1
|
Zens B, Fäßler F, Hansen JM, Hauschild R, Datler J, Hodirnau VV, Zheden V, Alanko J, Sixt M, Schur FK. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. J Cell Biol 2024; 223:e202309125. [PMID: 38506714 PMCID: PMC10955043 DOI: 10.1083/jcb.202309125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.
Collapse
Affiliation(s)
- Bettina Zens
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M. Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jonna Alanko
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
2
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
3
|
Chai Y, Zhou Y, Tagaya M. Rubbing-Assisted Approach for Fabricating Oriented Nanobiomaterials. MICROMACHINES 2022; 13:1358. [PMID: 36014280 PMCID: PMC9414502 DOI: 10.3390/mi13081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The highly-oriented structures in biological tissues play an important role in determining the functions of the tissues. In order to artificially fabricate oriented nanostructures similar to biological tissues, it is necessary to understand the oriented mechanism and invent the techniques for controlling the oriented structure of nanobiomaterials. In this review, the oriented structures in biological tissues were reviewed and the techniques for producing highly-oriented nanobiomaterials by imitating the oriented organic/inorganic nanocomposite mechanism of the biological tissues were summarized. In particular, we introduce a fabrication technology for the highly-oriented structure of nanobiomaterials on the surface of a rubbed polyimide film that has physicochemical anisotropy in order to further form the highly-oriented organic/inorganic nanocomposite structures based on interface interaction. This is an effective technology to fabricate one-directional nanobiomaterials by a biomimetic process, indicating the potential for wide application in the biomedical field.
Collapse
Affiliation(s)
- Yadong Chai
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Koji-machi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Yanni Zhou
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| |
Collapse
|
4
|
Puszkarska AM, Frenkel D, Colwell LJ, Duer MJ. Using sequence data to predict the self-assembly of supramolecular collagen structures. Biophys J 2022; 121:3023-3033. [PMID: 35859421 PMCID: PMC9463645 DOI: 10.1016/j.bpj.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022] Open
Abstract
Collagen fibrils are the major constituents of the extracellular matrix, which provides structural support to vertebrate connective tissues. It is widely assumed that the superstructure of collagen fibrils is encoded in the primary sequences of the molecular building blocks. However, the interplay between large-scale architecture and small-scale molecular interactions makes the ab initio prediction of collagen structure challenging. Here, we propose a model that allows us to predict the periodic structure of collagen fibers and the axial offset between the molecules, purely on the basis of simple predictive rules for the interaction between amino acid residues. With our model, we identify the sequence-dependent collagen fiber geometries with the lowest free energy and validate the predicted geometries against the available experimental data. We propose a procedure for searching for optimal staggering distances. Finally, we build a classification algorithm and use it to scan 11 data sets of vertebrate fibrillar collagens, and predict the periodicity of the resulting assemblies. We analyzed the experimentally observed variance of the optimal stagger distances across species, and find that these distances, and the resulting fibrillar phenotypes, are evolutionary well preserved. Moreover, we observed that the energy minimum at the optimal stagger distance is broad in all cases, suggesting a further evolutionary adaptation designed to improve the assembly kinetics. Our periodicity predictions are not only in good agreement with the experimental data on collagen molecular staggering for all collagen types analyzed, but also for synthetic peptides. We argue that, with our model, it becomes possible to design tailor-made, periodic collagen structures, thereby enabling the design of novel biomimetic materials based on collagen-mimetic trimers.
Collapse
Affiliation(s)
- Anna M Puszkarska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Daan Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lucy J Colwell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Google Research, Mountain View, California
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Takada K, Komuro A, Ali MA, Singh M, Okajima M, Matsumura K, Kaneko T. Cell-adhesive gels made of sacran/collagen complexes. Polym J 2022. [DOI: 10.1038/s41428-021-00593-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Zhang K, Zhang X, Zou B, Zhu J, Zhu J, Li S, Zhang W, Wu J, Huo F. A leather-based electrolyte for all-in-one configured flexible supercapacitors. Chem Commun (Camb) 2022; 58:7070-7073. [DOI: 10.1039/d2cc02630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leather based gel electrolytes were prepared from the top down method, and integrated flexible supercapacitors were developed by this method.
Collapse
Affiliation(s)
- Kang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xueyan Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Binghua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jingyu Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jing Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
7
|
Petelski AN, Pamies SC, Sosa GL. How procyanidin C1 sticks to collagen: The role of proline rings. Biophys Chem 2021; 276:106627. [PMID: 34089979 DOI: 10.1016/j.bpc.2021.106627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022]
Abstract
Molecular interactions between proteins and polyphenols are responsible for many natural phenomena like colloidal turbidity, astringency, denaturation of enzymes and leather tanning. Although these phenomena are well known, there are open questions about the specific interactions involved in the complexation process. In this work, Molecular Dynamic (MD) simulations and the topology of the electron density analysis were used to study the interactions between the flavonoid procyanidin C1 and a collagen fragment solvated in water. Root mean square deviation; root mean square fluctuation and hydrogen bonds occupancy were examined after 50 ns. The interactions were also analyzed by means of the quantum theory of atoms in molecules. Our results show that the main interactions are hydrogen bonds between -OH groups of the polyphenol and CO groups of the peptide bond. Stacking interactions between proline rings and phenol rings, that is CH⋯π hydrogen bonds, also stabilize the dynamic structure of the complex.
Collapse
Affiliation(s)
- André Nicolai Petelski
- Grupo de Investigación en Química Teórica y Experimental (QUITEX), Departamento de Ingeniería Química, Universidad Tecnológica Nacional, Facultad Regional Resistencia, French 414 (H3500CHJ), Resistencia, Chaco, Argentina; Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, 3400 Corrientes, Argentina.
| | - Silvana Carina Pamies
- Grupo de Investigación en Química Teórica y Experimental (QUITEX), Departamento de Ingeniería Química, Universidad Tecnológica Nacional, Facultad Regional Resistencia, French 414 (H3500CHJ), Resistencia, Chaco, Argentina.
| | - Gladis Laura Sosa
- Grupo de Investigación en Química Teórica y Experimental (QUITEX), Departamento de Ingeniería Química, Universidad Tecnológica Nacional, Facultad Regional Resistencia, French 414 (H3500CHJ), Resistencia, Chaco, Argentina; Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, 3400 Corrientes, Argentina.
| |
Collapse
|
8
|
Han Y, Hu J, Sun G. Recent advances in skin collagen: functionality and non-medical applications. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00046-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
During nature evolution process, living organisms have gradually adapted to the environment and been adept in synthesizing high performance structural materials at mild conditions by using fairly simple building elements. The skin, as the largest organ of animals, is such a representative example. Conferred by its intricate organization where collagen fibers are arranged in a randomly interwoven network, skin collagen (SC), defined as a biomass derived from skin by removing non-collagen components displays remarkable performance with combinations of mechanical properties, chemical-reactivity and biocompatibility, which far surpasses those of synthetic materials. At present, the application of SC in medical field has been largely studied, and there have been many reviews summarizing these efforts. However, the generalized view on the aspects of SC as smart materials in non-medical fields is still lacking, although SC has shown great potential in terms of its intrinsic properties and functionality. Hence, this review will provide a comprehensive summary that integrated the recent advances in SC, including its preparation method, structure, reactivity, and functionality, as well as applications, particularly in the promising area of smart materials.
Graphical abstract
Collapse
|
9
|
Chen F, Strawn R, Xu Y. The predominant roles of the sequence periodicity in the self-assembly of collagen-mimetic mini-fibrils. Protein Sci 2020; 28:1640-1651. [PMID: 31299125 PMCID: PMC6699095 DOI: 10.1002/pro.3679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 11/10/2022]
Abstract
Collagen fibrils represent a unique case of protein folding and self‐association. We have recently successfully developed triple‐helical peptides that can further self‐assemble into collagen‐mimetic mini‐fibrils. The 35 nm axially repeating structure of the mini‐fibrils, which is designated the d‐period, is highly reminiscent of the well‐known 67 nm D‐period of native collagens when examined using TEM and atomic force spectroscopy. We postulate that it is the pseudo‐identical repeating sequence units in the primary structure of the designed peptides that give rise to the d‐period of the quaternary structure of the mini‐fibrils. In this work, we characterize the self‐assembly of two additional designed peptides: peptide Col877 and peptide Col108rr. The triple‐helix domain of Col877 consists of three pseudo‐identical amino acid sequence units arranged in tandem, whereas that of Col108rr consists of three sequence units identical in amino acid composition but different in sequence. Both peptides form stable collagen triple helices, but only triple helices Col877 self‐associate laterally under fibril forming conditions to form mini‐fibrils having the predicted d‐period. The Co108rr triple helices, however, only form nonspecific aggregates having no identifiable structural features. These results further accentuate the critical involvement of the repeating sequence units in the self‐assembly of collagen mini‐fibrils; the actual amino acid sequence of each unit has only secondary effects. Collagen is essential for tissue development and function. This novel approach to creating collagen‐mimetic fibrils can potentially impact fundamental research and have a wide range of biomedical and industrial applications.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Biologics, Frontage Laboratories, Exton, Pennsylvania
| | | | - Yujia Xu
- Department of Chemistry, Hunter College of the City University of New York, New York, New York
| |
Collapse
|
10
|
Rouède D, Schaub E, Bellanger JJ, Ezan F, Tiaho F. Wavy nature of collagen fibrils deduced from the dispersion of their second-order nonlinear optical anisotropy parameters ρ. OPTICS EXPRESS 2020; 28:4845-4858. [PMID: 32121716 DOI: 10.1364/oe.380089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
From P-SHG experiments, second-order nonlinear optical anisotropy parameters ρ = χZZZ/χZXX of collagen tissues are calculated assuming the same model of supercoiled collagen fibril characterized by a variable angle θ. Dispersion of experimental ρ values is converted into distribution of θ values based on the wavy nature of collagen fibrils deduced from EM studies. For tendon, the results show that the dispersion of experimental ρ values is mainly due to Poisson photonic shot noise assuming a slight fibrillar undulation with θ = 2.2° ± 1.8°. However for skin and vessels, the dispersion of experimental ρ values is mainly due to a stronger fibrillar undulation with θ = 16.2° ± 1.3°. The results highlight that this undulation is reduced during the development of liver fibrosis therefore, contributing to the rigidity of the tissue.
Collapse
|
11
|
Dan W, Chen Y, Dan N, Zheng X, Wang L, Yang C, Huang Y, Liu X, Hu Y. Multi-level collagen aggregates and their applications in biomedical applications. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1656387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Weihua Dan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, P.R. China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, P.R. China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, P.R. China
| | - Xin Zheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, P.R. China
| | - Lu Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, P.R. China
| | - Changkai Yang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, P.R. China
| | - Yanping Huang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, P.R. China
| | - Xinhua Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an China
| | - Yang Hu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
12
|
Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1509-1522. [DOI: 10.1016/j.msec.2019.02.070] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/09/2023]
|
13
|
Charvolin J, Sadoc JF. Type-I collagen fibrils: From growth morphology to local order. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:49. [PMID: 31011856 DOI: 10.1140/epje/i2019-11812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The length of type-I collagen fibrils in solution increases through the development and progress of pointed tips appearing successively at the two ends of an axis-symmetric shaft with constant diameter. Those tips, respectively fine ([Formula: see text]) or coarse ([Formula: see text]) have opposite molecular orientations. The [Formula: see text]-pointed tips, the first to appear, are particularly remarkable as they all show, on most of their length, a common parabolic profile which stays constant during the growth. Assuming that the latter occurs by lateral accretion of individual molecules in staggered configuration, we propose to give account of this prominent morphological feature along a purely geometrical argument, the profile of a tip being linked to the shape of the trajectories followed all along the accretion process. Among several possible trajectories, Fermat spirals lead to a parabolic profile in perfect agreement with the one observed for [Formula: see text]-pointed tips. This is to be put in relation with the presence of such spirals in phyllotactic patterns which ensure the best packing efficiency in cases of axis-symmetry, which is indeed that of dense collagen fibrils. Moreover, those patterns are structured by concentric circles of dislocations, constitutive of the structure itself, whose behaviour might contribute to the mechanical properties of the fibrils.
Collapse
Affiliation(s)
- Jean Charvolin
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France
| | - Jean-François Sadoc
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France.
| |
Collapse
|
14
|
Zou B, Chen Y, Liu Y, Xie R, Du Q, Zhang T, Shen Y, Zheng B, Li S, Wu J, Zhang W, Huang W, Huang X, Huo F. Repurposed Leather with Sensing Capabilities for Multifunctional Electronic Skin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801283. [PMID: 30775226 PMCID: PMC6364595 DOI: 10.1002/advs.201801283] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Indexed: 05/20/2023]
Abstract
Electronic skin (e-skin), an important part toward the realization of artificial intelligence, has been developing through comprehending, mimicking, and eventually outperforming skin in some aspects. Most of the e-skin substrates are flexible polymers, such as polydimethylsiloxane (PDMS). Although PDMS was found to be biocompatible, it is not suitable for long-time wearing due to its air impermeability. This study reports a simple and designable leather based e-skin by merging the natural sophisticated structure and wearing comfort of leather with the multifunctional properties of nanomaterials. The leather based e-skin could make leather, "the dead skin," repurposed for its sensing capabilities. This e-skin can be applied in flexible pressure sensors, displays, user-interactive devices, etc. It provides a new class of materials for the development of multifunctional e-skin to mimic or even outshine the functions of real skin.
Collapse
Affiliation(s)
- Binghua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Yuanyuan Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Yihan Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Ruijie Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Qinjie Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Tao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)127 West Youyi RoadXi'an710072P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengdu610065P. R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)30 South Puzhu RoadNanjing211816P. R. China
| |
Collapse
|
15
|
Awasthi A, Sharma R, Ghosh R. Monte Carlo type Simulations of Mineralized Collagen Fibril based on Two Scale Asymptotic Homogenization. J Biomech Eng 2019; 141:2720657. [PMID: 30615067 DOI: 10.1115/1.4042439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 11/08/2022]
Abstract
A multi-scale model for mineralized collagen fibril is proposed by taking into account the uncertainties associated with the geometrical properties of mineral phase and its distribution in the organic matrix. The asymptotic homogenization approach along with periodic boundary conditions has been used to derive the effective elastic moduli at two hierarchical length scales, namely: microfibril and mineralized collagen fibril. The uncertainties associated with the mineral plates have been directly included in the finite element mesh by randomly varying their sizes. A total 100 realizations for mineralized collagen fibril model with random distribution have been generated using an in-house MATLAB® code and Monte-Carlo type simulations have been performed under tension load to obtain the statistical equivalent modulus. The deformation response has been studied in both small (= 10%) and large (= 10%) strain regimes. The stress transformation mechanism has also been explored in microfibril which showed stress relaxation in the organic phase upon different stages of mineralization. The elastic moduli for microfibril under small and large strain have been obtained as 1.88 and 6.102 GPa, respectively, and have been used as input for upper scale homogenization procedure. Finally, the characteristic longitudinal moduli of the mineralized collagen fibril in the small and large strain regimes are obtained as 4.08 ± 0.062 and 12.93 ± 0.148 GPa, respectively. All the results are in good agreement to those obtained from previous experiments and molecular dynamics simulations in the literature with a significant reduction in the computational cost.
Collapse
Affiliation(s)
- Abhilash Awasthi
- MS Scholar, School of Engineering, Indian Institute of Technology Mandi, Kamand - 175005, Mandi, Himachal Pradesh, India
| | - Rajneesh Sharma
- Assistant Professor, School of Engineering, Indian Institute of Technology Mandi, Kamand - 175005, Mandi, Himachal Pradesh, India
| | - Rajesh Ghosh
- Assistant Professor, School of Engineering, Indian Institute of Technology Mandi, Kamand - 175005, Mandi, Himachal Pradesh, India
| |
Collapse
|
16
|
|
17
|
KRAIEM TESNIM, BARKAOUI ABDELWAHED, MERZOUKI TAREK, CHAFRA MOEZ. CROSS-LINKS MULTISCALE EFFECTS ON BONE ULTRASTRUCTURE BIOMECHANICAL BEHAVIOR. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone is a multiscale combination of collagen molecules merged with mineral crystals. Its high rigidity and stability stem amply from its polymeric organic matrix and secondly from the connections established between interdifferent and intradifferent scale components through cross-links. Several studies have shown that the cross-links inhibition results in a reduction in strength of bone but they do not quantify the degree to which these connections contribute to the bone rigidity and toughness. This report is classified among the few works that measure the cross-links multiscale impact on the ultrastructure bone mechanical behavior. This work aims firstly to study the effect of cross-links at the molecule scale and secondly to gather from literature studies results handling with cross-links effects on the other bone ultrastructure scales in order to reveal the multiscale effect of cross-links. This study proves that cross-links increasing number improves the mechanical performance of each scale of bone ultrastructure. On the other hand, cross-links have a multiscale contribution that depends on its rank related to existing cross-links connecting the same geometries and it depends on mechanical characteristics of geometries connected.
Collapse
Affiliation(s)
- TESNIM KRAIEM
- LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar 1002, Tunis, Tunisia
| | - ABDELWAHED BARKAOUI
- Laboratoire des Energies Renouvelables et Matériaux Avancés (LERMA), Ecole Supérieure de l’Ingénierie de l’Energie, Université Internationale de Rabat, Rocade RabatSalé, 11100, Rabat-Sala El Jadida, Morocco
| | - TAREK MERZOUKI
- Laboratoire d’Ingénierie des Systèmes de Versailles LISV, Université of Versailles Saint-Quentin 10-12 avenue, de l’Europe, 78140 Vélisy, France
| | - MOEZ CHAFRA
- Laboratoire de Systèmes et de Mécanique Appliquée (LASMAP), Ecole Polytechnique de Tunis, Université de Carthage, 2078, La Marsa, Tunisia
| |
Collapse
|
18
|
Simon P, Grüner D, Worch H, Pompe W, Lichte H, El Khassawna T, Heiss C, Wenisch S, Kniep R. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple-helix nanofibril mineralization. Sci Rep 2018; 8:13696. [PMID: 30209287 PMCID: PMC6135843 DOI: 10.1038/s41598-018-31983-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/29/2018] [Indexed: 01/27/2023] Open
Abstract
Tibia trabeculae and vertebrae of rats as well as human femur were investigated by high-resolution TEM at the atomic scale in order to reveal snapshots of the morphogenetic processes of local bone ultrastructure formation. By taking into account reflections of hydroxyapatite for Fourier filtering the appearance of individual alpha-chains within the triple-helix clearly shows that bone bears the feature of an intergrowth composite structure extending from the atomic to the nanoscale, thus representing a molecular composite of collagen and apatite. Careful Fourier analysis reveals that the non-collagenous protein osteocalcin is present directly combined with octacalcium phosphate. Besides single spherical specimen of about 2 nm in diameter, osteocalcin is spread between and over collagen fibrils and is often observed as pearl necklace strings. In high-resolution TEM, the three binding sites of the γ-carboxylated glutamic acid groups of the mineralized osteocalcin were successfully imaged, which provide the chemical binding to octacalcium phosphate. Osteocalcin is attached to the collagen structure and interacts with the Ca-sites on the (100) dominated hydroxyapatite platelets with Ca-Ca distances of about 9.5 Å. Thus, osteocalcin takes on the functions of Ca-ion transport and suppression of hydroxyapatite expansion.
Collapse
Affiliation(s)
- Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187, Dresden, Germany.
| | - Daniel Grüner
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, IEK-2, 52425, Jülich, Germany
| | - Hartmut Worch
- Institute of Materials Science, Technical University of Dresden, Helmholtzstr. 7, 01069, Dresden, Germany
| | - Wolfgang Pompe
- Institute of Materials Science, Technical University of Dresden, Helmholtzstr. 7, 01069, Dresden, Germany
| | - Hannes Lichte
- Institute of Structure Physics, Technical University of Dresden, Zum Triebenberg 50, 01328, Dresden Zaschendorf, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Aulweg 128, Giessen, 35392, Germany
| | - Christian Heiss
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Aulweg 128, Giessen, 35392, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small animals, c/o Institute of Veterinary Anatomy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187, Dresden, Germany
| |
Collapse
|
19
|
Bertassoni LE, Swain MV. Removal of dentin non-collagenous structures results in the unraveling of microfibril bundles in collagen type I. Connect Tissue Res 2017; 58:414-423. [PMID: 27657550 PMCID: PMC6214662 DOI: 10.1080/03008207.2016.1235566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS The structural organization of collagen from mineralized tissues, such as dentin and bone, has been a topic of debate in the recent literature. Recent reports have presented novel interpretations of the complexity of collagen type I at different hierarchical levels and in different tissues. Here, we investigate the nanostructural organization of demineralized dentin collagen following the digestion of non-collagenous components with a trypsin enzyme. MATERIALS AND METHODS Dentin specimens were obtained from healthy third-molars, cut into small cubes, and polished down to 1 µm roughness. Samples were then demineralized with 10% citric acid for 2 min. Selected specimens were further treated with a solution containing 1 mg/ml trypsin for 48 hours at 37 °C (pH 7.9-9.0). Both untreated and trypsin digested samples were analyzed using SDS-PAGE, Field Emission Scanning Electron Microscopy (FE-SEM), and nanoindentation, where surface hardness and creep properties were compared before and after treatments. RESULTS FE-SEM images of demineralized dentin showed the banded morphology of D-periodical collagen type I, which upon enzymatic digestion with trypsin appeared to dissociate longitudinally, consistently unraveling ~20 nm structures (microfibril bundles). Such nanoscale structures, to the best of our knowledge, have not been characterized in dentin previously. Mechanical characterization via nanoindentation showed that the unraveling of such microfibril bundles affected the creep displacement and creep rate of demineralized dentin. CONCLUSION In summary, our results provide novel evidence of the organization of collagen type I from dentin, which may have important implications for the interaction of dental materials with the organic dentin matrix and the mechanical properties of mineralized tissues.
Collapse
Affiliation(s)
- Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland OR, USA,Center for Regenerative Medicine, Oregon Health and Science University, Portland OR, USA,Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia
| | - Michael V. Swain
- Bioengineering Laboratory, Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia,Bioclinical Sciences Department, Faculty of Dentistry, University of Kuwait, Kuwait
| |
Collapse
|
20
|
Liu C, Ye X, Wang X, Liao X, Huang X, Shi B. Collagen Fiber Membrane as an Absorptive Substrate To Coat with Carbon Nanotubes-Encapsulated Metal Nanoparticles for Lightweight, Wearable, and Absorption-Dominated Shielding Membrane. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01930] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang Liu
- Department
of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoxia Ye
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Xiaoling Wang
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Xuepin Liao
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Xin Huang
- Department
of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Bi Shi
- National
Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Lingham-Soliar T. Convergence in Thunniform Anatomy in Lamnid Sharks and Jurassic Ichthyosaurs. Integr Comp Biol 2016; 56:1323-1336. [PMID: 27794535 DOI: 10.1093/icb/icw125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among extinct ichthyosaurs the Jurassic forms Ichthyosaurus and Stenopterygius share a number of anatomical specializations with lamnid sharks, characterized in the white shark, Carcharodon carcharias These features allow their inclusion within the mode of high-speed thunniform swimming to which only two other equally distinctive phylogenetic groups belong, tuna and dolphins-a striking testaments to evolutionary convergence. Jurassic ichthyosaurs evolved from reptiles that had returned to the sea (secondarily adapted) about 250 million years ago (MYA) while lamnid sharks evolved about 50 MYA from early cartilaginous fishes (originating ca. 400 MYA). Their shared independently evolved anatomical characteristics are discussed. These include a deep tear-drop body shape that helped initially define members as thunniform swimmers. Later, other critical structural characteristics were discovered such as the crossed-fiber architecture of the skin, high-speed adapted dorsal and caudal fins, a caudal peduncle and series of ligaments to enable transmission of power from the musculature located anteriorly to the caudal fin. Both groups also share a similar chemistry of the dermal fibers, i.e., the scleroprotein collagen.
Collapse
Affiliation(s)
- Theagarten Lingham-Soliar
- Nelson Mandela Metropolitan University, Coastal and Marine Research, South Campus, University Way, Port Elizabeth 6001, South Africa
| |
Collapse
|
22
|
Barkaoui A, Tlili B, Vercher-Martínez A, Hambli R. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 134:69-78. [PMID: 27480733 DOI: 10.1016/j.cmpb.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/24/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Bone is a living material with a complex hierarchical structure which entails exceptional mechanical properties, including high fracture toughness, specific stiffness and strength. Bone tissue is essentially composed by two phases distributed in approximately 30-70%: an organic phase (mainly type I collagen and cells) and an inorganic phase (hydroxyapatite-HA-and water). The nanostructure of bone can be represented throughout three scale levels where different repetitive structural units or building blocks are found: at the first level, collagen molecules are arranged in a pentameric structure where mineral crystals grow in specific sites. This primary bone structure constitutes the mineralized collagen microfibril. A structural organization of inter-digitating microfibrils forms the mineralized collagen fibril which represents the second scale level. The third scale level corresponds to the mineralized collagen fibre which is composed by the binding of fibrils. The hierarchical nature of the bone tissue is largely responsible of their significant mechanical properties; consequently, this is a current outstanding research topic. Scarce works in literature correlates the elastic properties in the three scale levels at the bone nanoscale. The main goal of this work is to estimate the elastic properties of the bone tissue in a multiscale approach including a sensitivity analysis of the elastic behaviour at each length scale. This proposal is achieved by means of a novel hybrid multiscale modelling that involves neural network (NN) computations and finite elements method (FEM) analysis. The elastic properties are estimated using a neural network simulation that previously has been trained with the database results of the finite element models. In the results of this work, parametric analysis and averaged elastic constants for each length scale are provided. Likewise, the influence of the elastic constants of the tissue constituents is also depicted. Results highlight that intelligent numerical methods are powerful and accurate procedures to deal with the complex multiscale problem in the bone tissue with results in agreement with values found in literature for specific scale levels.
Collapse
Affiliation(s)
- Abdelwahed Barkaoui
- Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), 1002 Tunis, Tunisie; Université de Tunis El Manar, Institut Préparatoire aux Etudes d'Ingénieurs d'El Manar, B.P 244, 2092 Tunis, Tunisie.
| | - Brahim Tlili
- Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, LR-11-ES19 Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), 1002 Tunis, Tunisie; Université de Tunis El Manar, Institut Préparatoire aux Etudes d'Ingénieurs d'El Manar, B.P 244, 2092 Tunis, Tunisie
| | - Ana Vercher-Martínez
- Depto. de Ingeniería Mecánica y de Materiales, Centro de Investigación de Tecnología de Vehículos-CITV, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain
| | - Ridha Hambli
- PRISME Laboratory, EA4229, University of Orleans Polytech' Orléans, 8, Rue Léonard de Vinci, 45072 Orléans, France
| |
Collapse
|
23
|
Zhou HW, Burger C, Wang H, Hsiao BS, Chu B, Graham L. The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling. Acta Crystallogr D Struct Biol 2016; 72:986-96. [PMID: 27599731 PMCID: PMC5013594 DOI: 10.1107/s2059798316011864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/20/2016] [Indexed: 11/10/2022] Open
Abstract
The evolution of vertebrates required a key development in supramolecular evolution: internally mineralized collagen fibrils. In bone, collagen molecules and mineral crystals form a nanocomposite material comparable to cast iron in tensile strength, but several times lighter and more flexible. Current understanding of the internal nanoscale structure of collagen fibrils, derived from studies of rat tail tendon (RTT), does not explain how nucleation and growth of mineral crystals can occur inside a collagen fibril. Experimental obstacles encountered in studying bone have prevented a solution to this problem for several decades. This report presents a lateral packing model for collagen molecules in bone fibrils, based on the unprecedented observation of multiple resolved equatorial reflections for bone tissue using synchrotron small-angle X-ray scattering (SAXS; ∼1 nm resolution). The deduced structure for pre-mineralized bone fibrils includes features that are not present in RTT: spatially discrete microfibrils. The data are consistent with bone microfibrils similar to pentagonal Smith microfibrils, but are not consistent with the (nondiscrete) quasi-hexagonal microfibrils reported for RTT. These results indicate that collagen fibrils in bone and tendon differ in their internal structure in a manner that allows bone fibrils, but not tendon fibrils, to internally mineralize. In addition, the unique pattern of collagen cross-link types and quantities in mineralized tissues can be can be accounted for, in structural/functional terms, based on a discrete microfibril model.
Collapse
Affiliation(s)
- Hong-Wen Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Christian Burger
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Hao Wang
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin Chu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Lila Graham
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children’s Hospital Boston, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
25
|
Pompe W, Worch H, Habraken WJEM, Simon P, Kniep R, Ehrlich H, Paufler P. Octacalcium phosphate - a metastable mineral phase controls the evolution of scaffold forming proteins. J Mater Chem B 2015; 3:5318-5329. [PMID: 32262608 DOI: 10.1039/c5tb00673b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular structure of collagen type 1 can be understood as the result of evolutionary selection in the process of formation of calcium phosphate based biocomposites acting as load bearing components in living organisms. The evolutionary selection fulfills the principle of 'survival of the fittest' in a particular biological environment. Disk-like post-nucleation complexes of Ca2(HPO4)3 2- organized in ribbon-like assemblies in the metastable octacalcium phosphate (OCP) phase, and Ca3 triangles in the stable HAP phase had formed the crystallographic motifs in this selection process. The rotational as well as the translational symmetry of the major tropocollagen (TC) helix agree nearly perfectly with the corresponding symmetries of the OCP structure. The sequence of (Gly-X-Y) motifs of the three α chains constituting the TC molecule enables an optimized structural fit for the nucleation of Ca3 triangles, the directed growth of nanostructured OCP, and the subsequent formation of hydroxyapatite (HAP) in collagen macrofibrils by a topotaxial transition. The known connection between genetic defects of collagen type 1 and Osteogenesis imperfecta should motivate the search for similar dependences of other bone diseases on a disturbed molecular structure of collagen on the genetic scale.
Collapse
Affiliation(s)
- Wolfgang Pompe
- Institute of Materials Science, Technical University Dresden, D-01062 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sherman VR, Yang W, Meyers MA. The materials science of collagen. J Mech Behav Biomed Mater 2015; 52:22-50. [PMID: 26144973 DOI: 10.1016/j.jmbbm.2015.05.023] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 01/22/2023]
Abstract
Collagen is the principal biopolymer in the extracellular matrix of both vertebrates and invertebrates. It is produced in specialized cells (fibroblasts) and extracted into the body by a series of intra and extracellular steps. It is prevalent in connective tissues, and the arrangement of collagen determines the mechanical response. In biomineralized materials, its fraction and spatial distribution provide the necessary toughness and anisotropy. We review the structure of collagen, with emphasis on its hierarchical arrangement, and present constitutive equations that describe its mechanical response, classified into three groups: hyperelastic macroscopic models based on strain energy in which strain energy functions are developed; macroscopic mathematical fits with a nonlinear constitutive response; structurally and physically based models where a constitutive equation of a linear elastic material is modified by geometric characteristics. Viscoelasticity is incorporated into the existing constitutive models and the effect of hydration is discussed. We illustrate the importance of collagen with descriptions of its organization and properties in skin, fish scales, and bone, focusing on the findings of our group.
Collapse
|
27
|
Barkaoui A, Chamekh A, Merzouki T, Hambli R, Mkaddem A. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:318-338. [PMID: 24123969 DOI: 10.1002/cnm.2604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data.
Collapse
Affiliation(s)
- Abdelwahed Barkaoui
- Université de Savoie, Laboratoire SYMME, BP 80439, Annecy-le-Vieux Cedex F74944, France
| | | | | | | | | |
Collapse
|
28
|
Barkaoui A, Hambli R, Tavares JMR. Effect of material and structural factors on fracture behaviour of mineralised collagen microfibril using finite element simulation. Comput Methods Biomech Biomed Engin 2014; 18:1181-1190. [DOI: 10.1080/10255842.2014.883601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Parry DAD. Fifty years of fibrous protein research: a personal retrospective. J Struct Biol 2013; 186:320-34. [PMID: 24148884 DOI: 10.1016/j.jsb.2013.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 02/02/2023]
Abstract
As a result of X-ray fiber diffraction studies on fibrous proteins and crystallographic data on fragments derived from them, new experimental techniques across the biophysical and biochemical spectra, sophisticated computer modeling and refinement procedures, widespread use of bioinformatics and improved specimen preparative procedures the structures of many fibrous proteins have now been determined to at least low resolution. In so doing these structures have yielded insight into the relationship that exists between sequence and conformation and this, in turn, has led to improved methodologies for predicting structure from sequence data alone. In this personal retrospective a selection of progress made during the past 50years is discussed in terms of events to which the author has made some contribution.
Collapse
Affiliation(s)
- David A D Parry
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand.
| |
Collapse
|
30
|
Zhong B, Peng C, Wang G, Tian L, Cai Q, Cui F. Contemporary research findings on dentine remineralization. J Tissue Eng Regen Med 2013; 9:1004-16. [PMID: 23955967 DOI: 10.1002/term.1814] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/13/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Zhong
- Centre of Stomatology; China-Japan Friendship Hospital; Beijing People's Republic of China
| | - Ce Peng
- Department of Materials Science and Engineering; Tsinghua University; Beijing People's Republic of China
| | - Guanhong Wang
- Centre of Stomatology; China-Japan Friendship Hospital; Beijing People's Republic of China
| | - Lili Tian
- Centre of Stomatology; China-Japan Friendship Hospital; Beijing People's Republic of China
| | - Qiang Cai
- Department of Materials Science and Engineering; Tsinghua University; Beijing People's Republic of China
| | - Fuzhai Cui
- Department of Materials Science and Engineering; Tsinghua University; Beijing People's Republic of China
| |
Collapse
|
31
|
Stylianou A, Yova D. Surface nanoscale imaging of collagen thin films by Atomic Force Microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2947-57. [DOI: 10.1016/j.msec.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 01/24/2023]
|
32
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-56. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
|
33
|
Barkaoui A, Hambli R. Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Comput Methods Biomech Biomed Engin 2013; 17:1590-601. [PMID: 23439084 DOI: 10.1080/10255842.2012.758255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hierarchical structures in bio-composites such as bone tissue have many scales or levels and synergic interactions between the different levels. They also have a highly complex architecture in order to fulfil their biological and mechanical functions. In this study, a new three-dimensional (3D) model based on the finite elements (FEs) method was used to model the relationship between the hierarchical structure and the properties of the constituents at the sub-structure scale (mineralised collagen microfibrils) and to investigate their apparent nanomechanical properties. The results of the proposed FE simulations show that the elastic properties of microfibrils depend on different factors such as the number of cross-links, the mechanical properties and the volume fraction of phases. The results obtained under compression loading at a small deformation < 2% show that the microfibrils have a Young's modulus (Ef) ranging from 0.4 to 1.16 GPa and a Poisson's ratio ranging from 0.26 to 0.3. These results are in excellent agreement with experimental data (X-ray, AFM and MEMS) and molecular simulations.
Collapse
Affiliation(s)
- Abdelwahed Barkaoui
- a PRISME Laboratory, EA4229, University of Orleans , Polytech' Orléans, 8, Rue Léonard de Vinci 45072, Orléans , France
| | | |
Collapse
|
34
|
Zhang QX, Li J, Zhang WH, Liao XP, Shi B. Adsorption Chromatography Separation of Baicalein and Baicalin Using Collagen Fiber Adsorbent. Ind Eng Chem Res 2013. [DOI: 10.1021/ie303031j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi-xian Zhang
- Department of Biomass Chemistry and Engineering and ‡Key Laboratory of Leather Chemistry
and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
| | - Juan Li
- Department of Biomass Chemistry and Engineering and ‡Key Laboratory of Leather Chemistry
and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wen-hua Zhang
- Department of Biomass Chemistry and Engineering and ‡Key Laboratory of Leather Chemistry
and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xue-pin Liao
- Department of Biomass Chemistry and Engineering and ‡Key Laboratory of Leather Chemistry
and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bi Shi
- Department of Biomass Chemistry and Engineering and ‡Key Laboratory of Leather Chemistry
and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
35
|
Development and utilization of a bovine type I collagen microfibril model. Int J Biol Macromol 2013; 53:20-5. [DOI: 10.1016/j.ijbiomac.2012.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 11/21/2022]
|
36
|
Monti S, Bramanti E, Porta VD, Onor M, D'Ulivo A, Barone V. Interaction of collagen with chlorosulphonated paraffin tanning agents: Fourier transform infrared spectroscopic analysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:14736-47. [DOI: 10.1039/c3cp52404c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Kemp AD, Harding CC, Cabral WA, Marini JC, Wallace JM. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 2012; 180:428-38. [PMID: 23041293 PMCID: PMC3685442 DOI: 10.1016/j.jsb.2012.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/10/2012] [Accepted: 09/25/2012] [Indexed: 11/25/2022]
Abstract
Type I collagen is the most abundant protein in mammals, and is a vital part of the extracellular matrix for numerous tissues. Despite collagen's importance, little is known about its nanoscale morphology in tissues and how morphology relates to mechanical function. This study probes nanoscale structure and mechanical properties of collagen as a function of disease in native hydrated tendons. Wild type tendon and tendon from the Brtl/+ mouse model of Osteogenesis Imperfecta were investigated. An atomic force microscope (AFM) was used to image and indent minimally-processed collagen fibrils in hydrated and dehydrated conditions. AFM was used because of the ability to keep biological tissues as close to their native in situ conditions as possible. The study demonstrated phenotypic difference in Brtl/+ fibril morphology and mechanics in hydrated tendon which became more compelling upon dehydration. Dried tendons had a significant downward shift in fibril D-periodic spacing versus a shift up in wet tendons. Nanoscale changes in morphology in dry samples were accompanied by significant increases in modulus and adhesion force and decreased indentation depth. A minimal mechanical phenotype existed in hydrated samples, possibly due to water masking structural defects within the diseased fibrils. This study demonstrates that collagen nanoscale morphology and mechanics are impacted in Brtl/+ tendons, and that the phenotype can be modulated by the presence or absence of water. Dehydration causes artifacts in biological samples which require water and this factor must be considered for studies at any length scale in collagen-based tissues, especially when characterizing disease-induced differences.
Collapse
Affiliation(s)
- Arika D. Kemp
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Chad C. Harding
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Wayne A. Cabral
- Bone and Extracellular Matrix Branch, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
38
|
Loo RW, Goh JB, Cheng CCH, Su N, Goh MC. In vitro synthesis of native, fibrous long spacing and segmental long spacing collagen. J Vis Exp 2012:e4417. [PMID: 23023198 PMCID: PMC3490236 DOI: 10.3791/4417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Collagen fibrils are present in the extracellular matrix of animal tissue to provide structural scaffolding and mechanical strength. These native collagen fibrils have a characteristic banding periodicity of ~67 nm and are formed in vivo through the hierarchical assembly of Type I collagen monomers, which are 300 nm in length and 1.4 nm in diameter. In vitro, by varying the conditions to which the monomer building blocks are exposed, unique structures ranging in length scales up to 50 microns can be constructed, including not only native type fibrils, but also fibrous long spacing and segmental long spacing collagen. Herein, we present procedures for forming the three different collagen structures from a common commercially available collagen monomer. Using the protocols that we and others have published in the past to make these three types typically lead to mixtures of structures. In particular, unbanded fibrils were commonly found when making native collagen, and native fibrils were often present when making fibrous long spacing collagen. These new procedures have the advantage of producing the desired collagen fibril type almost exclusively. The formation of the desired structures is verified by imaging using an atomic force microscope.
Collapse
Affiliation(s)
- Richard W Loo
- Department of Chemistry, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
39
|
Gautieri A, Pate MI, Vesentini S, Redaelli A, Buehler MJ. Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. J Biomech 2012; 45:2079-83. [DOI: 10.1016/j.jbiomech.2012.05.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/24/2012] [Accepted: 05/27/2012] [Indexed: 11/25/2022]
|
40
|
Bertassoni LE, Orgel JPR, Antipova O, Swain MV. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale. Acta Biomater 2012; 8:2419-33. [PMID: 22414619 PMCID: PMC3473357 DOI: 10.1016/j.actbio.2012.02.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/16/2012] [Accepted: 02/28/2012] [Indexed: 11/28/2022]
Abstract
The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Biomaterials Science Research Unit, Faculty of Dentistry, University of Sydney, United Dental Hospital, NSW, Australia.
| | | | | | | |
Collapse
|
41
|
Manfred R, Eckhard W, Björn J, Helmut G. Free of water tanning using CO2 as process additive—An overview on the process development. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Wang X, Qiu Y, Triffitt J, Carr A, Xia Z, Sabokbar A. Proliferation and differentiation of human tenocytes in response to platelet rich plasma: an in vitro and in vivo study. J Orthop Res 2012; 30:982-90. [PMID: 22102328 DOI: 10.1002/jor.22016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/31/2011] [Indexed: 02/04/2023]
Abstract
Platelet rich plasma (PRP) is the autologous plasma fraction with a platelet-rich cellular component which is enriched with a number of growth factors. Due to its availability and low cost, PRP has become an increasingly popular clinical tool as an alternative source of growth factors for various applications, for example, tendon regeneration but with limited success in clinical trials. The main objective of the current study was to determine whether activated PRP [i.e., platelet rich plasma-clot release (PRCR)] could be used to induce the proliferation and collagen synthesis in human tenocyte in vitro. The advantage of using PRCR is that the platelet-derived bioactive factors are more concentrated and could initiate a more rapid and accelerated healing response than PRP. Our results demonstrated that 10% PRCR treatment accelerated the extent of cell proliferation and collagen production by human tenocytes in vitro. The expression of specific tenocyte markers were similar to conventional fetal bovine serum (FBS)-treated tenocytes implanted in mice within 14 days of implantation in diffusion chambers. Moreover, relatively more collagen fibrils were evident in PRCR-treated tenocytes in vivo as compared to 10% FBS-treated cells. Overall, our feasibility study has indicated that PRCR can induce human tenocyte proliferation and collagen synthesis which could be implemented for future tendon regeneration in reconstructive surgeries.
Collapse
Affiliation(s)
- Xiao Wang
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Physically based 3D finite element model of a single mineralized collagen microfibril. J Theor Biol 2012; 301:28-41. [DOI: 10.1016/j.jtbi.2012.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/14/2011] [Accepted: 02/07/2012] [Indexed: 01/22/2023]
|
44
|
PU SHANGZHI, ZHANG WENHUA, SHI BI. EFFECT OF pH ON STRUCTURE AND STABILITY OF COLLAGEN-LIKE PEPTIDE: INSIGHT FROM MOLECULAR DYNAMICS SIMULATION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633611006396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations were carried out to investigate the effect of pH on structure and stability of collagen-like peptide. All simulations were performed using the consistent valence force field (CVFF) molecular mechanical force field and isothermal-isobaric ensemble (NPT). The initial geometries of the collagen-like peptide were from an X-ray crystallographic structure. Some analyses from the molecular dynamics trajectories have been completed. The results show that the diameter of collagen-like peptide increases and the volume swells obviously in basic environment; however, the size of peptide changes slightly in acidic environment. The stability of collagen-like peptide decreases in acid and basic environment comparing to neutral environment based on root mean square deviation (RMSD). The number of hydrogen bond formed by peptide has a tendency to decrease in both acidic and basic environment. The average of intra-molecular H-bond is minimal under basic condition, and the average of inter-molecular H-bond between amino acid residues and water molecules is minimal under acid condition. The radial distribution function (RDF) shows that side-chain oxygen atoms are easier to form hydrogen bonds with water than side-chain nitrogen atoms. The interaction of various amino acid residues with water is position dependent. Distance between two triple helices increases markedly under highly basic condition, but changes slightly under highly acidic condition.
Collapse
Affiliation(s)
- SHANG-ZHI PU
- College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - WEN-HUA ZHANG
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| | - BI SHI
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
45
|
Yang L, van der Werf KO, Dijkstra PJ, Feijen J, Bennink ML. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J Mech Behav Biomed Mater 2011; 6:148-58. [PMID: 22301184 DOI: 10.1016/j.jmbbm.2011.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 01/28/2023]
Abstract
The mechanical properties of individual collagen fibrils of approximately 200 nm in diameter were determined using a slightly adapted AFM system. Single collagen fibrils immersed in PBS buffer were attached between an AFM cantilever and a glass surface to perform tensile tests at different strain rates and stress relaxation measurements. The stress-strain behavior of collagen fibrils immersed in PBS buffer comprises a toe region up to a stress of 5 MPa, followed by the heel and linear region at higher stresses. Hysteresis and strain-rate dependent stress-strain behavior of collagen fibrils were observed, which suggest that single collagen fibrils have viscoelastic properties. The stress relaxation process of individual collagen fibrils could be best fitted using a two-term Prony series. Furthermore, the influence of different cross-linking agents on the mechanical properties of single collagen fibrils was investigated. Based on these results, we propose that sliding of microfibrils with respect to each other plays a role in the viscoelastic behavior of collagen fibrils in addition to the sliding of collagen molecules with respect to each other. Our finding provides a better insight into the relationship between the structure and mechanical properties of collagen and the micro-mechanical behavior of tissues.
Collapse
Affiliation(s)
- L Yang
- Polymer Chemistry and Biomaterials, Faculty of Science & Technology and Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Raspanti M, Reguzzoni M, Protasoni M, Martini D. Evidence of a discrete axial structure in unimodal collagen fibrils. Biomacromolecules 2011; 12:4344-7. [PMID: 22066528 DOI: 10.1021/bm201314e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The collagen fibrils of cornea, blood vessel walls, skin, gut, interstitial tissues, the sheath of tendons and nerves, and other connective tissues are known to be made of helically wound subfibrils winding at a constant angle to the fibril axis. A critical aspect of this model is that it requires the axial microfibrils to warp in an implausible way. This architecture lends itself quite naturally to an epitaxial layout where collagen microfibrils envelop a central core of a different nature. Here we demonstrate an axial domain in collagen fibrils from rabbit nerve sheath and tendon sheath by means of transmission electron microscopy after a histochemical reaction designed to evidence all polysaccharides and by tapping-mode atomic force microscopy. This axial domain was consistently found in fibrils with helical microfibrils but was not observed in tendon, whose microfibrils run longitudinal and parallel.
Collapse
Affiliation(s)
- Mario Raspanti
- Department of Human Morphology, Insubria University, Varese, Italy.
| | | | | | | |
Collapse
|
47
|
Swamy RN, Gnanamani A, Shanmugasamy S, Gopal RK, Mandal AB. Bioinformatics in crosslinking chemistry of collagen with selective cross linkers. BMC Res Notes 2011; 4:399. [PMID: 21989371 PMCID: PMC3213054 DOI: 10.1186/1756-0500-4-399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/12/2011] [Indexed: 11/10/2022] Open
Abstract
Background Identifying the molecular interactions using bioinformatics tools before venturing into wet lab studies saves the energy and time considerably. The present study summarizes, molecular interactions and binding energy calculations made for major structural protein, collagen of Type I and Type III with the chosen cross-linkers, namely, coenzyme Q10, dopaquinone, embelin, embelin complex-1 & 2, idebenone, 5-O-methyl embelin, potassium embelate and vilangin. Results Molecular descriptive analyses suggest, dopaquinone, embelin, idebenone, 5-O-methyl embelin, and potassium embelate display nil violations. And results of docking analyses revealed, best affinity for Type I (- 4.74 kcal/mol) and type III (-4.94 kcal/mol) collagen was with dopaquinone. Conclusions Among the selected cross-linkers, dopaquinone, embelin, potassium embelate and 5-O-methyl embelin were the suitable cross-linkers for both Type I and Type III collagen and stabilizes the collagen at the expected level.
Collapse
Affiliation(s)
- Radhakrishnan Narayana Swamy
- Microbiology Division, Central Leather Research Institute (CSIR, NewDelhi), Adyar, Chennai 600 020, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
48
|
Itoh T, Klein L, Geil PH. Age dependence of collagen fibril and subfibril diameters revealed by transverse freeze-fracture and -etching technique. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1982.tb00350.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Zhao T, Weinhold PS, Lee NY, Dahners LE. Some observations on the subfibrillar structure of collagen fibrils as noted during treatment with NKISK and cathepsin G with mechanical agitation. JOURNAL OF ELECTRON MICROSCOPY 2011; 60:177-182. [PMID: 21343243 PMCID: PMC3156675 DOI: 10.1093/jmicro/dfr005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/20/2011] [Indexed: 05/30/2023]
Abstract
We observed the structure of collagen fibrils in rat tail tendons after treatment with NKISK and cathepsin G. NKISK is a pentapeptide that has been previously shown to bind fibronectin, while cathepsin G is a serine protease that cleaves fibronectin but not type I collagen. In tendons treated with NKISK, fibrils were seen to extensively dissociate into smaller-diameter subfibrils. These subfibrils were homogeneous in diameter with an average diameter of 26.3 ± 5.8 nm. Similar, although less extensive, dissociation into subfibrils was found in tendons treated with cathepsin G. The average diameter of these subfibrils was 24.8 ± 4.9 nm. The ability of NKISK and cathepsin G to release subfibrils at physiological pH without harsh denaturants may enhance the study of the subfibrillar structure of collagen fibrils.
Collapse
Affiliation(s)
- Tailun Zhao
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Paul S. Weinhold
- Department of Orthopaedics, University of North Carolina School of Medicine, CB7055, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicole Y. Lee
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Laurence E. Dahners
- Department of Orthopaedics, University of North Carolina School of Medicine, CB7055, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Veis A. Connective tissue studies, and with a focus on collagen structure. Connect Tissue Res 2011; 52:1. [PMID: 21182409 DOI: 10.3109/03008207.2010.531184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|