1
|
Yu NJ, Dai W, Li A, He M, Kleiner RE. Cell type-specific translational regulation by human DUS enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565399. [PMID: 37965204 PMCID: PMC10635104 DOI: 10.1101/2023.11.03.565399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
Collapse
|
2
|
Dai W, Yu NJ, Kleiner RE. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins. Acc Chem Res 2023; 56:2726-2739. [PMID: 37733063 PMCID: PMC11025531 DOI: 10.1021/acs.accounts.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.
Collapse
Affiliation(s)
| | | | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
3
|
Wang Y, Wang X, Cui X, Meng J, Rong R. Self-attention enabled deep learning of dihydrouridine (D) modification on mRNAs unveiled a distinct sequence signature from tRNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:411-420. [PMID: 36845339 PMCID: PMC9945750 DOI: 10.1016/j.omtn.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Dihydrouridine (D) is a modified pyrimidine nucleotide universally found in viral, prokaryotic, and eukaryotic species. It serves as a metabolic modulator for various pathological conditions, and its elevated levels in tumors are associated with a series of cancers. Precise identification of D sites on RNA is vital for understanding its biological function. A number of computational approaches have been developed for predicting D sites on tRNAs; however, none have considered mRNAs. We present here DPred, the first computational tool for predicting D on mRNAs in yeast from the primary RNA sequences. Built on a local self-attention layer and a convolutional neural network (CNN) layer, the proposed deep learning model outperformed classic machine learning approaches (random forest, support vector machines, etc.) and achieved reasonable accuracy and reliability with areas under the curve of 0.9166 and 0.9027 in jackknife cross-validation and on an independent testing dataset, respectively. Importantly, we showed that distinct sequence signatures are associated with the D sites on mRNAs and tRNAs, implying potentially different formation mechanisms and putative divergent functionality of this modification on the two types of RNA. DPred is available as a user-friendly Web server.
Collapse
Affiliation(s)
- Yue Wang
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Department of Computer Science, University of Liverpool, L69 7ZB Liverpool, UK
| | - Xuan Wang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiaodong Cui
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, UK
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China,Corresponding author: Rong Rong, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Lombard M, Reed CJ, Pecqueur L, Faivre B, Toubdji S, Sudol C, Brégeon D, de Crécy-Lagard V, Hamdane D. Evolutionary Diversity of Dus2 Enzymes Reveals Novel Structural and Functional Features among Members of the RNA Dihydrouridine Synthases Family. Biomolecules 2022; 12:1760. [PMID: 36551188 PMCID: PMC9775027 DOI: 10.3390/biom12121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dihydrouridine (D) is an abundant modified base found in the tRNAs of most living organisms and was recently detected in eukaryotic mRNAs. This base confers significant conformational plasticity to RNA molecules. The dihydrouridine biosynthetic reaction is catalyzed by a large family of flavoenzymes, the dihydrouridine synthases (Dus). So far, only bacterial Dus enzymes and their complexes with tRNAs have been structurally characterized. Understanding the structure-function relationships of eukaryotic Dus proteins has been hampered by the paucity of structural data. Here, we combined extensive phylogenetic analysis with high-precision 3D molecular modeling of more than 30 Dus2 enzymes selected along the tree of life to determine the evolutionary molecular basis of D biosynthesis by these enzymes. Dus2 is the eukaryotic enzyme responsible for the synthesis of D20 in tRNAs and is involved in some human cancers and in the detoxification of β-amyloid peptides in Alzheimer's disease. In addition to the domains forming the canonical structure of all Dus, i.e., the catalytic TIM-barrel domain and the helical domain, both participating in RNA recognition in the bacterial Dus, a majority of Dus2 proteins harbor extensions at both ends. While these are mainly unstructured extensions on the N-terminal side, the C-terminal side extensions can adopt well-defined structures such as helices and beta-sheets or even form additional domains such as zinc finger domains. 3D models of Dus2/tRNA complexes were also generated. This study suggests that eukaryotic Dus2 proteins may have an advantage in tRNA recognition over their bacterial counterparts due to their modularity.
Collapse
Affiliation(s)
- Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Sabrine Toubdji
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Claudia Sudol
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| |
Collapse
|
5
|
Brégeon D, Pecqueur L, Toubdji S, Sudol C, Lombard M, Fontecave M, de Crécy-Lagard V, Motorin Y, Helm M, Hamdane D. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chem Biol 2022; 17:1638-1657. [PMID: 35737906 DOI: 10.1021/acschembio.2c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Until recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications. These data also implicated dihydrouridylation in meiotic chromosome segregation, protein translation rates, and cell proliferation. Dihydrouridylation of tRNAs and mRNAs are introduced by flavin-dependent dihydrouridine synthases. In this review, we will briefly outline the current knowledge on the distribution of dihydrouridines in the transcriptome, their chemical labeling, and highlight structural and mechanistic aspects regarding the dihydrouridine synthases enzyme family. A special emphasis on important research directions to be addressed will also be discussed. This new entry of dihydrouridine into mRNA modifications has definitely added a new layer of information that controls protein synthesis.
Collapse
Affiliation(s)
- Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sabrine Toubdji
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Claudia Sudol
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
6
|
Finet O, Yague-Sanz C, Marchand F, Hermand D. The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function. RNA Biol 2022; 19:735-750. [PMID: 35638108 PMCID: PMC9176250 DOI: 10.1080/15476286.2022.2078094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universal dihydrouridine (D) epitranscriptomic mark results from a reduction of uridine by the Dus family of NADPH-dependent reductases and is typically found within the eponym D-loop of tRNAs. Despite its apparent simplicity, D is structurally unique, with the potential to deeply affect the RNA backbone and many, if not all, RNA-connected processes. The first landscape of its occupancy within the tRNAome was reported 20 years ago. Its potential biological significance was highlighted by observations ranging from a strong bias in its ecological distribution to the predictive nature of Dus enzymes overexpression for worse cancer patient outcomes. The exquisite specificity of the Dus enzymes revealed by a structure-function analyses and accumulating clues that the D distribution may expand beyond tRNAs recently led to the development of new high-resolution mapping methods, including Rho-seq that established the presence of D within mRNAs and led to the demonstration of its critical physiological relevance.
Collapse
Affiliation(s)
- Olivier Finet
- URPHYM-GEMO, The University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
7
|
Draycott AS, Schaening-Burgos C, Rojas-Duran MF, Wilson L, Schärfen L, Neugebauer KM, Nachtergaele S, Gilbert WV. Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA. PLoS Biol 2022; 20:e3001622. [PMID: 35609439 PMCID: PMC9129914 DOI: 10.1371/journal.pbio.3001622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Dihydrouridine is a modified nucleotide universally present in tRNAs, but the complete dihydrouridine landscape is unknown in any organism. We introduce dihydrouridine sequencing (D-seq) for transcriptome-wide mapping of D with single-nucleotide resolution and use it to uncover novel classes of dihydrouridine-containing RNA in yeast which include mRNA and small nucleolar RNA (snoRNA). The novel D sites are concentrated in conserved stem-loop regions consistent with a role for D in folding many functional RNA structures. We demonstrate dihydrouridine synthase (DUS)-dependent changes in splicing of a D-containing pre-mRNA in cells and show that D-modified mRNAs can be efficiently translated by eukaryotic ribosomes in vitro. This work establishes D as a new functional component of the mRNA epitranscriptome and paves the way for identifying the RNA targets of multiple DUS enzymes that are dysregulated in human disease.
Collapse
Affiliation(s)
- Austin S. Draycott
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Cassandra Schaening-Burgos
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Maria F. Rojas-Duran
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Loren Wilson
- Yale University, Department of Molecular, Cellular, and Developmental Biology, New Haven, Connecticut, United States of America
| | - Leonard Schärfen
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Karla M. Neugebauer
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| | - Sigrid Nachtergaele
- Yale University, Department of Molecular, Cellular, and Developmental Biology, New Haven, Connecticut, United States of America
| | - Wendy V. Gilbert
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Identification of D Modification Sites Using a Random Forest Model Based on Nucleotide Chemical Properties. Int J Mol Sci 2022; 23:ijms23063044. [PMID: 35328461 PMCID: PMC8950657 DOI: 10.3390/ijms23063044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Dihydrouridine (D) is an abundant post-transcriptional modification present in transfer RNA from eukaryotes, bacteria, and archaea. D has contributed to treatments for cancerous diseases. Therefore, the precise detection of D modification sites can enable further understanding of its functional roles. Traditional experimental techniques to identify D are laborious and time-consuming. In addition, there are few computational tools for such analysis. In this study, we utilized eleven sequence-derived feature extraction methods and implemented five popular machine algorithms to identify an optimal model. During data preprocessing, data were partitioned for training and testing. Oversampling was also adopted to reduce the effect of the imbalance between positive and negative samples. The best-performing model was obtained through a combination of random forest and nucleotide chemical property modeling. The optimized model presented high sensitivity and specificity values of 0.9688 and 0.9706 in independent tests, respectively. Our proposed model surpassed published tools in independent tests. Furthermore, a series of validations across several aspects was conducted in order to demonstrate the robustness and reliability of our model.
Collapse
|
9
|
Dou L, Zhou W, Zhang L, Xu L, Han K. Accurate identification of RNA D modification using multiple features. RNA Biol 2021; 18:2236-2246. [PMID: 33729104 PMCID: PMC8632091 DOI: 10.1080/15476286.2021.1898160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022] Open
Abstract
As one of the common post-transcriptional modifications in tRNAs, dihydrouridine (D) has prominent effects on regulating the flexibility of tRNA as well as cancerous diseases. Facing with the expensive and time-consuming sequencing techniques to detect D modification, precise computational tools can largely promote the progress of molecular mechanisms and medical developments. We proposed a novel predictor, called iRNAD_XGBoost, to identify potential D sites using multiple RNA sequence representations. In this method, by considering the imbalance problem using hybrid sampling method SMOTEEEN, the XGBoost-selected top 30 features are applied to construct model. The optimized model showed high Sn and Sp values of 97.13% and 97.38% over jackknife test, respectively. For the independent experiment, these two metrics separately achieved 91.67% and 94.74%. Compared with iRNAD method, this model illustrated high generalizability and consistent prediction efficiencies for positive and negative samples, which yielded satisfactory MCC scores of 0.94 and 0.86, respectively. It is inferred that the chemical property and nucleotide density features (CPND), electron-ion interaction pseudopotential (EIIP and PseEIIP) as well as dinucleotide composition (DNC) are crucial to the recognition of D modification. The proposed predictor is a promising tool to help experimental biologists investigate molecular functions.
Collapse
Affiliation(s)
- Lijun Dou
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, SichuanChina
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, HeilongjiangChina
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
| | - Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, HeilongjiangChina
| |
Collapse
|
10
|
Dai W, Li A, Yu NJ, Nguyen T, Leach RW, Wühr M, Kleiner RE. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol 2021; 17:1178-1187. [PMID: 34556860 PMCID: PMC8551019 DOI: 10.1038/s41589-021-00874-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
Epitranscriptomic RNA modifications can regulate RNA activity; however, there remains a major gap in our understanding of the RNA chemistry present in biological systems. Here we develop RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy that relies on metabolic RNA labeling, mRNA interactome capture and quantitative proteomics, to investigate RNA-modifying enzymes in human cells. RNABPP with 5-fluoropyrimidines allowed us to profile 5-methylcytidine (m5C) and 5-methyluridine (m5U) methyltransferases. Further, we uncover a new mechanism-based crosslink between 5-fluorouridine (5-FUrd)-modified RNA and the dihydrouridine synthase (DUS) homolog DUS3L. We investigate the mechanism of crosslinking and use quantitative nucleoside liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and 5-FUrd-based crosslinking and immunoprecipitation (CLIP) sequencing to map DUS3L-dependent dihydrouridine (DHU) modifications across the transcriptome. Finally, we show that DUS3L-knockout (KO) cells have compromised protein translation rates and impaired cellular proliferation. Taken together, our work provides a general approach for profiling RNA-modifying enzyme activity in living cells and reveals new pathways for epitranscriptomic RNA regulation.
Collapse
Affiliation(s)
- Wei Dai
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Thao Nguyen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,
| |
Collapse
|
11
|
Faivre B, Lombard M, Fakroun S, Vo CDT, Goyenvalle C, Guérineau V, Pecqueur L, Fontecave M, De Crécy-Lagard V, Brégeon D, Hamdane D. Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes. RNA Biol 2021; 18:2278-2289. [PMID: 33685366 DOI: 10.1080/15476286.2021.1899653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusBMCap), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusBMCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.
Collapse
Affiliation(s)
- Bruno Faivre
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Murielle Lombard
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Soufyan Fakroun
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Chau-Duy-Tam Vo
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | | | - Vincent Guérineau
- Institue De Chimie De Substances Naturelles, Centre De Recherche De Gif CNRS, Gif-sur-Yvette, France
| | - Ludovic Pecqueur
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Marc Fontecave
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| | - Valérie De Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, Gainesville, FL, USA
| | - Damien Brégeon
- Sorbonne Université, IBPS, Biology of Aging and Adaptation, Paris, France
| | - Djemel Hamdane
- Laboratoire De Chimie Des Processus Biologiques, CNRS-UMR 8229, Collège De France, Sorbonne Université, UPMC Université. Paris 06, Paris, France
| |
Collapse
|
12
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
13
|
Xu ZC, Feng PM, Yang H, Qiu WR, Chen W, Lin H. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics 2020; 35:4922-4929. [PMID: 31077296 DOI: 10.1093/bioinformatics/btz358] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 04/27/2019] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Dihydrouridine (D) is a common RNA post-transcriptional modification found in eukaryotes, bacteria and a few archaea. The modification can promote the conformational flexibility of individual nucleotide bases. And its levels are increased in cancerous tissues. Therefore, it is necessary to detect D in RNA for further understanding its functional roles. Since wet-experimental techniques for the aim are time-consuming and laborious, it is urgent to develop computational models to identify D modification sites in RNA. RESULTS We constructed a predictor, called iRNAD, for identifying D modification sites in RNA sequence. In this predictor, the RNA samples derived from five species were encoded by nucleotide chemical property and nucleotide density. Support vector machine was utilized to perform the classification. The final model could produce the overall accuracy of 96.18% with the area under the receiver operating characteristic curve of 0.9839 in jackknife cross-validation test. Furthermore, we performed a series of validations from several aspects and demonstrated the robustness and reliability of the proposed model. AVAILABILITY AND IMPLEMENTATION A user-friendly web-server called iRNAD can be freely accessible at http://lin-group.cn/server/iRNAD, which will provide convenience and guide to users for further studying D modification.
Collapse
Affiliation(s)
- Zhao-Chun Xu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China.,Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng-Mian Feng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wang-Ren Qiu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Bou-Nader C, Montémont H, Guérineau V, Jean-Jean O, Brégeon D, Hamdane D. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario. Nucleic Acids Res 2018; 46:1386-1394. [PMID: 29294097 PMCID: PMC5814906 DOI: 10.1093/nar/gkx1294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Post-transcriptional base modifications are important to the maturation process of transfer RNAs (tRNAs). Certain modifications are abundant and present at several positions in tRNA as for example the dihydrouridine, a modified base found in the three domains of life. Even though the function of dihydrourine is not well understood, its high content in tRNAs from psychrophilic bacteria or cancer cells obviously emphasizes a central role in cell adaptation. The reduction of uridine to dihydrouridine is catalyzed by a large family of flavoenzymes named dihydrouridine synthases (Dus). Prokaryotes have three Dus (A, B and C) wherein DusB is considered as an ancestral protein from which the two others derived via gene duplications. Here, we unequivocally established the complete substrate specificities of the three Escherichia coli Dus and solved the crystal structure of DusB, enabling for the first time an exhaustive structural comparison between these bacterial flavoenzymes. Based on our results, we propose an evolutionary scenario explaining how substrate specificities has been diversified from a single structural fold.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Hugo Montémont
- Sorbonne Universités, UPMC University, Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Vincent Guérineau
- Institue de Chimie de Substances Naturelles, Centre de Recherche de Gif CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Olivier Jean-Jean
- Sorbonne Universités, UPMC University, Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Damien Brégeon
- Sorbonne Universités, UPMC University, Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
15
|
Bohnsack MT, Sloan KE. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell Mol Life Sci 2017; 75:241-260. [PMID: 28752201 PMCID: PMC5756263 DOI: 10.1007/s00018-017-2598-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Mitochondrial protein synthesis is essential for the production of components of the oxidative phosphorylation system. RNA modifications in the mammalian mitochondrial translation apparatus play key roles in facilitating mitochondrial gene expression as they enable decoding of the non-conventional genetic code by a minimal set of tRNAs, and efficient and accurate protein synthesis by the mitoribosome. Intriguingly, recent transcriptome-wide analyses have also revealed modifications in mitochondrial mRNAs, suggesting that the concept of dynamic regulation of gene expression by the modified RNAs (the “epitranscriptome”) extends to mitochondria. Furthermore, it has emerged that defects in RNA modification, arising from either mt-DNA mutations or mutations in nuclear-encoded mitochondrial modification enzymes, underlie multiple mitochondrial diseases. Concomitant advances in the identification of the mitochondrial RNA modification machinery and recent structural views of the mitochondrial translation apparatus now allow the molecular basis of such mitochondrial diseases to be understood on a mechanistic level.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
16
|
Dyubankova N, Sochacka E, Kraszewska K, Nawrot B, Herdewijn P, Lescrinier E. Contribution of dihydrouridine in folding of the D-arm in tRNA. Org Biomol Chem 2015; 13:4960-6. [PMID: 25815904 DOI: 10.1039/c5ob00164a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranscriptional modifications of transfer RNAs (tRNAs) are proven to be critical for all core aspects of tRNA function. While the majority of tRNA modifications were discovered in the 1970s, their contribution in tRNA folding, stability, and decoding often remains elusive. In this work an NMR study was performed to obtain more insight in the role of the dihydrouridine (D) modification in the D-arm of tRNAi(Met) from S. pombe. While the unmodified oligonucleotide adopted several undefined conformations that interconvert in solution, the presence of a D nucleoside triggered folding into a hairpin with a stable stem and flexible loop region. Apparently the D modification is required in the studied sequence to fold into a stable hairpin. Therefore we conclude that D contributes to the correct folding and stability of D-arm in tRNA. In contrast to what is generally assumed for nucleic acids, the sharp 'imino' signal for the D nucleobase at 10 ppm in 90% H2O is not indicative for the presence of a stable hydrogen bond. The strong increase in pKa upon loss of the aromatic character in the modified nucleobase slows down the exchange of its 'imino' proton significantly, allowing its observation even in an isolated D nucleoside in 90% H2O in acidic to neutral conditions.
Collapse
Affiliation(s)
- N Dyubankova
- Medicinal Chemistry, Department of Pharmaceutical Sciences, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
17
|
Witkin KL, Hanlon SE, Strasburger JA, Coffin JM, Jaffrey SR, Howcroft TK, Dedon PC, Steitz JA, Daschner PJ, Read-Connole E. RNA editing, epitranscriptomics, and processing in cancer progression. Cancer Biol Ther 2015; 16:21-7. [PMID: 25455629 DOI: 10.4161/15384047.2014.987555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcriptome is extensively and dynamically regulated by a network of RNA modifying factors. RNA editing enzymes APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) and ADAR (adenosine deaminase, RNA-specific) irreversibly recode primary RNA sequences, whereas newly described methylases (writers) and de-methylases (erasers) dynamically alter RNA molecules in response to environmental conditions. RNA modifications can affect RNA splicing, nuclear-cytoplasmic transport, translation, and regulation of gene expression by RNA interference. In addition, tRNA base modifications, processing, and regulated cleavage have been shown to alter global patterns of mRNA translation in response to cellular stress pathways. Recent studies, some of which were discussed at this workshop, have rekindled interest in the emerging roles of RNA modifications in health and disease. On September 10th, 2014, the Division of Cancer Biology, NCI sponsored a workshop to explore the role of epitranscriptomic RNA modifications and tRNA processing in cancer progression. The workshop attendees spanned a scientific range including chemists, virologists, and RNA and cancer biologists. The goal of the workshop was to explore the interrelationships between RNA editing, epitranscriptomics, and RNA processing and the enzymatic pathways that regulate these activities in cancer initiation and progression. At the conclusion of the workshop, a general discussion focused on defining the major challenges and opportunities in this field, as well as identifying the tools, technologies, resources and community efforts required to accelerate research in this emerging area.
Collapse
Affiliation(s)
- Keren L Witkin
- a Division of Cancer Biology; National Cancer Institute ; Bethesda , MD USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bou-Nader C, Pecqueur L, Bregeon D, Kamah A, Guérineau V, Golinelli-Pimpaneau B, Guimarães BG, Fontecave M, Hamdane D. An extended dsRBD is required for post-transcriptional modification in human tRNAs. Nucleic Acids Res 2015; 43:9446-56. [PMID: 26429968 PMCID: PMC4627097 DOI: 10.1093/nar/gkv989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022] Open
Abstract
In tRNA, dihydrouridine is a conserved modified base generated by the post-transcriptional reduction of uridine. Formation of dihydrouridine 20, located in the D-loop, is catalyzed by dihydrouridine synthase 2 (Dus2). Human Dus2 (HsDus2) expression is upregulated in lung cancers, offering a growth advantage throughout its ability to interact with components of the translation apparatus and inhibit apoptosis. Here, we report the crystal structure of the individual domains of HsDus2 and their functional characterization. HsDus2 is organized into three major modules. The N-terminal catalytic domain contains the flavin cofactor involved in the reduction of uridine. The second module is the conserved α-helical domain known as the tRNA binding domain in HsDus2 homologues. It is connected via a flexible linker to an unusual extended version of a dsRNA binding domain (dsRBD). Enzymatic assays and yeast complementation showed that the catalytic domain binds selectively NADPH but cannot reduce uridine in the absence of the dsRBD. While in Dus enzymes from bacteria, plants and fungi, tRNA binding is essentially achieved by the α-helical domain, we showed that in HsDus2 this function is carried out by the dsRBD. This is the first reported case of a tRNA-modifying enzyme carrying a dsRBD used to bind tRNAs.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Damien Bregeon
- Sorbonne Universités, UPMC Univ. Paris 06, IBPS, UMR8256, Biology of Aging and Adaptation, F-75005 Paris, France
| | - Amina Kamah
- Université de Lille-Nord de France, CNRS UMR 8576, Institut Fédératif de Recherches 147, Villeneuve d'Ascq, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190 Gif-sur-Yvette, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
19
|
Whelan F, Jenkins HT, Griffiths SC, Byrne RT, Dodson EJ, Antson AA. From bacterial to human dihydrouridine synthase: automated structure determination. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1564-71. [PMID: 26143927 PMCID: PMC4498606 DOI: 10.1107/s1399004715009220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/14/2015] [Indexed: 11/10/2022]
Abstract
The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1-340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr_rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain-domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.
Collapse
Affiliation(s)
- Fiona Whelan
- Department of Biology, The University of York, Heslington, York YO10 5DD, England
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| | - Samuel C. Griffiths
- Division of Structural Biology, University of Oxford, Headington, Oxford OX3 7BN, England
| | - Robert T. Byrne
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Eleanor J. Dodson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
20
|
Byrne RT, Jenkins HT, Peters DT, Whelan F, Stowell J, Aziz N, Kasatsky P, Rodnina MV, Koonin EV, Konevega AL, Antson AA. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proc Natl Acad Sci U S A 2015; 112:6033-7. [PMID: 25902496 PMCID: PMC4434734 DOI: 10.1073/pnas.1500161112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reduction of specific uridines to dihydrouridine is one of the most common modifications in tRNA. Increased levels of the dihydrouridine modification are associated with cancer. Dihydrouridine synthases (Dus) from different subfamilies selectively reduce distinct uridines, located at spatially unique positions of folded tRNA, into dihydrouridine. Because the catalytic center of all Dus enzymes is conserved, it is unclear how the same protein fold can be reprogrammed to ensure that nucleotides exposed at spatially distinct faces of tRNA can be accommodated in the same active site. We show that the Escherichia coli DusC is specific toward U16 of tRNA. Unexpectedly, crystal structures of DusC complexes with tRNA(Phe) and tRNA(Trp) show that Dus subfamilies that selectively modify U16 or U20 in tRNA adopt identical folds but bind their respective tRNA substrates in an almost reverse orientation that differs by a 160° rotation. The tRNA docking orientation appears to be guided by subfamily-specific clusters of amino acids ("binding signatures") together with differences in the shape of the positively charged tRNA-binding surfaces. tRNA orientations are further constrained by positional differences between the C-terminal "recognition" domains. The exquisite substrate specificity of Dus enzymes is therefore controlled by a relatively simple mechanism involving major reorientation of the whole tRNA molecule. Such reprogramming of the enzymatic specificity appears to be a unique evolutionary solution for altering tRNA recognition by the same protein fold.
Collapse
Affiliation(s)
- Robert T Byrne
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Daniel T Peters
- York Structural Biology Laboratory, Department of Chemistry, and
| | - Fiona Whelan
- York Structural Biology Laboratory, Department of Chemistry, and
| | - James Stowell
- York Structural Biology Laboratory, Department of Chemistry, and Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Naveed Aziz
- Department of Biology, University of York, York, YO10 5DD, United Kingdom; Genome Canada, Ottawa, ON K2P 1P1, Canada
| | - Pavel Kasatsky
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Andrey L Konevega
- Molecular and Radiation Biophysics Department, B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre "Kurchatov Institute," 188300 Gatchina, Russia; St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia; Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; and
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, and
| |
Collapse
|
21
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
22
|
Iben JR, Maraia RJ. tRNA gene copy number variation in humans. Gene 2013; 536:376-84. [PMID: 24342656 DOI: 10.1016/j.gene.2013.11.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 11/29/2022]
Abstract
The human tRNAome consists of more than 500 interspersed tRNA genes comprising 51 anticodon families of largely unequal copy number. We examined tRNA gene copy number variation (tgCNV) in six individuals; two kindreds of two parents and a child, using high coverage whole genome sequence data. Such differences may be important because translation of some mRNAs is sensitive to the relative amounts of tRNAs and because tRNA competition determines translational efficiency vs. fidelity and production of native vs. misfolded proteins. We identified several tRNA gene clusters with CNV, which in some cases were part of larger iterations. In addition there was an isolated tRNALysCUU gene that was absent as a homozygous deletion in one of the parents. When assessed by semiquantitative PCR in 98 DNA samples representing a wide variety of ethnicities, this allele was found deleted in hetero- or homozygosity in all groups at ~50% frequency. This is the first report of copy number variation of human tRNA genes. We conclude that tgCNV exists at significant levels among individual humans and discuss the results in terms of genetic diversity and prior genome wide association studies (GWAS) that suggest the importance of the ratio of tRNALys isoacceptors in Type-2 diabetes.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Preston MA, D’Silva S, Kon Y, Phizicky EM. tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2013; 19:243-56. [PMID: 23249748 PMCID: PMC3543094 DOI: 10.1261/rna.035808.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
tRNAs are highly modified, each with a unique set of modifications. Several reports suggest that tRNAs are hypomodified or, in some cases, hypermodified under different growth conditions and in certain cancers. We previously demonstrated that yeast strains depleted of tRNA(His) guanylyltransferase accumulate uncharged tRNA(His) lacking the G(-1) residue and subsequently accumulate additional 5-methylcytidine (m(5)C) at residues C(48) and C(50) of tRNA(His), due to the activity of the m(5)C-methyltransferase Trm4. We show here that the increase in tRNA(His) m(5)C levels does not require loss of Thg1, loss of G(-1) of tRNA(His), or cell death but is associated with growth arrest following different stress conditions. We find substantially increased tRNA(His) m(5)C levels after temperature-sensitive strains are grown at nonpermissive temperature, and after wild-type strains are grown to stationary phase, starved for required amino acids, or treated with rapamycin. We observe more modest accumulations of m(5)C in tRNA(His) after starvation for glucose and after starvation for uracil. In virtually all cases examined, the additional m(5)C on tRNA(His) occurs while cells are fully viable, and the increase is neither due to the GCN4 pathway, nor to increased Trm4 levels. Moreover, the increased m(5)C appears specific to tRNA(His), as tRNA(Val(AAC)) and tRNA(Gly(GCC)) have much reduced additional m(5)C during these growth arrest conditions, although they also have C(48) and C(50) and are capable of having increased m(5)C levels. Thus, tRNA(His) m(5)C levels are unusually responsive to yeast growth conditions, although the significance of this additional m(5)C remains unclear.
Collapse
|
24
|
Xhemalce B. From histones to RNA: role of methylation in cancer. Brief Funct Genomics 2013; 12:244-53. [DOI: 10.1093/bfgp/els064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Rodriguez V, Vasudevan S, Noma A, Carlson BA, Green JE, Suzuki T, Chandrasekharappa SC. Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA. PLoS One 2012; 7:e39297. [PMID: 22761755 PMCID: PMC3386263 DOI: 10.1371/journal.pone.0039297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNAPhe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNAPhe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNAPhe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis.
Collapse
Affiliation(s)
- Virginia Rodriguez
- Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Sona Vasudevan
- Department of Biochemistry and Molecular Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Akiko Noma
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Bradley A. Carlson
- Laboratory of Cancer Prevention, National Cancer Institute National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey E. Green
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Settara C. Chandrasekharappa
- Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Griffiths S, Byrne RT, Antson AA, Whelan F. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of human dihydrouridine synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:333-6. [PMID: 22442237 DOI: 10.1107/s1744309112003831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/29/2012] [Indexed: 11/11/2022]
Abstract
Dihydrouridine synthases catalyse the reduction of uridine to dihydrouridine in the D-loop and variable loop of tRNA. The human dihydrouridine synthase HsDus2L has been implicated in the development of pulmonary carcinogenesis. Here, the purification, crystallization and preliminary X-ray characterization of the HsDus2L catalytic domain are reported. The crystals belonged to space group P2(1) and contained a single molecule of HsDus2L in the asymmetric unit. A complete data set was collected to 1.9 Å resolution using synchrotron radiation.
Collapse
Affiliation(s)
- Sam Griffiths
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, England
| | | | | | | |
Collapse
|
27
|
Abstract
Dihydrouridine (D) is a highly conserved modified base found in tRNAs from all domains of life. Dihydrouridine synthase (Dus) catalyzes the D formation of tRNA through reduction of uracil base with flavin mononucleotide (FMN) as a cofactor. Here, we report the crystal structures of Thermus thermophilus Dus (TthDus), which is responsible for D formation at positions 20 and 20a, in complex with tRNA and with a short fragment of tRNA (D-loop). Dus interacts extensively with the D-arm and recognizes the elbow region composed of the kissing loop interaction between T- and D-loops in tRNA, pulling U20 into the catalytic center for reduction. Although distortion of the D-loop structure was observed upon binding of Dus to tRNA, the canonical D-loop/T-loop interaction was maintained. These results were consistent with the observation that Dus preferentially recognizes modified rather than unmodified tRNAs, indicating that Dus introduces D20 by monitoring the complete L-shaped structure of tRNAs. In the active site, U20 is stacked on the isoalloxazine ring of FMN, and C5 of the U20 uracil ring is covalently cross linked to the thiol group of Cys93, implying a catalytic mechanism of D20 formation. In addition, the involvement of a cofactor molecule in uracil ring recognition was proposed. Based on a series of mutation analyses, we propose a molecular basis of tRNA recognition and D formation catalyzed by Dus.
Collapse
|
28
|
Mei Y, Yong J, Stonestrom A, Yang X. tRNA and cytochrome c in cell death and beyond. Cell Cycle 2010; 9:2936-9. [PMID: 20676046 DOI: 10.4161/cc.9.15.12316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Both transfer RNA (tRNA) and cytochrome c are essential to cellular function: tRNA mediates protein synthesis while cytochrome c is required for oxidative phosphorylation and apoptosis induction. tRNA has recently been implicated as a direct regulator of the well-conserved apoptotic role of cytochrome c. Interaction between these molecules could potentially coordinate biosynthesis, energy production and apoptosis. Here we review the diversity and dynamics of tRNA and how this class of non-coding RNAs may regulate the role of cytochrome c in apoptosis. We comment on unanswered questions in the cell biology of this interaction and how answers may influence our understanding of disease.
Collapse
Affiliation(s)
- Yide Mei
- Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
29
|
Rider LW, Ottosen MB, Gattis SG, Palfey BA. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. J Biol Chem 2009; 284:10324-33. [PMID: 19139092 DOI: 10.1074/jbc.m806137200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dihydrouridine synthases (DUSs) are flavin-dependent enzymes that catalyze site-specific reduction of uracils in tRNAs. The mechanism of DUS 2 from Saccharomyces cerevisiae was studied. Previously published turnover rates for this DUS were very low. Our studies show that the catalytic cycle consists of reductive and oxidative half-reactions. The enzyme is reduced by NADPH rapidly but has a very slow oxidative half-reaction using in vitro transcribed tRNA substrates. Using tRNA(Leu) purified from a DUS 2 knockout strain of yeast we obtained reaction rate enhancements of 600-fold over in vitro transcribed substrates, indicating that other RNA modifications are required for rapid uracil reduction. This demonstrates a previously unknown ordering of modifications and indicates that dihydrouridine formation is a later step in tRNA maturation. We also show that an active site cysteine is important for catalysis, likely in the protonation of uracil during tRNA reduction. Dihydrouridine of modified tRNA from Escherichia coli was also oxidized to uridine showing the reaction to be reversible.
Collapse
Affiliation(s)
- Lance W Rider
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan 48109-5606, USA
| | | | | | | |
Collapse
|
30
|
RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 2008; 24:622-9. [PMID: 18980784 DOI: 10.1016/j.tig.2008.10.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/06/2008] [Accepted: 10/06/2008] [Indexed: 12/12/2022]
Abstract
Oncogenically transformed cells overexpress the non-coding RNAs, such as pre-ribosomal RNA (rRNA) and transfer RNA (tRNA), which are produced by RNA polymerases (Pols) I and III. Recent results indicate that levels of pre-rRNA have prognostic value and that a tRNA has oncogenic potential. Transcription by Pols I and III is restrained in healthy cells by the tumour suppressors RB, p53, ARF and PTEN. Such restraints are compromised during cell transformation and the problem is accentuated by oncogene products, such as c-Myc, that stimulate the output of Pol I and Pol III. The resultant increases in rRNA and tRNA expression might promote the generation of cancers.
Collapse
|
31
|
Rodriguez V, Chen Y, Elkahloun A, Dutra A, Pak E, Chandrasekharappa S. Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer. Genes Chromosomes Cancer 2007; 46:694-707. [PMID: 17440925 DOI: 10.1002/gcc.20454] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic changes in chromosome 8 are commonly observed in breast cancer cell lines and tumors. To fine map such genomic changes by comparative genomic hybridization (CGH), a high resolution (100 kb) chromosome 8 array that can detect single copy changes was developed using Phi29 DNA polymerase amplified BAC (bacterial artificial chromosome) DNA. The BAC array CGH resolved the two known amplified regions (8q21 and 8q24) of a breast cancer cell line (SKBR3) into nine separate regions including six amplicons and three deleted regions, all of which were verified by Fluorescence in situ hybridization. The extent of the gain/loss for each region was validated by qPCR. CGH was performed with a total of 8 breast cancer cell lines, and common regions of genomic amplification/deletion were identified by segmentation analysis. A 1.2-Mb region (125.3-126.5 Mb) and a 1.0-Mb region (128.1-129.1 Mb) in 8q24 were amplified in 7/8 cell lines. A global expression analysis was performed to evaluate expression changes associated with genomic amplification/deletion: a novel gene, TRMT12 (at 125.5 Mb), amplified in 7/8 cell lines, showed highest expression in these cell lines. Further analysis by RT-qPCR using RNA from 30 breast tumors showed that TRMT12 was overexpressed >2 fold in 87% (26/30) of the tumors. TRMT12 is a homologue of a yeast gene encoding a tRNA methyltransferase involved in the posttranscriptional modification of tRNA(Phe), and exploring the biological consequence of its altered expression, may reveal novel pathways in tumorigenesis. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Virginia Rodriguez
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Zhao KN, Gu W, Fang NX, Saunders NA, Frazer IH. Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo. Mol Cell Biol 2005; 25:8643-55. [PMID: 16166644 PMCID: PMC1265747 DOI: 10.1128/mcb.25.19.8643-8655.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism.
Collapse
MESH Headings
- Animals
- Biolistics
- Blotting, Northern
- Blotting, Western
- Capsid/chemistry
- Cell Differentiation
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Codon
- DNA/metabolism
- Dactinomycin/pharmacology
- Gene Expression Regulation, Viral
- In Vitro Techniques
- Keratin-14
- Keratinocytes/cytology
- Keratinocytes/virology
- Keratins/metabolism
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Nucleic Acid Hybridization
- Papillomaviridae/genetics
- Plasmids/metabolism
- Protein Biosynthesis
- Protein Precursors/metabolism
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Viruses/metabolism
Collapse
Affiliation(s)
- Kong-Nan Zhao
- Centre for Immunology and Cancer Research, The University of Queensland, Research Extension, Building 1, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia.
| | | | | | | | | |
Collapse
|
34
|
Kato T, Daigo Y, Hayama S, Ishikawa N, Yamabuki T, Ito T, Miyamoto M, Kondo S, Nakamura Y. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res 2005; 65:5638-46. [PMID: 15994936 DOI: 10.1158/0008-5472.can-05-0600] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An increased level of dihydrouridine in tRNA(Phe) was found in human malignant tissues nearly three decades ago, but its biological significance in carcinogenesis has remained unclear. Through analysis of genome-wide gene-expression profiles among non-small cell lung carcinomas (NSCLC), we identified overexpression of a novel human gene, termed hDUS2, encoding a protein that shared structural features with tRNA-dihydrouridine synthases (DUS). The deduced 493-amino-acid sequence showed 39% homology to the dihydrouridine synthase 2 enzyme (Dus2) of Saccharomyces cerevisiae and contained a conserved double-strand RNA-binding motif (DSRM). We found that hDUS2 protein had tRNA-DUS activity and that it physically interacted with EPRS, a glutamyl-prolyl tRNA synthetase, and was likely to enhance translational efficiencies. A small interfering RNA against hDUS2 transfected into NSCLC cells suppressed expression of the gene, reduced the amount of dihydrouridine in tRNA molecules, and suppressed growth. Immunohistochemical analysis showed significant association between higher levels of hDUS2 in tumors and poorer prognosis of lung cancer patients. Our data imply that up-regulation of hDUS2 is a relatively common feature of pulmonary carcinogenesis and that selective suppression of hDUS2 enzyme activity and/or inhibition of formation of the hDUS2-tRNA synthetase complex could be a promising therapeutic strategy for treatment of many lung cancers.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-Ward, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Our aim in this commentary is to provide evidence that certain oxoacids formed in anaplerotic reactions control cell proliferation/apoptosis. In tumour cells with impaired Krebs cycle enzymes, some anaplerotic reactions do compensate for the deficit in oxoacids. One of these, oxaloacetate, derived from the transamination of asparagine but not of aspartate, is decarboxylated 4-fold more efficiently in polyoma-virus transformed cells than in their non-transformed counterparts. The deamidation of asparagine, in the cell culture medium, to aspartate by asparaginase decreases asparagine transamination and inhibits concomitantly the growth of asparaginase-sensitive lymphoma cells, suggesting a causal relationship between asparagine transamination and growth. Another oxoacid that can provide ATP when metabolised in mitochondria, but by the branched-chain oxoacid dehydrogenase complex (BCOADC), is 2-oxobutanoate. It has two origins: (a) deamination of threonine, and (b) cleavage of cystathionine, a metabolite derived from methionine. 2-Oxobutanoate in the presence of insulin promotes growth in G1/S arrested cells. But methionine also gives rise to another substrate of BCOADC, 4-methylthio-2-oxobutanoate (MTOB), which is synthesised exclusively from methylthioadenosine (MTA) by the action of MTA phosphorylase. In Met-dependent tumour cells with defective MTA phosphorylase, 2-oxobutanoate production would exceed that of MTOB. Further, BCOADC also has 3-fold greater affinity for 2-oxobutanoate than for MTOB; hence, the deficiency in 3-methylthio propionyl CoA, the final product of MTOB decarboxylation, would be exacerbated. Methional, the transient metabolic precursor in 3-methylthio propionyl CoA biosynthesis, is apoptogenic for both normal and bcl(2)-negative transformed cells in culture. Investigations of other causal relationships between the genes/enzymes mediating the homeostasis of anaplerotic oxoacids and cell growth/death may be worthwhile.
Collapse
Affiliation(s)
- Gerard Quash
- Laboratoire d'Immunochimie, INSERM U 329, Faculté de médecine Lyon-Sud, Chemin du Petit Revoyet BP. 12, 69921 Oullins cedex, France.
| | | | | |
Collapse
|
36
|
Di Pietro MC, Vannoni D, Leoncini R, Liso G, Guerranti R, Marinello E. Determination of urinary methylated purine pattern by high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 751:87-92. [PMID: 11232859 DOI: 10.1016/s0378-4347(00)00471-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the group selective separation and quantification of unmodified and modified purines in human urine by high-performance reverse phase liquid chromatography. The pattern of oxypurines and methylated purines: hypoxanthine (Hx), xanthine (X), 1-methyl hypoxanthine (1-MHx), 1-methyl guanine (1-MG), 3-methyl guanine (3-MG), 7-methyl guanine (7-MG), 1-methyl xanthine (1-MX), 3-methyl xanthine (3-MX), 7-methyl xanthine (7-MX), 1,7-dimethyl guanine (1,7-dMG), 1,3-dimethyl xanthine (1,3-dMX), 1,7-dimethyl xanthine (3,7-dMX) and 1,3,7-trimethyl xanthine (1,3,7-tMX) were determined in a single run in urine of a healthy subject and a gout patient before and after treatment with allopurinol. This method may be useful to investigate the urinary pattern of methylated bases in diseases involving purine metabolism.
Collapse
Affiliation(s)
- M C Di Pietro
- Institute of Biochemistry and Enzymology, University of Siena, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Dirheimer G, Baranowski W, Keith G. Variations in tRNA modifications, particularly of their queuine content in higher eukaryotes. Its relation to malignancy grading. Biochimie 1995; 77:99-103. [PMID: 7599283 DOI: 10.1016/0300-9084(96)88111-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Literature references dealing with the variations in the modification level of nucleosides in total eukaryotic tRNAs as a function of different physiological status and after drug administration as well as in sequenced cytoplasmic tRNAs between normal and tumor cells and in SV40-transformed cells are reviewed. In addition, special attention is given to guanine replacement of queuine in the first position of the anticodon of tRNAs. A correlation between the level of this undermodification in cancer tissues and the malignancy grading could be found in human ovarian tumors, confirming the results reported in several laboratories for lymphomas and lung cancer tissues. Indeed tRNAs from primary and metastatic human ovarian malignant tumors are Q deficient as compared to tRNAs from normal tissues or benign tumors: thus queuine deficiency increases with malignancy and grading of differentiation.
Collapse
Affiliation(s)
- G Dirheimer
- UPR-CNRS 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
38
|
Marvel CC, Del Rowe J, Bremer EG, Moskal JR. Altered RNA turnover in carcinogenesis. The diagnostic potential of modified base excretion. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1994; 21:353-68. [PMID: 7522008 DOI: 10.1007/bf02815361] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Excretion of urinary modified nucleosides is frequently elevated in patients with oncogenic disease. Increases of urinary pseudouridine excretion are now demonstrated in patients with a variety of brain tumors. The potential use of urinary modified base excretion as a cancer marker is discussed and possible sources of the elevated nucleosides are detailed. The specific steps in RNA metabolism that result in increased levels of RNA nucleoside excretion are poorly understood. This knowledge will be necessary to understand the molecular mechanism and the clinical significance of urinary nucleoside excretion in treatment and diagnosis of oncogenic disease.
Collapse
Affiliation(s)
- C C Marvel
- Department of Radiation Oncology, University of Southern California, Los Angeles
| | | | | | | |
Collapse
|
39
|
Chapter 1 Progress and Future Prospects of Modified Nucleosides as Biological Markers of Cancer. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0301-4770(08)61539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Trewyn RW, Grever MR. Urinary nucleosides in leukemia: laboratory and clinical applications. Crit Rev Clin Lab Sci 1986; 24:71-93. [PMID: 3539520 DOI: 10.3109/10408368609111597] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Urinary nucleosides offer a number of useful laboratory and clinical applications in the study and analysis of leukemia. There are significant differences in the excretion of modified nucleosides between normal individuals and individuals with various forms of leukemia, as well as between leukemia patients at opposite ends of the clinical spectrum, i.e., those with active disease and those in remission. The nucleoside excretion levels correlate to bone marrow tumor burden in certain forms of leukemia, and limited serial data indicate the potential value of the nucleosides for predicting relapse before the disease deterioration can be recognized clinically. In addition, it may be feasible to assess the effectiveness of chemotherapy used in the treatment of leukemia much more rapidly with the urinary nucleoside markers than with conventional invasive methods.
Collapse
|
41
|
Karran P. Possible depletion of a DNA repair enzyme in human lymphoma cells by subversive repair. Proc Natl Acad Sci U S A 1985; 82:5285-9. [PMID: 3860861 PMCID: PMC390552 DOI: 10.1073/pnas.82.16.5285] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mex+ human lymphoma cell lines contain O6-methylguanine-DNA methyltransferase, a DNA repair enzyme that undergoes suicide inactivation on interaction with its substrate. The cells are therefore competent to remove the alkylation lesion O6-methylguanine from their DNA. However, several repair-deficient lymphoma cell lines (Mex-) are also known. It is shown here that Mex+ cells can be converted temporarily to a Mex- phenotype by growth in nontoxic concentrations of free O6-methylguanine. The depletion of methyltransferase activity is not a result of O6-methylguanine incorporation into DNA and subsequent demethylation by the enzyme. It is proposed that O6-methylguanine is mistakenly incorporated into tRNA molecules by means of a post-transcriptional ribosyl transfer reaction. The demethylation of such bases in tRNA has been demonstrated by using bacterial and human DNA repair enzymes. The existence of such a subversive repair of a methylated base in tRNA raises the possibility of competition between DNA and RNA for cellular DNA repair enzymes. Furthermore, it is proposed that the known aberrant methylation of tRNA in certain transformed cells, together with subversive tRNA repair, could account for the Mex- phenotype.
Collapse
|
42
|
Nau F, Pham-Coeur-Joly G, Dubert JM. A study of some molecular and kinetic properties of two tRNA methyltransferases from mouse plasmocytoma. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 130:261-8. [PMID: 6825691 DOI: 10.1111/j.1432-1033.1983.tb07145.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A tRNA(adenine-1)methyltransferase and a tRNA(cytosine-5)methyltransferase have been partially purified from mouse plasmocytoma MOPC 173. Their apparent Mr are 200000-230000 and 110000-140000, respectively, as determined by gel filtration and density gradient centrifugation. Both enzymes exhibit maximum activity in the presence of high concentrations of monovalent cations (0.175 M and 0.25 M KCl, respectively) and in the absence of magnesium. Their kinetic constants have been determined at various KCl concentrations, with several tRNA species as substrates. These constants may differ by more than one order of magnitude, depending upon the substrate used, and they are strongly dependent upon the ionic concentration as well. The possibility that the tRNA(adenine-1)methyltransferase from mouse plasmocytoma is different from the homologous enzyme purified from a normal rat tissue [Glick, J. M. and Leboy, P. S. (1977) J. Biol. Chem. 252, 4790-4795] is discussed.
Collapse
|
43
|
Kessous C, Befort JJ, Befort N, Benmiloud M. Effects of thyroidectomy on heart and liver rat tRNAs: study of chromatographic and electrophoretic behaviour. Mol Cell Endocrinol 1983; 29:223-35. [PMID: 6550540 DOI: 10.1016/0303-7207(83)90215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Modifications of tRNAs in various physiological or experimental conditions are well documented. We have compared isoacceptor tRNAs extracted from target organs (heart and liver) from thyroidectomized rats to those of control animals. Nine liver aminoacyl-tRNAs and eight heart aminoacyl-tRNAs from thyroidectomized and control rats were analysed by RPC-5 chromatography. Quantitative differences were demonstrated in the relative proportions of the various liver tRNA isoacceptors for glycine, lysine, methionine, phenylalanine and serine and of the heart isoacceptor tRNAs for glycine, lysine, methionine, phenylalanine and valine. A qualitative variation was noted only for tRNATyr from the heart and liver of thyroidectomized rats. Isoacceptor tRNAs were obtained at a high resolution using a two-dimensional polyacrylamide gel electrophoresis. Isoacceptor tRNAs corresponding to 14 amino acids for the liver and 12 amino acids for the heart were identified. Although for most of the tRNAs examined the number of isoacceptors remained unchanged, the number of spots corresponding to tRNAGlu and tRNAHis from the liver and tRNAAla from the heart was different after thyroidectomy. Furthermore the change in electrophoretic behaviour of tRNATyr from the liver of thyroidectomized rats suggests a structural modification of one of the isoacceptors in relation to the change in thyroid status. Thus, thyroid hormones appear to induce some modification of the isoacceptor tRNAs in their target organs.
Collapse
|
44
|
Mushinski JF, Marini M. Tumor-specific tRNA modifications in mouse plasmacytomas and other tumors. Recent Results Cancer Res 1983; 84:121-132. [PMID: 6551966 DOI: 10.1007/978-3-642-81947-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
RPC-5 chromatography has been used to analyze the aa-tRNA populations found in normal organs and in various tumors in experimental animals. The most extensively studied animal systems have been mineral-oil-induced mouse plasmacytomas and carcinogen-induced rat hepatomas. Certain aa-tRNA species appear to be tumor-specific, e.g., rat hepatoma phenylalanyl-tRNA1 and plasmacytoma asparaginyl-tRNAs2-4. In addition, one of the tumor-specific peaks of asparaginyl-tRNA can be found in normal livers of animals bearing plasmacytomas at a distant site. Many other significant quantitative and qualitative differences among histologically similar plasmacytomas and between normal tissues and plasmacytomas were observed in the chromatographic patterns of isoaccepting aa-tRNAs for 11 of 20 amino acids. Some of the qualitative differences in chromatographic patterns could be correlated with the tumorous nature of the tissue using computer analysis. The program utilized cluster analysis to compare the RPC-5 patterns of aa-tRNAs from 11 plasmacytomas and two normal tissues for each of the 20 amino acids. The variations in these chromatographic profiles are though to be caused by varying degrees of incomplete synthesis of some of the normally modified nucleosides in tRNAs.
Collapse
|
45
|
Salvatore F, Colonna A, Costanzo F, Russo T, Esposito F, Cimino F. Modified nucleosides in body fluids of tumor-bearing patients. Recent Results Cancer Res 1983; 84:360-77. [PMID: 6844698 DOI: 10.1007/978-3-642-81947-6_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The catabolism of nucleic acids, particularly tRNA, produces a variety of modified nucleosides which are not reutilized by mammalian cells. Investigation of these compounds in body fluids, mainly urine, has recently provided evidence of altered metabolic situations in tumor-bearing patients. The factors involved in the alterations of modified nucleosides formation are connected with altered tRNA-modifying enzymes and/or altered turnover of subpopulations of tRNA. A common pattern in tumor cells or tissues is the presence of isoaccepting tRNA species containing aberrant nucleoside modifications. Several modified nucleosides have been detected and quantitated by HPLC analysis of the urine of normal subjects and cancer patients. Results obtained, in the authors' laboratory, among others, indicate a possible correlation between urinary excretion of these compounds and the course of the disease, with implications for the follow-up of therapeutic treatment. Particular reference should be made to psi, which appears to be a suitable marker for monitoring these subjects. The data from the authors' laboratory also show that the analysis of modified nucleosides in blood may be considered a useful tool in the search for proper markers associated with the cancer status. In this respect psi is suggested as a biochemical indicator for cancer patients.
Collapse
|
46
|
Abstract
In order to extend the usefulness of the quantitation of urinary nucleoside markers, studies were undertaken to explore the adaptability of such determinations for early detection in cancer-prone populations such as asbestos workers. Another study was aimed at exploring the usefulness of therapy in individual patients. During these studies, two heretofore unknown phenomena serendipitously emerged which expand the versatility of the marker determinations: (a) radiation damage in animals and humans causes an excretion of urinary BAIB which from preliminary studies appears to be proportional to the irradiation burden, and (b) lead poisoning in the human also produces BAIB excretion. Some of the practical uses of these determinations are self-evident. Among 13 asbestos workers without clinical symptoms, eight were found to have significant elevations of the marker levels. Nine asbestos workers with diagnosed mesothelioma all excreted two or more markers at high levels. Some of the psi levels were the highest seen. Currently the diagnosis of mesothelioma is difficult and painful, requiring a rib resection; however, an asbestos worker with such elevations--provided small cell carcinoma of the lung is ruled out--can be seriously suspected of having mesothelioma. In a study of the usefulness of the markers in following therapy of trophoblastic disease, these markers were determined in women with incipient invasive hydatidiform mole. After curettage, the nucleoside markers indicated absence of residual disease but the usual marker, HCG, was still markedly elevated. The women were followed up for 2 years and were found to remain symptom-free. Therefore the source of the nucleoside markers is cleared more rapidly than that of HCG.
Collapse
|
47
|
Dirheimer G. Chemical nature, properties, location, and physiological and pathological variations of modified nucleosides in tRNAs. Recent Results Cancer Res 1983; 84:15-46. [PMID: 6342070 DOI: 10.1007/978-3-642-81947-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Grunberger D, Pergolizzi RG, Kuchino Y, Mushinski JF, Nishimura S. Alterations in post-transcriptional modification of the Y base in phenylalanine tRNA from tumor cells. Recent Results Cancer Res 1983; 84:133-45. [PMID: 6405457 DOI: 10.1007/978-3-642-81947-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Various tumor cells contain chromatographically distinct isoacceptor tRNA species. To decide whether the tumor-specific species represent an expression of a separate tRNA gene or only an undermodified form of normal tRNAPhe, nucleotide sequences of tRNAPhe isolated from neuroblastoma and normal mouse liver were determined by postlabeling techniques. The results showed identical sequences except for the changes of post-transcriptional modifications in the anticodon loop. Normal mouse liver tRNAPhe contained Cm32, Gm34, and the hypermodified YOH next to the 3' end of the anticodon. On the contrary, tRNAPhe from neuroblastoma contained C32, G34, and, instead of YOH base m1G. A small proportion of tRNAPhe species contained an undermodified YOH base. For the examination of the conditions leading to the undermodified tRNAPhe, Vero cells derived from the kidney of African green monkey in culture were used. In these cells, deprivation of methionine or lysine resulted in changes in tRNAPhe modification similar to those in tumor cells. Ehrlich ascites tumor cells were examined to determine whether the presence of altered tRNAPhe species in various tumors is also the result of starvation of some nutritional factors. Results obtained with these cells showed that tRNAPhe species lacking the Y base disappeared in tumor-bearing mice after intraperitoneal injection with a mixture of amino acids and vitamins. Thus it is concluded that tumor-specific tRNAPhe species are the products of aberrant post-transcriptional modification, not the transcripts of different, normally repressed genes.
Collapse
|
49
|
Kuchino Y, Borek E, Grunberger D, Mushinski JF, Nishimura S. Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. Nucleic Acids Res 1982; 10:6421-32. [PMID: 6924749 PMCID: PMC326932 DOI: 10.1093/nar/10.20.6421] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nucleotide sequences of normal mouse liver tRNAPhe and tumor-specific tRNAPhes isolated from Ehrlich ascites tumor and neuroblastoma cells were examined by post-labeling techniques. The results showed that their sequences are identical, except for changes in post-transcriptional modifications that are located in the anticodon region. Normal mouse liver tRNAPhe contained Cm32, Gm34 and YOH37. On the other hand, tumor-specific tRNAPhes were found in one of two possible configurations: 1) Cm32, Gm34 and Y*OH37 (under-modified YOH) or 2) C32, G34 and m1G37. The ratio of the two forms of tRNAPhes differed in different tumor cells; Ehrlich ascites tumor tRNAPhe had mainly Y*OH-containing tRNAPhe whereas neuroblastoma tRNAPhe has predominantly m1G-containing tRNAPhe. It was concluded that tumor-specific tRNAPhes are products of different extents of modification, rather than of new tRNA transcription.
Collapse
|
50
|
Chaudhary KD, Carrier-Malhotra L, Murthy MR. Brain transfer RNA. II. Analysis of modified nucleosides. Neurochem Res 1982; 7:67-77. [PMID: 7070581 DOI: 10.1007/bf00965070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transfer RNAs were isolated from rat and calf brains and their nucleosides were analysed by tritium derivative technique. Qualitative changes in the minor nucleoside components were compared on the fluorograms which showed differences in the intensities of spots. Cerebellar and cortical tRNAs were also compared, but revealed no significant quantitative differences in their methylated constituants despite 60% higher methyltransferase activity observed in cerebellum compared to cerebral cortex. An overall similarity was noticed between the relative proportions of the major and minor nucleosides of tRNAs derived from rat or calf brain, expressed as mol%. Brain tRNA was also analysed by two-dimensional polyacrylamide gel electrophoresis which showed qualitative and quantitative changes during postnatal development.
Collapse
|