiang J, Wang W, Xie K, Luo L. Identification and experimental validation of immune-related gene PPARG is involved in ulcerative colitis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167300. [PMID: 38880160 DOI: 10.1016/j.bbadis.2024.167300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND The pathophysiology of ulcerative colitis (UC) is believed to be heavily influenced by immunology, which presents challenges for both diagnosis and treatment. The main aims of this study are to deepen our understanding of the immunological characteristics associated with the disease and to identify valuable biomarkers for diagnosis and treatment. METHODS The UC datasets were sourced from the GEO database and were analyzed using unsupervised clustering to identify different subtypes of UC. Twelve machine learning algorithms and Deep learning model DNN were developed to identify potential UC biomarkers, with the LIME and SHAP methods used to explain the models' findings. PPI network is used to verify the identified key biomarkers, and then a network connecting super enhancers, transcription factors and genes is constructed. Single-cell sequencing technology was utilized to investigate the role of Peroxisome Proliferator Activated Receptor Gamma (PPARG) in UC and its correlation with macrophage infiltration. Furthermore, alterations in PPARG expression were validated through Western blot (WB) and immunohistochemistry (IHC) in both in vitro and in vivo experiments. RESULT By utilizing bioinformatics techniques, we were able to pinpoint PPARG as a key biomarker for UC. The expression of PPARG was significantly reduced in cell models, UC animal models, and colitis models induced by dextran sodium sulfate (DSS). Interestingly, overexpression of PPARG was able to restore intestinal barrier function in H2O2-induced IEC-6 cells. Additionally, immune-related differentially expressed genes (DEGs) allowed for efficient classification of UC samples into neutrophil and mitochondrial metabolic subtypes. A diagnostic model incorporating the three disease-specific genes PPARG, PLA2G2A, and IDO1 demonstrated high accuracy in distinguishing between the UC group and the control group. Furthermore, single-cell analysis revealed that decreased PPARG expression in colon tissue may contribute to the polarization of M1 macrophages through activation of inflammatory pathways. CONCLUSION In conclusion, PPARG, a gene related to immunity, has been established as a reliable potential biomarker for the diagnosis and treatment of UC. The immune response it controls plays a key role in the progression and development of UC by enabling interaction between characteristic biomarkers and immune infiltrating cells.
Collapse
Affiliation(s)
- Yang Li
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Fangfang Yan
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jing Xiang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Kangping Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
7
|
Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024; 41:114. [PMID: 38619661 DOI: 10.1007/s12032-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.
Collapse
Affiliation(s)
- Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Qian Cui
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Schöckel L, Woischke C, Surendran SA, Michl M, Schiergens T, Hölscher A, Glass F, Kreissl P, Klauschen F, Günther M, Ormanns S, Neumann J. PPARG activation promotes the proliferation of colorectal cancer cell lines and enhances the antiproliferative effect of 5-fluorouracil. BMC Cancer 2024; 24:234. [PMID: 38378472 PMCID: PMC10877928 DOI: 10.1186/s12885-024-11985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARG) is a member of the nuclear receptor family. It is involved in the regulation of adipogenesis, lipid metabolism, insulin sensitivity, vascular homeostasis and inflammation. In addition, PPARG agonists, known as thiazolidinediones, are well established in the treatment of type 2 diabetes mellitus. PPARGs role in cancer is a matter of debate, as pro- and anti-tumour properties have been described in various tumour entities. Currently, the specific role of PPARG in patients with colorectal cancer (CRC) is not fully understood. MATERIAL AND METHODS The prognostic impact of PPARG expression was investigated by immunohistochemistry in a case-control study using a matched pair selection of CRC tumours (n = 246) with either distant metastases to the liver (n = 82), lung (n = 82) or without distant metastases (n = 82). Its effect on proliferation as well as the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU) was examined after activation, inhibition, and transient gene knockdown of PPARG in the CRC cell lines SW403 and HT29. RESULTS High PPARG expression was significantly associated with pulmonary metastasis (p = 0.019). Patients without distant metastases had a significantly longer overall survival with low PPARG expression in their tumours compared to patients with high PPARG expression (p = 0.045). In the pulmonary metastasis cohort instead, a trend towards longer survival was observed for patients with high PPARG expression in their tumour (p = 0.059). Activation of PPARG by pioglitazone and rosiglitazone resulted in a significant dose-dependent increase in proliferation of CRC cell lines. Inhibition of PPARG by its specific inhibitor GW9662 and siRNA-mediated knockdown of PPARG significantly decreased proliferation. Activating PPARG significantly increased the CRC cell lines sensitivity to 5-FU while its inhibition decreased it. CONCLUSION The prognostic effect of PPARG expression depends on the metastasis localization in advanced CRC patients. Activation of PPARG increased malignancy associated traits such as proliferation in CRC cell lines but also increases sensitivity towards the chemotherapeutic agent 5-FU. Based on this finding, a combination therapy of PPARG agonists and 5-FU-based chemotherapy constitutes a promising strategy which should be further investigated.
Collapse
Affiliation(s)
- Leah Schöckel
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Christine Woischke
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Sai Agash Surendran
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
| | - Marlies Michl
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Schiergens
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
| | - Michael Günther
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
- Innpath Institute for Pathology GmbH, Tirol Kliniken, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany
- Innpath Institute for Pathology GmbH, Tirol Kliniken, Innsbruck, Austria
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-University (LMU) München, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU Munich Germany, Munich, Germany.
| |
Collapse
|
9
|
Xu L, Che S, Chen H, Liu Q, Shi J, Jin J, Hou Y. PPARγ agonist inhibits c-Myc-mediated colorectal cancer tumor immune escape. J Cell Biochem 2023; 124:1145-1154. [PMID: 37393598 DOI: 10.1002/jcb.30437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
As a master transcription factor, c-Myc plays an important role in promoting tumor immune escape. In addition, PPARγ (peroxisome proliferator-activated receptor γ) regulates cell metabolism, inflammation, and tumor progression, while the effect of PPARγ on c-Myc-mediated tumor immune escape is still unclear. Here we found that cells treated with PPARγ agonist pioglitazone (PIOG) reduced c-Myc protein expression in a PPARγ-dependent manner. qPCR analysis showed that PIOG had no significant effect on c-Myc gene levels. Further analysis showed that PIOG decreased c-Myc protein half-life. Moreover, PIOG increased the binding of c-Myc to PPARγ, and induced c-Myc ubiquitination and degradation. Importantly, c-Myc increased PD-L1 and CD47 immune checkpoint protein expression and promoted tumor immune escape, while PIOG inhibited this event. These findings suggest that PPARγ agonist inhibited c-Myc-mediated tumor immune escape by inducing its ubiquitination and degradation.
Collapse
Affiliation(s)
- Liuqian Xu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Suning Che
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Jia X, Qian J, Chen H, Liu Q, Hussain S, Jin J, Shi J, Hou Y. PPARγ agonist pioglitazone enhances colorectal cancer immunotherapy by inducing PD-L1 autophagic degradation. Eur J Pharmacol 2023; 950:175749. [PMID: 37105516 DOI: 10.1016/j.ejphar.2023.175749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
Blockade of PD-1/PD-L1 immune checkpoint could be an effective antitumor strategy for multiple types of cancer, but it is low response rate for colorectal cancer patients with unclear mechanism. Here we found that PPARγ agonist pioglitazone could reduce PD-L1 protein levels without effect on its gene expression. Further analysis showed that pioglitazone induced PD-L1 autophagic degradation in a PPARγ-dependent manner. Pioglitazone promoted PD-L1 translocation to lysosome by immunofluorescence analysis, which was associated with the increased binding of PPARγ to PD-L1. Moreover the combined pioglitazone with PD-1 antibody enhanced colorectal tumor immunotherapy, which was involved in reduced PD-L1 levels and increased CD8+ T cells. These findings suggest that PPARγ agonist could induce PD-L1 autophagic degradation resulting in increased colorectal tumor immunotherapy.
Collapse
Affiliation(s)
- Xiao Jia
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Jin Qian
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, PR China
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, PR China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, PR China; School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China.
| |
Collapse
|
12
|
Gou Q, Che S, Chen M, Chen H, Shi J, Hou Y. PPARγ inhibited tumor immune escape by inducing PD-L1 autophagic degradation. Cancer Sci 2023. [PMID: 37096255 DOI: 10.1111/cas.15818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Blockade of the programmed death 1 (PD-1)/ programmed death ligand 1 (PD-L1) immune checkpoint could increase antitumor immunotherapy for multiple types of cancer, but the response rate of patients is about 10%-40%. Peroxisome proliferator activated receptor γ (PPARγ) plays an important role in regulating cell metabolism, inflammation, immunity, and cancer progression, while the mechanism of PPARγ on cancer cell immune escape is still unclear. Here we found that PPARγ expression exhibits a positive correlation with activation of T cells in non-small-cell lung cancer (NSCLC) by clinical analysis. Deficiency of PPARγ promoted immune escape of NSCLC by inhibiting T-cell activity, which was associated with increased PD-L1 protein level. Further analysis showed that PPARγ reduced PD-L1 expression independent of its transcriptional activity. PPARγ contains the microtubule-associated protein 1A/1B-light chain 3 (LC3) interacting region motif, which acts as an autophagy receptor for PPARγ binding to LC3, leading to degradation of PD-L1 in lysosomes, which in turn suppresses NSCLC tumor growth by increasing T-cell activity. These findings suggest that PPARγ inhibits the tumor immune escape of NSCLC by inducing PD-L1 autophagic degradation.
Collapse
Affiliation(s)
- Qian Gou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Suning Che
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
13
|
Lerner G, Tang H, Singh K, Golestani R, St Claire S, Humphrey PA, Lannin D, Janostiak R, Harigopal M. AMACR Expression is a Potential Diagnostic Marker in Apocrine Lesions of Breast, and is Associated with High Histologic Grade and Lymph Node Metastases in Some Invasive Apocrine Breast Cancers. Clin Breast Cancer 2023; 23:199-210. [PMID: 36577560 DOI: 10.1016/j.clbc.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carcinoma with apocrine differentiation (AC) is a subtype of breast carcinoma with apocrine features in >90% of the tumor. Molecular studies demonstrate AC has high expression of androgen receptor (AR) mRNA. Pure AC lack estrogen receptor (ER), progesterone receptor (PR), and express AR, with variable human epidermal growth factor 2 (HER2) status. Currently, in triple negative AC, no targetable therapies or specific diagnostic markers exist. MATERIALS AND METHODS α-Methylacyl CoA racemase (AMACR) expression was investigated as a marker of apocrine differentiation using a single-plex immunoperoxidase stain, and a novel AMACR/p63 dual stain in a subset of cases, across 1) benign apocrine lesions (apocrine metaplasia, adenosis) 2) apocrine DCIS (ADCIS), 3) AC/ invasive ductal carcinoma (IDC) with apocrine features, 4) non-apocrine triple negative breast cancer (TNBC) and 5) IDC, no special type. A sub-set of cases were evaluated by tissue microarray. RESULTS AMACR expression was increased in both AC and ADCIS, with minimal expression in benign breast tissue, TNBC and IDC, NST cases. In invasive cases, those with positive AMACR (>5% positivity) were significantly associated with higher histologic grade (P = .006), initial N stage (chi squared 0.044), and lack of ER or PR expression (both P < .001), with no correlation with overall survival. Analysis of TCGA breast cancer datasets revealed AMACR expression was significantly higher in molecularly defined apocrine carcinomas relative to basal and luminal subtypes. Moreover, high AMACR expression predicted worse relapse-free and distant-metastasis free survival, among both ER-/PR-/Her2- and ER-/PR-/Her2+ breast cancer cohorts (log-rank P = .081 and .00011, respectively). CONCLUSION AMACR represents a promising diagnostic and prognostic marker in apocrine breast lesions. Further study is needed to determine the biologic and clinical significance of this protein in AC.
Collapse
Affiliation(s)
- Gabriel Lerner
- Department of Surgical Pathology, Yale University School of Medicine, New Haven, CT
| | - Haiming Tang
- Department of Surgical Pathology, Yale University School of Medicine, New Haven, CT
| | - Kamaljeet Singh
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI
| | - Reza Golestani
- Department of Surgical Pathology, Yale University School of Medicine, New Haven, CT
| | - Samantha St Claire
- Yale Pathology Tissue Services, Yale University School of Medicine, New Haven, CT
| | - Peter A Humphrey
- Department of Surgical Pathology, Yale University School of Medicine, New Haven, CT
| | - Donald Lannin
- Department of Surgery, Section of Surgical Oncology, Yale University School of Medicine, New Haven, CT
| | | | - Malini Harigopal
- Department of Surgical Pathology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
14
|
TRIB3 Modulates PPARγ-Mediated Growth Inhibition by Interfering with the MLL Complex in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231810535. [PMID: 36142452 PMCID: PMC9503934 DOI: 10.3390/ijms231810535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.
Collapse
|
15
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
16
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
17
|
Keckstein S, Tilgener C, Jeschke U, Hofmann S, Vilsmaier T, Kaltofen T, Heidegger H, Batz F, Mahner S, Schröder L. Effects of matcha tea extract on cell viability and peroxisome proliferator-activated receptor γ expression on T47D breast cancer cells. Arch Gynecol Obstet 2022; 306:451-459. [PMID: 35079875 PMCID: PMC9349150 DOI: 10.1007/s00404-021-06381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/23/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE In the following work, we investigated the nuclear peroxisome proliferator-activated receptor gamma (PPARγ)-dependent proliferation behavior of breast cancer cells after stimulation with matcha green tea extract (MTE). METHODS T47D cells were stimulated with MTE at concentrations of 5, 10 and 50 µg/ml. Cell viability was assessed using a WST-1 assay after an incubation time of 72 h. PPARγ expression was quantified at the gene level by real-time polymerase chain reaction (PCR). A western blot (WB) was carried out for the qualitative assessment of the expression behavior of on a protein level. RESULTS The WST-1 test showed a significant inhibition of viability in T47D cells after 72 h at 5, 10 and 50 µg/ml. The PCR showed an overexpression of PPARγ in T47D cells in all concentrations. At the concentration of 50 µg/ml the expression was significantly increased (p < 0.05). The WB demonstrated a significant quantitative increase of PPARγ at protein level with MTE concentrations of 10 and 50 µg/ml. In addition, there was a negative correlation between the overexpression of PPAR γ and the inhibition of proliferation. CONCLUSION MTE decreases the cell viability of T47D cells and furthermore leads to an overexpression of PPARγ on protein and mRNA level.
Collapse
Affiliation(s)
- Simon Keckstein
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Constantin Tilgener
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Urology and Transplant Surgery, Klinikum Stuttgart, Kriegsbergstraße. 60, 70174, Stuttgart, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Simone Hofmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Helene Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Falk Batz
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lennard Schröder
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
18
|
Wu Y, Liu X, Li G. Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis. Sci Rep 2022; 12:159. [PMID: 34997010 PMCID: PMC8741777 DOI: 10.1038/s41598-021-03980-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Huangqin decoction (HQD) is a Traditional Chinese Medicine formula for ulcerative colitis. However, the pharmacology and molecular mechanism of HQD on ulcerative colitis is still unclear. Combined microarray analysis, network pharmacology, and molecular docking for revealing the therapeutic targets and molecular mechanism of HQD against ulcerative colitis. TCMSP, DrugBank, Swiss Target Prediction were utilized to search the active components and effective targets of HQD. Ulcerative colitis effective targets were obtained by microarray data from the GEO database (GSE107499). Co-targets between HQD and ulcerative colitis are obtained by Draw Venn Diagram. PPI (Protein–protein interaction) network was constructed by the STRING database. To obtain the core target, topological analysis is exploited by Cytoscape 3.7.2. GO and KEGG enrichment pathway analysis was performed to Metascape platform, and molecular docking through Autodock Vina 1.1.2 finished. 161 active components with 486 effective targets of HQD were screened. 1542 ulcerative colitis effective targets were obtained with |Log2FC|> 1 and adjusted P-value < 0.05. The Venn analysis was contained 79 co-targets. Enrichment analysis showed that HQD played a role in TNF signaling pathway, IL-17 signaling pathway, Th17 cell differentiation, etc. IL6, TNF, IL1B, PTGS2, ESR1, and PPARG with the highest degree from PPI network were successfully docked with 19 core components of HQD, respectively. According to ZINC15 database, quercetin (ZINC4175638), baicalein (ZINC3871633), and wogonin (ZINC899093) recognized as key compounds of HQD on ulcerative colitis. PTGS2, ESR1, and PPARG are potential therapeutic targets of HQD. HQD can act on multiple targets through multi-pathway, to carry out its therapeutic role in ulcerative colitis.
Collapse
Affiliation(s)
- Yi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China. .,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, China.
| | - Xinqiao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Guiwei Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| |
Collapse
|
19
|
Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, Lum PT, Subramaniyan V, Wu YS, Fuloria NK, Fuloria S. Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:471-503. [PMID: 34548817 PMCID: PMC8448164 DOI: 10.2147/bctt.s316667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, 42610, Malaysia
| | | | | |
Collapse
|
20
|
Augimeri G, Bonofiglio D. PPARgamma: A Potential Intrinsic and Extrinsic Molecular Target for Breast Cancer Therapy. Biomedicines 2021; 9:biomedicines9050543. [PMID: 34067944 PMCID: PMC8152061 DOI: 10.3390/biomedicines9050543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decades, the breast tumor microenvironment (TME) has been increasingly recognized as a key player in tumor development and progression and as a promising prognostic and therapeutic target for breast cancer patients. The breast TME, representing a complex network of cellular signaling—deriving from different stromal cell types as well as extracellular matrix components, extracellular vesicles, and soluble growth factors—establishes a crosstalk with cancer cells sustaining tumor progression. A significant emphasis derives from the tumor surrounding inflammation responsible for the failure of the immune system to effectively restrain breast cancer growth. Thus, effective therapeutic strategies require a deeper understanding of the interplay between tumor and stroma, aimed at targeting both the intrinsic neoplastic cells and the extrinsic surrounding stroma. In this scenario, peroxisome proliferator-activated receptor (PPAR) γ, primarily known as a metabolic regulator, emerged as a potential target for breast cancer treatment since it functions in breast cancer cells and several components of the breast TME. In particular, the activation of PPARγ by natural and synthetic ligands inhibits breast cancer cell growth, motility, and invasiveness. Moreover, activated PPARγ may educate altered stromal cells, counteracting the pro-inflammatory milieu that drive breast cancer progression. Interestingly, using Kaplan–Meier survival curves, PPARγ also emerges as a prognostically favorable factor in breast cancer patients. In this perspective, we briefly discuss the mechanisms by which PPARγ is implicated in tumor biology as well as in the complex regulatory networks within the breast TME. This may help to profile approaches that provide a simultaneous inhibition of epithelial cells and TME components, offering a more efficient way to treat breast cancer.
Collapse
|
21
|
Ercolano G, Gomez-Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, Michalik L, Loyon R, Ianaro A, Ho PC, Borg C, Kopf M, Merkler D, Krebs P, Romero P, Trabanelli S, Jandus C. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun 2021; 12:2538. [PMID: 33953160 PMCID: PMC8100153 DOI: 10.1038/s41467-021-22764-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/25/2021] [Indexed: 01/27/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a critical role in protection against helminths and in diverse inflammatory diseases by responding to soluble factors such as the alarmin IL-33, that is often overexpressed in cancer. Nonetheless, regulatory factors that dictate ILC2 functions remain poorly studied. Here, we show that peroxisome proliferator-activated receptor gamma (PPARγ) is selectively expressed in ILC2s in humans and in mice, acting as a central functional regulator. Pharmacologic inhibition or genetic deletion of PPARγ in ILC2s significantly impair IL-33-induced Type-2 cytokine production and mitochondrial fitness. Further, PPARγ blockade in ILC2s disrupts their pro-tumoral effect induced by IL-33-secreting cancer cells. Lastly, genetic ablation of PPARγ in ILC2s significantly suppresses tumor growth in vivo. Our findings highlight a crucial role for PPARγ in supporting the IL-33 dependent pro-tumorigenic role of ILC2s and suggest that PPARγ can be considered as a druggable pathway in ILC2s to inhibit their effector functions. Hence, PPARγ targeting might be exploited in cancer immunotherapy and in other ILC2-driven mediated disorders, such as asthma and allergy.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Alejandra Gomez-Cadena
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Nina Dumauthioz
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Giulia Vanoni
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Tania Wyss
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Romain Loyon
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland. .,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
22
|
Pparγ1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice. Cancers (Basel) 2021; 13:cancers13092171. [PMID: 33946495 PMCID: PMC8125290 DOI: 10.3390/cancers13092171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.
Collapse
|
23
|
Combined COX-2/PPARγ Expression as Independent Negative Prognosticator for Vulvar Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030491. [PMID: 33802010 PMCID: PMC8001561 DOI: 10.3390/diagnostics11030491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Vulvar cancer incidence numbers have been rising steadily over the past decades. Especially the number of young patients with vulvar cancer increased recently. Therefore, the need to identify new prognostic factors for vulvar carcinoma is more apparent. Cyclooxygenase-2 (COX-2) has long been an object of scientific interest in the context of carcinogenesis. This enzyme is involved in prostaglandin synthesis and the latter binds to nuclear receptors like PPARγ. Therefore, the aim of this study was to investigate COX-2- and PPARγ- expression in tissues of vulvar carcinomas and to analyze their relevance as prognostic factors. The cytoplasmatic expression of COX-2 as well as PPARγ is associated with a significantly reduced survival, whereas nuclear expression of PPARγ results in a better survival. Especially the combined expression of both COX-2 and PPARγ in the cytoplasm is an independent negative prognosticator for vulvar cancer patients.
Collapse
|
24
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
25
|
Tashiro Y, Nishino H, Higuchi T, Sugisawa N, Fukuda Y, Yamamoto J, Inubushi S, Aoki T, Murakami M, Singh SR, Bouvet M, Hoffman RM. Ischemia reperfusion-induced metastasis is resistant to PPARγ agonist pioglitazone in a murine model of colon cancer. Sci Rep 2020; 10:18565. [PMID: 33122687 PMCID: PMC7596558 DOI: 10.1038/s41598-020-75210-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022] Open
Abstract
Ischemia reperfusion injury (IRI) during liver-metastasis resection for treatment of colon cancer may increase the risk of further metastasis. Peroxisome proliferator-activated receptor-γ (PPARγ) activation has been observed to exert a protective effect against IRI and IRI-induced metastasis of hepatocellular carcinoma. The present study aimed to investigate the effect of the PPARγ agonist pioglitazone on tumor metastasis and liver injury following IRI in a mouse model of colon cancer. Pioglitazone (30 mg/kg weight) was administered orally 1.5 h before and 2 h after the initiation of ischemia and was orally administrated daily to mice from day 0–21. SL4-cancer cells expressing red fluorescent protein (SL4-RFP) (1 × 106) were injected into the spleen. Fifteen minutes after injection, the hepatoduodenal ligament was clamped with a vessel clip, and released 5 min later. Liver, blood and tumor samples were taken from mice in order to determine if inflammation was induced by IRI. The effect of pioglitazone on liver metastasis was assessed. Furthermore, the effect of pioglitazone to control the inflammatory response during IRI progression was examined. Liver metastasis along with MMP-9 activation and the production of inflammatory cytokines were resistant to pioglitazone. Our results indicate that liver metastasis and associated inflammation in mice were resistant to pioglitazone.
Collapse
Affiliation(s)
- Yoshihiko Tashiro
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of General and Gastroenterological Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hiroto Nishino
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Norihiko Sugisawa
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Yasunari Fukuda
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Jun Yamamoto
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Sachiko Inubushi
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Takeshi Aoki
- Department of General and Gastroenterological Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan.
| | - Masahiko Murakami
- Department of General and Gastroenterological Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Robert M Hoffman
- AntiCancer Inc, 7917 Ostrow St, San Diego, CA, 92111, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
26
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). METHODS For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. RESULTS We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. CONCLUSIONS To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
27
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 10/11/2024] Open
Abstract
Objective This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). Methods For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. Results We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. Conclusions To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
28
|
Liu Z, Li F, Xue J, Wang M, Lai S, Bao H, He S. Esculentoside A rescues granulosa cell apoptosis and folliculogenesis in mice with premature ovarian failure. Aging (Albany NY) 2020; 12:16951-16962. [PMID: 32759462 PMCID: PMC7521512 DOI: 10.18632/aging.103609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Follicular atresia is one of the main processes for the loss of granulosa cells and oocytes from the mammalian ovary and any impairment to premature ovarian failure. Large numbers of studies have demonstrated that granulosa cell apoptosis causes follicular atresia, yet the rescue of these cells remains elusive. We aimed to use Esculentoside A (3-O-b-D-glucopyranosyl-1, 4-b-D-xylopyranosyl) phytolaccagenin, a saponin extracted from Phytolacca esculenta roots, as a potential rescue agent for the apoptosis of granulosa cells. Our results revealed the rescue of normal body and ovary weights, normal ovarian histo-architecture of ovaries, and hormones levels with regular estrus cycle. Consistently, the expression of proliferating and anti-apoptotic markers, i.e. KI67 and BCL-2 in granulosa cells, was enhanced. Meanwhile, the expressions of pro-apoptotic markers, which were BAX and CASPASEs (CASPASE-9 and CASPASE-3), were prominently reduced in Esculentoside A-induced premature ovarian failure mice. Additionally, PPARγ, a potential therapeutic target, has also rescued its expression by treating the premature ovarian failure mice with Esculentoside A. Our results advocated that Esculentoside A could restore folliculogenesis in premature ovarian failure mice. Furthermore, it has the potential to be investigated as a therapeutic agent for premature ovarian failure.
Collapse
Affiliation(s)
- Zhenteng Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Fenghua Li
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Jingwen Xue
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Meimei Wang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shoucui Lai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Hongchu Bao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shunzhi He
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| |
Collapse
|
29
|
Decara J, Rivera P, López-Gambero AJ, Serrano A, Pavón FJ, Baixeras E, Rodríguez de Fonseca F, Suárez J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol 2020; 11:730. [PMID: 32536865 PMCID: PMC7266982 DOI: 10.3389/fphar.2020.00730] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptor proteins that promote ligand-dependent transcription of target genes that regulate energy production, lipid metabolism, and inflammation. The PPAR superfamily comprises three subtypes, PPARα, PPARγ, and PPARβ/δ, with differential tissue distributions. In addition to their different roles in the regulation of energy balance and carbohydrate and lipid metabolism, an emerging function of PPARs includes normal homeostasis of intestinal tissue. PPARα activation represses NF-κB signaling, which decreases the inflammatory cytokine production by different cell types, while PPARγ ligands can inhibit activation of macrophages and the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and Il-1β. In this regard, the anti-inflammatory responses induced by PPAR activation might restore physiopathological imbalances associated with inflammatory bowel diseases (IBD). Thus, PPARs and their ligands have important therapeutic potential. This review briefly discusses the roles of PPARs in the physiopathology and therapies of the most important IBDs, ulcerative colitis (UC), and Crohn's disease (CD), as well some new experimental compounds with PPAR activity as promising drugs for IBD treatment.
Collapse
Affiliation(s)
- Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Departamento de Endocrinología, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) and UGC del Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
30
|
Anti-diabetic medications and the risk for colorectal cancer: A population-based nested case-control study. Cancer Epidemiol 2020; 64:101658. [DOI: 10.1016/j.canep.2019.101658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
|
31
|
Physiological and pathophysiological aspects of peroxisome proliferator-activated receptor regulation by fatty acids in poultry species. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Liu QQ, Wang P, He QJ, Ma R, Lee SC. PPARγ promotes diabetes‐associated centrosome amplification via increasing the expression of SKA1 directly at the transcriptional level. J Cell Physiol 2019; 234:20694-20703. [DOI: 10.1002/jcp.28674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Qin Qin Liu
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
| | - Pu Wang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
| | - Qin Ju He
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
| | - Ronald Ma
- Department of Medicine and Therapeutics Chinese University of Hong Kong Shatin Hong Kong SAR PR China
| | - Shao Chin Lee
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi PR China
- Department of Biology, School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu PR China
| |
Collapse
|
33
|
Kagawa Y, Umaru BA, Ariful I, Shil SK, Miyazaki H, Yamamoto Y, Ogata M, Owada Y. Role of FABP7 in tumor cell signaling. Adv Biol Regul 2019; 71:206-218. [PMID: 30245263 DOI: 10.1016/j.jbior.2018.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Lipids are major molecules for the function of organisms and are involved in the pathophysiology of various diseases. Fatty acids (FAs) signaling and their metabolism are some of the most important pathways in tumor development, as lipids serve as energetic sources during carcinogenesis. Fatty acid binding proteins (FABPs) facilitate FAs transport to different cell organelles, modulating their metabolism along with mediating other physiological activities. FABP7, brain-typed FABP, is thought to be an important molecule for cell proliferation in healthy as well as diseased organisms. Several studies on human tumors and tumor-derived cell lines put FABP7 in the center of tumorigenesis, and its high expression level has been reported to correlate with poor prognosis in different tumor types. Several types of FABP7-expressing tumors have shown an up-regulation of cell signaling activity, but molecular mechanisms of FABP7 involvement in tumorigenesis still remain elusive. In this review, we focus on the expression and function of FABP7 in different tumors, and possible mechanisms of FABP7 in tumor proliferation and migration.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Banlanjo A Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Islam Ariful
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
34
|
Kim D, Ahn BN, Kim Y, Hur DY, Yang JW, Park GB, Jang JE, Lee EJ, Kwon MJ, Kim TN, Kim MK, Park JH, Rhee BD, Lee SH. High Glucose with Insulin Induces Cell Cycle Progression and Activation of Oncogenic Signaling of Bladder Epithelial Cells Cotreated with Metformin and Pioglitazone. J Diabetes Res 2019; 2019:2376512. [PMID: 30729133 PMCID: PMC6343135 DOI: 10.1155/2019/2376512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022] Open
Abstract
Metformin and pioglitazone are two commonly prescribed oral hypoglycemic agents for diabetes. Recent evidence suggests that these drugs may contribute to bladder cancer. This study investigated molecular mechanism underlying effects of metformin and pioglitazone in bladder epithelial carcinogenesis in type 2 diabetes. The cells derived from human bladder epithelial cells (HBlEpCs) were treated with metformin or pioglitazone with high glucose and insulin. Cell viability and proliferation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and a bromodeoxyuridine incorporation assay, respectively, while cell cycle regulatory factors and oncogene expression were analyzed using western blotting. Metformin or pioglitazone suppressed cell viability concentration and time dependently, which was reversed by exposure to high glucose with or without insulin. Prolonged exposure to high glucose and insulin enhanced cyclin D, cyclin-dependent kinase 4 (Cdk4), and Cdk2 expression and suppressed cyclin-dependent kinase inhibitors p21 and p15/16 in HBlEpC cotreated with pioglitazone and metformin. Levels of tumor suppressor proteins p53 and cav-1 were downregulated while those of the oncogenic protein as c-Myc were upregulated under high glucose and insulin supplementation in HBlEpC cotreated with pioglitazone and metformin. Prolonged exposure to high glucose with or without insulin downregulated B cell lymphoma 2-associated X (Bax) and failed to enhance the expression of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) in drug-treated cells. These results suggest that hyperglycemic and insulinemic conditions promote cell cycle progression and oncogenic signaling in drug-treated bladder epithelial cells and uncontrolled hyperglycemia and hyperinsulinemia are probably greater cancer risk factors than diabetes drugs.
Collapse
Affiliation(s)
- Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Byul-Nim Ahn
- T2B Infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - YeongSeok Kim
- Department of Anatomy, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Jae Wook Yang
- T2B Infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, Busan, Republic of Korea
- Department of Ophthalmology, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Jung Eun Jang
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Eun Ju Lee
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Min Jeong Kwon
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Tae Nyun Kim
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jeong Hyun Park
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| | - Soon Hee Lee
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
| |
Collapse
|
35
|
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells. Int J Mol Sci 2018; 19:ijms19071907. [PMID: 29966227 PMCID: PMC6073339 DOI: 10.3390/ijms19071907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.
Collapse
|
36
|
Adil M, Khan RA, Ghosh P, Venkata SK, Kandhare AD, Sharma M. Pioglitazone and risk of bladder cancer in type 2 diabetes mellitus patients: A systematic literature review and meta-analysis of observational studies using real-world data. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2018. [DOI: 10.1016/j.cegh.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
37
|
Ryu S, Kim DS, Lee MW, Lee JW, Sung KW, Koo HH, Yoo KH. Anti-leukemic effects of PPARγ ligands. Cancer Lett 2018; 418:10-19. [PMID: 29331412 DOI: 10.1016/j.canlet.2018.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
Abstract
The peroxisome proliferator-activated receptor (PPAR) γ, a subtype of PPARs, is a member of the nuclear receptor family. PPARγ and its ligands contribute to various types of diseases including cancer. Given that currently developed therapies against leukemia are not very effective or safe, PPARγ ligands have been shown to be a new class of compounds with the potential to treat hematologic malignancies, particularly leukemia. The capability of PPARγ ligands to induce apoptosis, inhibit proliferation, and promote differentiation of leukemia cells suggests it has significant potential as a drug against leukemia. However, the specific mechanisms and molecules involved are not well-understood, although a number of PPARγ ligands with anti-leukemic effects have been identified. This may explain why PPARγ ligands have not been widely evaluated in clinical trials. To fill the gaps in the lack of understanding of specific anti-leukemic processes of PPARγ ligands and further adapt these molecules as anti-leukemic agents, this review describes previous studies of the anti-leukemic effects of PPARγ ligands.
Collapse
Affiliation(s)
- Somi Ryu
- Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, South Korea.
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
38
|
Yun SH, Roh MS, Jeong JS, Park JI. Peroxisome proliferator-activated receptor γ coactivator-1α is a predictor of lymph node metastasis and poor prognosis in human colorectal cancer. Ann Diagn Pathol 2017; 33:11-16. [PMID: 29566941 DOI: 10.1016/j.anndiagpath.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivator-1α (PGC-1α) expression levels are correlated with clinical outcome in breast cancer. However, the potential biological and clinical significance of PPARγ and PGC-1α in colorectal cancer remains unknown. Here we investigated PPARγ and PGC-1α expression in colorectal cancer, and the associations of these expression levels with clinicopathological features. We also evaluated the roles of PPARγ and PGC-1α as prognostic factors in colorectal cancer. We performed immunohistochemical analysis to investigate PPARγ and PGC-1α expression in human colorectal cancer tissues and adjacent normal tissues from 108 primary colorectal cancer patients. We then examined how these expression levels correlated with clinicopathological features. Using the Kaplan-Meier method, we evaluated 3-year disease-free survival (DFS) and overall survival (OS) in patients with tumors expressing different levels of PPARγ and PGC-1α. Our results revealed that PPARγ expression was not significantly correlated with age at surgery, gender, differentiation, depth of infiltration, relapse, or TNM stage. Additionally, PGC-1α expression was not significantly correlated with age at surgery, differentiation, depth of infiltration, relapse, or TNM stage. However, PGC-1α expression was significantly correlated with nodal metastasis (p=0.020). Survival analysis demonstrated reduced OS in the PGC-1α-positive group compared to the PGC-1α-negative group (p=0.03). Our present findings suggest that PGC-1α may be useful for predicting nodal metastasis, and may represent a biomarker for poor prognosis in colorectal cancer.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea
| | - Mee-Sook Roh
- Department of Pathology, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea
| | - Jin-Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Republic of Korea.
| |
Collapse
|
39
|
Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: Possible applications in cancer treatment. Chem Biol Drug Des 2017; 90:1056-1066. [DOI: 10.1111/cbdd.13013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/27/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vahid Shafiei-Irannejad
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Roya Salehi
- Department of Medical Nanotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
40
|
Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin Transl Med 2017; 6:14. [PMID: 28405929 PMCID: PMC5389954 DOI: 10.1186/s40169-017-0144-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 01/03/2023] Open
Abstract
Cancer cells are the site of numerous metabolic and thermodynamic abnormalities. We focus this review on the interactions between the canonical WNT/beta-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR gamma) in cancers and their implications from an energetic and metabolic point of view. In numerous tissues, PPAR gamma activation induces inhibition of beta-catenin pathway, while the activation of the canonical WNT/beta-catenin pathway inactivates PPAR gamma. In most cancers but not all, PPAR gamma is downregulated while the WNT/beta-catenin pathway is upregulated. In cancer cells, upregulation of the WNT/beta-catenin signaling induces dramatic changes in key metabolic enzymes that modify their thermodynamic behavior. This leads to activation of pyruvate dehydrogenase kinase1 (PDK-1) and monocarboxylate lactate transporter. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-coenzyme A (acetyl-CoA) in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. This leads to aerobic glycolysis in spite of the availability of oxygen. This phenomenon is referred to as the Warburg effect. Cytoplasmic pyruvate is converted into lactate. The WNT/beta-catenin pathway induces the transcription of genes involved in cell proliferation, i.e., MYC and CYCLIN D1. This ultimately promotes the nucleotide, protein and lipid synthesis necessary for cell growth and multiplication. In cancer, activation of the PI3K-AKT pathway induces an increase of the aerobic glycolysis. Moreover, prostaglandin E2 by activating the canonical WNT pathway plays also a role in cancer. In addition in many cancer cells, PPAR gamma is downregulated. Moreover, PPAR gamma contributes to regulate some key circadian genes. In cancers, abnormalities in the regulation of circadian rhythms (CRs) are observed. CRs are dissipative structures which play a key-role in far-from-equilibrium thermodynamics. In cancers, metabolism, thermodynamics and CRs are intimately interrelated.
Collapse
|
41
|
Wuertz BR, Darrah L, Wudel J, Ondrey FG. Thiazolidinediones abrogate cervical cancer growth. Exp Cell Res 2017; 353:63-71. [PMID: 28219679 DOI: 10.1016/j.yexcr.2017.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR γ) is activated by thiazolidinedione drugs (TZDs) and can promote anti-cancer properties. We used three TZDs (pioglitazone, rosiglitazone, and ciglitazone) to target cervical cancer cell lines and a nude mouse animal model. Each agent increased activation of PPAR γ, as judged by a luciferase reporter gene assay in three HPV-associated cell lines (CaSki, SiHa, and HeLa cells) while decreasing cellular proliferation in a dose-dependent manner. They also promoted Oil Red O accumulation in treated cell lines and upregulated the lipid differentiation marker adipsin. Interestingly, xenograft HeLa tumors in nude mice treated with 100mg/kg/day pioglitazone exhibited decreased growth compared to control mice or mice treated with standard cervical chemotherapy. In conclusion, TZDs slow tumor cell growth in vitro and in vivo with decreases in cell proliferation and increases in PPAR γ and adipsin. These agents may be interesting treatments or treatment adjuncts for HPV-associated cancers or perhaps even precancerous conditions.
Collapse
Affiliation(s)
- Beverly R Wuertz
- Molecular Oncology Program, Department of Otolaryngology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lindsay Darrah
- Molecular Oncology Program, Department of Otolaryngology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Justin Wudel
- Molecular Oncology Program, Department of Otolaryngology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Frank G Ondrey
- Molecular Oncology Program, Department of Otolaryngology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
42
|
Interactions between PPAR Gamma and the Canonical Wnt/Beta-Catenin Pathway in Type 2 Diabetes and Colon Cancer. PPAR Res 2017; 2017:5879090. [PMID: 28298922 PMCID: PMC5337359 DOI: 10.1155/2017/5879090] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/22/2016] [Accepted: 01/22/2017] [Indexed: 02/07/2023] Open
Abstract
In both colon cancer and type 2 diabetes, metabolic changes induced by upregulation of the Wnt/beta-catenin signaling and downregulation of peroxisome proliferator-activated receptor gamma (PPAR gamma) may help account for the frequent association of these two diseases. In both diseases, PPAR gamma is downregulated while the canonical Wnt/beta-catenin pathway is upregulated. In colon cancer, upregulation of the canonical Wnt system induces activation of pyruvate dehydrogenase kinase and deactivation of the pyruvate dehydrogenase complex. As a result, a large part of cytosolic pyruvate is converted into lactate through activation of lactate dehydrogenase. Lactate is extruded out of the cell by means of activation of monocarboxylate lactate transporter-1. This phenomenon is called Warburg effect. PPAR gamma agonists induce beta-catenin inhibition, while inhibition of the canonical Wnt/beta-catenin pathway activates PPAR gamma.
Collapse
|
43
|
Wood SM, Gill AJ, Brodsky AS, Lu S, Friedman K, Karashchuk G, Lombardo K, Yang D, Resnick MB. Fatty acid-binding protein 1 is preferentially lost in microsatellite instable colorectal carcinomas and is immune modulated via the interferon γ pathway. Mod Pathol 2017; 30:123-133. [PMID: 27687006 PMCID: PMC5218856 DOI: 10.1038/modpathol.2016.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Fatty acid-binding protein 1 (FABP1) is an intracellular protein responsible for the transportation of long chain fatty acids. Aside from its functions in lipid metabolism and cellular differentiation, FABP1 also plays a role in inflammation through its interaction with peroxisome proliferator-activated receptors (PPARs). Previously, we compared expression of colonic epithelium genes in a subset of microsatellite instable (MSI) colorectal carcinomas (medullary carcinomas) to normal colonic mucosa and found that FABP1 expression was markedly decreased in the tumors. Further analysis of RNA expression in the colorectal subtypes and The Cancer Genome Atlas data set found that FABP1 expression is decreased in the CMS1 subset of colorectal carcinomas, which is characterized by microsatellite instability. As MSI colorectal carcinomas are known for their robust immune response, we then aimed to link FABP1 to the immune microenvironment of MSI carcinomas. To confirm the gene expression results, we performed immunohistochemical analysis of a cohort of colorectal carcinomas. FABP1 was preferentially lost in MSI carcinomas (123/133, 93%) compared with microsatellite stable carcinomas (240/562, 43%, P<0.0001). In addition, higher numbers of tumor-infiltrating lymphocytes were present in tumors with loss of FABP1 (P<0.0001). Decreased expression of the fatty acid storage and glucose regulator, PPARγ, was associated with the loss of FABP1 (P<0.0001). Colorectal cancer cell lines treated with interferon γ exhibited decreased expression of FABP1. FABP1 expression was partially recovered with the treatment of the cell lines with rosiglitazone, a PPARγ agonist. This study demonstrated that the loss of FABP1 expression is associated with MSI carcinomas and that interferon γ stimulation plays a role in this process via its interaction with PPARγ.
Collapse
Affiliation(s)
- Stephanie M Wood
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, Sydney NSW 2006 Australia
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Kenneth Friedman
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Kara Lombardo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Murray B Resnick
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
44
|
Cheng WY, Huynh H, Chen P, Peña-Llopis S, Wan Y. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone. eLife 2016; 5. [PMID: 27692066 PMCID: PMC5047746 DOI: 10.7554/elife.18501] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI:http://dx.doi.org/10.7554/eLife.18501.001 The immune system can both contribute to cancer progression and restrain the growth of tumors. Some immune cells – called macrophages – create an inflammatory environment around a tumor, which can support the spread of the cancer cells. Independent observations and experiments have shown that a protein called PPARγ can suppress the development and growth of tumors. Drugs called thiazolidinediones (or TZDs for short), which are normally used to treat type 2 diabetes, activate PPARγ and therefore have anti-tumor effects. However, it is not fully understood how PPARγ and TZDs suppress tumor development. Cheng et al. hypothesized that the PPARγ protein and TZDs can inhibit the activity of the inflammatory macrophages that help tumors to develop. To test this, mice were genetically engineered so that their macrophages could not produce the PPARγ protein. These engineered mice were more likely to develop breast cancer than normal. Furthermore, the breast tumors in the modified mice did not shrink when they were treated with TZDs, whereas the tumors of normal mice did. Cheng et al. also found that PPARγ inhibits the ability of macrophages to produce a protein called Gpr132, which itself contributes to inflammation and allows breast cancer cells to grow. Mice that were unable to produce Grp132 displayed less inflammation, and cancer growth was blocked. Drugs that inhibited the activity of Grp132 in normal mice also reduced the ability of breast tumors to spread. Future experiments will need to examine exactly how the Gpr132 proteins produced by macrophages communicate with the cancer cells. Furthermore, developing new drugs that can inhibit Gpr132 could ultimately lead to more effective treatments for cancer. DOI:http://dx.doi.org/10.7554/eLife.18501.002
Collapse
Affiliation(s)
- Wing Yin Cheng
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Peiwen Chen
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Samuel Peña-Llopis
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States.,Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
45
|
Commonalities in the Association between PPARG and Vitamin D Related with Obesity and Carcinogenesis. PPAR Res 2016; 2016:2308249. [PMID: 27579030 PMCID: PMC4992792 DOI: 10.1155/2016/2308249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
The PPAR nuclear receptor family has acquired great relevance in the last decade, which is formed by three different isoforms (PPARα, PPARβ/δ, and PPAR ϒ). Those nuclear receptors are members of the steroid receptor superfamily which take part in essential metabolic and life-sustaining actions. Specifically, PPARG has been implicated in the regulation of processes concerning metabolism, inflammation, atherosclerosis, cell differentiation, and proliferation. Thus, a considerable amount of literature has emerged in the last ten years linking PPARG signalling with metabolic conditions such as obesity and diabetes, cardiovascular disease, and, more recently, cancer. This review paper, at crossroads of basic sciences, preclinical, and clinical data, intends to analyse the last research concerning PPARG signalling in obesity and cancer. Afterwards, possible links between four interrelated actors will be established: PPARG, the vitamin D/VDR system, obesity, and cancer, opening up the door to further investigation and new hypothesis in this fascinating area of research.
Collapse
|
46
|
Savic D, Ramaker RC, Roberts BS, Dean EC, Burwell TC, Meadows SK, Cooper SJ, Garabedian MJ, Gertz J, Myers RM. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med 2016; 8:74. [PMID: 27401066 PMCID: PMC4940857 DOI: 10.1186/s13073-016-0328-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. Methods To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Results Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Conclusions Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0328-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Emma C Dean
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Todd C Burwell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Michael J Garabedian
- Departments of Microbiology and Urology, New York University, New York, NY, 10016, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| |
Collapse
|
47
|
|
48
|
Wang X, Sun Y, Zhao Y, Ding Y, Zhang X, Kong L, Li Z, Guo Q, Zhao L. Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation. Biochem Pharmacol 2016; 106:70-81. [PMID: 26947454 DOI: 10.1016/j.bcp.2016.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/26/2016] [Indexed: 01/12/2023]
Abstract
Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cell infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Xiaoping Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yang Sun
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yue Zhao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Youxiang Ding
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xiaobo Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Li Zhao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
49
|
Morais JF, Sant’Anna JRD, Pereira TS, Franco CCDS, Mathias PCDF, de Castro-Prado MAA. Genotoxic investigation of a thiazolidinedione PPARγ agonist using thein vitromicronucleus test and thein vivohomozygotization assay. Mutagenesis 2016; 31:417-24. [DOI: 10.1093/mutage/gew003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Macrophage polarization: the link between inflammation and related diseases. Inflamm Res 2015; 65:1-11. [DOI: 10.1007/s00011-015-0874-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 01/04/2023] Open
|