1
|
Maduike NZ, Tehranchi AK, Wang JD, Kreuzer KN. Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics. Mol Microbiol 2013; 91:39-56. [PMID: 24164596 DOI: 10.1111/mmi.12440] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2013] [Indexed: 11/29/2022]
Abstract
DNA replication in Escherichia coli is normally initiated at a single origin, oriC, dependent on initiation protein DnaA. However, replication can be initiated elsewhere on the chromosome at multiple ectopic oriK sites. Genetic evidence indicates that initiation from oriK depends on RNA-DNA hybrids (R-loops), which are normally removed by enzymes such as RNase HI to prevent oriK from misfiring during normal growth. Initiation from oriK sites occurs in RNase HI-deficient mutants, and possibly in wild-type cells under certain unusual conditions. Despite previous work, the locations of oriK and their impact on genome stability remain unclear. We combined 2D gel electrophoresis and whole genome approaches to map genome-wide oriK locations. The DNA copy number profiles of various RNase HI-deficient strains contained multiple peaks, often in consistent locations, identifying candidate oriK sites. Removal of RNase HI protein also leads to global alterations of replication fork migration patterns, often opposite to normal replication directions, and presumably eukaryote-like replication fork merging. Our results have implications for genome stability, offering a new understanding of how RNase HI deficiency results in R-loop-mediated transcription-replication conflict, as well as inappropriate replication stalling or blockage at Ter sites outside of the terminus trap region and at ribosomal operons.
Collapse
Affiliation(s)
- Nkabuije Z Maduike
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
2
|
Abstract
Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online).
Collapse
|
3
|
Potrykus K, Santos S, Lemonnier M, Diaz-Orejas R, Węgrzyn G. Differential effects of Kid toxin on two modes of replication of lambdoid plasmids suggest that this toxin acts before, but not after, the assembly of the replication complex. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2489-2495. [PMID: 12177342 DOI: 10.1099/00221287-148-8-2489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Kid is a small protein that is encoded by plasmid R1. It is a toxin that belongs to a killer system that ensures the stability of the plasmid in host cells. The results of previous studies have suggested that Kid is an inhibitor of DNA replication, possibly acting at the onset of initiation. Here, the authors tested the effects of Kid on orilambda-intitiated and oriJ-initiated replication, which may be driven by both the newly assembled replication complex and the heritable complex. It was found that Kid inhibits only replication that is driven by the newly assembled replication complex. The authors also report that Kid inhibits ColE1-like plasmid replication in vivo, in agreement with the previously reported inhibition of ColE1 during in vitro replication. It is proposed that the Kid toxin acts at the level of replication either by preventing de novo assembly of the replication complex or by impairing the functional interactions of the replication complex at the initiation stage.
Collapse
Affiliation(s)
- Katarzyna Potrykus
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| | - Sandra Santos
- Centro de Investigaciones Biológicas, C.S.I.C., Velázquez 144, 28006 Madrid, Spain2
| | - Marc Lemonnier
- Centro de Investigaciones Biológicas, C.S.I.C., Velázquez 144, 28006 Madrid, Spain2
| | - Ramon Diaz-Orejas
- Centro de Investigaciones Biológicas, C.S.I.C., Velázquez 144, 28006 Madrid, Spain2
| | - Grzegorz Węgrzyn
- Institute of Oceanology, Polish Academy of Sciences, Św. Wojciecha 5, 81-347 Gdynia, Poland3
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland1
| |
Collapse
|
4
|
Abstract
Comparison of the putative iteron-binding proteins of lambdoid phages allows us to propose that in the case of lambdoid replication modules, the units on which natural selection acts do not coincide with the open reading frames. Rather, the first replication gene is split into two segments, and its 3' part (corresponding to the C-terminal domain of the iteron-binding protein) forms one unit with the second gene. We also propose from the phylogenetic analysis of phage-encoded homologs of E. coli DnaB and DnaC, that the recombination with the host sequences is not frequent. Accessory ATP-ases for helicase loading (E. coli DnaC homologs) may not be universal replication proteins. Our analysis may suggest that the bacterial helicase loaders might be of phage origin. The comparison of DnaC homologs of enterobacteria and enterobacterial phages supports the experimental data on residues important in interaction with DnaB. We propose that construction of plasmids carrying the replication origins of lambdoid prophages could be useful not only in further research on DNA replication but also on the role of these prophages in shuttling genes for bacterial virulence. The phage replication sequences could be also useful for identification of clinical enterobacterial isolates.
Collapse
Affiliation(s)
- Borys Wróbel
- Institute of Oceanology, Polish Academy of Sciences, Gdynia.
| | | |
Collapse
|
5
|
Potrykus K, Wróbel B, Wegrzyn A, Wegrzyn G. Replication of oriJ-based plasmid DNA during the stringent and relaxed responses of Escherichia coli. Plasmid 2000; 44:111-26. [PMID: 10964622 DOI: 10.1006/plas.2000.1462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oriJ-based plasmids contain the origin of DNA replication from the cryptic Rac prophage, present in the chromosomes of most Escherichia coli K-12 strains. The organization of the oriJ replication region resembles that of the bacteriophage lambda, although sequence similarity is small. Here we investigated the regulation of replication of the oriJ-based plasmid in E. coli relA(+) and relA(-) hosts during amino acid starvation and limitation, i.e., during the stringent and relaxed responses. We found that, contrary to plasmids derived from phage lambda, replication of the oriJ-based plasmid proceeds efficiently during both stringent and relaxed responses. On the other hand, density shift experiments and measurement of the stability of a putative replication initiator protein (the lambda O protein homologue) suggest that this replication may be carried out by the heritable replication complex, as previously demonstrated for lambda plasmids. We demonstrate that contrary to bacteriophage lambda p(R) promoter, an analogous promoter from the oriJ region is activated rather than inhibited at increased ppGpp levels. We propose that various responses of these promoters (p(R) and p(R-Rac), which are necessary for transcriptional activation of orilambda and perhaps oriJ, respectively) to ppGpp are responsible for differences in the replication regulation between orilambda- and oriJ-based plasmids during the stringent response.
Collapse
Affiliation(s)
- K Potrykus
- Department of Molecular Biology, University of Gdańsk, Kladki 24, Gdańsk, 80-822, Poland
| | | | | | | |
Collapse
|
6
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
7
|
Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 1997; 61:212-38. [PMID: 9184011 PMCID: PMC232608 DOI: 10.1128/mmbr.61.2.212-238.1997] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosome replication in Escherichia coli is normally initiated at oriC, the origin of chromosome replication. E. coli cells possess at least three additional initiation systems for chromosome replication that are normally repressed but can be activated under certain specific conditions. These are termed the stable DNA replication systems. Inducible stable DNA replication (iSDR), which is activated by SOS induction, is proposed to be initiated from a D-loop, an early intermediate in homologous recombination. Thus, iSDR is a form of recombination-dependent DNA replication (RDR). Analysis of iSDR and RDR has led to the proposal that homologous recombination and double-strand break repair involve extensive semiconservative DNA replication. RDR is proposed to play crucial roles in homologous recombination, double-strand break repair, restoration of collapsed replication forks, and adaptive mutation. Constitutive stable DNA replication (cSDR) is activated in mhA mutants deficient in RNase HI or in recG mutants deficient in RecG helicase. cSDR is proposed to be initiated from an R-loop that can be formed by the invasion of duplex DNA by an RNA transcript, which most probably is catalyzed by RecA protein. The third form of SDR is nSDR, which can be transiently activated in wild-type cells when rapidly growing cells enter the stationary phase. This article describes the characteristics of these alternative DNA replication forms and reviews evidence that has led to the formulation of the proposed models for SDR initiation mechanisms. The possible interplay between DNA replication, homologous recombination, DNA repair, and transcription is explored.
Collapse
Affiliation(s)
- T Kogoma
- Department of Cell Biology, University of New Mexico Health Sciences Center, Albuquerque 87131, USA.
| |
Collapse
|
8
|
Lycett GW, Pritchard RH. Functioning of the F-plasmid origin of replication in an Escherichia coli K12 Hfr strain during exponential growth. Plasmid 1986; 16:168-74. [PMID: 3543979 DOI: 10.1016/0147-619x(86)90054-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pattern of chromosome replication in the Escherichia coli K12 Hfr strain KL99 was investigated during exponential growth by DNA-DNA hybridization. The levels of chromosomal markers close to the point of insertion of F (near pyrC) were raised in relation to other markers by comparison with the situation in an isogenic F- strain. The data are shown to be consistent with the proposal that the integrated F plasmid was regulating its copy number by a mass-titration mechanism.
Collapse
|
9
|
de Massy B, Fayet O, Kogoma T. Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol 1984; 178:227-36. [PMID: 6387151 DOI: 10.1016/0022-2836(84)90141-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In stable DNA replication (sdrA/rnh) mutants of Escherichia coli, initiation of rounds of DNA replication occurs in the absence of the normal origin of replication, oriC. To determine whether or not the initiation occurs at a fixed site(s) on the chromosome in sdrA mutants, the DNA from exponentially growing sdrA mutant cells with or without the oriC site (delta oriC) was analyzed for the relative copy numbers of various genes along the chromosome. The results suggest that there are at least four fixed sites or regions of the sdrA delta oriC chromosome from which DNA replication can be initiated in the absence of the oriC sequence.
Collapse
|
10
|
Leonard AC, Hucul JA, Helmstetter CE. Kinetics of minichromosome replication in Escherichia coli B/r. J Bacteriol 1982; 149:499-507. [PMID: 7035432 PMCID: PMC216534 DOI: 10.1128/jb.149.2.499-507.1982] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Replication control of the minichromosome pAL2 was found to differ from that of the chromosome in synchronously dividing populations of Escherichia coli B/r. Initiation of minichromosome replication took place at an increasing rate throughout synchronous growth. No coupling to initiation of chromosome replication was detected. Minichromosome replication was further examined in a dnaA5(Ts) temperature-sensitive initiation mutant. When cultures held at nonpermissive temperature (41 degrees C) for 60 min were shifted to permissive temperature (25 degrees C), initiation of both pAL2 and chromosome replication ensued in two waves spaced 25 to 35 min apart. Evidence is presented that minichromosomes terminate replication by passing slowly through a series of dimeric intermediate forms before reaching the closed circular monomeric form. The consequence of this slow passage as a rate-limiting step in the initiation reaction is discussed.
Collapse
|
11
|
Diaz R, Kaiser K. Rac-E. coli K12 strains carry a preferential attachment site for lambda rev. MOLECULAR & GENERAL GENETICS : MGG 1981; 183:484-9. [PMID: 6460911 DOI: 10.1007/bf00268769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lambda rev is a hybrid lambdoid phage formed by recombination between lambda and a defective lambdoid prophage (Rac) present in most E. coli K12 derivatives. We show here that three independently derived Rac-E. coli K12 strains are specifically deleted for the entire Rac prophage consistent with loss of Rac by excisive recombination between hybrid attachment sites that flank the prophage (c.f. excision of a lambda prophage). lambda rev, in which int and PP' of lambda have been replaced by integrative recombination genes and an attachment site derived from Rac (Gottesman et al. 1974), integrates site-specifically and in the correct orientation at the preferential attachment site generated by Rac excision.
Collapse
|
12
|
|
13
|
Hirota Y, Yamada M, Nishimura A, Oka A, Sugimoto K, Asada K, Takanami M. The DNA replication origin (ori) of Escherichia coli: structure and function of the ori-containing DNA fragment. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1981; 26:33-48. [PMID: 6169112 DOI: 10.1016/s0079-6603(08)60393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Fisher R, Feiss M. Reversion of a cohesive end site mutant of bacteriophage lambda by recombination with a defective prophage. Virology 1980; 107:160-73. [PMID: 6449779 DOI: 10.1016/0042-6822(80)90281-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Anilionis A, Ostapchuk P, Riley M. Identification of a second cryptic lambdoid prophage locus in the E. coli K12 chromosome. MOLECULAR & GENERAL GENETICS : MGG 1980; 180:479-81. [PMID: 6258029 DOI: 10.1007/bf00425865] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In addition to the cryptic lambdoid prophage genes that are known to reside at the rac locus in Escherichia coli K12 strains, a second cryptic lambdoid prophage has been located near the gal operon. This prophage was shown to contain DNA that is homologous to the QSR genes of lambda phage.
Collapse
|
16
|
Kaiser K, Murray NE. On the nature of sbcA mutations in E. coli K 12. MOLECULAR & GENERAL GENETICS : MGG 1980; 179:555-63. [PMID: 6449653 DOI: 10.1007/bf00271745] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have recently shown (Kaiser and Murray 1979) that many E. coli K 12 strains carry a defective prophage (Rac) located a few minutes clockwise of the trp operon on the genetic map. The Rac genome contains recE, the determinant for the ATP-independent exonuclease, ExoVIII. E. coli K 12 strains which carry sbcA mutations express recE constitutively. This paper describes an investigation of several such strains. We show that the SbcA phenotype may arise from more than one type of mutational change. The most readily explained SbcA phenotype is that of sbcA8 strains in which a large section of the Rac genome (including one hybrid attachment site and probably the prophage repressor gene) is deleted. Three sbcA- strains carry multiple (and probably tandemly repeated) copies of the Rac genome while two others carry a single Rac prophage that is indistinguishable in its hybridisation behaviour from that carried by sbcA+ strains.
Collapse
|
17
|
Lycett GW, Orr E, Pritchard RH. Chloramphenicol releases a block in initiation of chromosome replication in a dnaA strain of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1980; 178:329-36. [PMID: 6156379 DOI: 10.1007/bf00270480] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA-DNA hybridisation experiments show that chloramphenicol induces a burst of initiation from the oriC region of a dnaA46 mutant of Escherichia coli at 36.5 degrees C but not from the isogenic dnaA+ strain. Following this stimulation of initiation is in parallel with the induced stimulation of RNA synthesis caused by chloramphenicol in the same strain. This is consistent with the hypothesis that the stimulation of initiation in the dnaA mutant is the result of the stimulation of the synthesis of an RNA species.
Collapse
|
18
|
Evans R, Seeley NR, Kuempel PL. Loss of rac locus DNA in merozygotes of Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1979; 175:245-50. [PMID: 160489 DOI: 10.1007/bf00397223] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA-DNA hybridization was used to demonstrate that the substituted DNA in the bacteriophage lambda recE (formerly called lambda reverse) is homologous to DNA at the rac locus in Escherichia coli. Strains that are rac- do not contain appreciable amounts of this DNA, and it is lost from a rac+ episome (F' 123) after transmission to a rac- recipient. This is consistent with the proposal that the rac locus contains a cryptic prophage (Low, 1973).
Collapse
|
19
|
Kaiser K, Murray NE. Physical characterisation of the "Rac prophage" in E. coli K12. MOLECULAR & GENERAL GENETICS : MGG 1979; 175:159-74. [PMID: 390313 DOI: 10.1007/bf00425532] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We confirm the hypothesis of Low (1973) that many E. coli K12 strains contain a prophage (the Rac prophage) located a few minutes clockwise of the trp operon on the genetic map. We have used restriction endonucleases and 32P-labelled probes to construct a physical map of this prophage. Some E. coli K12 strains, including AB1157, have lost the entire prophage, apparently by a specific deletion. This is consistent with prophage excision by site-specific recombination. lambda reverse (lambda rev) phages (Zissler et al., 1971) are recombination proficient derivatives of phage lambda in which the phage recombination functions have been replaced by analogous functions (RecE) derived from the host chromosome (Gottesman et al., 1974; Gillen et al., 1977). Our data support the origin of lambda rev plages by recombination between lambda and the Rac prophage following excision of the Rac prophage from the E. coli chromosome. Important experimental data are included in the Figure legends.
Collapse
|
20
|
Diaz R, Barnsley P, Pritchard RH. Location and characterisation of a new replication origin in the E. coli K12 chromosome. MOLECULAR & GENERAL GENETICS : MGG 1979; 175:151-7. [PMID: 390312 DOI: 10.1007/bf00425531] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A segment of DNA located in the region of the E. coli K12 chromosome previously identified by the Rac phenotype can function as a self-replicating plasmid. Evidence is presented that this plasmid, the oriJ plasmid, contains the origin of replication of a defective prophage postulated to be located in this chromosomal region by Low (1973). The plasmid can only be maintained in strains in which this postulated prophage has been deleted. In strains which possess the prophage selection for plasmid maintenance permits the isolation of clones containing new deletions which we postulate are the result of prophage excision.
Collapse
|