1
|
Lapish CC. Understanding How Acute Alcohol Impacts Neural Encoding in the Rodent Brain. Curr Top Behav Neurosci 2024. [PMID: 38858298 DOI: 10.1007/7854_2024_479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Alcohol impacts neural circuitry throughout the brain and has wide-ranging effects on the biophysical properties of neurons in these circuits. Articulating how these wide-ranging effects might eventually result in altered computational properties has the potential to provide a tractable working model of how alcohol alters neural encoding. This chapter reviews what is currently known about how acute alcohol influences neural activity in cortical, hippocampal, and dopaminergic circuits as these have been the primary focus of understanding how alcohol alters neural computation. While other neural systems have been the focus of exhaustive work on this topic, these brain regions are the ones where in vivo neural recordings are available, thus optimally suited to make the link between changes in neural activity and behavior. Rodent models have been key in developing an understanding of how alcohol impacts the function of these circuits, and this chapter therefore focuses on work from mice and rats. While progress has been made, it is critical to understand the challenges and caveats associated with experimental procedures, especially when performed in vivo, which are designed to answer this question and if/how to translate these data to humans. The hypothesis is discussed that alcohol impairs the ability of neural circuits to acquire states of neural activity that are transiently elevated and characterized by increased complexity. It is hypothesized that these changes are distinct from the traditional view of alcohol being a depressant of neural activity in the forebrain.
Collapse
Affiliation(s)
- Christopher C Lapish
- Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Burman RJ, Diviney T, Călin A, Gothard G, Jouhanneau JSM, Poulet JFA, Sen A, Akerman CJ. Optogenetic Determination of Dynamic and Cell-Type-Specific Inhibitory Reversal Potentials. J Neurosci 2024; 44:e1392232024. [PMID: 38604778 PMCID: PMC11097265 DOI: 10.1523/jneurosci.1392-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.
Collapse
Affiliation(s)
- Richard J Burman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Tara Diviney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Alexandru Călin
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Gemma Gothard
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Jean-Sébastien M Jouhanneau
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - James F A Poulet
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin 10117, Germany
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
3
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Filho FC, Silva JDP, Petri C, Almendra JSL, de Sousa ÍA, Cavalcanti SMG, Silva BA, Formiga Melo MF, Cavalcanti PMDS. Pharmacological evidence that GABA-induced relaxation of rat proximal duodenum longitudinal muscle depends on NKCC cotransporter activity and Ca 2+ influx. Can J Physiol Pharmacol 2022; 100:728-740. [PMID: 35880679 DOI: 10.1139/cjpp-2021-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in adult central nervous system (CNS) synapses, but it excites immature CNS neurons as well as neurons in the myenteric plexus. The present work aimed to determine whether GABA-induced nonadrenergic, noncholinergic (NANC) neuronal-mediated relaxation of the rat duodenum is dependent on the activity of Na+ K+ Cl- cotransporters (NKCC) and requires calcium influx. In the presence of guanethidine (3 µmol/L), atropine (3 µmol/L), and indomethacin (1 µmol/L), relaxations induced by GABA (100 µmol/L), KCl (5-10 mmol/L) and electrical field stimulation (1-8 Hz, 2 ms, 60 V), but not those induced by bradykinin (10-100 nmol/L) were abolished by lidocaine (300 µmol/L). However, only GABA-induced relaxations were reduced in a concentration-dependent manner by the NKCC1/2 inhibitors bumetanide (0.1-1 µmol/L) and furosemide (1-10 µmol/L). GABA-induced NANC neuronal relaxation was abolished by bicuculline (30 µmol/L) and inhibited by N-nitroarginine methyl ester (l-NAME, 300 µmol/L). The ω-conotoxin GVIA (1 µmol/L), which acts exclusively on neuronal CaV2 channels, but not on smooth muscle voltage-gated Ca2+ CaV1 channels, and nonselective blockers of these channels (verapamil 100 nmol/L and ruthenium red 10 µmol/L), reduced GABA-induced relaxations. These results showed that the activation of GABAA receptors induces NANC nitrergic neuronal relaxations in the rat duodenum, which depend on NKCC activity and CaV2 channel activation, suggesting that this phenomenon results from neuronal depolarization promoted by Cl- efflux through GABAA receptors, with subsequent Ca2+ influx and nitric oxide release.
Collapse
Affiliation(s)
- Francisco Chagas Filho
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Janyerson Dannys Pereira Silva
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Caio Petri
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Santos Lima Almendra
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Ícaro Araújo de Sousa
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Bagnólia A Silva
- Pharmacological Sciences Department, 58051-900, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Margareth Fátima Formiga Melo
- Pharmacological Sciences Department, 58051-900, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
5
|
Burman RJ, Selfe JS, Lee JH, van den Berg M, Calin A, Codadu NK, Wright R, Newey SE, Parrish RR, Katz AA, Wilmshurst JM, Akerman CJ, Trevelyan AJ, Raimondo JV. Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain 2020; 142:3482-3501. [PMID: 31553050 DOI: 10.1093/brain/awz283] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/10/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023] Open
Abstract
Status epilepticus is defined as a state of unrelenting seizure activity. Generalized convulsive status epilepticus is associated with a rapidly rising mortality rate, and thus constitutes a medical emergency. Benzodiazepines, which act as positive modulators of chloride (Cl-) permeable GABAA receptors, are indicated as first-line treatment, but this is ineffective in many cases. We found that 48% of children presenting with status epilepticus were unresponsive to benzodiazepine treatment, and critically, that the duration of status epilepticus at the time of treatment is an important predictor of non-responsiveness. We therefore investigated the cellular mechanisms that underlie acquired benzodiazepine resistance, using rodent organotypic and acute brain slices. Removing Mg2+ ions leads to an evolving pattern of epileptiform activity, and eventually to a persistent state of repetitive discharges that strongly resembles clinical EEG recordings of status epilepticus. We found that diazepam loses its antiseizure efficacy and conversely exacerbates epileptiform activity during this stage of status epilepticus-like activity. Interestingly, a low concentration of the barbiturate phenobarbital had a similar exacerbating effect on status epilepticus-like activity, while a high concentration of phenobarbital was effective at reducing or preventing epileptiform discharges. We then show that the persistent status epilepticus-like activity is associated with a reduction in GABAA receptor conductance and Cl- extrusion capability. We explored the effect on intraneuronal Cl- using both gramicidin, perforated-patch clamp recordings and Cl- imaging. This showed that during status epilepticus-like activity, reduced Cl- extrusion capacity was further exacerbated by activity-dependent Cl- loading, resulting in a persistently high intraneuronal Cl-. Consistent with these results, we found that optogenetic stimulation of GABAergic interneurons in the status epilepticus-like state, actually enhanced epileptiform activity in a GABAAR dependent manner. Together our findings describe a novel potential mechanism underlying benzodiazepine-resistant status epilepticus, with relevance to how this life-threatening condition should be managed in the clinic.
Collapse
Affiliation(s)
- Richard J Burman
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Pharmacology, University of Oxford, Oxford, UK
| | - Joshua S Selfe
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - John Hamin Lee
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maurits van den Berg
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexandru Calin
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neela K Codadu
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Rebecca Wright
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Sarah E Newey
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - R Ryley Parrish
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Arieh A Katz
- Division of Medical Biochemistry, Department of Integrated Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE24HH, UK
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Bielczyk NZ, Llera A, Buitelaar JK, Glennon JC, Beckmann CF. Increasing robustness of pairwise methods for effective connectivity in magnetic resonance imaging by using fractional moment series of BOLD signal distributions. Netw Neurosci 2019; 3:1009-1037. [PMID: 31637336 PMCID: PMC6779268 DOI: 10.1162/netn_a_00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Estimating causal interactions in the brain from functional magnetic resonance imaging (fMRI) data remains a challenging task. Multiple studies have demonstrated that all current approaches to determine direction of connectivity perform poorly when applied to synthetic fMRI datasets. Recent advances in this field include methods for pairwise inference, which involve creating a sparse connectome in the first step, and then using a classifier in order to determine the directionality of connection between every pair of nodes in the second step. In this work, we introduce an advance to the second step of this procedure, by building a classifier based on fractional moments of the BOLD distribution combined into cumulants. The classifier is trained on datasets generated under the dynamic causal modeling (DCM) generative model. The directionality is inferred based on statistical dependencies between the two-node time series, for example, by assigning a causal link from time series of low variance to time series of high variance. Our approach outperforms or performs as well as other methods for effective connectivity when applied to the benchmark datasets. Crucially, it is also more resilient to confounding effects such as differential noise level across different areas of the connectome.
Collapse
Affiliation(s)
- Natalia Z. Bielczyk
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jeffrey C. Glennon
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud University Nijmegen, Nijmegen, the Netherlands
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Menzikov SA, Morozov SG. Involvement of brain GABA AR-coupled Cl -/HCO 3--ATPase in phenol-induced the head-twitching and tremor responses in rats. Neurotoxicology 2018; 71:122-131. [PMID: 30590068 DOI: 10.1016/j.neuro.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022]
Abstract
Phenol-induced neurotoxicity manifests as twitching/tremor and convulsions, but its molecular mechanisms underlying the behavioral responses remain unclear. We assessed the role of the brain Cl-/HCO3--ATPase in behavioral responses in rats following an in vivo intraperitoneal injection of phenol (20-160 mg/kg). Low concentrations of phenol (20-80 mg/kg) increased the ATPase activity as well as the head twitching responses in rat, whereas higher phenol concentrations (>60 mg/kg) increased the tremor but reduced the ATPase activity. At phenol concentrations >120 mg/kg, no ATPase activity was detected. Phenobarbital (10 mg/kg) and picrotoxin (1 mg/kg) as well as o-vanadate (2 mg/kg), significantly prevented (˜55-70%) the phenol-induced change in the behavioral responses and completely restored the enzyme activity. In vitro experiments confirmed that phenol stimulated the Cl-/HCO3--ATPase activity at low concentrations, but had no stimulating effect on other transport ATPases. Low doses of phenol increased the formation of phosphoprotein and the rate of ATP-consuming Cl- transport by the reconstituted enzyme. The present findings provide evidence that phenol-induced neurotoxicity involves the Cl-/HCO3--ATPase in the behavioral responses in mammals and indicate the potential benefit of this enzyme as a target for the treatment of head twitching and other types of tremor diseases.
Collapse
Affiliation(s)
- Sergey A Menzikov
- Institute of General Pathology and Pathological Physiology, 8, Baltiyskaya st., Moscow, 125315, Russia.
| | - Sergey G Morozov
- Institute of General Pathology and Pathological Physiology, 8, Baltiyskaya st., Moscow, 125315, Russia
| |
Collapse
|
8
|
Neureither F, Ziegler K, Pitzer C, Frings S, Möhrlen F. Impaired Motor Coordination and Learning in Mice Lacking Anoctamin 2 Calcium-Gated Chloride Channels. THE CEREBELLUM 2018; 16:929-937. [PMID: 28536821 PMCID: PMC5717130 DOI: 10.1007/s12311-017-0867-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurons communicate through excitatory and inhibitory synapses. Both lines of communication are adjustable and allow the fine tuning of signal exchange required for learning processes in neural networks. Several distinct modes of plasticity modulate glutamatergic and GABAergic synapses in Purkinje cells of the cerebellar cortex to promote motor control and learning. In the present paper, we present evidence for a role of short-term ionic plasticity in the cerebellar circuit activity. This type of plasticity results from altered chloride driving forces at the synapses that molecular layer interneurons form on Purkinje cell dendrites. Previous studies have provided evidence for transiently diminished chloride gradients at these GABAergic synapses following climbing fiber activity. Electrical stimulation of climbing fibers in acute slices caused a decline of inhibitory postsynaptic currents recorded from Purkinje cells. Dendritic calcium-gated chloride channels of the type anoctamin 2 (ANO2) were proposed to mediate this short-term modulation of inhibition, but the significance of this process for motor control has not been established yet. Here, we report results of behavioral studies obtained from Ano2−/− mice, a mouse line that was previously shown to lack this particular mode of ionic plasticity. The animals display motor coordination deficits that constitute a condition of mild ataxia. Moreover, motor learning is severely impaired in Ano2−/− mice, suggesting cerebellar dysfunction. This reduced motor performance of Ano2−/− mice highlights the significance of inhibitory control for cerebellar function and introduces calcium-dependent short-term ionic plasticity as an efficient control mechanism for neural inhibition.
Collapse
Affiliation(s)
- Franziska Neureither
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Katharina Ziegler
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Heidelberg University, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Alford S, Hamm H, Rodriguez S, Zurawski Z. Gβγ SNARE Interactions and Their Behavioral Effects. Neurochem Res 2018; 44:636-649. [PMID: 29752624 DOI: 10.1007/s11064-018-2531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses-GPCRs are present at every studied presynaptic terminal-underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
Collapse
Affiliation(s)
- Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA.
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| | - Shelagh Rodriguez
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| |
Collapse
|
10
|
Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 2018; 28:307-334. [PMID: 28099137 DOI: 10.1515/revneuro-2016-0059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
Collapse
|
11
|
Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Sci Rep 2017; 7:12764. [PMID: 28986578 PMCID: PMC5630625 DOI: 10.1038/s41598-017-12958-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/13/2017] [Indexed: 11/24/2022] Open
Abstract
Neural circuits in the cerebral cortex consist primarily of excitatory pyramidal (Pyr) cells and inhibitory interneurons. Interneurons are divided into several subtypes, in which the two major groups are those expressing parvalbumin (PV) or somatostatin (SOM). These subtypes of interneurons are reported to play distinct roles in tuning and/or gain of visual response of pyramidal cells in the visual cortex. It remains unclear whether there is any quantitative and functional difference between the PV → Pyr and SOM → Pyr connections. We compared unitary inhibitory postsynaptic currents (uIPSCs) evoked by electrophysiological activation of single presynaptic interneurons with population IPSCs evoked by photo-activation of a mass of interneurons in vivo and in vitro in transgenic mice in which PV or SOM neurons expressed channelrhodopsin-2, and found that at least about 14 PV neurons made strong connections with a postsynaptic Pyr cell while a much larger number of SOM neurons made weak connections. Activation or suppression of single PV neurons modified visual responses of postsynaptic Pyr cells in 6 of 7 pairs whereas that of single SOM neurons showed no significant modification in 8 of 11 pairs, suggesting that PV neurons can act solo whereas most of SOM neurons may act in chorus on Pyr cells.
Collapse
|
12
|
Khoshkhoo S, Vogt D, Sohal VS. Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures. Neuron 2016; 93:291-298. [PMID: 28041880 DOI: 10.1016/j.neuron.2016.11.043] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/05/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
Abstract
GABAergic interneurons play critical roles in seizures, but it remains unknown whether these vary across interneuron subtypes or evolve during a seizure. This uncertainty stems from the unpredictable timing of seizures in most models, which limits neuronal imaging or manipulations around the seizure onset. Here, we describe a mouse model for optogenetic seizure induction. Combining this with calcium imaging, we find that seizure onset rapidly recruits parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptitde (VIP)-expressing interneurons, whereas excitatory neurons are recruited several seconds later. Optogenetically inhibiting VIP interneurons consistently increased seizure threshold and reduced seizure duration. Inhibiting PV+ and SOM+ interneurons had mixed effects on seizure initiation but consistently reduced seizure duration. Thus, while their roles may evolve during seizures, PV+ and SOM+ interneurons ultimately help maintain ongoing seizures. These results show how an optogenetically induced seizure model can be leveraged to pinpoint a new target for seizure control: VIP interneurons. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Sloan Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Daniel Vogt
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Vikaas S Sohal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Sloan Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
13
|
Raimondo JV, Richards BA, Woodin MA. Neuronal chloride and excitability - the big impact of small changes. Curr Opin Neurobiol 2016; 43:35-42. [PMID: 27992777 DOI: 10.1016/j.conb.2016.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/19/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
Synaptic inhibition is a critical regulator of neuronal excitability, and in the mature brain the majority of synaptic inhibition is mediated by Cl--permeable GABAA receptors. Unlike other physiologically relevant ions, Cl- is dynamically regulated, and alterations in the Cl- gradient can have significant impact on neuronal excitability. Due to changes in the neuronal Cl- concentration, GABAergic transmission can bidirectionally regulate the induction of excitatory synaptic plasticity and gate the closing of the critical period for monocular deprivation in visual cortex. GABAergic circuitry can also provide a powerful restraining mechanism for the spread of excitation, however Cl- extrusion mechanisms can become overwhelmed and GABA can paradoxically contribute to pathological excitation such as the propagation of seizure activity.
Collapse
Affiliation(s)
- Joseph V Raimondo
- Division of Physiology, Department of Human Biology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road Observatory, 7925 Cape Town, South Africa
| | - Blake A Richards
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
14
|
Morozova EO, Myroshnychenko M, Zakharov D, di Volo M, Gutkin B, Lapish CC, Kuznetsov A. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. J Neurophysiol 2016; 116:1900-1923. [PMID: 27440240 PMCID: PMC5144690 DOI: 10.1152/jn.00232.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/17/2016] [Indexed: 12/29/2022] Open
Abstract
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally.
Collapse
Affiliation(s)
- Ekaterina O Morozova
- Department of Physics, Indiana University, Bloomington, Indiana; Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, Indiana;
| | - Maxym Myroshnychenko
- Program in Neuroscience, Indiana University, Bloomington, Indiana; Addiction Neuroscience Program, Indiana University-Purdue University, Indianapolis, Indiana; and
| | - Denis Zakharov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Matteo di Volo
- Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, Indiana; Group of Neural Theory, INSERM U960, Laboratoire de Neurosciences Cognitives, Institut d'Etude de Cognition, Ecole Normale Superieure, Paris Sciences et Lettres Research University, Paris, France
| | - Boris Gutkin
- Group of Neural Theory, INSERM U960, Laboratoire de Neurosciences Cognitives, Institut d'Etude de Cognition, Ecole Normale Superieure, Paris Sciences et Lettres Research University, Paris, France; Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Christopher C Lapish
- Addiction Neuroscience Program, Indiana University-Purdue University, Indianapolis, Indiana; and
| | - Alexey Kuznetsov
- Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, Indiana
| |
Collapse
|
15
|
Kann O, Hollnagel JO, Elzoheiry S, Schneider J. Energy and Potassium Ion Homeostasis during Gamma Oscillations. Front Mol Neurosci 2016; 9:47. [PMID: 27378847 PMCID: PMC4909733 DOI: 10.3389/fnmol.2016.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Fast neuronal network oscillations in the gamma frequency band (30-100 Hz) occur in various cortex regions, require timed synaptic excitation and inhibition with glutamate and GABA, respectively, and are associated with higher brain functions such as sensory perception, attentional selection and memory formation. However, little is known about energy and ion homeostasis during the gamma oscillation. Recent studies addressed this topic in slices of the rodent hippocampus using cholinergic and glutamatergic receptor models of gamma oscillations (GAM). Methods with high spatial and temporal resolution were applied in vitro, such as electrophysiological recordings of local field potential (LFP) and extracellular potassium concentration ([K(+)]o), live-cell fluorescence imaging of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide [NAD(P)H and FAD, respectively] (cellular redox state), and monitoring of the interstitial partial oxygen pressure (pO2) in depth profiles with microsensor electrodes, including mathematical modeling. The main findings are: (i) GAM are associated with high oxygen consumption rate and significant changes in the cellular redox state, indicating rapid adaptations in glycolysis and oxidative phosphorylation; (ii) GAM are accompanied by fluctuating elevations in [K(+)]o of less than 0.5 mmol/L from baseline, likely reflecting effective K(+)-uptake mechanisms of neuron and astrocyte compartments; and (iii) GAM are exquisitely sensitive to metabolic stress induced by lowering oxygen availability or by pharmacological inhibition of the mitochondrial respiratory chain. These findings reflect precise cellular adaptations to maintain adenosine-5'-triphosphate (ATP), ion and neurotransmitter homeostasis and thus neural excitability and synaptic signaling during GAM. Conversely, the exquisite sensitivity of GAM to metabolic stress might significantly contribute the exceptional vulnerability of higher brain functions in brain disease.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Shehabeldin Elzoheiry
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| |
Collapse
|
16
|
Abstract
Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl(-). Brief (1-10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl(-) level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002).
Collapse
|
17
|
Astorga G, Bao J, Marty A, Augustine GJ, Franconville R, Jalil A, Bradley J, Llano I. An excitatory GABA loop operating in vivo. Front Cell Neurosci 2015; 9:275. [PMID: 26236197 PMCID: PMC4503922 DOI: 10.3389/fncel.2015.00275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/05/2015] [Indexed: 11/14/2022] Open
Abstract
While it has been proposed that the conventional inhibitory neurotransmitter GABA can be excitatory in the mammalian brain, much remains to be learned concerning the circumstances and the cellular mechanisms governing potential excitatory GABA action. Using a combination of optogenetics and two-photon calcium imaging in vivo, we find that activation of chloride-permeable GABAA receptors in parallel fibers (PFs) of the cerebellar molecular layer of adult mice causes parallel fiber excitation. Stimulation of PFs at submaximal stimulus intensities leads to GABA release from molecular layer interneurons (MLIs), thus creating a positive feedback loop that enhances excitation near the center of an activated PF bundle. Our results imply that elevated chloride concentration can occur in specific intracellular compartments of mature mammalian neurons and suggest an excitatory role for GABAA receptors in the cerebellar cortex of adult mice.
Collapse
Affiliation(s)
- Guadalupe Astorga
- Laboratory of Cerebral Physiology, CNRS and University Paris Descartes Paris, France
| | - Jin Bao
- Laboratory of Cerebral Physiology, CNRS and University Paris Descartes Paris, France
| | - Alain Marty
- Laboratory of Cerebral Physiology, CNRS and University Paris Descartes Paris, France
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore ; Institute of Molecular and Cell Biology Singapore, Singapore ; Center for Functional Connectomics, Korea Institute of Science and Technology Seoul, South Korea
| | - Romain Franconville
- Laboratory of Cerebral Physiology, CNRS and University Paris Descartes Paris, France
| | - Abdelali Jalil
- Laboratory of Cerebral Physiology, CNRS and University Paris Descartes Paris, France
| | - Jonathan Bradley
- Laboratory of Cerebral Physiology, CNRS and University Paris Descartes Paris, France
| | - Isabel Llano
- Laboratory of Cerebral Physiology, CNRS and University Paris Descartes Paris, France
| |
Collapse
|
18
|
Ladas TP, Chiang CC, Gonzalez-Reyes LE, Nowak T, Durand DM. Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation. Exp Neurol 2015; 269:120-32. [PMID: 25863022 PMCID: PMC4446206 DOI: 10.1016/j.expneurol.2015.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/20/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022]
Abstract
Low frequency electrical stimulation (LFS) can reduce neural excitability and suppress seizures in animals and patients with epilepsy. However the therapeutic outcome could benefit from the determination of the cell types involved in seizure suppression. We used optogenetic techniques to investigate the role of interneurons in LFS (1Hz) in the epileptogenic hippocampus. Optical low frequency stimulation (oLFS) was first used to activate the cation channel channelrhodopsin-2 (ChR2) in the Thy1-ChR2 transgenic mouse that expresses ChR2 in both excitatory and inhibitory neurons. We found that oLFS could effectively reduce epileptiform activity in the hippocampus through the activation of GAD-expressing hippocampal interneurons. This was confirmed using the VGAT-ChR2 transgenic mouse, allowing for selective optical activation of only GABA interneurons. Activating hippocampal interneurons through oLFS was found to cause entrainment of neural activity similar to electrical stimulation, but through a GABAA-mediated mechanism. These results confirm the robustness of the LFS paradigm and indicate that GABA interneurons play an unexpected role of shaping inter-ictal activity to decrease neural excitability in the hippocampus.
Collapse
Affiliation(s)
- Thomas P Ladas
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Chia-Chu Chiang
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Luis E Gonzalez-Reyes
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Theodore Nowak
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland OH 44106, USA.
| |
Collapse
|
19
|
Shoemaker PA. Neuronal networks with NMDARs and lateral inhibition implement winner-takes-all. Front Comput Neurosci 2015; 9:12. [PMID: 25741276 PMCID: PMC4332340 DOI: 10.3389/fncom.2015.00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
A neural circuit that relies on the electrical properties of NMDA synaptic receptors is shown by numerical and theoretical analysis to be capable of realizing the winner-takes-all function, a powerful computational primitive that is often attributed to biological nervous systems. This biophysically-plausible model employs global lateral inhibition in a simple feedback arrangement. As its inputs increase, high-gain and then bi- or multi-stable equilibrium states may be assumed in which there is significant depolarization of a single neuron and hyperpolarization or very weak depolarization of other neurons in the network. The state of the winning neuron conveys analog information about its input. The winner-takes-all characteristic depends on the nonmonotonic current-voltage relation of NMDA receptor ion channels, as well as neural thresholding, and the gain and nature of the inhibitory feedback. Dynamical regimes vary with input strength. Fixed points may become unstable as the network enters a winner-takes-all regime, which can lead to entrained oscillations. Under some conditions, oscillatory behavior can be interpreted as winner-takes-all in nature. Stable winner-takes-all behavior is typically recovered as inputs increase further, but with still larger inputs, the winner-takes-all characteristic is ultimately lost. Network stability may be enhanced by biologically plausible mechanisms.
Collapse
|
20
|
Abstract
GABA(A) receptor-mediated synaptic transmission is responsible for inhibitory control of neural function in the brain. Recent progress has shown that GABA(A) receptors also provide a wide range of additional functions beyond simple inhibition. This diversity of functions is mediated by a large variety of different interneuron classes acting on a diverse population of receptor subtypes. Here, I will focus on an additional source of GABAergic signaling diversity, caused by the highly variable ion signaling mechanism of GABA(A) receptors. In concert with the other two sources of GABAergic heterogeneity, this variability in signaling allows for a wide array of GABAergic effects that are crucial for the development of the brain and its function.
Collapse
Affiliation(s)
- Kaspar Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
21
|
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15:637-54. [PMID: 25234263 DOI: 10.1038/nrn3819] [Citation(s) in RCA: 505] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.
Collapse
Affiliation(s)
- Kai Kaila
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Theodore J Price
- University of Texas at Dallas, School of Behavior and Brain Sciences, Dallas, Texas 75093, USA
| | - John A Payne
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Martin Puskarjov
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
22
|
Chiang CC, Ladas TP, Gonzalez-Reyes LE, Durand DM. Seizure suppression by high frequency optogenetic stimulation using in vitro and in vivo animal models of epilepsy. Brain Stimul 2014; 7:890-9. [PMID: 25108607 PMCID: PMC4259846 DOI: 10.1016/j.brs.2014.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/17/2014] [Accepted: 07/13/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Electrical high frequency stimulation (HFS) has been shown to suppress seizures. However, the mechanisms of seizure suppression remain unclear and techniques for blocking specific neuronal populations are required. OBJECTIVE The goal is to study the optical HFS protocol on seizures as well as the underlying mechanisms relevant to the HFS-mediated seizure suppression by using optogenetic methodology. METHODS Thy1-ChR2 transgenic mice were used in both vivo and in vitro experiments. Optical stimulation with pulse trains at 20 and 50 Hz was applied on the focus to determine its effects on in vivo seizure activity induced by 4-AP and recorded in the bilateral and ipsilateral-temporal hippocampal CA3 regions. In vitro methodology was then used to study the mechanisms of the in vivo suppression. RESULTS Optical HFS was able to generate 82.4% seizure suppression at 50 Hz with light power of 6.1 mW and 80.2% seizure suppression at 20 Hz with light power of 2.0 mW. The suppression percentage increased by increasing the light power and saturated when the power reached above-mentioned values. In vitro experimental results indicate that seizure suppression was mediated by activation of GABA receptors. Seizure suppression effect decreased with continued application but the suppression effect could be restored by intermittent stimulation. CONCLUSIONS This study shows that optical stimulation at high frequency targeting an excitatory opsin has potential therapeutic application for fast control of an epileptic focus. Furthermore, electrophysiological observations of extracellular and intracellular signals revealed that GABAergic neurotransmission activated by optical stimulation was responsible for the suppression.
Collapse
Affiliation(s)
- Chia-Chu Chiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas P Ladas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luis E Gonzalez-Reyes
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience 2014; 279:187-219. [PMID: 25168736 DOI: 10.1016/j.neuroscience.2014.08.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/17/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022]
Abstract
The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter-gated ionic currents follow a developmental sequence and network-driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost three decades ago in which we observed elevated intracellular chloride (Cl(-))i levels and excitatory GABA early during development and a perinatal excitatory/inhibitory shift. This sequence is observed in a wide range of brain structures and animal species suggesting that it has been conserved throughout evolution. It is mediated primarily by a developmentally regulated expression of the NKCC1 and KCC2 chloride importer and exporter respectively. The GABAergic depolarization acts in synergy with N-methyl-d-aspartate (NMDA) receptor-mediated and voltage-gated calcium currents to enhance intracellular calcium exerting trophic effects on neuritic growth, migration and synapse formation. These sequences can be deviated in utero by genetic or environmental insults leading to a persistence of immature features in the adult brain. This "neuroarcheology" concept paves the way to novel therapeutic perspectives based on the use of drugs that block immature but not adult currents. This is illustrated notably with the return to immature high levels of chloride and excitatory actions of GABA observed in many pathological conditions. This is due to the fact that in the immature brain a down regulation of KCC2 and an up regulation of NKCC1 are seen. Here, I present a personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders. Being a personal account, this review is neither exhaustive nor provides an update of this topic with all the studies that have contributed to this evolution. We all rely on previous inventors to allow science to advance. Here, I present a personal summary of this topic primarily to illustrate why we often fail to comprehend the implications of our own observations. They remind us - and policy deciders - why Science cannot be programed, requiring time, and risky investigations that raise interesting questions before being translated from bench to bed. Discoveries are always on sideways, never on highways.
Collapse
|
24
|
Huberfeld G, Le Duigou C, Le Van Quyen M, Navarro V, Baulac M, Miles R. The paradox of the paroxysm: can seizure precipitants help explain human ictogenesis? Neuroscientist 2013; 19:523-40. [PMID: 23881918 DOI: 10.1177/1073858413497430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An epileptic brain is permanently in a diseased state, but seizures occur rarely and without warning. Here we examine this paradox, common to paroxysmal diseases. We review the problem in the context of the prototypic acquired epilepsies of the medial temporal lobe. We ask how an epileptic temporal lobe differs from a healthy one and examine biological mechanisms that may explain the transition to seizure. Attempts to predict seizure timing from analyses of brain electrical activity suggest that the neurological processes involved may be initiated significantly before a seizure. Furthermore, whereas seizures are said to occur without warning, some patients say they know when a seizure is imminent. Several factors, including sleep deprivation, oscillations in hormonal levels, or withdrawal from drugs, increase the probability of a seizure. We ask whether these seizure precipitants might act through common neuronal mechanisms. Several precipitating factors seem to involve relief from a neurosteroid modulation of gamma-amino butyric acid receptor type A (GABAA) receptors. We propose tests of this hypothesis.
Collapse
Affiliation(s)
- Gilles Huberfeld
- INSERM U975, Institut du Cerveau et la Moëlle Epinière, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Ha J, Kuznetsov A. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron. PLoS One 2013; 8:e69984. [PMID: 23894569 PMCID: PMC3716766 DOI: 10.1371/journal.pone.0069984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022] Open
Abstract
Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA) neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR) activation evokes high-frequency firing, whereas other tonic excitatory stimuli (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR) activation or applied depolarization) block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether-a-go-go current (ERG), which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations, which is critical for normal function of both systems.
Collapse
Affiliation(s)
- Joon Ha
- Laboratory of Biological Modeling, The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Health, Bethesda, Maryland, United States of America
| | - Alexey Kuznetsov
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
26
|
Raimondo JV, Markram H, Akerman CJ. Short-term ionic plasticity at GABAergic synapses. Front Synaptic Neurosci 2012; 4:5. [PMID: 23087642 PMCID: PMC3472547 DOI: 10.3389/fnsyn.2012.00005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/28/2012] [Indexed: 11/13/2022] Open
Abstract
Fast synaptic inhibition in the brain is mediated by the pre-synaptic release of the neurotransmitter γ-Aminobutyric acid (GABA)and the post-synaptic activation of GABA-sensitive ionotropic receptors. As with excitatory synapses, it is being increasinly appreciated that a variety of plastic processes occur at inhibitory synapses, which operate over a range of timescales. Here we examine a form of activity-dependent plasticity that is somewhat unique to GABAergic transmission. This involves short-lasting changes to the ionic driving force for the post-synaptic receptors, a process referred to as short-term ionic plasticity. These changes are directly related to the history of activity at inhibitory synapses and are influenced by a variety of factors including the location of the synapse and the post-synaptic cell's ion regulation mechanisms. We explore the processes underlying this form of plasticity, when and where it can occur, and how it is likely to impact network activity.
Collapse
Affiliation(s)
- Joseph V Raimondo
- Akerman Lab, Department of Pharmacology, Oxford University Oxford, Oxfordshire, UK
| | | | | |
Collapse
|
27
|
Jefferys JGR, Menendez de la Prida L, Wendling F, Bragin A, Avoli M, Timofeev I, Lopes da Silva FH. Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 2012; 98:250-64. [PMID: 22420980 DOI: 10.1016/j.pneurobio.2012.02.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs.
Collapse
Affiliation(s)
- John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Fishell G, Rudy B. Mechanisms of inhibition within the telencephalon: "where the wild things are". Annu Rev Neurosci 2011; 34:535-67. [PMID: 21469958 DOI: 10.1146/annurev-neuro-061010-113717] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, we first provide a historical perspective of inhibitory signaling from the discovery of inhibition through to our present understanding of the diversity and mechanisms by which GABAergic interneuron populations function in different parts of the telencephalon. This is followed by a summary of the mechanisms of inhibition in the CNS. With this as a starting point, we provide an overview describing the variations in the subtypes and origins of inhibitory interneurons within the pallial and subpallial divisions of the telencephalon, with a focus on the hippocampus, somatosensory, paleo/piriform cortex, striatum, and various amygdala nuclei. Strikingly, we observe that marked variations exist in the origin and numerical balance between GABAergic interneurons and the principal cell populations in distinct regions of the telencephalon. Finally we speculate regarding the attractiveness and challenges of establishing a unifying nomenclature to describe inhibitory neuron diversity throughout the telencephalon.
Collapse
Affiliation(s)
- Gord Fishell
- Smilow Neuroscience Program, Smilow Research Center, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
29
|
WANG J, LI XL, XING GG, WAN Y. The Gamma Frequency Band Neural Oscillation: Generation Mechanisms and Functions*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Spatial and temporal dynamics in the ionic driving force for GABA(A) receptors. Neural Plast 2011; 2011:728395. [PMID: 21766044 PMCID: PMC3135070 DOI: 10.1155/2011/728395] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/29/2011] [Indexed: 11/17/2022] Open
Abstract
It is becoming increasingly apparent that the strength of GABAergic synaptic transmission is dynamic. One parameter that can establish differences in the actions of GABAergic synapses is the ionic driving force for the chloride-permeable GABA(A) receptor (GABA(A)R). Here we review some of the sophisticated ways in which this ionic driving force can vary within neuronal circuits. This driving force for GABA(A)Rs is subject to tight spatial control, with the distribution of Cl⁻ transporter proteins and channels generating regional variation in the strength of GABA(A)R signalling across a single neuron. GABA(A)R dynamics can result from short-term changes in their driving force, which involve the temporary accumulation or depletion of intracellular Cl⁻. In addition, activity-dependent changes in the expression and function of Cl⁻ regulating proteins can result in long-term shifts in the driving force for GABA(A)Rs. The multifaceted regulation of the ionic driving force for GABA(A)Rs has wide ranging implications for mature brain function, neural circuit development, and disease.
Collapse
|
31
|
Stell BM. Biphasic action of axonal GABA-A receptors on presynaptic calcium influx. J Neurophysiol 2011; 105:2931-6. [PMID: 21471393 DOI: 10.1152/jn.01125.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although ionotropic γ-aminobutyric acid A receptors (GABA(A)Rs) have long been known to exist on the axons of many different cells, their effect on axon excitability and synaptic transmission remains controversial. Here, using high-speed Ca(2+) imaging, it is shown that they induce a biphasic effect in parallel fibers of the cerebellar cortex. Multicellular measurements indicate a facilitation of action potential (AP)-evoked Ca(2+) transients, which is subsequently followed by depression. However, the receptor activation does not increase influx of Ca(2+) into individual fibers but instead, increases the probability of AP generation. These results provide a description of the effect of presynaptic GABA(A)R activation and explain why reports of the effect of their activation have been so varied.
Collapse
|
32
|
Báldi R, Varga C, Tamás G. Differential distribution of KCC2 along the axo-somato-dendritic axis of hippocampal principal cells. Eur J Neurosci 2010; 32:1319-25. [PMID: 20880357 DOI: 10.1111/j.1460-9568.2010.07361.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuron-specific potassium-chloride cotransporter 2 (KCC2) plays a crucial role in adjusting intracellular Cl(-) concentrations. The lack of KCC2 in the plasma membrane of the axon initial segment (AIS) of pyramidal cells contributes to variable reversal potentials for perisomatic γ-aminobutyric acid (GABA)(A) receptor-mediated postsynaptic potentials, but the distribution of KCC2 in pyramidal dendrites remains to be established. We applied high-resolution pre-embedding immunolocalization to quantify KCC2 concentrations along dendritic, somatic and axonal regions of rat hippocampal principal cells. Confirming our results on neocortical pyramidal cells, membranes of AIS of CA1 pyramidal cells and dentate granule cells contained 6.4 ± 11.9% and 6.6 ± 14.1% of somatic KCC2 concentrations, respectively. Concentrations of KCC2 in basal dendritic shafts of stratum (str.) oriens were similar to somatic levels (109.2 ± 48.8%). Along apical dendritic shafts of CA1 pyramidal cells, the concentration of KCC2 showed a complex profile: normalized to somatic levels, the density of KCC2 was 124.5 ± 15.7%, 79 ± 12.4% and 98.2 ± 33.5% in the proximal and distal part of str. radiatum and in str. lacunosum moleculare, respectively. Dendritic spines of CA1 receiving excitatory inputs contained 39.9 ± 8.5% of KCC2 concentration measured in shafts of the same dendritic segments targeted by GABAergic inputs. Dendrites of dentate granule cells showed higher KCC2 concentration compared with the soma (148.9 ± 54%), but no concentration gradient was detected between proximal and distal dendrites. In conclusion, the density of KCC2 in hippocampal principal cells increases along the axo-somato-dendritic axis with cell type-specific distribution profiles within the dendritic tree.
Collapse
Affiliation(s)
- Rita Báldi
- Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
33
|
Tominaga T, Tominaga Y. GABAA receptor-mediated modulation of neuronal activity propagation upon tetanic stimulation in rat hippocampal slices. Pflugers Arch 2010; 460:875-89. [DOI: 10.1007/s00424-010-0870-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/29/2010] [Accepted: 08/09/2010] [Indexed: 11/24/2022]
|
34
|
Jedlicka P, Deller T, Gutkin BS, Backus KH. Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus 2010; 21:885-98. [PMID: 20575006 DOI: 10.1002/hipo.20804] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2010] [Indexed: 11/06/2022]
Abstract
In the CNS, prolonged activation of GABA(A) receptors (GABA(A)Rs) has been shown to evoke biphasic postsynaptic responses, consisting of an initial hyperpolarization followed by a depolarization. A potential mechanism underlying the depolarization is an acute chloride (Cl(-)) accumulation resulting in a shift of the GABA(A) reversal potential (E(GABA)). The amount of GABA-evoked Cl(-) accumulation and accompanying depolarization depends on presynaptic and postsynaptic properties of GABAergic transmission, as well as on cellular morphology and regulation of Cl(-) intracellular concentration ([Cl(-)](i)). To analyze the influence of these factors on the Cl(-) and voltage behavior, we studied spatiotemporal dynamics of activity-dependent [Cl(-)](i) changes in multicompartmental models of hippocampal cells based on realistic morphological data. Simulated Cl(-) influx through GABA(A) Rs was able to exceed physiological Cl(-) extrusion rates thereby evoking HCO(3)(-) -dependent E(GABA) shift and depolarizing responses. Depolarizations were observed in spite of GABA(A) receptor desensitization. The amplitude of the depolarization was frequency-dependent and determined by intracellular Cl(-) accumulation. Changes in the dendritic diameter and in the speed of GABA clearance in the synaptic cleft were significant sources of depolarization variability. In morphologically reconstructed granule cells subjected to an intense GABAergic background activity, dendritic inhibition was more affected by accumulation of intracellular Cl(-) than somatic inhibition. Interestingly, E(GABA) changes induced by activation of a single dendritic synapse propagated beyond the site of Cl(-) influx and affected neighboring synapses. The simulations suggest that E(GABA) may differ even along a single dendrite supporting the idea that it is necessary to assign E(GABA) to a given GABAergic input and not to a given neuron.
Collapse
Affiliation(s)
- Peter Jedlicka
- Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
35
|
Suljak SW, Rose CM, Sabatier C, Le T, Trieu Q, Verley DR, Lewis AM, Birmingham JT. Enhancement of muscle contraction in the stomach of the crab Cancer borealis: a possible hormonal role for GABA. THE BIOLOGICAL BULLETIN 2010; 218:293-302. [PMID: 20570852 DOI: 10.1086/bblv218n3p293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gamma-aminobutyric acid (GABA) is best known as an inhibitory neurotransmitter in the mammalian central nervous system. Here we show, however, that GABA has an excitatory effect on nerve-evoked contractions and on excitatory junctional potentials (EJPs) of the gastric mill 4 (gm4) muscle from the stomach of the crab Cancer borealis. The threshold concentration for these effects was between 1 and 10 micromol l(-1). Using immunohistochemical techniques, we found that GABA is colocalized with the vesicle-associated protein synapsin in nearby nerves and hence is presumably released there. However, since these nerves do not innervate the muscle directly, we conclude that these release sites are not the likely source of the GABA responsible for muscle modulation. We also extracted hemolymph from the crab pericardial cavity, which contains the pericardial organs, a major neurosecretory structure. Through reversed-phase liquid chromatography-mass spectrometry analysis we determined the concentration of GABA in the hemolymph to be 3.3 +/- 0.7 micromol l(-1), high enough to modulate the muscle. These findings suggest that the gm4 muscle could be modulated by GABA produced by and released from a distant neurohemal organ.
Collapse
Affiliation(s)
- Steven W Suljak
- Department of Chemistry and Biochemistry; Santa Clara University, Santa Clara, California 95053, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission. J Neurosci 2009; 29:10416-23. [PMID: 19692617 DOI: 10.1523/jneurosci.1670-09.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The time-dependent integration of excitatory and inhibitory synaptic currents is an important process for shaping the input-output profiles of individual excitable cells, and therefore the activity of neuronal networks. Here, we show that the decay time course of GABAergic inhibitory synaptic currents is considerably faster when recorded with physiological internal Cl(-) concentrations than with symmetrical Cl(-) solutions. This effect of intracellular Cl(-) is due to a direct modulation of the GABA(A) receptor that is independent of the net direction of current flow through the ion channel. As a consequence, the time window during which GABAergic inhibition can counteract coincident excitatory inputs is much shorter, under physiological conditions, than that previously measured using high internal Cl(-). This is expected to have implications for neuronal network excitability and neurodevelopment, and for our understanding of pathological conditions, such as epilepsy and chronic pain, where intracellular Cl(-) concentrations can be altered.
Collapse
|
37
|
Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nat Neurosci 2008; 12:21-3. [PMID: 19029887 DOI: 10.1038/nn.2230] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 10/17/2008] [Indexed: 01/11/2023]
Abstract
Although GABAergic interneurons are the main source of synaptic inhibition in the cortex, activation of GABA(A) receptors has been shown to depolarize specific neuronal compartments, resulting in excitation. By using a noninvasive approach to monitor the effect of individual interneurons on the pyramidal cell population, we found that rat hippocampal interneurons hyperpolarized pyramidal cells irrespective of the location of their synapses along the somato-dendritic axis.
Collapse
|
38
|
Rial Verde EM, Zayat L, Etchenique R, Yuste R. Photorelease of GABA with Visible Light Using an Inorganic Caging Group. Front Neural Circuits 2008; 2:2. [PMID: 18946542 PMCID: PMC2567106 DOI: 10.3389/neuro.04.002.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/01/2008] [Indexed: 11/25/2022] Open
Abstract
We describe the selective photorelease of γ-amino butyric acid (GABA) with a novel caged-GABA compound that uses a ruthenium complex as photosensor. This compound (“RuBi-GABA”) can be excited with visible wavelengths, providing greater tissue penetration, less photo-toxicity, and faster photorelease kinetics than currently used UV light-sensitive caged compounds. Using pyramidal neurons from neocortical brain slices, we show that RuBi-GABA uncaging induces GABA-A receptor-mediated responses, has no detectable side effects on endogenous GABAergic and glutamatergic receptors and generates responses with kinetics and spatial resolution comparable to the best caged GABA compounds presently available. Finally, we illustrate two potential applications of RuBi-GABA uncaging: GABA receptor mapping, and optical silencing of neuronal firing.
Collapse
Affiliation(s)
- Emiliano M Rial Verde
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University New York, NY, USA
| | | | | | | |
Collapse
|
39
|
Foradori CD, Handa RJ. Living or dying in three quarter time: neonatal orchestration of hippocampal cell death pathways by androgens and excitatory GABA. Exp Neurol 2008; 213:1-6. [PMID: 18617165 DOI: 10.1016/j.expneurol.2008.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 11/18/2022]
Affiliation(s)
- C D Foradori
- Department of Biomedical Sciences, Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
40
|
Balena T, Woodin MA. Coincident pre- and postsynaptic activity downregulates NKCC1 to hyperpolarize EClduring development. Eur J Neurosci 2008; 27:2402-12. [DOI: 10.1111/j.1460-9568.2008.06194.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. ACTA ACUST UNITED AC 2008; 35:207-28. [PMID: 18398684 DOI: 10.1007/s11068-008-9019-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/10/2008] [Accepted: 01/15/2008] [Indexed: 12/25/2022]
Abstract
We describe here a molecular genetic approach for imaging synaptic inhibition. The thy-1 promoter was used to express high levels of Clomeleon, a ratiometric fluorescent indicator for chloride ions, in discrete populations of neurons in the brains of transgenic mice. Clomeleon was functional after chronic expression and provided non-invasive readouts of intracellular chloride concentration ([Cl(-)](i)) in brain slices, allowing us to quantify age-dependent declines in resting [Cl(-)](i) during neuronal development. Activation of hippocampal interneurons caused [Cl(-)](i) to rise transiently in individual postsynaptic pyramidal neurons. [Cl(-)](i) increased in direct proportion to the amount of inhibitory transmission, with peak changes as large as 4 mM. Integrating responses over populations of pyramidal neurons allowed sensitive detection of synaptic inhibition. Thus, Clomeleon imaging permits non-invasive, spatiotemporally resolved recordings of [Cl(-)](i) in a large variety of neurons, opening up new opportunities for imaging synaptic inhibition and other forms of chloride signaling.
Collapse
|
42
|
Romo-Parra H, Treviño M, Heinemann U, Gutiérrez R. GABA Actions in Hippocampal Area CA3 During Postnatal Development: Differential Shift From Depolarizing to Hyperpolarizing in Somatic and Dendritic Compartments. J Neurophysiol 2008; 99:1523-34. [DOI: 10.1152/jn.01074.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
γ-Aminobutyric acid type A receptor (GABAA-R) activation leads to depolarization of pyramidal cells during the first postnatal week and produces hyperpolarization from the second week. However, immunohistochemical evidence has suggested that during the second and third postnatal weeks the NKCC1 cotransporter relocates from the soma to the dendrites of CA3 pyramidal cells. We hypothesized that this leads to depolarizing responses in apical dendrites. Here we show that the activation of GABAA-R in the distal dendrites of CA3 pyramidal cells at P15 by restricted application of muscimol or synaptic activation by stimulation of interneurons in stratum radiatum (SR) causes depolarizing postsynaptic potentials (PSPs), which are blocked by NKCC1 cotransporter antagonists. By contrast, activation of proximal GABAA-R by muscimol application or by stimulation of interneurons in s. oriens (SO) leads to hyperpolarizing PSPs. Activation of the dentate gyrus (DG) in the presence of glutamatergic blockers evokes hyperpolarizing responses during the second postnatal week; however, the reversal potential of the DG-evoked inhibitory (I)PSPs is more depolarized than that of IPSPs evoked by activation of SO interneurons. Despite the shift of GABA action from depolarizing to hyperpolarizing, DG-evoked field potentials (f-PSPs) recorded in s. lucidum/radiatum (SL/R) do not change in polarity until the third week. Current source density analysis yielded results consistent with depolarizing actions of GABA in the dendritic compartment. Our data suggest that GABAergic input to apical dendrites of pyramidal cells of CA3 evokes depolarizing PSPs long after synaptic inhibition has become hyperpolarizing in the somata, in the axon initial segments and in basal dendrites.
Collapse
|
43
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 892] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
44
|
Fujiwara-Tsukamoto Y, Isomura Y, Imanishi M, Fukai T, Takada M. Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity. Eur J Neurosci 2007; 25:2713-25. [PMID: 17459104 DOI: 10.1111/j.1460-9568.2007.05543.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has recently been shown that electrical stimulation in normal extracellular fluid induces seizure-like afterdischarge activity that is always preceded by GABA-dependent slow depolarization. These afterdischarge responses are synchronous among mature hippocampal neurons and driven by excitatory GABAergic input. However, the differences in the mechanisms whereby the GABAergic signals in pyramidal cells and interneurons are transiently converted from hyperpolarizing to depolarizing (and even excitatory) have remained unclear. To clarify the network mechanisms underlying this rapid GABA conversion that induces afterdischarges, we examined the temporal changes in GABAergic responses in pyramidal cells and/or interneurons of the rat hippocampal CA1 area in vitro. The extents of slow depolarization and GABA conversion were much larger in the pyramidal cell group than in any group of interneurons. Besides GABA(A) receptor activation, neuronal excitation by ionotropic glutamate receptors enhanced GABA conversion in the pyramidal cells and consequent induction of afterdischarge. The slow depolarization was confirmed to consist of two distinct phases; an early phase that depended primarily on GABA(A)-mediated postsynaptic Cl- accumulation, and a late phase that depended on extracellular K+ accumulation, both of which were enhanced by glutamatergic neuron excitation. Moreover, extracellular K+ accumulation augmented each oscillatory response of the afterdischarge, probably by further Cl- accumulation through K+-coupled Cl- transporters. Our findings suggest that the GABA reversal potential may be elevated above their spike threshold predominantly in the pyramidal cells by biphasic Cl- intrusion during the slow depolarization in GABA- and glutamate-dependent fashion, leading to the initiation of seizure-like epileptiform activity.
Collapse
Affiliation(s)
- Yoko Fujiwara-Tsukamoto
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
45
|
Archer DP, Nguyen KQ, Samanani N, Roth SH. Pentobarbital Enhances γ-Aminobutyric Acid-Mediated Excitation Without Altering Synaptic Plasticity in Rat Hippocampus. Anesth Analg 2007; 104:840-6. [PMID: 17377091 DOI: 10.1213/01.ane.0000256874.33810.3a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Synaptic plasticity is thought to provide a molecular mechanism for learning and memory. N-methyl-d-aspartate receptor-mediated plasticity requires that N-methyl-d-aspartate receptor activation coincides with postsynaptic depolarizing potentials (DPSP(A)'s). Pentobarbital, in high concentrations, enhances DPSP(A)'s, but high concentrations suppress synaptic plasticity, probably by impairing glutamatergic transmission. Here we tested the hypothesis that low concentrations of pentobarbital can enhance DPSP(A)'s and modify the induction of synaptic plasticity. METHODS Studies were performed in vitro on rat hippocampal slices. With glutamate transmission blocked, intracellular recording from CA1 neurons was used to investigate the influence of 5 microM pentobarbital on DPSP(A)'s and neuron excitability evoked by high frequency (100 Hz) stimulation. With glutamate transmission intact, extracellular recording was used to examine the effect of 5 microM pentobarbital on the induction of long-term depression and long-term potentiation of synaptic transmission by conditioning stimuli applied to the Schaffer collateral pathway. RESULTS High frequency stimulation generated typical DPSP(A)'s that were mediated by gamma-aminobutyric acid(A) receptors and dependent upon HCO3-. Pentobarbital (5 microM) increased the amplitude, but not the width, at half-maximal amplitude of DPSPA's (P < 0.01). Pentobarbital increased the probability of action potential generation during the DPSP(A)'s. Pentobarbital did not alter the induction of long-term depression or long-term potentiation. CONCLUSIONS Despite increasing the amplitude of DPSP(A)'s, 5 microM pentobarbital did not alter the induction of synaptic plasticity by a range of conventional conditioning stimuli. These results do not support the hypothesis that excitatory effects of pentobarbital may alter synaptic plasticity.
Collapse
Affiliation(s)
- David P Archer
- Department of Anesthesiology, Faculty of Medicine, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
46
|
Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 2007; 8:45-56. [PMID: 17180162 DOI: 10.1038/nrn2044] [Citation(s) in RCA: 1424] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
Collapse
Affiliation(s)
- Marlene Bartos
- Physiologisches Institut der Universität Freiburg, Abteilung 1, Hermann Herder Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
47
|
Abstract
Presynaptic ionotropic GABA(A) receptors have been suggested to contribute to the regulation of cortical glutamatergic synaptic transmission. Here, we analyzed presynaptic GABA(A) receptor-mediated currents (34 degrees C) recorded from mossy fiber boutons (MFBs) in rat hippocampal slices. In MFBs from young and adult animals, GABA puff application activated currents that were blocked by GABA(A) receptor antagonists. The conductance density of 0.65 mS x cm2 was comparable to that of other presynaptic terminals. The single-channel conductance was 36 pS (symmetrical chloride), yielding an estimated GABA(A) receptor density of 20-200 receptors per MFB. Presynaptic GABA(A) receptors likely contain alpha2-subunits as indicated by their zolpidem sensitivity. In accordance with the low apparent GABA affinity (EC50 = 60 microM) of the receptors and a tight control of ambient GABA concentration by GABA transporters, no tonic background activation of presynaptic GABA(A) receptors was observed. Instead, extracellular high-frequency stimulation led to transient presynaptic currents, which were blocked by GABA(A) receptor antagonists but were enhanced by block of GAT 1 (GABA transporter 1), indicating that these currents were generated by GABA spill-over and subsequent presynaptic GABA(A) receptor activation. Presynaptic spill-over currents were depressed by pharmacological cannabinoid 1 (CB1) receptor activation, suggesting that GABA was released predominantly by a CB1 receptor-expressing interneuron subpopulation. Because GABA(A) receptors in axons are considered to act depolarizing, high activity of CB1 receptor-expressing interneurons will exert substantial impact on presynaptic membrane potential, thus modulating action potential-evoked transmitter release at the mossy fiber-CA3 synapse.
Collapse
Affiliation(s)
- Henrik Alle
- Independent Hertie Research Group, Max Planck Institute for Brain Research, D-60528 Frankfurt, Germany
| | - Jörg R. P. Geiger
- Independent Hertie Research Group, Max Planck Institute for Brain Research, D-60528 Frankfurt, Germany
| |
Collapse
|
48
|
Abstract
GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke in the postsynaptic interneuron a monosynaptic inhibitory synaptic current, followed by a disynaptic excitatory glutamatergic synaptic current. Interneuron-evoked glutamatergic events were blocked by antagonists of either AMPA/kainate or GABA(A) receptors, and could be seen concurrently in both presynaptic and postsynaptic interneurons. These results show that single action potentials in a GABAergic interneuron can drive glutamatergic principal neurons to threshold, resulting in both feedforward and feedback excitation. In interneuron pairs that both receive glutamatergic inputs after an interneuron spike, electrical coupling and bidirectional GABAergic connections occur with a higher probability relative to other interneuron pairs. We propose that this form of GABAergic excitation provides a means for the reliable and specific recruitment of homogeneous interneuron networks in the basal amygdala.
Collapse
Affiliation(s)
- Alan R. Woodruff
- Queensland Brain Institute and School of Biomedical Sciences, University of Queensland, 4072 Brisbane, Australia, and
| | - Hannah Monyer
- Interdisciplinary Centre for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Pankaj Sah
- Queensland Brain Institute and School of Biomedical Sciences, University of Queensland, 4072 Brisbane, Australia, and
| |
Collapse
|
49
|
Sanberg CD, Jones FL, Do VH, Dieguez D, Derrick BE. 5-HT1a receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments. Learn Mem 2006; 13:52-62. [PMID: 16452654 PMCID: PMC1360133 DOI: 10.1101/lm.126306] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Numerous studies suggest roles for monoamines in modulating long-term potentiation (LTP). Previously, we reported that both induction and maintenance of perforant path-dentate gyrus LTP is enhanced when induced while animals explore novel environments. Here we investigate the contribution of serotonin and 5-HT1a receptors to the novelty-mediated enhancement of LTP. In freely moving animals, systemic administration of the selective 5-HT1a antagonist WAY-100635 (WAY) attenuated LTP in a dose-dependent manner when LTP was induced while animals explored novel cages. In contrast, LTP was completely unaffected by WAY when induced in familiar environments. LTP was also blocked in anesthetized animals by direct application of WAY to the dentate gyrus, but not to the median raphe nucleus (MRN), suggesting the effect of systemic WAY is mediated by a block of dentate 5-HT1a receptors. Paradoxically, systemic administration of the 5-HT1a agonist 8-OH-DPAT also attenuated LTP. This attenuation was mimicked in anesthetized animals following application of 8-OH-DPAT to the MRN, but not the dentate gyrus. In addition, application of a 5-HT1a agonist to the dentate gyrus reduced somatic GABAergic inhibition. Because serotonergic projections from the MRN terminate on dentate inhibitory interneurons, these data suggest 5-HT1a receptors contribute to LTP induction via inhibition of GABAergic interneurons. Moreover, activation of raphe 5-HT1a autoreceptors, which inhibits serotonin release, attenuated LTP induction even in familiar environments. This suggests that serotonin normally contributes to dentate LTP induction in a variety of behavioral states. Together, these data suggest that serotonin and dentate 5-HT1a receptors play a permissive role in dentate LTP induction, particularly in novel conditions, and presumably, during the encoding of novel, hippocampus-relevant information.
Collapse
Affiliation(s)
- Cyndy Davis Sanberg
- The Department of Biology, The Cajal Neuroscience Research Institute, The University of Texas at San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
50
|
Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci 2006; 25:7499-506. [PMID: 16107637 PMCID: PMC6725404 DOI: 10.1523/jneurosci.0977-05.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At many central synapses, endocannabinoids released by postsynaptic cells act retrogradely on presynaptic G-protein-coupled cannabinoid receptors to inhibit neurotransmitter release. Here, we demonstrate that cannabinoids may directly affect the functioning of inhibitory glycine receptor (GlyR) channels. In isolated hippocampal pyramidal and Purkinje cerebellar neurons, endogenous cannabinoids anandamide and 2-arachidonylglycerol, applied at physiological concentrations, inhibited the amplitude and altered the kinetics of rise time, desensitization, and deactivation of the glycine-activated current (I(Gly)) in a concentration-dependent manner. These effects of cannabinoids were observed in the presence of cannabinoid CB1/CB3, vanilloid receptor 1 antagonists, and the G-protein inhibitor GDPbetaS, suggesting a direct action of cannabinoids on GlyRs. The effect of cannabinoids on I(Gly) desensitization was strongly voltage dependent. We also demonstrate that, in the presence of a GABA(A) receptor antagonist, GlyRs may contribute to the generation of seizure-like activity induced by short bursts (seven stimuli) of high-frequency stimulation of inputs to hippocampal CA1 region, because this activity was diminished by selective GlyR antagonists (strychnine and ginkgolides B and J). The GlyR-mediated rhythmic activity was also reduced by cannabinoids (anandamide) in the presence of a CB1 receptor antagonist. These results suggest that the direct inhibition of GlyRs by endocannabinoids can modulate the hippocampal network activity.
Collapse
Affiliation(s)
- Natalia Lozovaya
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01204 Kiev, Ukraine
| | | | | | | | | |
Collapse
|