1
|
Helmann JD. Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 2019; 112:335-347. [PMID: 31119812 DOI: 10.1111/mmi.14309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription is the fundamental process that enables the expression of genetic information. DNA-directed RNA polymerase (RNAP) uses one strand of the DNA duplex as template to produce complementary RNA molecules that serve in translation (rRNA, tRNA), protein synthesis (mRNA) and regulation (sRNA). Although the RNAP core is catalytically competent for RNA synthesis, the selectivity of transcription initiation requires a sigma (σ) factor for promoter recognition and opening. Expression of alternative σ factors provides a powerful mechanism to control the expression of discrete sets of genes (a σ regulon) in response to specific nutritional, developmental or stress-related signals. Here, I review the key insights that led to the original discovery of σ factor 50 years ago and the subsequent discovery of alternative σ factors as a ubiquitous mechanism of bacterial gene regulation. These studies form a prelude to the more recent, genomics-enabled insights into the vast diversity of σ factors in bacteria.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
|
3
|
SP10 infectivity is aborted after bacteriophage SP10 infection induces nonA transcription on the prophage SPβ region of the Bacillus subtilis genome. J Bacteriol 2013; 196:693-706. [PMID: 24272782 DOI: 10.1128/jb.01240-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPβ prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σ(Orf199-200)), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA(+) strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor.
Collapse
|
4
|
A two-subunit bacterial sigma-factor activates transcription in Bacillus subtilis. Proc Natl Acad Sci U S A 2009; 106:21323-8. [PMID: 19940246 DOI: 10.1073/pnas.0910006106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sigma-like factor YvrI and coregulator YvrHa activate transcription from a small set of conserved promoters in Bacillus subtilis. We report here that these two proteins independently contribute sigma-region 2 and sigma-region 4 functions to a holoenzyme-promoter DNA complex. YvrI binds RNA polymerase (RNAP) through a region 4 interaction with the beta-subunit flap domain and mediates specific promoter recognition but cannot initiate DNA melting at the -10 promoter element. Conversely, YvrHa possesses sequence similarity to a conserved core-binding motif in sigma-region 2 and binds to the N-terminal coiled-coil element in the RNAP beta'-subunit previously implicated in interaction with region 2 of sigma-factors. YvrHa plays an essential role in stabilizing the open complex and interacts specifically with the N-terminus of YvrI. Based on these results, we propose that YvrHa is situated in the transcription complex proximal to the -10 element of the promoter, whereas YvrI is responsible for -35 region recognition. This system presents an unusual example of a two-subunit bacterial sigma-factor.
Collapse
|
5
|
Abstract
This is a memoir of circumstances that have shaped my life as a scientist, some of the questions that have excited my interest, and some of the people with whom I have shared that pursuit. I was introduced to transcription soon after the discovery of RNA polymerase and have been fascinated by questions relating to gene regulation since that time. My account touches on early experiments dealing with the ability of RNA polymerase to selectively transcribe its DNA template. Temporal programs of transcription that control the multiplication cycles of viruses (phages) and the precise mechanisms generating this regulation have been a continuing source of fascination and new challenges. A longtime interest in eukaryotic RNA polymerase III has centered on yeast and on the enumeration and properties of its transcription initiation factors, the architecture of its promoter complexes, and the mechanism of transcriptional initiation. These areas of research are widely regarded as separate, but to my thinking they have posed similar questions, and I have been unwilling or unable to abandon either one for the other. An additional interest in archaeal transcription can be seen as stemming naturally from this point of view.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
6
|
Abstract
The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to environmental or physiological signals that cannot be readily joined to other regulatory mechanisms.
Collapse
Affiliation(s)
- W G Haldenwang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758
| |
Collapse
|
7
|
Rong JC, Helmann JD. Genetic and physiological studies of Bacillus subtilis sigma A mutants defective in promoter melting. J Bacteriol 1994; 176:5218-24. [PMID: 8071196 PMCID: PMC196704 DOI: 10.1128/jb.176.17.5218-5224.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Bacillus subtilis sigA gene encodes the primary sigma factor of RNA polymerase and is essential for cell growth. We have mutated conserved region 2.3 of the sigma A protein to substitute each of seven aromatic amino acids with alanine. Several of these aromatic amino acids are proposed to form a melting motif which facilitates the strand separation step of initiation. Holoenzymes containing mutant sigma factors recognize promoters, but some are defective for DNA melting in vitro. We have studied the ability of each mutant sigma factor to support cell growth by gene replacement and complementation. The two region 2.3 mutants least impaired in promoter melting in vitro (Y180A and Y184A) support cell growth in single copy, although the Y184A allele imparts a slow-growth phenotype at low temperatures. A strain expressing only the Y189A variant of the sigma A protein, known to be defective in DNA melting in vitro, grows very slowly and is altered in its pattern of protein synthesis. Only the wild-type and Y180A sigma A proteins efficiently complement a temperature-sensitive allele of sigA. Overexpression of three of the sigma A proteins defective for promoter melting in vitro (Y189A, W192A, and W193A) leads to a decrease in RNA synthesis and cell death. These results indicate that mutations which specifically impair DNA melting in vitro also impair sigma function in vivo and therefore support the hypothesis that sigma plays an essential role in both DNA melting and promoter recognition.
Collapse
Affiliation(s)
- J C Rong
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
8
|
Abstract
Phage SPO1 middle transcripts are known to fall into two classes, m and m1l. Class m1l transcripts continue to be made late in the viral infection, while the synthesis of class m transcripts ceases soon after the onset of replication and late transcription. The experiments that are reported here deal with the regulatory nature of this diversity. The accumulation of transcripts associated with eight middle promoters was analyzed by S1 nuclease mapping. DNA sequence surrounding these middle promoters was determined or redetermined, and the stability of RNA associated with most of these promoters was also analyzed. Class m1l transcription was shown to be associated with SPO1 middle promoters that remain active at late stages of viral development, when middle promoters of class m are repressed. The consensus sequences of class m and m1l middle promoters were found to be indistinguishable and the search for sequences consensual with late promoters yielded only divergent candidates. No other consensus sequence that is specific and exclusive to either class of middle promoters was detected within a hundred base pairs upstream or downstream of these promoters. Considerable variations in the stabilities of SPO1 middle transcripts were found. Two promoters that are only 71 base pairs apart yielded transcripts that had substantially different stabilities. The 5'-flanking segment of the transcript associated with the upstream promoter apparently conferred a high degree of stability on this RNA.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacteriophages/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Viral/genetics
- Genes, Viral
- Kinetics
- Models, Structural
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotide Probes
- Plasmids
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Restriction Mapping
- Transcription, Genetic
Collapse
Affiliation(s)
- V Scarlato
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
9
|
Arnosti DN. Regulation of Escherichia coli sigma F RNA polymerase by flhD and flhC flagellar regulatory genes. J Bacteriol 1990; 172:4106-8. [PMID: 2193929 PMCID: PMC213399 DOI: 10.1128/jb.172.7.4106-4108.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sigma F RNA polymerase has been characterized biochemically and is known to transcribe several flagellar genes in Escherichia coli. It was found that while the flagellar regulatory genes flhD and flhC are required for sigma F activity, the sizes of their corresponding gene products are inconsistent with their encoding sigma F itself.
Collapse
Affiliation(s)
- D N Arnosti
- Department of Chemistry, University of California, Berkeley 94720
| |
Collapse
|
10
|
Arnosti DN, Chamberlin MJ. Secondary sigma factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc Natl Acad Sci U S A 1989; 86:830-4. [PMID: 2644646 PMCID: PMC286571 DOI: 10.1073/pnas.86.3.830] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genes specifying chemotaxis, motility, and flagellar function in Escherichia coli are coordinately regulated and form a large and complex regulon. Despite the importance of these genes in controlling bacterial behavior, little is known of the molecular mechanisms that regulate their expression. We have identified a minor form of E. coli RNA polymerase that specifically transcribes several E. coli chemotaxis/flagellar genes in vitro and is likely to carry out transcription of these genes in vivo. The enzyme was purified to near homogeneity based on its ability to initiate transcription of the E. coli tar chemotaxis gene at start sites that are used in vivo. Specific tar transcription activity is associated with a polypeptide of apparent 28-kDa molecular mass that remains bound to the E. coli RNA polymerase throughout purification. This peptide behaves as a secondary sigma factor--designated sigma F--because it restores specific tar transcription activity when added to core RNA polymerase. The sigma F holoenzyme also transcribes the E. coli tsr and flaAI genes in vitro as well as several Bacillus subtilis genes that are transcribed specifically by the sigma 28 form of B. subtilis RNA polymerase. The latter holoenzyme is implicated in transcription of flagellar and chemotaxis genes in B. subtilis. Hence E. coli sigma F holoenzyme appears to be analogous to the B. subtilis sigma 28 RNA polymerase, both in its promoter specificity and in the nature of the regulon it controls.
Collapse
Affiliation(s)
- D N Arnosti
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
11
|
Lampe M, Binnie C, Schmidt R, Losick R. Cloned gene encoding the delta subunit of Bacillus subtilis RNA polymerase. Gene 1988; 67:13-9. [PMID: 2843435 DOI: 10.1016/0378-1119(88)90003-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Core RNA polymerase and several forms of RNA polymerase holoenzyme from Bacillus subtilis are found in association with a 21,500-kDa polypeptide called delta (delta). We have cloned the structural gene (rpoE) for delta by using a hybridization probe a synthetic oligodeoxynucleotide that was designed on the basis of a partial NH2-terminal amino acid (aa) sequence of purified delta protein. The rpoE gene was found to encode a 173-aa polypeptide of a predicted Mr of 20,400. Genetic and physical mapping experiments placed rpoE at 325 degrees on the B. subtilis chromosome and established the gene order rpoE-ctrA-spo0F. The delta subunit is known to enhance the specificity of transcription in vitro by bacterial and phage SP01-modified forms of polymerase, but replacement of rpoE by an in vitro-constructed deletion-mutated gene was found not to impair viability, sporulation, or the growth of phage SP01.
Collapse
Affiliation(s)
- M Lampe
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|
12
|
Helmann JD, Masiarz FR, Chamberlin MJ. Isolation and characterization of the Bacillus subtilis sigma 28 factor. J Bacteriol 1988; 170:1560-7. [PMID: 3127378 PMCID: PMC211002 DOI: 10.1128/jb.170.4.1560-1567.1988] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA polymerase preparations isolated from vegetatively growing Bacillus subtilis cells contain the core subunits beta, beta', and alpha, together with multiple sigma factors and other core-associated polypeptides such as delta, omega 1, and omega 2. We have developed an improved, large-scale purification procedure that yields RNA polymerase fractions enriched in both the sigma 28 and delta proteins. These fractions have been used to isolate sigma 28 protein for biochemical characterization and for preparation of highly specific anti-sigma 28 antisera. The amino acid composition of purified sigma 28 protein and the amino acid sequences of tryptic peptide fragments have been determined. Anti-sigma 28 antisera specifically inhibit transcription by the purified sigma 28 -dependent RNA polymerase, yet do not affect transcription by sigma 43 -dependent RNA polymerase. Immunochemical analysis confirms that the sigma 28 protein copurifies with total RNA polymerase activity through the majority of the purification procedure and allows the steps when sigma 28 protein is lost to be identified and optimized. Immunochemical techniques have also been used to monitor the structure and abundance of the sigma 28 protein in vivo. A single form of antibody-reactive protein was detected by two-dimensional gel electrophoresis-isoelectric focusing. Its abundance corresponds to a maximal content of 220 molecules of sigma 28 per B. subtilis cell during late-logarithmic-phase growth.
Collapse
Affiliation(s)
- J D Helmann
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | |
Collapse
|
13
|
Helmann JD, Márquez LM, Chamberlin MJ. Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene. J Bacteriol 1988; 170:1568-74. [PMID: 2832368 PMCID: PMC211003 DOI: 10.1128/jb.170.4.1568-1574.1988] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacillus subtilis contains multiple forms of RNA polymerase holoenzyme, distinguished by the presence of different specificity determinants known as sigma factors. The sigma 28 factor was initially purified as a unique transcriptional activity in vegetatively growing B. subtilis cells. Purification of the sigma 28 protein has allowed tryptic peptides to be prepared and sequenced. The sequence of one tryptic peptide fragment was used to prepare an oligonucleotide probe specific for the sigma 28 structural gene, and the gene was isolated from a B. subtilis subgenomic library. The complete nucleotide sequence of the sigma 28 gene was determined, and the cloned sigma 28 gene was used to construct a mutant strain which does not express the sigma 28 protein. This strain also failed to synthesize flagellin protein and grew as long filaments. The predicted sigma 28 gene product is a 254-amino-acid polypeptide with a calculated molecular weight of 29,500. The sigma 28 protein sequence was similar to that of other sequenced sigma factors and to the flbB gene product of Escherichia coli. Since the flbB gene product is a positive regulator of flagellar synthesis in E. coli, it is likely that sigma 28 functions to regulate flagellar synthesis in B. subtilis.
Collapse
Affiliation(s)
- J D Helmann
- Department of Biochemistry, University of California, Berkeley 94720
| | | | | |
Collapse
|
14
|
Errington J. Two separable functional domains in the sigma-subunit of RNA polymerase in Bacillus subtilis? FEBS Lett 1987; 224:257-60. [PMID: 3121385 DOI: 10.1016/0014-5793(87)80465-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sigma-subunit of RNA polymerase is responsible for promoter recognition in prokaryotes [(1969) Nature 221, 43-46]. Alterations in the sigma-subunit are thought to be involved in controlling 'global' changes in gene expression, such as those involved in differentiation in the spore-forming bacterium Bacillus subtilis [(1981) Cell 25, 582-584]. Stragier et al. [(1985) FEBS Lett. 195, 3-11] have proposed that sigma-factors are composed of two domains: a C-terminal domain involved in promoter recognition and an N-terminal domain involved in interactions with RNA polymerase. We have sequenced another developmental gene from B. subtilis, spoIIIC, and the strong homology of its predicted product suggests that it too may be a sigma-factor. However, the spoIIIC product is small and lacks completely the conserved N-terminal domain of the sigma-subunits. I propose that the product of the spoIIIC gene may carry out the DNA-recognition functions of a sigma-factor but that it probably requires an auxiliary factor to interact with core RNA polymerase.
Collapse
Affiliation(s)
- J Errington
- Department of Biochemistry, University of Oxford, England
| |
Collapse
|
15
|
|
16
|
Gribskov M, Burgess RR. Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucleic Acids Res 1986; 14:6745-63. [PMID: 3092189 PMCID: PMC311678 DOI: 10.1093/nar/14.16.6745] [Citation(s) in RCA: 400] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We show, using dot matrix comparisons and statistical analysis of sequence alignments, that seven sequenced sigma factors, E. coli sigma-70 and sigma-32, B. subtilis sigma-43 and sigma-29, phage SP01 gene products 28 and 34, and phage T4 gene product 55, comprise a homologous family of proteins. Sigma-70, sigma-32, and sigma-43 each have two copies of a sequence similar to the helix-turn-helix DNA binding motif seen in CRP, and lambda repressor and cro proteins. B. subtilis sigma-29, SP01 gp28, and SP01 gp34 have at least one copy similar to this sequence. We propose that a second sequence, conserved in all seven proteins is the core RNA polymerase binding site. A third region, present only in sigma-70 and sigma-43, may also be involved in interaction with core. Available mutational evidence supports our model for sigma factor structure.
Collapse
|
17
|
Binnie C, Lampe M, Losick R. Gene encoding the sigma 37 species of RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A 1986; 83:5943-7. [PMID: 3016731 PMCID: PMC386413 DOI: 10.1073/pnas.83.16.5943] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
sigma 37 is a minor species of RNA polymerase sigma factor found in the Gram-positive bacterium Bacillus subtilis. sigma 37 governs the transcription in vitro of genes that are turned on at an early stage in spore formation, as well as other genes that are switched on at the end of the exponential phase of growth but that are not under sporulation control. To study the role of sigma 37 in B. subtilis gene expression, we have cloned the gene for this minor species of sigma factor in Escherichia coli by using as a hybridization probe a synthetic oligonucleotide that was designed on the basis of the NH2-terminal amino acid sequence of sigma 37 protein. We determined the nucleotide sequence of the entire sigma 37 gene, which was found to encode a 262-amino acid residue polypeptide of 29.9 kDa. The predicted amino acid sequence of sigma 37 showed significant homology to that of other sigma proteins in a region that has been proposed to be the site of binding of these factors to core RNA polymerase. Genetic mapping experiments placed the gene for sigma 37, herein designated sigB, at 40 degrees on the genetic map of Piggot and Hoch [Piggot, P. & Hoch, J. A. (1985) Microbiol. Rev. 49, 158-179]. An insertion mutation was constructed in sigB and found not to impair growth or sporulation.
Collapse
|
18
|
Youngman P, Zuber P, Perkins JB, Sandman K, Igo M, Losick R. New Ways to Study Developmental Genes in Spore-Forming Bacteria. Science 1985; 228:285-91. [PMID: 17790214 DOI: 10.1126/science.228.4697.285] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The regulated activation of numerous sets of genes in multiple chromosomal locations is a hallmark of cellular differentiation in both eukaryotes and prokaryotes. Certain species of bacteria that experience complex developmental cycles are especially attractive as systems in which to study the mechanisms of this kind of gene regulation because they are highly amenable to both biochemical and genetic approaches. Bacillus subtilis, which undergoes extensive cellular differentiation when it sporulates, is one such system. Many new methods are now available in this Gram-positive species for identifying, manipulating, and studying the regulation of genes involved in spore formation, including the use of transposable genetic elements that create gene fusions in vivo as an automatic consequence of insertions into genes.
Collapse
|
19
|
Costanzo M, Brzustowicz L, Hannett N, Pero J. Bacteriophage SPO1 genes 33 and 34. Location and primary structure of genes encoding regulatory subunits of Bacillus subtilis RNA polymerase. J Mol Biol 1984; 180:533-47. [PMID: 6441846 DOI: 10.1016/0022-2836(84)90026-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacteriophage SPO1 gene 33 and 34 products are required for SPO1 late gene transcription. Both proteins bind to the core RNA polymerase of the Bacillus subtilis host to direct the recognition of SPO1 late gene promoters, whose sequences differ from those of SPO1 early and middle gene promoters. We have located and cloned the genes for these two regulatory proteins, and have engineered their expression in Escherichia coli by placing them under the control of the bacteriophage lambda PL promoter. Nucleotide sequence analysis indicated that genes 33 and 34 overlap by 4 base-pairs and encode highly charged, slightly basic proteins of molecular weight 11,902 and 23,677, respectively.
Collapse
|
20
|
Kassavetis GA, Geiduschek EP. Defining a bacteriophage T4 late promoter: bacteriophage T4 gene 55 protein suffices for directing late promoter recognition. Proc Natl Acad Sci U S A 1984; 81:5101-5. [PMID: 6382259 PMCID: PMC391645 DOI: 10.1073/pnas.81.16.5101] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The RNA polymerase from bacteriophage T4-infected Escherichia coli, which specifically initiates transcription at phage T4 late promoters, is extensively modified by ADP-ribosylation of core subunits and by binding several virus-encoded subunits. We show here that one of these subunits, the phage T4 gene 55 protein, designated gp55, alone endows unmodified RNA polymerase core enzyme from uninfected E. coli with the ability to selectively initiate transcription at the phage T4 late promoters, without participation by E. coli RNA polymerase o- subunit.
Collapse
|
21
|
Ribosomal RNA synthesis in uninfected and SPO1am34 infected Bacillus subtilis. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00383503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Costanzo M, Hannett N, Brzustowicz L, Pero J. Bacteriophage SPO1 gene 27: location and nucleotide sequence. J Virol 1983; 48:555-60. [PMID: 6413701 PMCID: PMC255381 DOI: 10.1128/jvi.48.2.555-560.1983] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacteriophage SPO1 gene 27, whose product is required for late gene transcription and DNA replication, has been cloned in Escherichia coli, and its complete nucleotide sequence has been determined. We infer that the product of gene 27 is a highly basic 17,518-dalton protein of 155 amino acids. The gene for this regulatory protein is transcribed from two promoters: an early promoter situated before the adjacent upstream gene 28 and a middle promoter located between genes 28 and 27.
Collapse
|
23
|
Abstract
The SP01 mutant sus HA20 (gene 27) was found to be defective for synthesis of viral late RNA. It is known that gene 27 is also required for viral DNA replication. The SP01 gene 27 product resembles the T4 gene 45 product, which also has a dual role in viral DNA replication and late transcription.
Collapse
|
24
|
|
25
|
Gilman MZ, Wiggs JL, Chamberlin MJ. Nucleotide sequences of two Bacillus subtilis promoters used by Bacillus subtilis sigma-28 RNA polymerase. Nucleic Acids Res 1981; 9:5991-6000. [PMID: 6273817 PMCID: PMC327579 DOI: 10.1093/nar/9.22.5991] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNA polymerase holoenzymes from many bacterial species share a common promoter recognition specificity since they use the same promoter sites on a variety of templates. These promoters generally include sequences homologous to the average sequences -TTGACA- and -TATAATA-, located -35 and -10 base pairs, respectively, upstream of the transcriptional state site. We have isolated a minor form of B. subtilis RNA polymerase in which the normal sigma subunit (sigma 55) is replaced by a smaller polypeptide (sigma 28) and which is highly specific for a class of promoter sites not used by the sigma 55-holoenzyme. Sequencing of two B. subtilis promoter sites used by the sigma 28-holoenzyme reveals identical sequences at -35 and -10 base pairs from the start site, which are -CTAAA- and -CCGATAT-, respectively. These results confirm that sigma subunit plays a major direct role in promoter sequence recognition, and support a model in which sigma interacts sequentially with -35 and -10 regions, respectively.
Collapse
|
26
|
|
27
|
Chelm BK, Romeo JM, Brennan SM, Geiduschek EP. A transcriptional map of the bacteriophage SPO1 genome. III. A region of early and middle promoters (the gene 28 region). Virology 1981; 112:572-88. [PMID: 6266141 DOI: 10.1016/0042-6822(81)90303-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Kumar SA. The structure and mechanism of action of bacterial DNA-dependent RNA polymerase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1981; 38:165-210. [PMID: 6170089 DOI: 10.1016/0079-6107(81)90013-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Abstract
A modified form of Bacillus subtilis RNA polymerase (RNA nucleotidyltransferase) has been isolated that exhibits distinctive transcriptional specificity. This modified enzyme transcribes two cloned genes from the purA-cysA region of the B. subtilis chromosome whose expression in vivo is associated with the process of sporulation. Neither of these genes is transcribed by the usual form of B. subtilis RNA polymerase holoenzyme containing a sigma factor of 55,000 daltons (sigma 55). The modified RNA polymerase lacks sigma 55 but contains a newly identified subunit of 37,000 daltons termed sigma 37. A reconstitution experiment in which sigma 37 was added to core RNA polymerase strongly suggests that sigma 37 is responsible for the transcriptional specificity of the modified RNA polymerase. Sigma 37 apparently acts at the level of promoter recognition; this transcriptional determinant enabled core RNA polymerase to form stable binary and ternary ("initiation") complexes with endonuclease restriction fragments containing promoters for the cloned B. subtilis genes.
Collapse
|
30
|
Hirochika H. Inhibitory action of erythromycin on bacteriophage SPO1 multiplication in sporulating cells of Bacillus subtilis 168. MOLECULAR & GENERAL GENETICS : MGG 1980; 179:581-8. [PMID: 6777627 DOI: 10.1007/bf00271748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Erythromycin (2--4 microgram/ml) was found to inhibit specifically multiplication of SPO1 in sporulating cells of an erythromycin-resistant, conditional asporogenous mutant of Bacillus subtilis 168 thy- trp-, Ery1040. In contrast, streptomycin (150--200 microgram/ml) which inhibits protein synthesis to a similar extent as erythromycin did not inhibit SPO1 multiplication severely, suggesting that the inhibition of SPO1 multiplication by erythromycin is not caused by an overall inhibition of protein synthesis. Neither phage DNA synthesis nor phage messenger RNA synthesis was affected appreciably under these conditions. However, the synthesis of three phage proteins that are synthesized 15 min after infection was preferentially inhibited by erythromycine. In addition, the inhibition of SPO1 multiplication has been correlated with the stimulation of host stable RNA synthesis exhibited by erythromycin. Possible mechanisms for the inhibition of SPO1 multiplication in Ery1040 cells are discussed.
Collapse
|
31
|
Abstract
Novobiocin, an inhibitor of bacterial DNA gyrase strongly impairs the development of bacteriophage SPOl. DNA replication seems to be the primary target for the antibiotic in this system, but viral-coded transcription is also affected in several aspects: (a) The level of phage transcription is diminished; (b) the shutoff of the synthesis of early RNA classes is inhibited; (c) RNAs of late class are not synthesized. This last effect is a consequence of the coupling between transcription and replication. The other two results could be taken as an indication that the appropriate secondary structure of the parental phage DNA is a requisite for the recognition of promoters. The introduction of negative turns by DNA gyrase seems to make early genes unavailable for transcription.
Collapse
Affiliation(s)
- A N Sarachu
- Cádtedra de Química Biológica II, Facultad de Ciencias Exactas, Universidad National de La Plata,1900 La Plata, Argentina
| | | | | |
Collapse
|
32
|
Lee G, Hannett NM, Korman A, Pero J. Transcription of cloned DNA from Bacillus subtilis phage SP01. Requirement for hydroxymethyluracil-containing DNA by phage-modified RNA polymerase. J Mol Biol 1980; 139:407-22. [PMID: 6449597 DOI: 10.1016/0022-2836(80)90138-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Abstract
We have used lipiarmycin, a specific inhibitor of initiation of transcription, to study the role of host RNA polymerase in the transcription programs of various phages of Bacillus subtilis. Unlike rifampin, lipiarmycin preferentially inhibits transcription dependent on the sigma subunit of RNA polymerase because it inactivates holoenzyme at a much greater rate than it does core enzyme. With phage SP01, addition of lipiarmycin at a middle-to-late time of infection did not inhibit phage production even though phage production was sensitive to addition of rifampin at that time. This result is consistent with the notion that unmodified host RNA polymerase holoenzyme becomes dispensable after transcription of early classes of SP01 genes, even though host core enzyme is required for synthesis of all classes of phage RNA. SP01-modified forms of RNA polymerase, which lack sigma subunit but contain phage-coded polypeptides and are able to transcribe middle and late genes, were resistant to lipiarmycin in vitro. For phage phi 105, phage development was sensitive to both lipiarmycin and rifampin in wild-type cells and resistant to both drugs in resistant mutant cells, leading to the conclusion that the activity of host holoenzyme was required for phage RNA synthesis. Growth of phage PBS2, which was resistant to rifampin, was sensitive to the addition of lipiarmycin at early times of infection of a wild-type host strain. In a lipiarmycin-resistant mutant host, PBS2 growth was resistant to lipiarmycin. This result suggests that host holoenzyme plays a previously unanticipated role in transcription of PBS2 genes.
Collapse
|
34
|
|
35
|
Role of the 21,000 molecular weight polypeptide of Bacillus subtilis RNA polymerase in RNA synthesis. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(19)62318-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Steinberg B, Pollack R, Topp W, Botchan M. Isolation and characterization of T antigen-negative revertants from a line of transformed rat cells containing one copy of the SV40 genome. Cell 1978; 13:19-32. [PMID: 202400 DOI: 10.1016/0092-8674(78)90134-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Negative selection with FUdR produced revertants from the transformed rat line 14B, which contains one insertion of the SV40 viral genome (Botchan, Topp and Sambrook, 1976). 14B contains nuclear T antigen, grows to a high density, grows in low serum and is anchorage-independent. The revertants fall into three classes with regard to viral DNA sequences: the SV40 DNA is retained; the SV40 DNA is retained but has undergone a deletion; and the SV40 DNA is lost, generating a cured cell. This heterogeneity is not a result of long-term passage. The revertants arise with a frequency of one in 8.4 X 10(5) cells after as few as 12 passages. All three classes of revertants are T antigen-negative, density-sensitive, more serum sensitive than 14B and anchorage-dependent. These data argue for a direct role of the functioning viral genome in the maintenance of the transformed state, and that with 14B, the phenotypes of transformation are not virus gene dosage-dependent.
Collapse
|
37
|
Talkington C, Pero J. Restriction fragment analysis of the temporal program of bacteriophage SPO1 transcription and its control by phage-modified RNA polymerases. Virology 1977; 83:365-79. [PMID: 412317 DOI: 10.1016/0042-6822(77)90181-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Duffy JJ, Geiduschek EP. Purification of a positive regulatory subunit from phage SP01-modified RNA polymerase. Nature 1977; 270:28-32. [PMID: 412108 DOI: 10.1038/270028a0] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A phage-induced subunit has been purified from phage SP01-modified Bacillus subtilis RNA polymerase. This subunit binds in vitro to RNA polymerase core from uninfected B. subtilis thereby template-selective transcription and asymmetric synthesis of SP01 middle RNA.
Collapse
|
39
|
Tjian R, Losick R, Pero J, Hinnebush A. Purification and comparative properties of the delta and sigma subunits of RNA polymerase from Bacillus subtilis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 74:149-54. [PMID: 404142 DOI: 10.1111/j.1432-1033.1977.tb11376.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis delta protein is a 21 500-Mr polypeptide that can be isolated in association with RNA polymerase holoenzyme from uninfected bacteria and with modified forms of RNA polymerase from cells infected with phage SP01 [Pero, J., Nelson, J. and Fox, T. (1975) Proc. Natl Acad. Sci. U.S.A. 72,1589]. Although no function has been assigned to delta protein in uninfected cells, this host polypeptide enhances the specificity of transcription by phage-modified forms of RNA polymerase that contain SP01-coded regulatory subunits. This report describes the purification of delta and sigma proteins from uninfected B. subtilis and examines the comparative effects of these polypeptides on transcription by core RNA polymerase. Purified sigma polypeptide was found to stimulate the transcription of phage DNA while having little effect on RNA synthesis with the synthetic DNA poly(dA-dT) as template. In contrast, purified delta protein markedly depressed the transcription of poly(dA-dT) while having little effect on enzyme activity with phage DNA as template. The inhibitory effect of delta protein on poly (dA-dT) transcription was strongly dependent on the presence of KC1 in the RNA synthesis reaction mixture.
Collapse
|
40
|
|