1
|
Ze LJ, Jin L, Li GQ. Silencing of Adc and Ebony Causes Abnormal Darkening of Cuticle in Henosepilachna vigintioctopunctata. Front Physiol 2022; 13:829675. [PMID: 35283776 PMCID: PMC8907826 DOI: 10.3389/fphys.2022.829675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
N-β-alanyldopamine (NBAD) is a precursor of N-acylquinone sclerotin utilized for cross-linking between cuticular proteins for cuticle during insect molting. The importance of NBAD in cuticle tanning has not been well compared among different developing stages of insects. Henosepilachna vigintioctopunctata, a typical polyphagous pest feeding on a large number of Solanaceae and Cucurbitaceae plants in Asian countries, displays diverse cuticle pigmentation patterns among developing stages and body regions. Here, we found that the expression of three genes (Hvadc, Hvebony, and Hvtan) involved in NBAD biosynthesis peaked in the 4-day-old pupae or 0-day-old adults of H. vigintioctopunctata. At the first, second, third, and fourth larval instar and pupal stage, their transcript levels were high just before and/or right after the molting. Moreover, they were more abundantly transcribed at the larval heads than in the bodies. RNA interference (RNAi) of either Hvadc or Hvebony at the third instar larvae selectively deepened the color of the larval head capsules, antennae, mouthpart, scoli, strumae, and legs; and depletion of the two genes blackened the pupal head capsules, antennae, mouthpart, and legs. However, the knockdown of either Hvadc or Hvebony darkened the whole bodies of the adults. Conversely, RNAi of Hvtan at the third instar stage had little influence on the pigmentation in the larvae, pupae, and adults. These findings demonstrated that Adc and Ebony are important in cuticle pigmentation of H. vigintioctopunctata and suggested that larger quantities of NBAD were present in adults and play more important roles in pigmentation than larvae/pupae.
Collapse
|
2
|
Mun S, Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103291. [PMID: 31812474 DOI: 10.1016/j.ibmb.2019.103291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In many arthropod species including insects, the cuticle tanning pathway for both pigmentation and sclerotization begins with tyrosine and is responsible for production of both melanin- and quinoid-type pigments, some of which are major pigments for body coloration. In this study we identified and cloned cDNAs of the yellow mealworm, Tenebrio molitor, encoding seven key enzymes involved in this pathway including tyrosine hydroxylase (TmTH), DOPA decarboxylase (TmDDC), laccase 2 (TmLac2), Yellow-y (TmY-y), arylalkylamine N-acetyltransferase (TmAANAT1), aspartate 1-decarboxylase (TmADC) and N-β-alanyldopamine synthase (Tmebony). Expression profiles of these genes during development were analyzed by real-time PCR, revealing development-specific patterns of expression. Loss of function mediated by RNAi of either 1) TmTH or TmLac2, 2) TmDDC or TmY-y, and 3) TmAANAT1, TmADC or Tmebony resulted in pale/white, light yellow/brown and dark/black adult body coloration, respectively. In addition, there are three distinct layer/regional pigmentation differences in rigid types of adult cuticle, a brownish outer exocuticle (EX), a dark pigmented middle mesocuticle (ME) and a transparent inner endocuticle (EN). Decreases in pigmentation of the EX and/or ME layers were observed after RNAi of TmDDC or TmY-y. In TmADC- or Tmebony-deficient adults, a darker pigmented EX layer was observed. In TmAANAT1-deficient adults, trabeculae formed between the dorsal and ventral elytral cuticles as well as the transparent EN layer became highly pigmented. These results demonstrate that knocking down the level of gene expression of specific enzymes of this tyrosine metabolic pathway leads to abnormal pigmentation in individual layers and substructure of the rigid adult exoskeleton of T. molitor.
Collapse
Affiliation(s)
- Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Mi Young Noh
- Department of Forestry, Chonnam National University, Gwangju, 500-757, South Korea.
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
3
|
Ciabrelli F, Comoglio F, Fellous S, Bonev B, Ninova M, Szabo Q, Xuéreb A, Klopp C, Aravin A, Paro R, Bantignies F, Cavalli G. Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat Genet 2017; 49:876-886. [PMID: 28436983 PMCID: PMC5484582 DOI: 10.1038/ng.3848] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/27/2017] [Indexed: 12/15/2022]
Abstract
Transgenerational Epigenetic Inheritance (TEI) studies the transmission of alternative functional states through multiple generations in the presence of the same genomic DNA sequence. Very little is known on the principles and the molecular mechanisms governing this type of inheritance. Here, by transiently enhancing 3D chromatin interactions, we established stable and isogenic Drosophila epilines that carry alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Once established, epialleles can be dominantly transmitted to naïve flies and induce paramutation. Importantly, epilines can be reset to a naïve state by disrupting chromatin interactions. Finally, we show that environmental changes can modulate the expressivity of the epialleles and we extend our paradigm to naturally occurring phenotypes. Our work sheds light on how nuclear organization and Polycomb group proteins contribute to epigenetically inheritable phenotypic variability.
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| | - Federico Comoglio
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Boyan Bonev
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| | - Maria Ninova
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | - Quentin Szabo
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| | | | - Christophe Klopp
- Unité de Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet Tolosan, France
| | - Alexei Aravin
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Frédéric Bantignies
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| |
Collapse
|
4
|
Dai F, Qiao L, Cao C, Liu X, Tong X, He S, Hu H, Zhang L, Wu S, Tan D, Xiang Z, Lu C. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori. Sci Rep 2015; 5:10885. [PMID: 26077025 PMCID: PMC4468592 DOI: 10.1038/srep10885] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/07/2015] [Indexed: 12/21/2022] Open
Abstract
The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera.
Collapse
Affiliation(s)
- Fangyin Dai
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Liang Qiao
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cun Cao
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xiaofan Liu
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xiaoling Tong
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Songzhen He
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Hai Hu
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Li Zhang
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Songyuan Wu
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Duan Tan
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- 1] State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China [2] Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| |
Collapse
|
5
|
Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep 2010; 37:3199-205. [PMID: 19842059 PMCID: PMC2913154 DOI: 10.1007/s11033-009-9902-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/02/2009] [Indexed: 11/24/2022]
Abstract
A major pathway of beta-alanine synthesis in insects is through the alpha-decarboxylation of aspartate, but the enzyme involved in the decarboxylation of aspartate has not been clearly defined in mosquitoes and characterized in any insect species. In this study, we expressed two putative mosquito glutamate decarboxylase-like enzymes of mosquitoes and critically analyzed their substrate specificity and biochemical properties. Our results provide clear biochemical evidence establishing that one of them is an aspartate decarboxylase and the other is a glutamate decarboxylase. The mosquito aspartate decarboxylase functions exclusively on the production of beta-alanine with no activity with glutamate. Likewise the mosquito glutamate decarboxylase is highly specific to glutamate with essentially no activity with aspartate. Although insect aspartate decarboxylase shares high sequence identity with glutamate decarboxylase, we are able to closely predict aspartate decarboxylase from glutamate decarboxylase based on the difference of their active site residues.
Collapse
Affiliation(s)
- Graham Richardson
- Department of Biochemistry, 206 Engel Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | - Haizhen Ding
- Department of Biochemistry, 206 Engel Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tom Rocheleau
- Department of Pathobiological Sciences, 1656 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - George Mayhew
- Department of Pathobiological Sciences, 1656 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Erin Reddy
- Department of Pathobiological Sciences, 1656 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Qian Han
- Department of Biochemistry, 206 Engel Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bruce M. Christensen
- Department of Pathobiological Sciences, 1656 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Jianyong Li
- Department of Biochemistry, 206 Engel Hall, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Bahn E, Søndergaard L. Suppression of the semidominant suppressor of black by rudimentary mutants in Drosophila melanogaster. Hereditas 2008; 99:309-10. [PMID: 6421775 DOI: 10.1111/j.1601-5223.1983.tb00904.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
7
|
Stuart AE, Borycz J, Meinertzhagen IA. The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol 2007; 82:202-27. [PMID: 17531368 DOI: 10.1016/j.pneurobio.2007.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/08/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Histamine, a ubiquitous aminergic messenger throughout the body, also serves as a neurotransmitter in both vertebrates and invertebrates. In particular, the photoreceptors of adult arthropods use histamine, modulating its release to signal increases and decreases in light intensity. Strong evidence from various arthropod species indicates that histamine is synthesized and stored in photoreceptors, undergoes Ca-dependent release, inhibits postsynaptic interneurons by gating Cl channels, and is then recycled. In Drosophila, the synthetic enzyme, histidine decarboxylase, and the subunits of the histamine-gated chloride channel have been cloned. Possible histamine transporters at synaptic vesicles and for reuptake remain elusive. Indeed, the mechanisms that remove histamine from the synaptic cleft, and that help terminate histamine's action, are unexpectedly complex, their details remaining unresolved. A major pathway in Drosophila, and possibly other arthropod species, is by conjugation of histamine to beta-alanine to form carcinine in adjacent glia. This conjugate then returns to the photoreceptors where it is hydrolysed to liberate histamine, which is then loaded into synaptic vesicles. Evidence from other species suggests that direct reuptake of histamine into the photoreceptors may also occur. Light depolarizes the photoreceptors, causing histamine release and postsynaptic inhibition; dimming hyperpolarizes the photoreceptors, causing a decrease in histamine release and an "off" response in the postsynaptic cell. Further pursuit of histamine's action at these highly specialized synapses should lead to an understanding of how they signal minute changes in presynaptic membrane potential, how they reliably extract signals from noise, and how they adapt to a wide range of presynaptic membrane potentials.
Collapse
Affiliation(s)
- Ann E Stuart
- University of North Carolina, Department of Cell and Molecular Physiology, MBRB Campus Box 7545, 103 Mason Farm Road, Chapel Hill, NC 27599-7545, USA.
| | | | | |
Collapse
|
8
|
Rawls JM. Analysis of pyrimidine catabolism in Drosophila melanogaster using epistatic interactions with mutations of pyrimidine biosynthesis and beta-alanine metabolism. Genetics 2005; 172:1665-74. [PMID: 16361227 PMCID: PMC1456268 DOI: 10.1534/genetics.105.052753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biochemical pathway for pyrimidine catabolism links the pathways for pyrimidine biosynthesis and salvage with beta-alanine metabolism, providing an array of epistatic interactions with which to analyze mutations of these pathways. Loss-of-function mutations have been identified and characterized for each of the enzymes for pyrimidine catabolism: dihydropyrimidine dehydrogenase (DPD), su(r) mutants; dihydropyrimidinase (DHP), CRMP mutants; beta-alanine synthase (betaAS), pyd3 mutants. For all three genes, mutants are viable and fertile and manifest no obvious phenotypes, aside from a variety of epistatic interactions. Mutations of all three genes disrupt suppression by the rudimentary gain-of-function mutation (r(Su(b))) of the dark cuticle phenotype of black mutants in which beta-alanine pools are diminished; these results confirm that pyrimidines are the major source of beta-alanine in cuticle pigmentation. The truncated wing phenotype of rudimentary mutants is suppressed completely by su(r) mutations and partially by CRMP mutations; however, no suppression is exhibited by pyd3 mutations. Similarly, su(r) mutants are hypersensitive to dietary 5-fluorouracil, CRMP mutants are less sensitive, and pyd3 mutants exhibit wild-type sensitivity. These results are discussed in the context of similar consequences of 5-fluoropyrimidine toxicity and pyrimidine catabolism mutations in humans.
Collapse
Affiliation(s)
- John M Rawls
- Molecular and Cellular Biology Group, Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA.
| |
Collapse
|
9
|
Phillips AM, Smart R, Strauss R, Brembs B, Kelly LE. The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele. Gene 2005; 351:131-42. [PMID: 15878647 DOI: 10.1016/j.gene.2005.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/21/2005] [Accepted: 03/14/2005] [Indexed: 11/25/2022]
Abstract
The cuticular melanization phenotype of black flies is rescued by beta-alanine, but beta-alanine production, by aspartate decarboxylation, was reported to be normal in assays of black mutants, and although black/Dgad2 is expressed in the lamina, the first optic ganglion, no electroretinogram (ERG) or other visual defect has been demonstrated in black flies. The purpose of this study was to investigate the black gene, and protein, in black(1) mutants of Drosophila melanogaster in order to resolve the apparent paradox of the black phenotype. Using black(1) mutant flies we show that (1) aspartate decarboxylase activity is significantly reduced in adults and at puparium formation, consistent with defects in cuticular and non-cuticular processes, (2) that the black(1) mutation is a frameshift, and black(1) flies are nulls for the black/DGAD2 protein, and (3) that behavioural experiments using Buridan's paradigm, demonstrate that black responds abnormally to visual cues. No ERG, or target recognition defects can be demonstrated suggesting a problem with higher order visual functions in black mutants.
Collapse
Affiliation(s)
- A Marie Phillips
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
10
|
Abstract
In Drosophila melanogaster, ebony and tan, two cuticle melanizing mutants, regulate the conjugation (ebony) of beta-alanine to dopamine or hydrolysis (tan) of the beta-alanyl conjugate to liberate dopamine. beta-alanine biosynthesis is regulated by black. ebony and tan also exert unexplained reciprocal defects in the electroretinogram, at ON and OFF transients attributable to impaired transmission at photoreceptor synapses, which liberate histamine. Compatible with this impairment, we show that both mutants have reduced histamine contents in the head, as measured by HPLC, and have correspondingly reduced numbers of synaptic vesicles in their photoreceptor terminals. Thus, the histamine phenotype is associated with sites of synaptic transmission at photoreceptors. We demonstrate that when they receive microinjections into the head, wild-type Sarcophaga bullata (in whose larger head such injections are routinely possible) rapidly (<5 sec) convert exogenous [3H]histamine into its beta-alanine conjugate, carcinine, a novel metabolite. Drosophila tan has an increased quantity of [3H]carcinine, the hydrolysis of which is blocked; ebony lacks [3H]carcinine, which it cannot synthesize. Confirming these actions, carcinine rescues the histamine phenotype of ebony, whereas beta-alanine rescues the carcinine phenotype of black;tan double mutants. The equilibrium ratio between [3H]carcinine and [3H]histamine after microinjecting wild-type Sarcophaga favors carcinine hydrolysis, increasing to only 0.5 after 30 min. Our findings help resolve a longstanding conundrum of the involvement of tan and ebony in photoreceptor function. We suggest that reversible synthesis of carcinine occurs in surrounding glia, serving to trap histamine after its release at photoreceptor synapses; subsequent hydrolysis liberates histamine for reuptake.
Collapse
|
11
|
Richardt A, Rybak J, Störtkuhl KF, Meinertzhagen IA, Hovemann BT. Ebony protein in the Drosophila nervous system: optic neuropile expression in glial cells. J Comp Neurol 2002; 452:93-102. [PMID: 12205712 DOI: 10.1002/cne.10360] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Drosophila ebony mutation (Bridges and Morgan, [1923] Publs Carnegie Inst Wash 327:50) reveals a pleiotropic phenotype with cuticular and behavioral defects. To understand Ebony function in the nervous system, particularly in transmission of the visual signal, it is essential to know the cell type and temporal characteristics of its expression throughout development. Therefore, we raised an antiserum against an Ebony peptide to detect the protein in whole-mount and slice preparations of Drosophila. Attention was focused on ebony expression in the adult optic neuropiles of the fly. Colocalization of Ebony with neuronal or glial cell markers in frozen sections showed non-neuronal expression of ebony in the lamina and medulla neuropiles. Furthermore, colocalization with glial cell markers demonstrated glial expression of ebony in epithelial glia of the lamina and neuropile glia of the distal medulla. This finding was confirmed for the lamina epithelial glia by electron microscopic examination of immunolabeling by using the diaminobenzidine method. These glia have in common that they match the two sites of histamine release from the compound eye's photoreceptors. Possible ways in which the biochemical activity of Ebony might function with respect to histamine release are considered.
Collapse
Affiliation(s)
- Arnd Richardt
- Fakultät für Chemie, AG Molekulare Zellbiochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
12
|
Simmons AJ, Rawls JM, Piskur J, Davidson JN. A mutation that uncouples allosteric regulation of carbamyl phosphate synthetase in Drosophila. J Mol Biol 1999; 287:277-85. [PMID: 10080891 DOI: 10.1006/jmbi.1999.2618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In animals, UTP feedback inhibition of carbamyl phosphate synthetase II (CPSase) controls pyrimidine biosynthesis. Suppressor of black (Su(b) or rSu(b)) mutants of Drosophila melanogaster have elevated pyrimidine pools, and this mutation has been mapped to the rudimentary locus. We report that rSu(b) is a missense mutation resulting in a glutamate to lysine substitution within the second ATP binding site (i.e. CPS.B2 domain) of CPSase. This residue corresponds to Glu780 in the Escherichia coli enzyme (Glu1153 in hamster CAD) and is universally conserved among CPSases. When a transgene expressing the Glu-->Lys substitution was introduced into Drosophila lines homozygous for the black mutation, the resulting flies exhibited the Su(b) phenotype. Partially purified CPSase from rSu(b) and transgenic flies carrying this substitution exhibited a dramatic reduction in UTP feedback inhibition. The slight UTP inhibition observed with the Su(b) enzyme in vitro was due mainly to chelation of Mg2+ by UTP. However, the Km values for glutamate, bicarbonate, and ATP obtained from the Su(b) enzyme were not significantly different from wild-type values. From these experiments, we conclude that this residue plays an essential role in the UTP allosteric response, probably in propagating the response between the effector binding site and the ATP binding site. This is the first CPSase mutation found to abolish feedback inhibition without significantly affecting other enzyme catalytic parameters.
Collapse
Affiliation(s)
- A J Simmons
- Department of Microbiology & Immunology, Albert B. Chandler Medical Center & Lucille P. Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0293, USA
| | | | | | | |
Collapse
|
13
|
Walter MF, Zeineh LL, Black BC, McIvor WE, Wright TR, Biessmann H. Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 1996; 31:219-233. [PMID: 8580497 DOI: 10.1002/(sici)1520-6327(1996)31:2<219::aid-arch9>3.0.co;2-u] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The major pathway leading to adult cuticle melanization in Drosophila melanogaster has been investigated by a combination of biochemical and genetic approaches. By comparing catecholamine pools in newly emerged flies and in frass (excreta) collected 1 to 4 days after eclosion from wild type with those obtained from several pigmentation mutants, the major flow of catecholamines through the pathway to an unidentified final catabolite was determined. We also demonstrate that incubation with dopamine in vitro induces premature melanization in wild type unpigmented pharate adults several hours before the developmentally programmed onset of melanization, supporting the hypothesis that the availability of catecholamines may be the limiting factor determining the onset of melanization and that the major enzymatic activities that act downstream of dopa decarboxylase in the pathway are deposited into the cuticle before pigmentation begins. In vitro melanization studies with various pigmentation mutants that are associated with critical enzymatic steps in Drosophila catecholamine metabolism are consistent with their proposed function and suggest a central role of N-beta-alanyldopamine in adult cuticle pigmentation.
Collapse
Affiliation(s)
- M F Walter
- Developmental Biology Center, University of California, Irvine 92727, USA
| | | | | | | | | | | |
Collapse
|
14
|
Piskur J, Søndergaard L, Gojkovic Z, Stokbro B, Hjulsager C, Davidson J, DeMoll E, Rawls J, Bahn E. Observed resistance to pyrimidine analogs and sensitivity to uracil in Drosophila is attributed to deregulation of pyrimidine metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:559-65. [PMID: 7660969 DOI: 10.1007/978-1-4615-2584-4_118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J Piskur
- Department of Genetics, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Piskur J, Kolbak D, Søndergaard L, Pedersen MB. The dominant mutation Suppressor of black indicates that de novo pyrimidine biosynthesis is involved in the Drosophila tan pigmentation pathway. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:335-40. [PMID: 7902526 DOI: 10.1007/bf00284686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A deficiency in the production of beta-alanine causes the black (b) phenotype of Drosophila melanogaster. This phenotype is normalized by a semi-dominant mutant gene Su(b) shown previously to be located adjacent to or within the rudimentary (r) locus. The r gene codes for three enzyme activities involved in de novo pyrimidine biosynthesis. Pyrimidines are known to give rise to beta-alanine. However, until recently it has been unclear whether de novo pyrimidine biosynthesis is directly coupled to beta-alanine synthesis during the tanning process. In this report we show that flies carrying Su(b) can exhibit an additional phenotype, resistance to toxic pyrimidine analogs (5-fluorouracil, 6-azathymine and 6-azauracil). Our interpretation of this observation is that the pyrimidine pool is elevated in the mutant flies. However, enzyme assays indicate that r enzyme activities are not increased in Su(b) flies. Genetic mapping of the Su(b) gene now places the mutation within the r gene, possibly in the carbamyl phosphate synthetase (CPSase) domain. The kinetics of CPSase activity in crude extracts has been studied in the presence of uridine triphosphate (UTP). While CPSase from wild-type flies was strongly inhibited by the end-product, UTP, CPSase from Su(b) was inhibited to a lesser extent. We propose that diminished end-product inhibition of de novo pyrimidine biosynthesis in Su(b) flies increases available pyrimidine and consequently the beta-alanine pool. Normalization of the black phenotype results.
Collapse
Affiliation(s)
- J Piskur
- Department of Genetics, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Weber JP, Bolin RJ, Hixon MS, Sherald AF. Beta-alanine transaminase activity in black and suppressor of black mutations of Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1115:181-6. [PMID: 1739732 DOI: 10.1016/0304-4165(92)90051-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An assay for beta-alanine transaminase activity in extracts of Drosophila melanogaster has been developed. By use of this assay, the levels of beta-alanine transaminase activity in several strains of flies has been examined as a function of developmental age. The black mutation shows elevated levels of activity compared to wild type, while suppressor of black strains show decreased levels compared to wild type.
Collapse
Affiliation(s)
- J P Weber
- Department of Chemistry, George Mason University, Fairfax, VA 22030
| | | | | | | |
Collapse
|
17
|
Abstract
In an effort to (1) characterize the 67 interval of chromosome 3 of Drosophila melanogaster genetically and (2) isolate mutations of the 67B1 small heat shock protein (hsp) gene cluster specifically, we undertook a mutational analysis of the 67A-D subinterval. Using a deficiency of the 67A2 to 67D11-13 region, Df(3L)AC1, we screened 8700 diepoxybutane-treated chromosomes and 7800 ethyl methanesulfonate-treated chromosomes for visible and lethal mutations throughout this interval and recovered 74 independent recessive lethal mutations, but no visible mutations. One of the lethal mutations, d29A6, was identified as an overlapping deficiency extending from 66F3 to 67B1. An additional 6000 diepoxybutane-treated chromosomes were screened for lethality over d29A6, yielding another four lethal mutations within the 67A2-B1 subinterval. These 78 lethal mutations, along with two others isolated in other laboratories, define 23 essential loci--6 within the 67A2-B1 subinterval and 17 within the 67A2 to D11-13 subinterval. Many of these loci appear to be required for imaginal development only, exhibiting late larval to pharate adult lethal phases. Examination of the 67A2-B1 lethal complementation groups for (1) earlier onset of lethality following a heat shock, (2) missing or altered small hsps on two-dimensional protein gels, and (3) restoration of viability by transformed wild-type copies of the small hsp genes indicates that none of these mutations affect the small hsps. On the basis of this analysis and the known homology of the genes, we conclude that the small hsps are functionally equivalent.
Collapse
Affiliation(s)
- B G Leicht
- Department of Biology, Indiana University, Bloomington 47405
| | | |
Collapse
|
18
|
Wright TR. The Genetics Of Biogenic Amine Metabolism, Sclerotization, And Melanization In Drosophila Melanogaster. MOLECULAR GENETICS OF DEVELOPMENT 1987. [DOI: 10.1016/s0065-2660(08)60008-5] [Citation(s) in RCA: 344] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Ujváry I, Hiruma K, Riddiford LM, Matolcsy G, Roseland CR, Kramer KJ. Role of β-alanine in pupal cuticle coloration in the tobacco hornworm, Manduca sexta. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0020-1790(87)90001-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Cuticular strength and pigmentation of rust-red and black strains of Tribolium castaneum. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0020-1790(87)90139-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Amino Acid and Protein Metabolism. Biochemistry 1985. [DOI: 10.1016/b978-0-08-030811-1.50012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
22
|
Hiruma K, Riddiford LM. Regulation of melanization of tobacco hornworm larval cuticle in vitro. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1984; 230:393-403. [PMID: 6431050 DOI: 10.1002/jez.1402300308] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
When tobacco hornworm larvae (Manduca sexta) are allatectomized 5-6 hr before head capsule slippage in the molt to the fifth (final) larval instar, the new cuticle melanizes 3 hr before ecdysis. After explantation between 7 and 3 hr before the onset of melanization, the new cuticle was found to melanize in vitro in Grace's medium only if beta-alanine was removed. When explanted at the onset of melanization, the presence of beta-alanine had no effect on melanization. The addition of either dopa or dopamine was found to be necessary for complete melanization of pieces explanted before the onset of melanization with 0.3 mM of either dopa or dopamine being optimal. Both of these compounds were incorporated into the cuticular melanin. In this optimal medium, melanization occurred over about a 9-hr period after a 5- to 6-hr lag period presumably required for adjustment to the medium. Fifty ng/ml 20-hydroxyecdysone was found to inhibit melanization of pieces explanted 7 hr but not 3 hr before melanization. The hormone neither inhibited uptake of dopa into the epidermis nor prevented melanization in the cuticle once the prophenoloxidase in the premelanin granules was activated. Therefore, 20-hydroxyecdysone may inhibit the activation of the phenoloxidase in the pre-melanin granules, or may inhibit the incorporation of dopa into the granules.
Collapse
|
23
|
Kramer KJ, Morgan TD, Hopkins TL, Roseland CR, Aso Y, Beeman RW, Lookhart GL. Catecholamines and β-alanine in the red flour beetle, Tribolium castaneum. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0020-1790(84)90063-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Characterization of an X-linked semi-dominant suppessor ofblack Su(b) (1–55.5) in Drosophila melanogaster. ACTA ACUST UNITED AC 1982. [DOI: 10.1007/bf02907777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Sherald AF. Intergenic suppression of the black mutation of Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1981; 183:102-6. [PMID: 6799739 DOI: 10.1007/bf00270146] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Five X-linked, recessive alleles were isolated which suppressed both the pupal and adult coloration phenotypes of the black mutation. Electron micrographs of shed puparia revealed that the aberrant sclerotization of the black cuticle is also suppressed. Amino acid analysis indicated that suppression is associated with an increased concentration of beta-alanine, an amino acid known to be deficient in black. The suppressor locus mapped at the tip of the X, to the right of scute, and intragenic complementation was observed among the alleles.
Collapse
|
26
|
Jacobs ME. Influence of beta-alanine on ultrastructure, tanning, and melanization of Drosophila melanogaster cuticles. Biochem Genet 1980; 18:65-76. [PMID: 6770844 DOI: 10.1007/bf00504360] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In Drosophila melanogaster, the chitinous microfibrils arising from the tips of the epidermal villi in adult cuticles remain irregular and loose in the mutant ebony (which fails in cuticular incorporation of beta-alanine) but closely knit and regular in normal flies. Addition of beta-alanine to cuticles from which nonchitinous materials have been removed with alkali converts the loose arrangement of the microfibrils to a compact and sharply delineated arrangement. beta-alanine also accelerates tyrosinase-catalyzed oxidation of N-acetyldopamine by reacting with the oxidized product of the reaction to produce an orange-red complex. Similarly, beta-alanine accelerates oxidation of N-acetyldopamine when these two substances are added to fluids from the hemocoel, to lead to tanning instead of normal blackening. These findings may help explain why beta-alanine induces tanning while inhibiting melanization in insects.
Collapse
|
27
|
|
28
|
|
29
|
Maranda B, Hodgetts R. A characterization of dopamine acetyltransferase in Drosophila melanogaster. ACTA ACUST UNITED AC 1977. [DOI: 10.1016/0020-1790(77)90054-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|