1
|
Nakayama M, Arai N, Ogawa Y, Kusumoto M, Eguchi M. Quantitative method for measuring the proportion of bacterial cells expressing phase 1 or 2 of flagellin of Salmonella enterica serovar Typhimurium. J Microbiol Methods 2024; 225:107013. [PMID: 39128548 DOI: 10.1016/j.mimet.2024.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Salmonella enterica subsp. enterica is a major pathogen that causes zoonotic foodborne diseases worldwide. Some Salmonella serovars possess two antigenic phases for flagellin: phase 1 and 2. In Salmonella enterica serovar Typhimurium (S. Typhimurium), the flagellin is antigenically divided into "Hi" as phase 1 and "H1 or H2" as phase 2. Flagellin phase variation is regulated by inversion of hin gene. We focused on the inversion of hin and developed a real-time PCR system to quantitatively measure the proportion of bacterial cells expressing each phase of flagellin. In this study, we demonstrated that our newly developed real-time PCR system shows high quantitative accuracy and aligns with flagellin expression status. Furthermore, the newly developed real-time PCR system was applicable to various S. Typhimurium laboratory and field strains. This newly developed real-time PCR system has the potential to become a powerful tool for analyzing flagellin phase variation.
Collapse
Affiliation(s)
- Momoko Nakayama
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Nobuo Arai
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Masahiro Kusumoto
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|
2
|
Minamino T, Kinoshita M. Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion. EcoSal Plus 2023; 11:eesp00112023. [PMID: 37260402 PMCID: PMC10729930 DOI: 10.1128/ecosalplus.esp-0011-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 01/28/2024]
Abstract
Many motile bacteria use flagella for locomotion under a variety of environmental conditions. Because bacterial flagella are under the control of sensory signal transduction pathways, each cell is able to autonomously control its flagellum-driven locomotion and move to an environment favorable for survival. The flagellum of Salmonella enterica serovar Typhimurium is a supramolecular assembly consisting of at least three distinct functional parts: a basal body that acts as a bidirectional rotary motor together with multiple force generators, each of which serves as a transmembrane proton channel to couple the proton flow through the channel with torque generation; a filament that functions as a helical propeller that produces propulsion; and a hook that works as a universal joint that transmits the torque produced by the rotary motor to the helical propeller. At the base of the flagellum is a type III secretion system that transports flagellar structural subunits from the cytoplasm to the distal end of the growing flagellar structure, where assembly takes place. In recent years, high-resolution cryo-electron microscopy (cryoEM) image analysis has revealed the overall structure of the flagellum, and this structural information has made it possible to discuss flagellar assembly and function at the atomic level. In this article, we describe what is known about the structure, assembly, and function of Salmonella flagella.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Dhungel BA, Govind R. Phase-variable expression of pdcB, a phosphodiesterase, influences sporulation in Clostridioides difficile. Mol Microbiol 2021; 116:1347-1360. [PMID: 34606654 DOI: 10.1111/mmi.14828] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is the causative agent of antibiotic-associated diarrhea and is the leading cause of nosocomial infection in developed countries. An increasing number of C. difficile infections are attributed to epidemic strains that produce more toxins and spores. C. difficile spores are the major factor for the transmission and persistence of the organism. Previous studies have identified global regulators that influence sporulation in C. difficile. This study discovers that PdcB, a phosphodiesterase, enhances sporulation in C. difficile strain UK1. Through genetic and biochemical assays, we show that phase-variable expression of pdcB results in hypo- and hyper-sporulation phenotypes. In the "ON" orientation, the identified promotor is in the right orientation to drive the expression of pdcB. Production of the PdcB phosphodiesterase reduces the intracellular cyclic-di-GMP (c-di-GMP) concentration, resulting in a hyper-sporulation phenotype. Loss of PdcB due to the pdcB promoter being in the OFF orientation or mutation of pdcB results in increased c-di-GMP levels and a hypo-sporulation phenotype. Additionally, we demonstrate that CodY binds to the upstream region of pdcB. DNA inversion reorients the CodY binding site so that in the OFF orientation, CodY binds a site that is upstream of the pdcB promoter and can further repress gene expression.
Collapse
Affiliation(s)
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Ramisetty BCM, Sudhakari PA. Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation. Front Genet 2019; 10:65. [PMID: 30809245 PMCID: PMC6379469 DOI: 10.3389/fgene.2019.00065] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial genomes are highly plastic allowing the generation of variants through mutations and acquisition of genetic information. The fittest variants are then selected by the econiche thereby allowing the bacterial adaptation and colonization of the habitat. Larger genomes, however, may impose metabolic burden and hence bacterial genomes are optimized by the loss of frivolous genetic information. The activity of temperate bacteriophages has acute consequences on the bacterial population as well as the bacterial genome through lytic and lysogenic cycles. Lysogeny is a selective advantage as the prophage provides immunity to the lysogen against secondary phage attack. Since the non-lysogens are eliminated by the lytic phages, lysogens multiply and colonize the habitat. Nevertheless, all lysogens have an imminent risk of lytic cycle activation and cell lysis. However, a mutation in the attachment sites or in the genes that encode the specific recombinase responsible for prophage excision could result in 'grounding' of the prophage. Since the lysogens with grounded prophage are immune to respective phage infection as well as dodge the induction of lytic cycle, we hypothesize that the selection of these mutant lysogens is favored relative to their normal lysogenic counterparts. These grounded prophages offer several advantages to the bacterial genome evolution through propensity for genetic variations including inversions, deletions, and insertions via horizontal gene transfer. We propose that the grounded prophages expedite bacterial genome evolution by acting as 'genetic buffer zones' thereby increasing the frequency as well as the diversity of variations on which natural selection favors the beneficial variants. The grounded prophages are also hotspots for horizontal gene transfer wherein several ecologically significant genes such as those involved in stress tolerance, antimicrobial resistance, and novel metabolic pathways, are integrated. Moreover, the high frequency of genetic changes within prophages also allows proportionate probability for the de novo genesis of genetic information. Through sequence analyses of well-characterized E. coli prophages we exemplify various roles of grounded prophages in E. coli ecology and evolution. Therefore, the temperate prophages are one of the most significant drivers of bacterial genome evolution and sites of biogenesis of genetic information.
Collapse
Affiliation(s)
- Bhaskar Chandra Mohan Ramisetty
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Pavithra Anantharaman Sudhakari
- Laboratory of Molecular Biology and Evolution, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
5
|
Horstmann JA, Zschieschang E, Truschel T, de Diego J, Lunelli M, Rohde M, May T, Strowig T, Stradal T, Kolbe M, Erhardt M. Flagellin phase-dependent swimming on epithelial cell surfaces contributes to productive Salmonella gut colonisation. Cell Microbiol 2017; 19. [PMID: 28295924 DOI: 10.1111/cmi.12739] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
The flagellum is a sophisticated nanomachine and an important virulence factor of many pathogenic bacteria. Flagellar motility enables directed movements towards host cells in a chemotactic process, and near-surface swimming on cell surfaces is crucial for selection of permissive entry sites. The long external flagellar filament is made of tens of thousands subunits of a single protein, flagellin, and many Salmonella serovars alternate expression of antigenically distinct flagellin proteins, FliC and FljB. However, the role of the different flagellin variants during gut colonisation and host cell invasion remains elusive. Here, we demonstrate that flagella made of different flagellin variants display structural differences and affect Salmonella's swimming behaviour on host cell surfaces. We observed a distinct advantage of bacteria expressing FliC-flagella to identify target sites on host cell surfaces and to invade epithelial cells. FliC-expressing bacteria outcompeted FljB-expressing bacteria for intestinal tissue colonisation in the gastroenteritis and typhoid murine infection models. Intracellular survival and responses of the host immune system were not altered. We conclude that structural properties of flagella modulate the swimming behaviour on host cell surfaces, which facilitates the search for invasion sites and might constitute a general mechanism for productive host cell invasion of flagellated bacteria.
Collapse
Affiliation(s)
- Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Erik Zschieschang
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Juana de Diego
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michele Lunelli
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Till Strowig
- Junior Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Kolbe
- Department for Structural Infection Biology, Center for Structural Systems Biology, Hamburg, Germany.,Department for Structural Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,MIN-Faculty University Hamburg, Hamburg, Germany
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Nakayama-Imaohji H, Hirota K, Yamasaki H, Yoneda S, Nariya H, Suzuki M, Secher T, Miyake Y, Oswald E, Hayashi T, Kuwahara T. DNA Inversion Regulates Outer Membrane Vesicle Production in Bacteroides fragilis. PLoS One 2016; 11:e0148887. [PMID: 26859882 PMCID: PMC4747536 DOI: 10.1371/journal.pone.0148887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown.
Collapse
Affiliation(s)
- Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa 761–0793, Japan
| | - Katsuhiko Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770–8503, Japan
| | - Hisashi Yamasaki
- Department of Cellular and Molecular Medicine, Wakayama Medical University Graduate School of Medicine, Wakayama 641–8509, Japan
| | - Saori Yoneda
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa 761–0793, Japan
| | - Hirofumi Nariya
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa 761–0793, Japan
| | - Motoo Suzuki
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa 761–0793, Japan
| | - Thomas Secher
- Inserm UMR1043 Toulouse, France
- INRA USC 1360 Toulouse, France
- CNRS UMR5282 Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770–8503, Japan
| | - Eric Oswald
- Inserm UMR1043 Toulouse, France
- INRA USC 1360 Toulouse, France
- CNRS UMR5282 Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de bactériologie-hygiène, Toulouse, France
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812–8582, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa 761–0793, Japan
- * E-mail:
| |
Collapse
|
7
|
Evans TJ. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 2015; 10:231-9. [PMID: 25689535 DOI: 10.2217/fmb.14.107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen that colonizes the lungs of patients with cystic fibrosis. Isolates from sputum are typically all derived from the same strain of bacterium but show extensive phenotypic heterogeneity. One of these variants is the so-called small colony variant, which also shows increased ability to form a biofilm and is frequently resistant to multiple antibiotics. The presence of small colony variants in the sputum of patients with cystic fibrosis is associated with a worse clinical condition. The underlying mechanism responsible for generation of the small colony phenotype remains unclear, but a final common pathway would appear to be elevation of intracellular levels of cyclic di-GMP. This phenotypic variant is thus not just a laboratory curiosity, but a significant bacterial adaptation that favors survival within the lung of patients with cystic fibrosis and contributes to the pulmonary damage caused by P. aeruginosa.
Collapse
|
8
|
Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A. Infect Immun 2015; 83:3355-68. [PMID: 26056383 DOI: 10.1128/iai.00468-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here, we explored the motility phenotype of S. Paratyphi A and the role of flagellin in key virulence-associated phenotypes. Motility studies established that the human-adapted typhoidal S. Typhi, S. Paratyphi A, and S. Sendai are all noticeably less motile than S. Typhimurium, and comparative transcriptome sequencing (RNA-Seq) showed that in S. Paratyphi A, the entire motility-chemotaxis regulon is expressed at significantly lowers levels than in S. Typhimurium. Nevertheless, S. Paratyphi A, like S. Typhimurium, requires a functional flagellum for epithelial cell invasion and macrophage uptake, probably in a motility-independent mechanism. In contrast, flagella were found to be dispensable for host cell adhesion. Moreover, we demonstrate that in S. Paratyphi A, but not in S. Typhimurium, the lack of flagellin results in increased transcription of the flagellar and the Salmonella pathogenicity island 1 (SPI-1) regulons in a FliZ-dependent manner and in oversecretion of SPI-1 effectors via type three secretion system 1. Collectively, these results suggest a novel regulatory linkage between flagellin and SPI-1 in S. Paratyphi A that does not occur in S. Typhimurium and demonstrate curious distinctions in motility and the expression of the flagellum-chemotaxis regulon between these clinically relevant pathogens.
Collapse
|
9
|
Effect of iacP mutation on flagellar phase variation in Salmonella enterica serovar typhimurium strain UK-1. J Bacteriol 2012; 194:4332-41. [PMID: 22685287 DOI: 10.1128/jb.00076-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagella are surface appendages that are important for bacterial motility and invasion of host cells. Two flagellin subunits in Salmonella enterica serovar Typhimurium, FliC and FljB, are alternatively expressed by a site-specific DNA inversion mechanism called flagellar phase variation. Although this inversion mechanism is understood at the molecular level, the key factor controlling the expression of the two flagellin subunits has not been determined. In this study, we found that a putative acyl carrier protein, IacP, affects flagellar phase variation in S. Typhimurium strain UK-1 under Salmonella pathogenicity island 1 (SPI1)-inducing conditions. Liquid chromatography-mass spectrometry analysis of the secreted proteins from S. Typhimurium determined that the amount of FljB secreted was significantly higher in the iacP mutant strain, a finding confirmed by Western blot analysis. Northern blotting, quantitative PCR, and microarray data showed that the level of FljB in the iacP mutant strain was regulated at the transcriptional level, although the transcription and expression of the fliC gene were independent of IacP. FljB production was abolished by the deletion of the Hin DNA invertase but could be restored by the introduction of a plasmid carrying the hin gene. We also found that in the iacP mutant strain, the orientation of the invertible H segment is in the FljB-expressing phase. Furthermore, electron microscopy observations indicated that the iacP mutant strain had more flagella per cell than the wild-type strain. These results suggest that IacP is associated with flagellar phase switching under SPI1-inducing conditions.
Collapse
|
10
|
Liu B, Hu B, Zhou Z, Guo D, Guo X, Ding P, Feng L, Wang L. A novel non-homologous recombination-mediated mechanism for Escherichia coli unilateral flagellar phase variation. Nucleic Acids Res 2012; 40:4530-8. [PMID: 22287625 PMCID: PMC3378880 DOI: 10.1093/nar/gks040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Flagella contribute to the virulence of bacteria through chemotaxis, adhesion to and invasion of host surfaces. Flagellar phase variation is believed to facilitate bacterial evasion of the host immune response. In this study, the flnA gene that encodes Escherichia coli H17 flagellin was examined by whole genome sequencing and genetic deletion analysis. Unilateral flagellar phase variation has been reported in E. coli H3, H47 and H17 strains, although the mechanism for phase variation in the H17 strain has not been previously understood. Analysis of phase variants indicated that the flagellar phase variation in the H17 strain was caused by the deletion of an ∼35 kb DNA region containing the flnA gene from diverse excision sites. The presence of covalently closed extrachromosomal circular forms of this excised 35 kb region was confirmed by the two-step polymerase chain reaction. The deletion and complementation test revealed that the Int1157 integrase, a tyrosine recombinase, mediates the excision of this region. Unlike most tyrosine recombinases, Int1157 is suggested to recognize diverse sites and mediate recombination between non-homologous DNA sequences. This is the first report of non-homologous recombination mediating flagellar phase variation.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Bo Hu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Zhemin Zhou
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Dan Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Xi Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Peng Ding
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457 and The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- *To whom correspondence should be addressed. Tel: +86 22 66229588; Fax: +86 22 66229596;
| |
Collapse
|
11
|
Preer JR, Preer LB, Rudman BM. mRNAs for the immobilization antigens of Paramecium. Proc Natl Acad Sci U S A 2010; 78:6776-8. [PMID: 16593120 PMCID: PMC349133 DOI: 10.1073/pnas.78.11.6776] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immobilization antigens of stock 51 of Paramecium tetraurelia were subjected to electrophoresis in NaDodSO(4)/polyacrylamide gels. Type A is estimated to have a molecular size of 300,000 daltons; H is estimated to be 288,000, D to be 280,000, E to be 270,000, B to be 253,000, and C to be 250,000. Poly(A)(+)RNAs have been isolated from cells producing these antigens and subjected to electrophoresis in methylmercury gels. A major band is found to vary in mobility with antigenic type: Its position in preparations derived from paramecia synthesizing antigen A indicates a size of 8400 nucleotide residues; its position from paramecia synthesizing other antigens indicate H, 8200; D, 7900; E, 7500; B, 7600; and C, 7000. Because of the sizes and quantities of these RNAs, it is argued that they probably represent the mRNAs for the immobilization antigens. It is concluded that each immobilization antigen probably consists of a single polypeptide and that only one major serotype-determining mRNA is present in each antigenically different paramecium.
Collapse
Affiliation(s)
- J R Preer
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
12
|
A genomic islet mediates flagellar phase variation in Escherichia coli strains carrying the flagellin-specifying locus flk. J Bacteriol 2008; 190:4470-7. [PMID: 18441064 PMCID: PMC2446816 DOI: 10.1128/jb.01937-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The occurrence of unilateral flagellar phase variation was previously demonstrated in Escherichia coli strains carrying the non-fliC flagellin-specifying locus flk. In this study, we investigated the mechanism involved in this process. By using sequencing and sequence analysis, the flk region between the chromosomal genes yhaC and rnpB was characterized in all described flk-positive E. coli strains, including the H35 strain identified in this study (the other strains used are H3, H36, H47, and H53 strains), and this region was found to contain a putative integrase gene and flanking direct repeats in addition to the flk flagellin-specifying gene flkA and a fliC repressor gene, flkB, indicating that there is a typical genomic islet (GI), which was designated the flk GI. The horizontal transfer potential of the flk GI was indicated by detection of the excised extrachromosomal circular form of the flk GI. By generating fliC-expressing variants of H3 and H47 strains, unilateral flagellar phase variation in flk-positive strains was shown to be mediated by excision of the flk GI. The function of the proposed integrase gene was confirmed by deletion and a complementation test. The potential integration sites of the flk GI were identified. A general model for flagellar phase variation in flk-positive E. coli strains can be expressed as fliC(off) + flkA(on) --> fliC(on) + flkA(none). This is the first time that a molecular mechanism for flagellar phase variation has been reported for E. coli.
Collapse
|
13
|
Tominaga A, Kutsukake K. Expressed and cryptic flagellin genes in the H44 and H55 type strains of Escherichia coli. Genes Genet Syst 2007; 82:1-8. [PMID: 17396015 DOI: 10.1266/ggs.82.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial H antigens are specified by flagellin molecules, which constitute the flagellar filament. Escherichia coli 781-55 and E2987-73 are the type strains for H44 and H55 antigens, respectively. Unlike E. coli K-12, they possess two flagellin genes, fliC and fllA, on their chromosomes. However, they are monophasic, expressing exclusively the fllA genes, which specify the type antigens. In this study, the flagellin genes were cloned from these strains and their structure and expression were analyzed. It was found that the fliC genes encode apparently intact flagellin subunits but possess inefficient sigma28-dependent promoters, which may result in these genes being silent. The chromosomal locations of the fllA genes are approximately, but not exactly, identical with that of the phase-2 flagellin gene, fljB, of diphasic Salmonella strains. However, unlike the Salmonella fljB gene, the invertible H segment and the fljA gene responsible for the control of flagellar phase variation are both absent from the fllA loci. The fllA genes are highly homologous to the E. coli fliC gene but distantly related to the Salmonella fljB gene. These results suggest a hypothesis that the fllA genes may have emerged by an intra-species lateral transfer of the fliC gene. This hypothesis is further supported by the observation that the fllA genes are flanked by several IS elements and located within cryptic prophage elements.
Collapse
Affiliation(s)
- Akira Tominaga
- Graduate School of Natural Science and Technology and Department of Biology, Faculty of Science, Okayama University, Japan
| | | |
Collapse
|
14
|
Kutsukake K, Nakashima H, Tominaga A, Abo T. Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 2006; 188:950-7. [PMID: 16428399 PMCID: PMC1347348 DOI: 10.1128/jb.188.3.950-957.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Typhimurium strain LT2 possesses two nonallelic structural genes, fliC and fljB, for flagellin, the component protein of flagellar filaments. Flagellar phase variation occurs by alternative expression of these two genes. This is controlled by the inversion of a DNA segment, called the H segment, containing the fljB promoter. H inversion occurs by site-specific recombination between inverted repetitious sequences flanking the H segment. This recombination has been shown in vivo and in vitro to be mediated by a DNA invertase, Hin, whose gene is located within the H segment. However, a search of the complete genomic sequence revealed that LT2 possesses another DNA invertase gene that is located adjacent to another invertible DNA segment within a resident prophage, Fels-2. Here, we named this gene fin. We constructed hin and fin disruption mutants from LT2 and examined their phase variation abilities. The hin disruption mutant could still undergo flagellar phase variation, indicating that Hin is not the sole DNA invertase responsible for phase variation. Although the fin disruption mutant could undergo phase variation, fin hin double mutants could not. These results clearly indicate that both Hin and Fin contribute to flagellar phase variation in LT2. We further showed that a phase-stable serovar, serovar Abortusequi, which is known to possess a naturally occurring hin mutation, lacks Fels-2, which ensures the phase stability in this serovar.
Collapse
Affiliation(s)
- Kazuhiro Kutsukake
- Department of Biology, Faculty of Science, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|
15
|
Yamamoto S, Kutsukake K. FljA-mediated posttranscriptional control of phase 1 flagellin expression in flagellar phase variation of Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:958-67. [PMID: 16428400 PMCID: PMC1347349 DOI: 10.1128/jb.188.3.958-967.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellar phase variation of Salmonella is a phenomenon where two flagellin genes, fliC (phase 1) and fljB (phase 2), are expressed alternately. This is controlled by the inversion of a DNA segment containing the promoter for the fljB gene. The fljB gene constitutes an operon with the fljA gene, which encodes a negative regulator for fliC expression. Previous biochemical analysis suggested that phase variation might depend on alternative synthesis of phase-specific flagellin mRNA (H. Suzuki and T. Iino, J. Mol. Biol. 81:57-70, 1973). However, recently reported results suggested that FljA-dependent inhibition might be mediated by a posttranscriptional control mechanism (H. R. Bonifield and K. T. Hughes, J. Bacteriol. 185:3567-3574, 2003). In this study, we reexamined the mechanism of FljA-mediated inhibition of fliC expression more carefully. Northern blotting analysis revealed that no fliC mRNA was detected in phase 2 cells. However, only a moderate decrease in beta-galactosidase activity was observed from the fliC-lacZ transcriptional fusion gene in phase 2 cells compared with that in phase 1 cells. In contrast, the expression of the fliC-lacZ translational fusion gene was severely impaired in phase 2 cells. The half-life of fliC mRNA was shown to be much shorter in phase 2 cells than in phase 1 cells. Purified His-tagged FljA protein was shown to bind specifically to fliC mRNA and inhibit the translation from fliC mRNA in vitro. On the basis of these results, we propose that in phase 2 cells, FljA binds to fliC mRNA and inhibits its translation, which in turn facilitates its degradation.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan.
| | | |
Collapse
|
16
|
Fierer J, Guiney DG. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest 2001; 107:775-80. [PMID: 11285291 PMCID: PMC199580 DOI: 10.1172/jci12561] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salmonella strains have evolved to infect a wide variety of reptiles, birds, and mammals resulting in many different syndromes ranging from colonization and chronic carriage to acute fatal disease. Adaptation to a large number of different evolutionary niches has undoubtedly driven the high degree of phenotypic and genotypic diversity in Salmonella strains. Differences in LPS and flagellar structure generate the antigenic variation that is reflected in the more than 2,000 known serotypes. Moreover, variations of LPS structure affect the virulence of the strain. The differential expression of various fimbriae by Salmonella is likely to be due to the wide variety of mucosal surfaces that are encountered by various strains, and the host immune response may select for a different expression pattern. As with these surface structures, a variety of other important virulence determinants show a variable distribution in Salmonella strains and also serve to delineate the divergence of the Salmonella lineage from E. coli. The acquisition of the SPI-1 region may have represented the defining genetic event in the separation of the Salmonella and E. coli lineages. The SPI-1 cell invasion function allowed Salmonella to establish a separate niche in epithelial cells. The mgtC locus on SPI-3 is also present in all lineages and facilitates the adaptation of the bacteria to the low Mg2+, low pH environment of the endosome that results from SPI-1-mediated invasion. Subsequent acquisition of SPI-2 allowed Salmonella to manipulate the sorting of the endosome or phagosome, altering the intracellular environment and facilitating bacterial growth within infected cells. The ability to disseminate from the bowel and establish extraintestinal niches is promoted by the spv locus. Since Salmonella proliferates within macrophages and must avoid phagocytosis by neutrophils to establish a systemic infection, the spv genes appear to promote the macrophage phase of the disease process. Here the polymorphism of the spv locus is clearly demonstrated, since the serovars that cause most cases of nontyphoid bacteremia contain the spv genes. The absence of the spv genes from S. typhi is particularly puzzling and is a strong indication that the pathogenesis of typhoid fever is fundamentally different from that of bacteremia due to nontyphoid Salmonella. There is currently no genetic explanation for the phenotype of host adaptation or for the finding that only a few serovars cause the majority of human infections. Based on recent findings that multiple individual virulence genes have a variable distribution in Salmonella, it is unlikely that a single locus will be found to be responsible for these complex biological traits. Instead, a complicated combination of genes are likely to contribute to the overall virulence phenotype.
Collapse
Affiliation(s)
- J Fierer
- Department of Medicine, University of California at San Diego School of Medicine, La Jolla, California, USA.
| | | |
Collapse
|
17
|
Sojka M, Sayers AR, Woodward MJ. Analysis of expression of flagella by Salmonella enterica serotype typhimurium by monoclonal antibodies recognising both phase specific and common epitopes. Vet Microbiol 2001; 78:61-77. [PMID: 11118742 DOI: 10.1016/s0378-1135(00)00291-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Monoclonal antibodies specific for phase 1 ("i" antigen), phase 2 ("1,2" antigen) and common epitopes of the flagellins of Salmonella enterica serotype Typhimurium were raised. Having confirmed their specificity, the monoclonal antibodies were used to develop semi-quantitative ELISAs in order to assess the relative expression of the two phases by strains of Typhimurium. The majority of Typhimurium strains representative of a wide cross-section of definitive types from animal and environmental sources preferentially expressed phase 1 antigen in vitro. DT40 strains were unique in expressing phase 2 preferentially. The ratio of phase 1 to phase 2 expressed by strains tended to be constant for any one strain when strains were grown on a number of conventional laboratory media. However, the ratio of phases was shown to be modulated by incubation at 42 degrees C and buffering media at pH values, notably 4.5, other than neutral. Selenite broth and Rambach media repressed flagellation.
Collapse
Affiliation(s)
- M Sojka
- Department of Bacterial Diseases, Veterinary Laboratory Agency (Weybridge), Addlestone, Surrey KT15 3NB, UK
| | | | | |
Collapse
|
18
|
Kawabata H, Myouga F, Inagaki Y, Murai N, Watanabe H. Genetic and immunological analyses of Vls (VMP-like sequences) of Borrelia burgdorferi. Microb Pathog 1998; 24:155-66. [PMID: 9514637 DOI: 10.1006/mpat.1997.0183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA fragments containing the VMP-like sequence (Vls) were cloned from Borrelia burgdorferi strain 297. Analyses by PCR, PFGE, and Southern hybridization revealed that the Vls sequences existed in multi-copies on the 20-kb borrelial plasmid, but not on chromosomes or other plasmids. One Vls unit of the strain 297 was about 669 bases, and predicted peptides length was 223 amino acids. Homologues of the Vls fragment were detected in three B. burgdorferi strains, a B. garinii strain 20047, and a B. afzelii strain P/Gau. A recombinant VlsII protein prepared in Escherichia coli strain JM109 reacted with antibodies that existed in three of five patients, by immunoblotting. These results suggested that the Vls of B. burgdorferi is expressed in Lyme disease patients.
Collapse
Affiliation(s)
- H Kawabata
- Department of Bacteriology, National Institute of Infectious Diseases (Former NIH), 1-23-1 Toyama, Tokyo, Shinjyuku-ku, 162, Japan
| | | | | | | | | |
Collapse
|
19
|
Tominaga A. The site-specific recombinase encoded by pinD in Shigella dysenteriae is due to the presence of a defective Mu prophage. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):2057-2063. [PMID: 9202481 DOI: 10.1099/00221287-143-6-2057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DNA inversion systems are made up of an invertible DNA segment and a site-specific recombinase gene. Five systems are known in prokaryotes: the Salmonella typhimurium H segment and hin gene (H-hin), phage Mu G-gin, phage P1 C-cin, Escherichia coli e14 P-pin, and Shigella sonnei B-pinB systems. In this report a site-specific recombinase (pinD) gene of Shigella dysenteriae was cloned and sequenced. pinD mediated inversion of five known segments at the same extent in E. coli. Although one inv sequence was identified, no invertible region was detected in a cloned fragment. The predicted amino acid sequences of PinD and three ORFs showed high homology to those of Gin and its flanking gene products. An ORF homologous to Mom of Mu conserved a functional activity to modify intracellular plasmid DNA. Southern analysis showed that the cloned fragment contains two homologous regions corresponding to the left and right ends of the Mu genome. Together these results indicated that the pinD gene in S. dysenteriae is derived from a Mu-like prophage.
Collapse
Affiliation(s)
- Akira Tominaga
- Department of Biology, Faculty of Science, Okayama UniversityOkayama 700, Japan
| |
Collapse
|
20
|
Okazaki N, Matsuo S, Saito K, Tominaga A, Enomoto M. Conversion of the Salmonella phase 1 flagellin gene fliC to the phase 2 gene fljB on the Escherichia coli K-12 chromosome. J Bacteriol 1993; 175:758-66. [PMID: 8423149 PMCID: PMC196215 DOI: 10.1128/jb.175.3.758-766.1993] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Escherichia coli-Salmonella typhimurium-Salmonella abortus-equi hybrid strain EJ1420 has the two Salmonella flagellin genes fliC (antigenic determinant i) and fljB (determinant e,n,x) at the same loci as in the Salmonella strains and constitutively expresses the fliC gene because of mutations in the genes mediating phase variation. Selection for motility in semisolid medium containing anti-i flagellum serum yielded 11 motile mutants, which had the active fliC(e,n,x) and silent fljB(e,n,x) genes. Genetic analysis and Southern hybridization indicated that they had mutations only in the fliC gene, not in the fljB gene or the control elements for phase variation. Nucleotide sequence analysis of the fliC(e,n,x) genes from four representative mutants showed that the minimum 38% (565 bp) and maximum 68% (1,013 bp) sequences of the fliC(i) gene are replaced with the corresponding sequences of the fljB(e,n,x) gene. One of the conversion endpoints between the two genes lies somewhere in the 204-bp homologous sequence in the 5' constant region, and the other lies in the short homologous sequence of 6, 8, or 38 bp in the 3' constant region. The conversions include the whole central variable region of the fljB gene, resulting in fliC(e,n,x) genes with the same number of nucleotides (1,503 bp) as the fljB gene. We discuss the mechanisms for gene conversion between the two genes and also some intriguing aspects of flagellar antigenic specificities in various Salmonella serovars from the viewpoint of gene conversion.
Collapse
Affiliation(s)
- N Okazaki
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | | | |
Collapse
|
21
|
Tominaga A, Ikemizu S, Enomoto M. Site-specific recombinase genes in three Shigella subgroups and nucleotide sequences of a pinB gene and an invertible B segment from Shigella boydii. J Bacteriol 1991; 173:4079-87. [PMID: 2061288 PMCID: PMC208056 DOI: 10.1128/jb.173.13.4079-4087.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inversional switching systems in procaryotes are composed of an invertible DNA segment and a site-specific recombinase gene adjacent to or contained in the segment. Four related but functionally distinct systems have previously been characterized in detail: the Salmonella typhimurium H segment-hin gene (H-hin), phage Mu G-gin, phage P1 C-cin, and Escherichia coli e14 P-pin. In this article we report the isolation and characterization of three new recombinase genes: pinB, pinD, and defective pinF from Shigella boydii, Shigella dysenteriae, and Shigella flexneri, respectively. The genes pinB and pinD were detected by the complementation of a hin mutation of Salmonella and were able to mediate inversion of the H, P, and C segments. pinB mediated H inversion as efficiently as the hin gene did and mediated C inversion with a frequency three orders of magnitude lower than that of the cin gene. pinD mediated inversion of H and P segments with frequencies ten times as high as those for the genes intrinsic to each segment and mediated C inversion with a frequency ten times lower than that for cin. Therefore, the pinB and pinD genes were inferred to be different from each other. The invertible B segment-pinB gene cloned from S. boydii is highly homologous to the G-gin in size, organization, and nucleotide sequence of open reading frames, but the 5' constant region outside the segment is quite different in size and predicted amino acid sequence. The B segment underwent inversion in the presence of hin, pin, or cin. The defective pinF gene is suggested to hae the same origin as P-pin on e14 by the restriction map of the fragment cloned from a Pin+ transductant that was obtained in transduction from S. flexneri to E. coli delta pin.
Collapse
Affiliation(s)
- A Tominaga
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | |
Collapse
|
22
|
Jones CJ, Aizawa S. The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol 1991; 32:109-72. [PMID: 1882727 DOI: 10.1016/s0065-2911(08)60007-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bacterial flagellum is a complex multicomponent structure which serves as the propulsive organelle for many species of bacteria. Rotation of the helical flagellar filament, driven by a proton-powered motor embedded in the cell wall, enables the flagellum to function as a screw propeller. It seems likely that almost all of the genes required for flagellar formation and function have been identified. Continuing analysis of the portions of the genome containing these genes may reveal the existence of a few more. Transcription of the flagellar genes is under the control of the products of a single operon, and so these genes constitute a regulon. Other controls, both transcriptional and post-transcriptional, have been identified. Many of these genes have been sequenced, and the information obtained will aid in the design of experiments to clarify the various regulatory mechanisms of the flagellar regulon. The flagellum is composed of several substructures. The long helical filament is connected via the flexible hook to the complex basal body which is located in the cell wall. The filament is composed of many copies of a single protein, and can adopt a number of distinct helical forms. Structural analyses of the filament are adding to our understanding of this dynamic polymer. The component proteins of the hook and filament have all been identified. Continuing studies on the structure of the basal body have revealed the presence of several hitherto unknown basal-body proteins, whose identities and functions have yet to be elucidated. The proteins essential for energizing the motor, the Mot and switch proteins, are thought to exist as multisubunit complexes peripheral to the basal body. These complexes have yet to be identified biochemically or morphologically. Not surprisingly, flagellar assembly is a complex process, occurring in several stages. Assembly occurs in a proximal-to-distal fashion; the basal body is assembled before the hook, and the hook before the filament. This pattern is also maintained within the filament, with monomers added at the distal end of the polymer; the same is presumably true of the other axial components. An exception to this general pattern is assembly of the Mot proteins into the motor, which appears to be possible at any time during flagellar assembly. With the identification of the genes encoding many of the flagellar proteins, the roles of these proteins in assembly is understood, but the function of a number of gene products in flagellar formation remains unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C J Jones
- ERATO, Research Development Corporation of Japan, Ibaraki
| | | |
Collapse
|
23
|
Inoue YH, Kutsukake K, Iino T, Yamaguchi S. Sequence analysis of operator mutants of the phase-1 flagellin-encoding gene, fliC, in Salmonella typhimurium. Gene X 1989; 85:221-6. [PMID: 2695399 DOI: 10.1016/0378-1119(89)90485-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In phase-2 cells of diphasic Salmonella strains, expression of the phase-1 flagellin-encoding gene, fliC, is repressed by the repressor encoded by the fljA gene. Nine operator-constitutive (Oc) mutants of fliC were isolated from S. typhimurium by selecting those which could express fliC in the presence of the repressor. Among them, eight mutants could express fliC both in the presence and the absence of the repressor, whereas the ninth one could express only in the presence of the repressor. Nucleotide sequence analysis revealed that the Oc mutations of the former type were all located between bp 7 and 20 upstream from the coding region of fliC, which suggests that this region may correspond to the operator for fliC. The latter mutant was found to have a tandem duplication of 28 bp which contains a part of the operator sequence, and seems to require the repressor to activate fliC expression.
Collapse
Affiliation(s)
- Y H Inoue
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Tondravi MM. DNA rearrangements associated with the H3 surface antigen gene of Tetrahymena thermophila that occur during macronuclear development. Curr Genet 1988; 14:617-26. [PMID: 2854007 DOI: 10.1007/bf00434088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The surfaces of Tetrahymena thermophila cells grown between 20 and 35 degrees C are covered by one or more variants of H antigens. A cDNA clone, pC6, has previously been identified that hybridizes to a unique polyA+ RNA that appears to code for the SerH3 variant of the H antigens. pC6 and a subclone of it, pGpC6.295, were used to analyze the genomic organization of the corresponding gene(s) in both the macronucleus and the micronucleus. It was determined that pC6 hybridizes to a small family of sequences in the macronucleus, only one of which also hybridizes to pGpC6.295. The latter is a strong candidate for the gene encoding the SerH3 antigen. Sequences homologous to pC6 - but not to pGpC6.295 - are present in strains carrying the other SerH alleles. Shifts in antigen switching during vegetative growth do not result in any detectable DNA rearrangements in the vicinity of the pC6-hybridizing sequence family. Analysis of micronuclear DNA from a homozygous SerH3 strain revealed that it also contains a family of sequences that are homologous to pC6; but, in contrast to the macronuclear DNA, two members of this micronuclear sequence family hybridize to pGpC6.295. Comparison of micro- and macronuclear DNA indicate that some members of the pC6-positive sequence family rearrange during macronuclear development. These rearrangements fall into two classes: those which occur reproducibly, and those which show variability. The gene homologous to pGp6.295 falls into the former category.
Collapse
Affiliation(s)
- M M Tondravi
- Department of Biology, Washington University, St. Louis, MO 63130
| |
Collapse
|
25
|
Karste G, Adler K, Tschäpe H. Temperature dependence of M pilus formation as demonstrated by electron microscopy. J Basic Microbiol 1987; 27:225-8. [PMID: 2892927 DOI: 10.1002/jobm.3620270414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The formation of IncM plasmid encoded pili is dependent on the incubation temperature of the corresponding host strains. By labelling the short, rigid M pili with the donor specific bacteriophage luminal diameter M, the presence of pili at 30 degrees C but not at 37 degrees C incubation temperature could be demonstrated for E. coli K12 substrains carrying different IncM group plasmids. In contrast, such a temperature dependence of M pilus formation is not observed in S. typhimurium substrains.
Collapse
Affiliation(s)
- G Karste
- Institut für Experimentelle Epidemiologie, Wernigerode, DDR
| | | | | |
Collapse
|
26
|
Enomoto M, Sakai A, Tominaga A. Expression of an Escherichia coli flagellin gene, hag48, in the presence of a Salmonella H1-repressor. MOLECULAR & GENERAL GENETICS : MGG 1985; 201:133-5. [PMID: 3903432 DOI: 10.1007/bf00397999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An Escherichia coli K12 flagellin gene, hag48, was found to be expressed in the presence of the Salmonella rh1 gene product. The strains which had hag48 on a chromosome or on an F' factor were constructed from strains H2-e,n,xon-off rh1+ and fixed H2-e,n,xon rh1+ in which rh1+ is cotranscribed with H2 in its "on" state. Motility of these strains in semisolid medium was inhibited by anti-H48 serum and motile clones (swarms) that escaped from it were hag mutants in case of the hag48 e,n,xon-off strain tested. H48 flagellin was detected by electrophoresis, though its amount was less than e,n,x flagellin, from all the strains that were nonmotile in the presence of anti-H48 serum.
Collapse
|
27
|
Abstract
An assay system for the pin gene function, which suppresses the vh2 mutation of Salmonella, was developed and used to show that most strains of Escherichia coli K-12 are Pin+, whereas all the strains of E. coli C examined are Pin-. An E. coli host strain was constructed and used for detection of DNA fragments carrying the E. coli K-12 pin gene cloned in the plasmid vector pBR322. Restriction analysis of the cloned fragments showed that the invertible DNA (designated P region) is adjacent to the pin gene and that its inversion is mediated by the pin gene product. The pin gene was found to be functionally homologous to the gin gene of Mu phage and the cin gene of P1 phage. The P region most probably resides within the cryptic prophage e14, and the Pin- phenotype is likely to be associated with the loss of e14.
Collapse
|
28
|
Curran M, McBride B, Phelan M, Stevens E. Din+(âinvertaseâ) activity in Gram-negative bacteria. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01087.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Abstract
The orientation [G(+) or G(-)] of the invertible G segment of bacteriophage Mu DNA determines the host range specificity of the phage particles. In this study the hypothesis that the G segment genes are involved in synthesis of Mu tail fibers has been tested. Serum blocking power (SBP) assays demonstrated that among Mu late gene mutants only those defective in genes S or U encoded by the G segment were defective in G(+) SBP and that they lacked the same antigens. Electron microscopy of lysates produced by inversion-defective gin mutants (isolated by their inability to complement a hin inversion-defective mutant of the Salmonella phase variation segment) showed that G(+) phages with amber mutations in S or U made tail-fiberless particles with contracted tail sheaths. Inversion of G to the G(-) orientation or suppression of the amber mutations restored the normal phage particle morphology. These experiments demonstrate that genes S and U are required for Mu G(+) tail fiber biosynthesis and/or attachment.
Collapse
|
30
|
Enomoto M, Oosawa K, Momota H. Mapping of the pin locus coding for a site-specific recombinase that causes flagellar-phase variation in Escherichia coli K-12. J Bacteriol 1983; 156:663-8. [PMID: 6355064 PMCID: PMC217881 DOI: 10.1128/jb.156.2.663-668.1983] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although the vh2 mutation almost entirely prevents phase variation in Salmonella spp., an Escherichia coli strain that carried the Salmonella H1 and H2 region, including the vh2 mutation, showed phase variation. From this strain, EJ1076, a number of mutants defective in phase variation were isolated, and the symbol pin was assigned to their mutant gene. The pin locus was mapped between purB and trp near purB by interrupted matings using Tn10 sites inserted near pin. The locus was cotransduced with purB by P1 vir at a frequency of around 0.33. All the mutations tested were clustered at this locus. Three E. coli K-12 strains probably derived via different lines from the wild type have been tested for the presence of pin+ by introducing the two Salmonella H regions; two were pin+, and one was a pin mutant.
Collapse
|
31
|
Tanimoto K, Iino T. Transfer inhibition of RP4 by F factor. MOLECULAR & GENERAL GENETICS : MGG 1983; 192:104-9. [PMID: 6139738 DOI: 10.1007/bf00327654] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When RP4 and F factors were brought together into one E. coli cell, the F factor reduced 500-1000-fold the frequency of transfer of RP4. However, F had almost no effect on the surface exclusion and pilus formation by RP4. In contrast, RP4 did not affect the transfer of F. Using in vitro recombinant DNA techniques, a gene of F responsible for the above-mentioned transfer inhibition of RP4 was located within the BamHI fragment (40.4-42.8 kb) of the mini-F sequence on F. From the result of product analysis using minicells, the responsible gene in the BamHI fragment was inferred to encode the 33 K protein.
Collapse
|
32
|
|
33
|
Phase Variation and Related Systems. Mob Genet Elements 1983. [DOI: 10.1016/b978-0-12-638680-6.50016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
34
|
Szekely E, Simon M. Homology between the invertible deoxyribonucleic acid sequence that controls flagellar-phase variation in Salmonella sp. and deoxyribonucleic acid sequences in other organisms. J Bacteriol 1981; 148:829-36. [PMID: 6273384 PMCID: PMC216281 DOI: 10.1128/jb.148.3.829-836.1981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The invertible deoxyribonucleic acid (DNA) segment cloned from Salmonella sp. was radioactively labeled and used as a probe to search for homologous sequences by Southern hybridization. Only one copy of the invertible segment could be found on the Salmonella sp. genome. Partial sequence homology with the invertible region was detected in bacteriophage Mu and P1 DNA by low-stringency hybridization. Under these conditions, no homology was detected with Escherichia coli DNA. A strain of Salmonella sp. defective in phase variation carrying the vH2- allele was also analyzed by DNA-DNA hybridization. The results show that there is sequence divergence between diphasic and vH2- strains within the invertible sequence.
Collapse
|
35
|
Kamp D, Kahmann R. The relationship of two invertible segments in bacteriophage Mu and Salmonella typhimurium DNA. MOLECULAR & GENERAL GENETICS : MGG 1981; 184:564-6. [PMID: 7038403 DOI: 10.1007/bf00352543] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A Mu gin- mutant which lacks the function required for inversion of the G segment can be complemented by hybrid plasmids and phages carrying the invertible segment that controls flagellar phase variation in Salmonella typhimurium. This suggests that the same kind of site-specific recombination mechanism is responsible for these inversions. Based on the different features of the two invertible segments we propose a model for their evolutionary relationship.
Collapse
|
36
|
Poolman JT, de Marie S, Zanen HC. Variability of low-molecular-weight, heat-modifiable outer membrane proteins of Neisseria meningitidis. Infect Immun 1980; 30:642-8. [PMID: 6785230 PMCID: PMC551363 DOI: 10.1128/iai.30.3.642-648.1980] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Analysis of major outer membrane protein (MOMP) profiles of various meningococci by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of 0 to 2 low-molecular-weight, heat-modifiable MOMPs (molecular weight, 25,000 to 32,000) and 1 to 3 high-molecular-weight MOMPs (molecular weight, 32,000 to 46,000). Heat modifiability was investigated by comparing MOMP profiles after heating in SDS solutions at 100 degrees C for 5 min or at 40 degrees C for 1 h. Low-molecular-weight MOMPs shifted to higher apparent molecular weights after being heated at 100 degrees C. Heat modifiability of high-molecular-weight MOMPs varied among strains; whenever modified these proteins shifted to lower apparent molecular weights after complete denaturation. Variability of low-molecular-weight, heat-modifiable MOMPs was demonstrated when MOMP profiles were compared of (i) isolates from index cases and associated cases and carriers among contacts, (ii) different isolates from the same individual, and (iii) isolates from a small epidemic caused by serogroup W-135. In some cases high-molecular-weight MOMPs revealed quantitative differences among related strains. The observed variability and quantitative differences indicate that MOMP serotyping and typing on the basis of SDS-PAGE profiles (PAGE typing) need careful reevaluation.
Collapse
|
37
|
Kutsukake K, Iino T. Inversions of specific DNA segments in flagellar phase variation of Salmonella and inversion systems of bacteriophages P1 and Mu. Proc Natl Acad Sci U S A 1980; 77:7338-41. [PMID: 7012837 PMCID: PMC350498 DOI: 10.1073/pnas.77.12.7338] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Prophages P1 and Mu produces a trans-acting factor possessing the din+ activity which catalyzes the inversion of the specific DNA segment responsible for flagellar phase variation of Salmonella, din mutants were isolated from PICMclr100 phage by selecting phages that did not suppress the yh2 mutation of Salmonella in prophage state. No inversion loop structure was detected among DNA forms arising after denaturation and rehybridization of DNAs extracted from the din mutants. The DNA fragment containing C region of P1 was cloned on a plasmid vector, pCR1. The resulting hybrid plasmid, pKK2, was shown to possess the din+ activity: the vh2 mutant of Salmonella harboring the plasmid changed the flagellar phase. From analysis of the plasmid by use of BamHI and Bgl II, the din gene specifying the din+ activity was located near or within the C region of P1. It is highly plausible that the din gene of P1 was also involved in the inversion of the C region. Similarly, the DNA fragment containing the G and beta segments of Mu was cloned on pCR1. The resulting hybrid plasmid, pII101, also possessed the din+ activity.
Collapse
|
38
|
Abstract
At least two genes have been shown to be required for the expression of the antiphagocytic M protein molecule in group A streptococci. Evidence for phage involvement in the expression of M protein is that: (a) M- cultures of bacteria can be converted to the M+ state (resistant to phagocytosis) upon lysogenization with appropriate bacteriophages; (b) without those bacteriophages the M- recipient culture could not be detected to revert to the M+ state, even under our most stringent selective conditions; and (c) stable M+ lysogens cured of their bacteriophages returned to the M- state. Immunochemical analysis of lysogenically converted M+ strains demonstrated that they contain precipitating and antiphagocytic determinants of the parental M-76 strain (CS110) rather than M-12 determinants expressed by the phage donor strain. This information strongly suggests that the M- strain CS112 possesses the structural gene for M protein, but that it remains predominantly unexpressed. Quantitation of the M antigen produced by these strains supports the observation that the M- phage-recipient strain possesses a small amount of extractable M antigen and that phage activates its synthesis by some unknown mechanism. Various possibilities to account for the phage requirement in M protein synthesis and its role in the transition between M+ and M- states are discussed.
Collapse
|
39
|
Simon M, Zieg J, Silverman M, Mandel G, Doolittle R. Phase variation: evolution of a controlling element. Science 1980; 209:1370-4. [PMID: 6251543 DOI: 10.1126/science.6251543] [Citation(s) in RCA: 153] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phase variation in bacteria is regulated by homologous recombination at a specific DNA site. This recombinational event causes the inversion of a 970-base-pair DNA sequence that includes the promoter necessary for transcription of a flagellar gene. The invertible segment is flanked by two sites that are necessary for the inversion and contains a gene (hin) whose product mediates the inversion event. The hin gene shows extensive homology with the TnpR gene carried on the Tn3 transposon. It is also homologous with the gin gene carried on bacteriophage mu. These relationships suggest that the phase variation system may have evolved by the association of a transposon with a resident gene and the subsequent specialization of these elements to regulate flagellar antigen expression.
Collapse
|