1
|
Zhang X, Qi F, Yang J, Xu C. Distribution and ultrastructural characteristics of enteric glial cell in the chicken cecum. Poult Sci 2024; 103:104070. [PMID: 39094494 PMCID: PMC11345566 DOI: 10.1016/j.psj.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Enteric glial cell (EGC) is involved in neuroimmune regulation within the enteric nervous system (ENS); however, limited information exists on the distribution and ultrastructure of EGC in the poultry gut. We aim to investigate the morphological features and distribution of EGC in the chicken cecum. Here, we investigated the distribution and ultrastructural features of chicken cecum EGC using immunohistochemistry (IHC) and transmission electron microscopy (TEM). IHC showed that EGC was widely distributed throughout the chicken cecum. In the mucosal layer, EGC was morphologically irregular, with occasionally interconnecting protrusions that outlined signal-negative neurons. The morphology of EGC in the submucosal layer was also irregular. In the inner circular muscle layer and between the inner circular and outer longitudinal muscle layers, EGC aligned parallel to the circular muscle cells. A small number of EGC with an irregular morphology were found in the outer longitudinal muscle layer. In addition, in the submucosal and myenteric plexus, EGC were aggregated, and the protrusions of the immunoreactive cells interconnected to outline the bodies of nonreactive neurons. TEM-guided ultrastructural characterization confirmed the IHC findings that EGC were morphologically irregular and revealed they developed either a star, bipolar, or fibrous shape. The nucleus was also irregular, with electron-dense heterochromatin distributed in the center of the nucleus or on the nuclear membrane. The cytoplasm contained many glial filaments and vesicle-containing protrusions from neuronal cells; organelles were rare. EGC was in close contact with other cells in their vicinity. These findings suggest that EGC is well-situated to exert influence on intestinal motility and immune functions through mechanical contraction and chemical secretion.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Fenghua Qi
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jie Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chunsheng Xu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
2
|
Nguyen HS, Kang SJ, Kim S, Cha BH, Park KS, Jeong SW. Changes in the expression of satellite glial cell-specific markers during postnatal development of rat sympathetic ganglia. Brain Res 2024; 1829:148809. [PMID: 38354998 DOI: 10.1016/j.brainres.2024.148809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The sympathetic ganglia represent a final motor pathway that mediates homeostatic "fight and flight" responses in the visceral organs. Satellite glial cells (SGCs) form a thin envelope close to the neuronal cell body and synapses in the sympathetic ganglia. This unique morphological feature suggests that neurons and SGCs form functional units for regulation of sympathetic output. In the present study, we addressed whether SGC-specific markers undergo age-dependent changes in the postnatal development of rat sympathetic ganglia. We found that fatty acid-binding protein 7 (FABP7) is an early SGC marker, whereas the S100B calcium-binding protein, inwardly rectifying potassium channel, Kir4.1 and small conductance calcium-activated potassium channel, SK3 are late SGC markers in the postnatal development of sympathetic ganglia. Unlike in sensory ganglia, FABP7 + SGC was barely detectable in adult sympathetic ganglia. The expression of connexin 43, a gap junction channel gradually increased with age, although it was detected in both SGCs and neurons in sympathetic ganglia. Glutamine synthetase was expressed in sensory, but not sympathetic SGCs. Unexpectedly, the sympathetic SGCs expressed a water-selective channel, aquaporin 1 instead of aquaporin 4, a pan-glial marker. However, aquaporin 1 was not detected in the SGCs encircling large neurons. Nerve injury and inflammation induced the upregulation of glial fibrillary acidic protein, suggesting that this protein is a hall marker of glial activation in the sympathetic ganglia. In conclusion, our findings provide basic information on the in vivo profiles of specific markers for identifying sympathetic SGCs at different stages of postnatal development in both healthy and diseased states.
Collapse
Affiliation(s)
- Huu Son Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Jun Kang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Byung Ho Cha
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong-Woo Jeong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
3
|
Lu T, Huang C, Weng R, Wang Z, Sun H, Ma X. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats. Heliyon 2024; 10:e24899. [PMID: 38317901 PMCID: PMC10838753 DOI: 10.1016/j.heliyon.2024.e24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Emerging evidence has demonstrated the impact of psychological stress on intestinal microbiota, however, the precise mechanisms are not fully understood. Enteric glia, a unique type of peripheral glia found within the enteric nervous system (ENS), play an active role in enteric neural circuits and have profound effects on gut functions. In the present study, we tested the hypothesis that enteric glia are involved in the alterations in the intestinal microflora and barrier induced by chronic water-avoidance stress (WAS) in the gut. Methods and results Western blotting and immunohistochemical (IHC) staining were used to examine the expression of glial fibrillary acidic protein (GFAP), nitric oxide synthetase (NOS) and choline acety1transferase (ChAT) in colon tissues. 16S rDNA sequencing was performed to analyse the composition of the intestinal microbiota in rats. Changes in the tight junction proteins Occludin, Claudin1 and proliferating cell nuclear antigen (PCNA) in the colon tissues were detected after WAS. The abundance of Firmicutes, Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136 decreased significantly, whereas the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenellaceae-R-7 increased significantly in stressed rats. Meanwhile, the expression of Occludin, Claudin1 and PCNA significantly decreased after WAS. Treatment with L-A-aminohexanedioic acid (L-AA), a gliotoxin that blunts astrocytic function, obviously decreased the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenel-laceae_R-7 in stressed rats and significantly increased the abundance of Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136. In addition, the protein expression of colon Occludin, Claudin1, and PCNA increased after intraperitoneal injection of L-AA. Furthermore, the expression level of NOS in colon tissues was significantly decreased, whereas that of ChAT was significantly increased following L-AA treatment. Conclusions Our results showed that enteric glial cells may contribute to WAS-induced changes in the intestinal microbiota and barrier function by modulating the activity of NOS and cholinergic neurones in the ENS.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Rongxin Weng
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
4
|
Jacobs-Li J, Tang W, Li C, Bronner ME. Single-cell profiling coupled with lineage analysis reveals vagal and sacral neural crest contributions to the developing enteric nervous system. eLife 2023; 12:e79156. [PMID: 37877560 PMCID: PMC10627514 DOI: 10.7554/elife.79156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
During development, much of the enteric nervous system (ENS) arises from the vagal neural crest that emerges from the caudal hindbrain and colonizes the entire gastrointestinal tract. However, a second ENS contribution comes from the sacral neural crest that arises in the caudal neural tube and populates the post-umbilical gut. By coupling single-cell transcriptomics with axial-level-specific lineage tracing in avian embryos, we compared the contributions of embryonic vagal and sacral neural crest cells to the chick ENS and the associated peripheral ganglia (Nerve of Remak and pelvic plexuses). At embryonic day (E) 10, the two neural crest populations form overlapping subsets of neuronal and glia cell types. Surprisingly, the post-umbilical vagal neural crest much more closely resembles the sacral neural crest than the pre-umbilical vagal neural crest. However, some differences in cluster types were noted between vagal and sacral derived cells. Notably, RNA trajectory analysis suggests that the vagal neural crest maintains a neuronal/glial progenitor pool, whereas this cluster is depleted in the E10 sacral neural crest which instead has numerous enteric glia. The present findings reveal sacral neural crest contributions to the hindgut and associated peripheral ganglia and highlight the potential influence of the local environment and/or developmental timing in differentiation of neural crest-derived cells in the developing ENS.
Collapse
Affiliation(s)
- Jessica Jacobs-Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Can Li
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
5
|
Machado FA, Souza RF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Effects of experimental ulcerative colitis on myenteric neurons in P2X7-knockout mice. Histochem Cell Biol 2023; 160:321-339. [PMID: 37306742 DOI: 10.1007/s00418-023-02208-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.
Collapse
Affiliation(s)
- Felipe Alexandre Machado
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
6
|
Zhang W, Xie Y, Wang Y, Liu F, Wang L, Lian Y, Liu H, Wang C, Xie N. Clinical characteristics and prognostic factors for short-term outcomes of autoimmune glial fibrillary acidic protein astrocytopathy: a retrospective analysis of 33 patients. Front Immunol 2023; 14:1136955. [PMID: 37350972 PMCID: PMC10282742 DOI: 10.3389/fimmu.2023.1136955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Background Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A) is a recently discovered inflammatory central nervous system (CNS) disease, whose clinical characteristics and prognostic factors for short-term outcomes have not been defined yet. We aimed to assess the symptoms, laboratory tests, imaging findings, treatment, and short-term prognosis of GFAP-A. Methods A double-center retrospective cohort study was performed between May 2018 and July 2022. The clinical characteristics and prognostic factors for short-term outcomes were determined. Results We enrolled 33 patients with a median age of 28 years (range: 2-68 years), 15 of whom were children (<18 years). The clinical spectrum is dominated by meningoencephalomyelitis. Besides, we also found nausea, vomiting, poor appetite, and neuropathic pain in some GFAP-A patients, which were not mentioned in previous reports. And adults were more prone to limb numbness than children. Magnetic resonance imaging revealed lesions involving the brain parenchyma, meninges, and spinal cord, exhibiting patchy, linear, punctate, and strip T2 hyperintensities. First-line immunotherapy, including corticosteroid and gamma globulin, was effective in most patients in the acute phase (P = 0.02). However, patients with overlapping AQP4 antibodies did not respond well to first-line immunotherapy and coexisting neural autoantibodies were more common in women. Additionally, the short-term prognosis was significantly better in children than in adults (P = 0.04). Positive non-neural autoantibodies and proven viral infection were independent factors associated with poor outcomes (P = 0.03, 0.02, respectively). Conclusion We expanded the spectrum of clinical symptoms of autoimmune GFAP-A. The clinical symptoms and short-term prognosis differed between children and adults. Positive non-neural autoantibodies and proven viral infection at admission suggest a poor short-term prognosis.
Collapse
Affiliation(s)
- Wanwan Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Xie
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yali Wang
- Department of Neurology, Henan Children’s Hospital, Zhengzhou, China
| | - Fengxia Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Neurology, Henan Children’s Hospital, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nanchang Xie
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
8
|
McGinnis A, Ji RR. The Similar and Distinct Roles of Satellite Glial Cells and Spinal Astrocytes in Neuropathic Pain. Cells 2023; 12:965. [PMID: 36980304 PMCID: PMC10047571 DOI: 10.3390/cells12060965] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Preclinical studies have identified glial cells as pivotal players in the genesis and maintenance of neuropathic pain after nerve injury associated with diabetes, chemotherapy, major surgeries, and virus infections. Satellite glial cells (SGCs) in the dorsal root and trigeminal ganglia of the peripheral nervous system (PNS) and astrocytes in the central nervous system (CNS) express similar molecular markers and are protective under physiological conditions. They also serve similar functions in the genesis and maintenance of neuropathic pain, downregulating some of their homeostatic functions and driving pro-inflammatory neuro-glial interactions in the PNS and CNS, i.e., "gliopathy". However, the role of SGCs in neuropathic pain is not simply as "peripheral astrocytes". We delineate how these peripheral and central glia participate in neuropathic pain by producing different mediators, engaging different parts of neurons, and becoming active at different stages following nerve injury. Finally, we highlight the recent findings that SGCs are enriched with proteins related to fatty acid metabolism and signaling such as Apo-E, FABP7, and LPAR1. Targeting SGCs and astrocytes may lead to novel therapeutics for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Baidoo N, Sanger GJ, Belai A. Effect of old age on the subpopulations of enteric glial cells in human descending colon. Glia 2023; 71:305-316. [PMID: 36128665 PMCID: PMC10087700 DOI: 10.1002/glia.24272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Old age is associated with a higher incidence of lower bowel conditions such as constipation. Recent evidence suggest that colonic motility may be influenced by enteric glial cells (EGCs). Little is known about the effect of aging on the subpopulation of EGCs in the human colon. We assessed and compared the pattern of distribution of EGCs in adult and elderly human colon. Human descending colon were obtained from 23 cancer patients comprising of adults (23-63 years; 6 male, 7 female) and elderly (66-81 year; 6 male, 4 female). Specimens were serially-sectioned and immunolabeled with anti-Sox-10, anti-S100 and anti-GFAP for morphometric analysis. Standardized procedures were utilized to ensure unbiased counting and densitometric evaluation of EGCs. The number of Sox-10 immunoreactive (IR) EGCs were unaltered with age in both the myenteric plexus (MP) (respectively, in adult and elderly patients, 1939 ± 82 and 1760 ± 44/mm length; p > .05) and submucosal plexus; there were no apparent differences between adult males and females. The density of S100-IR EGCs declined among the elderly in the circular muscle and within the MP per ganglionic area. In the adult colon, there were more S100-IR EGCs distributed in the circular muscle per unit area than the Taenia coli. There was little or no GFAP-IR EGCs in both adult and elderly colon. We concluded that aging of the human descending colon does not result in a loss of Sox-10-IR EGCs in the MP and SMP but reduces S100-IR EGCs density within the musculature. This alteration in myenteric EGCs density with age may contribute to colonic dysfunction.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Abi Belai
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
10
|
Mendes CE, Palombit K, Alves Pereira TT, Riceti Magalhães HI, Ferreira Caetano MA, Castelucci P. Effects of probenecid and brilliant blue G on rat enteric glial cells following intestinal ischemia and reperfusion. Acta Histochem 2023; 125:151985. [PMID: 36495673 DOI: 10.1016/j.acthis.2022.151985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The P2X7 receptor participates in several intracellular events and acts with the pannexin-1 channel. This study examined the effects of probenecid (PB) and brilliant blue G (BBG), which are antagonists of the pannexin-1 channel and P2X7 receptor, respectively, on rat ileum enteric glial cells after on ischemia and reperfusion. The ileal vessels were occluded for 45 min with nontraumatic vascular tweezers, and reperfusion was performed for periods of 24 h and 14 and 28 days. After ischemia (IR groups), the animals were treated with BBG (BG group) or PB (PB group). The double-labeling results demonstrated the following: the P2X7 receptor was present in enteric glial cells (S100β) and enteric neurons positive for HuC/D; enteric glial cells exhibited different phenotypes; some enteric glial cells were immunoreactive to only S100β or GFAP; and the pannexin-1 channel was present in enteric glial cells (GFAP). Density (in cells/cm2) analyses showed that the IR group exhibited a decrease in the number of cells immunoreactive for the P2X7 receptor, pannexin-1, and HuC/D and that treatment with BBG or PB resulted in the recovery of the numbers of these cells. The number of glial cells (S100β and GFAP) was higher in the IR group, and the treatments decreased the number of these cells to the normal value. However, the PB group did not exhibit recovery of S100β-positive glia. The cell profile area (μm2) of S100β-positive enteric glial cells decreased to the normal value after BBG treatment, whereas no recovery was observed in the PB group. The ileum contractile activity was decreased in the IR group and returned to baseline in the BG and PB groups. BBG and PB can effectively induce the recovery of neurons and glia cells and are thus potential therapeutic agents in the treatment of gastrointestinal tract diseases.
Collapse
Affiliation(s)
| | - Kelly Palombit
- Department of Morphology, University Federal of Piaui, Brazil
| | | | | | | | | |
Collapse
|
11
|
Zanoletti L, Valdata A, Nehlsen K, Faris P, Casali C, Cacciatore R, Sbarsi I, Carriero F, Arfini D, van Baarle L, De Simone V, Barbieri G, Raimondi E, May T, Moccia F, Bozzola M, Matteoli G, Comincini S, Manai F. Cytological, molecular, cytogenetic, and physiological characterization of a novel immortalized human enteric glial cell line. Front Cell Neurosci 2023; 17:1170309. [PMID: 37153631 PMCID: PMC10158601 DOI: 10.3389/fncel.2023.1170309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Enteric glial cells (EGCs), the major components of the enteric nervous system (ENS), are implicated in the maintenance of gut homeostasis, thereby leading to severe pathological conditions when impaired. However, due to technical difficulties associated with EGCs isolation and cell culture maintenance that results in a lack of valuable in vitro models, their roles in physiological and pathological contexts have been poorly investigated so far. To this aim, we developed for the first time, a human immortalized EGC line (referred as ClK clone) through a validated lentiviral transgene protocol. As a result, ClK phenotypic glial features were confirmed by morphological and molecular evaluations, also providing the consensus karyotype and finely mapping the chromosomal rearrangements as well as HLA-related genotypes. Lastly, we investigated the ATP- and acetylcholine, serotonin and glutamate neurotransmitters mediated intracellular Ca2+ signaling activation and the response of EGCs markers (GFAP, SOX10, S100β, PLP1, and CCL2) upon inflammatory stimuli, further confirming the glial nature of the analyzed cells. Overall, this contribution provided a novel potential in vitro tool to finely characterize the EGCs behavior under physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Lisa Zanoletti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Aurora Valdata
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Pawan Faris
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Claudio Casali
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Rosalia Cacciatore
- Immunohematology and Transfusion Service, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Ilaria Sbarsi
- Immunohematology and Transfusion Service, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Francesca Carriero
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Davide Arfini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Veronica De Simone
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Giulia Barbieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Francesco Moccia
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Sergio Comincini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Federico Manai,
| |
Collapse
|
12
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
13
|
de Guilhem de Lataillade A, Caillaud M, Oullier T, Naveilhan P, Pellegrini C, Tolosa E, Neunlist M, Rolli-Derkinderen M, Gelpi E, Derkinderen P. LRRK2 expression in normal and pathologic human gut and in rodent enteric neural cell lines. J Neurochem 2023; 164:193-209. [PMID: 36219522 DOI: 10.1111/jnc.15704] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 02/04/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results. Herein, we propose to extend these findings by studying in more details LRRK2 expression in the ENS. LRRK2 expression was evaluated in full thickness segments of colon of 16 Lewy body, 12 non-Lewy body disorders cases, and 3 non-neurodegenerative controls and in various enteric neural cell lines. We showed that, in addition to enteric neurons, LRRK2 is constitutively expressed in enteric glial cells in both fetal and adult tissues. LRRK2 immunofluorescence intensity in the myenteric ganglia was not different between Lewy body and non-Lewy body disorders. Additionally, we identified the cAMP pathway as a key signaling pathway involved in the regulation of LRRK2 expression and phosphorylation in the enteric glial cells. Our study is the first detailed characterization of LRRK2 in the ENS and the first to show that enteric glial cells express LRRK2. Our findings provide a basis to unravel the functions of LRRK2 in the ENS and to further investigate the pathological changes in enteric synucleinopathies.
Collapse
Affiliation(s)
| | - Martial Caillaud
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Thibauld Oullier
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eduardo Tolosa
- Parkinson disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Michel Neunlist
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pascal Derkinderen
- Nantes Université, CHU Nantes, INSERM, The enteric nervous system in gut and brain disorders, Nantes, France
| |
Collapse
|
14
|
Shi CJ, Lian JJ, Zhang BW, Cha JX, Hua QH, Pi XP, Hou YJ, Xie X, Zhang R. TGFβR-1/ALK5 inhibitor RepSox induces enteric glia-to-neuron transition and influences gastrointestinal mobility in adult mice. Acta Pharmacol Sin 2023; 44:92-104. [PMID: 35794374 DOI: 10.1038/s41401-022-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Promoting adult neurogenesis in the enteric nervous system (ENS) may be a potential therapeutic approach to cure enteric neuropathies. Enteric glial cells (EGCs) are the most abundant glial cells in the ENS. Accumulating evidence suggests that EGCs can be a complementary source to supply new neurons during adult neurogenesis in the ENS. In the brain, astrocytes have been intensively studied for their neuronal conversion properties, and small molecules have been successfully used to induce the astrocyte-to-neuron transition. However, research on glia-to-neuron conversion in the ENS is still lacking. In this study, we used GFAP-Cre:Rosa-tdTomato mice to trace glia-to-neuron transdifferentiation in the ENS in vivo and in vitro. We showed that GFAP promoter-driven tdTomato exclusively labelled EGCs and was a suitable marker to trace EGCs and their progeny cells in the ENS of adult mice. Interestingly, we discovered that RepSox or other ALK5 inhibitors alone induced efficient transdifferentiation of EGCs into neurons in vitro. Knockdown of ALK5 further confirmed that the TGFβR-1/ALK5 signalling pathway played an essential role in the transition of EGCs to neurons. RepSox-induced neurons were Calbindin- and nNOS-positive and displayed typical neuronal electrophysiological properties. Finally, we showed that administration of RepSox (3, 10 mg· kg-1 ·d-1, i.g.) for 2 weeks significantly promoted the conversion of EGCs to neurons in the ENS and influenced gastrointestinal motility in adult mice. This study provides a method for efficiently converting adult mouse EGCs into neurons by small-molecule compounds, which might be a promising therapeutic strategy for gastrointestinal neuropathy.
Collapse
Affiliation(s)
- Chang-Jie Shi
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun-Jiang Lian
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo-Wen Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jia-Xue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiu-Hong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiao-Ping Pi
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Jun Hou
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
15
|
Cheng B, Du M, He S, Yang L, Wang X, Gao H, Chang H, Gao W, Li Y, Wang Q, Li Y. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol Med 2022; 28:137. [PMID: 36401163 PMCID: PMC9673322 DOI: 10.1186/s10020-022-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6877002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1β while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
16
|
Cheng B, Du M, He S, Yang L, Wang X, Gao H, Chang H, Gao W, Li Y, Wang Q, Li Y. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol Med 2022; 28:127. [PMID: 36303116 PMCID: PMC9615156 DOI: 10.1186/s10020-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6,877,002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1β while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
17
|
The Enteric Glia and Its Modulation by the Endocannabinoid System, a New Target for Cannabinoid-Based Nutraceuticals? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196773. [PMID: 36235308 PMCID: PMC9570628 DOI: 10.3390/molecules27196773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.
Collapse
|
18
|
Rana R, Huirem RS, Kant R, Chauhan K, Sharma S, Yashavarddhan MH, Chhabra SS, Acharya R, Kalra SK, Gupta A, Jain S, Ganguly NK. Cytochrome C as a potential clinical marker for diagnosis and treatment of glioma. Front Oncol 2022; 12:960787. [PMID: 36176404 PMCID: PMC9513483 DOI: 10.3389/fonc.2022.960787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most prevalent kind of malignant and severe brain cancer. Apoptosis regulating mechanisms are disturbed in malignant gliomas, as they are in added forms of malignancy. Understanding apoptosis and other associated processes are thought to be critical for understanding the origins of malignant tumors and designing anti-cancerous drugs for the treatment. The purpose of this study was to evaluate the variation in the expression level of several apoptotic proteins that are responsible for apoptosis in low to high-grade glioma. This suggests a significant change in the expression of five apoptotic proteins: Clusterin, HSP27, Catalase, Cytochrome C, and SMAC. Cytochrome C, one of the five substantially altered proteins, is a crucial component of the apoptotic cascade. The complex enzyme Cytochrome C is involved in metabolic pathways such as respiration and cell death. The results demonstrated that Cytochrome C expression levels are lower in glioma tissues than in normal tissues. What’s more intriguing is that the expression level decreases with an increase in glioma grades. As a result, the discovery shows that Cytochrome C may be a target for glioma prognostic biomarkers.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
- *Correspondence: Rashmi Rana, ;
| | | | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Kirti Chauhan
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | | | - Rajesh Acharya
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Samir Kumar Kalra
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Anshul Gupta
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunila Jain
- Department of Histopathology, Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
19
|
Yang H, Su Y, Sun Z, Ma B, Liu F, Kong Y, Sun C, Li B, Sang Y, Wang S, Li G, Qiu J, Liu C, Geng Z, Liu H. Gold Nanostrip Array-Mediated Wireless Electrical Stimulation for Accelerating Functional Neuronal Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202376. [PMID: 35618610 PMCID: PMC9353484 DOI: 10.1002/advs.202202376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 05/27/2023]
Abstract
Neural stem cell (NSC)-based therapy holds great promise for the treatment of neurodegenerative diseases. Presently, however, it is hindered by poor functional neuronal differentiation. Electrical stimulation is considered one of the most effective ways to promote neuronal differentiation of NSCs. In addition to surgically implanted electrodes, traditional electrical stimulation includes wires connected to the external power supply, and an additional surgery is required to remove the electrodes or wires following stimulation, which may cause secondary injuries and infections. Herein, a novel method is reported for generation of wireless electrical signals on an Au nanostrip array by leveraging the effect of electromagnetic induction under a rotating magnetic field. The intensity of the generated electrical signals depends on the rotation speed and magnetic field strength. The Au nanostrip array-mediated electric stimulation promotes NSC differentiation into mature neurons within 5 days, at the mRNA, protein, and function levels. The rate of differentiation is faster by at least 5 days than that in cells without treatment. The Au nanostrip array-based wireless device also accelerates neuronal differentiation of NSCs in vivo. The novel method to accelerate the neuronal differentiation of NSCs has the advantages of wireless, timely, localized and precise controllability, and noninvasive power supplementation.
Collapse
Affiliation(s)
- Hongru Yang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Yue Su
- State Key Laboratory of Integrated OptoelectronicsInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Baojin Ma
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Ying Kong
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| | - Boyan Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Gang Li
- Department of Neurosurgery Qilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandong250012P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial SurgeryQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Zhaoxin Geng
- School of Information EngineeringMinzu University of ChinaBeijing100081P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
- Institute for Advanced Interdisciplinary ResearchUniversity of JinanJinanShandong250022P. R. China
| |
Collapse
|
20
|
Progatzky F, Pachnis V. The role of enteric glia in intestinal immunity. Curr Opin Immunol 2022; 77:102183. [DOI: 10.1016/j.coi.2022.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
|
21
|
Kapur RP, Tisoncik-Go J, Gale M. Myelin Protein Zero Immunohistochemistry Is Not a Reliable Marker of Extrinsic Mucosal Innervation in Patients With Hirschsprung Disease. Pediatr Dev Pathol 2022; 25:388-396. [PMID: 34904460 DOI: 10.1177/10935266211059395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Innervation of aganglionic rectum in Hirschsprung disease derives from extrinsic nerves which project from cell bodies located outside the bowel wall and markers that distinguish extrinsic from intrinsic innervation are diagnostically useful. Myelin protein zero (MPZ) is a putative marker of extrinsic glial cells which could distinguish mucosal innervation in aganglionic vs ganglionic colon. METHODS Sections and protein blots from ganglionic and aganglionic colon were immunolabeled with MPZ-specific antibodies. RESULTS Immunolabeling of MPZ with a chicken polyclonal or mouse monoclonal antibody confirmed glial specificity and reliably labeled hypertrophic submucosal nerves in Hirschsprung disease. In contrast, a rabbit polyclonal antibody strongly labeled extrinsic and intrinsic nerves, including most mucosal branches. Immunoblots showed MPZ is expressed in mucosal glial cells, albeit at lower levels than in extrinsic nerves, and that the rabbit antibody is more sensitive that the other two probes. Unfortunately, none of these antibodies consistently distinguished mucosal innervation in aganglionic vs ganglionic rectum. CONCLUSIONS The results suggest that (a) glial cell myelin protein zero expression is influenced more by location (mucosa vs submucosa) than the extrinsic vs intrinsic origin of the accompanied nerves and (b) myelin protein zero immunohistochemistry has limited value as a diagnostic adjunct for Hirschsprung disease.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Laboratory Medicine and Pathology, 7274Seattle Children's Hospital and the University of Washington, Seattle, WA, USA
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, 7284University of Washington, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, 7284University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
23
|
Enteric glia: extent, cohesion, axonal contacts, membrane separations and mitochondria in Auerbach's ganglia of guinea pigs. Cell Tissue Res 2022; 389:409-426. [PMID: 35729372 PMCID: PMC9436829 DOI: 10.1007/s00441-022-03656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Studied by electron microscopy and morphometry, Auerbach’s ganglia comprise nerve cell bodies that occupy ~ 40% of volume; of the neuropil, little over 30% is neural processes (axons, dendrites) and little less than 30% is glia (cell bodies, processes). The amount of surface membrane of neural elements only marginally exceeds that of glia. Glial cells extend laminar processes radially between axons, reaching the ganglion’s surface with specialized membrane domains. Nerve cells and glia are tightly associated, eliminating any free space in ganglia. Glia expands maximally its cell membrane with a minimum of cytoplasm, contacting a maximal number of axons, which, with their near-circular profile, have minimal surface for a given volume. Shape of glia is moulded by the neural elements (predominantly concave the first, predominantly convex the second); the glia extends its processes to maximize contact with neural elements. Yet, a majority of axons is not reached by glia and only few are wrapped by it. Despite the large number of cells, the glia is not sufficiently developed to wrap around or just contact many of the neural elements. Mitochondria are markedly fewer in glia than in neurons, indicating a lower metabolic rate. Compactness of ganglia, their near-circular profile, absence of spaces between elements and ability to withstand extensive deformation suggest strong adhesion between the cellular elements, holding them together and keeping them at a fixed distance. Many axonal varicosities, with vesicles and membrane densities, abut on non-specialized areas of glia, suggesting the possibility of neurotransmitters being released outside synaptic sites.
Collapse
|
24
|
Palanisamy BN, Sarkar S, Malovic E, Samidurai M, Charli A, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Environmental neurotoxic pesticide exposure induces gut inflammation and enteric neuronal degeneration by impairing enteric glial mitochondrial function in pesticide models of Parkinson's disease: Potential relevance to gut-brain axis inflammation in Parkinson's disease pathogenesis. Int J Biochem Cell Biol 2022; 147:106225. [PMID: 35550926 PMCID: PMC10411482 DOI: 10.1016/j.biocel.2022.106225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
Despite the growing recognition that gastrointestinal (GI) dysfunction is prevalent in Parkinson's disease (PD) and occurs as a major prodromal symptom of PD, its cellular and molecular mechanisms remain largely unknown. Among the various types of GI cells, enteric glial cells (EGCs), which resemble astrocytes in structure and function, play a critical role in the pathophysiology of many GI diseases including PD. Thus, we investigated how EGCs respond to the environmental pesticides rotenone (Rot) and tebufenpyrad (Tebu) in cell and animal models to better understand the mechanism underlying GI abnormalities. Both Rot and Tebu induce dopaminergic neuronal cell death through complex 1 inhibition of the mitochondrial respiratory chain. We report that exposing a rat enteric glial cell model (CRL-2690 cells) to these pesticides increased mitochondrial fission and reduced mitochondrial fusion by impairing MFN2 function. Furthermore, they also increased mitochondrial superoxide generation and impaired mitochondrial ATP levels and basal respiratory rate. Measurement of LC3, p62 and lysosomal assays revealed impaired autolysosomal function in ECGs during mitochondrial stress. Consistent with our recent findings that mitochondrial dysfunction augments inflammation in astrocytes and microglia, we found that neurotoxic pesticide exposure also enhanced the production of pro-inflammatory factors in EGCs in direct correlation with the loss in mitochondrial mass. Finally, we show that pesticide-induced mitochondrial defects functionally impaired smooth muscle velocity, acceleration, and total kinetic energy in a mixed primary culture of the enteric nervous system (ENS). Collectively, our studies demonstrate for the first time that exposure to environmental neurotoxic pesticides impairs mitochondrial bioenergetics and activates inflammatory pathways in EGCs, further augmenting mitochondrial dysfunction and pro-inflammatory events to induce gut dysfunction. Our findings have major implications in understanding the GI-related pathogenesis and progression of environmentally linked PD.
Collapse
Affiliation(s)
- Bharathi N Palanisamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; Brigham and Women's Hospital, Harvard Medical School, USA
| | - Emir Malovic
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Manikandan Samidurai
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; Charles River Laboratories International, Inc., USA
| | - Gary Zenitsky
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; Center for Brain Sciences and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, GA 30602, USA
| | - Huajun Jin
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; Center for Brain Sciences and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, GA 30602, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; Center for Brain Sciences and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, GA 30602, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; Center for Brain Sciences and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, GA 30602, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; Center for Brain Sciences and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, GA 30602, USA.
| |
Collapse
|
25
|
Lee H, Park JH, Kim H, Woo SK, Choi JY, Lee KH, Choe YS. Synthesis and Evaluation of a 18F-Labeled Ligand for PET Imaging of Colony-Stimulating Factor 1 Receptor. Pharmaceuticals (Basel) 2022; 15:ph15030276. [PMID: 35337075 PMCID: PMC8954204 DOI: 10.3390/ph15030276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Neuroinflammation involves activation of glial cells in the brain, and activated microglia play a particularly important role in neurodegenerative diseases such as Alzheimer’s disease (AD). In this study, we developed 5-cyano-N-(4-(4-(2-[18F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]1) for PET imaging of colony-stimulating factor 1 receptor (CSF1R), an emerging target for neuroinflammation imaging. Non-radioactive ligand 1 exhibited binding affinity comparable to that of a known CSF1R inhibitor, 5-cyano-N-(4-(4-methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (CPPC). Therefore, we synthesized radioligand [18F]1 by radiofluorination of chlorine-substituted precursor 7 in 13–15% decay-corrected radiochemical yield. Dynamic PET/CT images showed higher uptake in the lipopolysaccharide (LPS)-treated mouse brain than in control mouse brain. Ex vivo biodistribution study conducted at 45 min after radioligand injection showed that the brain uptake in LPS mice increased by 78% compared to that of control mice and was inhibited by 22% in LPS mice pretreated with CPPC, indicating specificity of [18F]1 for CSF1R. A metabolism study demonstrated that the radioligand underwent little metabolism in the mouse brain. Taken together, these results suggest that [18F]1 may hold promise as a radioligand for CSF1R imaging.
Collapse
Affiliation(s)
- Hyeokjin Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Ji-Hun Park
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Hyunjung Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Sang-keun Woo
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.L.); (J.-H.P.); (H.K.); (J.Y.C.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Correspondence:
| |
Collapse
|
26
|
Vellosillo L, Pascual-Guerra J, Muñoz MP, Rodríguez-Navarro JA, González-Nieto D, Barrio LC, Lobo MDVT, Paíno CL. Oligodendroglia Generated From Adult Rat Adipose Tissue by Direct Cell Conversion. Front Cell Dev Biol 2022; 10:741499. [PMID: 35223826 PMCID: PMC8873586 DOI: 10.3389/fcell.2022.741499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Obtaining oligodendroglial cells from dispensable tissues would be of great interest for autologous or immunocompatible cell replacement therapy in demyelinating diseases, as well as for studying myelin-related pathologies or testing therapeutic approaches in culture. We evaluated the feasibility of generating oligodendrocyte precursor cells (OPCs) from adult rat adipose tissue by expressing genes encoding transcription factors involved in oligodendroglial development. Adipose-derived mesenchymal cells were lentivirally transduced with tetracycline-inducible Sox10, Olig2, Zfp536, and/or Nkx6.1 transgenes. Immunostaining with the OPC-specific O4 monoclonal antibody was used to mark oligodendroglial induction. O4- and myelin-associated glycoprotein (MAG)-positive cells emerged after 3 weeks when using the Sox10 + Olig2 + Zfp536 combination, followed in the ensuing weeks by GFAP-, O1 antigen-, p75NTR (low-affinity NGF receptor)-, and myelin proteins-positive cells. The O4+ cell population progressively expanded, eventually constituting more than 70% of cells in culture by 5 months. Sox10 transgene expression was essential for generating O4+ cells but was insufficient for inducing a full oligodendroglial phenotype. Converted cells required continuous transgene expression to maintain their glial phenotype. Some vestigial characteristics of mesenchymal cells were maintained after conversion. Growth factor withdrawal and triiodothyronine (T3) supplementation generated mature oligodendroglial phenotypes, while FBS supplementation produced GFAP+- and p75NTR+-rich cultures. Converted cells also showed functional characteristics of neural-derived OPCs, such as the expression of AMPA, NMDA, kainate, and dopaminergic receptors, as well as similar metabolic responses to differentiation-inducing drugs. When co-cultured with rat dorsal root ganglion neurons, the converted cells differentiated and ensheathed multiple axons. We propose that functional oligodendroglia can be efficiently generated from adult rat mesenchymal cells by direct phenotypic conversion.
Collapse
Affiliation(s)
- Lara Vellosillo
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Center for Biomedical Technology (CTB), Universidad Politécnica, Madrid, Spain
| | - Jorge Pascual-Guerra
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Maria Paz Muñoz
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Antonio Rodríguez-Navarro
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | | | - Luis Carlos Barrio
- Unidad de Neurología Experimental, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Maria del Val Toledo Lobo
- Departamento de Biomedicina y Biotecnología, IRYCIS, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Carlos Luis Paíno
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Center for Biomedical Technology (CTB), Universidad Politécnica, Madrid, Spain
- *Correspondence: Carlos Luis Paíno,
| |
Collapse
|
27
|
Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front Cell Dev Biol 2022; 9:775102. [PMID: 35111752 PMCID: PMC8801887 DOI: 10.3389/fcell.2021.775102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Amelia Nash
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kinga R. Tasnády
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, Taiwan
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Turek-Jakubowska A, Dębski J, Jakubowski M, Szahidewicz-Krupska E, Gawryś J, Gawryś K, Janus A, Trocha M, Doroszko A. New Candidates for Biomarkers and Drug Targets of Ischemic Stroke-A First Dynamic LC-MS Human Serum Proteomic Study. J Clin Med 2022; 11:jcm11020339. [PMID: 35054033 PMCID: PMC8780942 DOI: 10.3390/jcm11020339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: The aim of this dynamic-LC/MS-human-serum-proteomic-study was to identify potential proteins-candidates for biomarkers of acute ischemic stroke, their changes during acute phase of stroke and to define potential novel drug-targets. (2) Methods: A total of 32 patients (29–80 years) with acute ischemic stroke were enrolled to the study. The control group constituted 29 demographically-matched volunteers. Subjects with stroke presented clinical symptoms lasting no longer than 24 h, confirmed by neurological-examination and/or new cerebral ischemia visualized in the CT scans (computed tomography). The analysis of plasma proteome was performed using LC-MS (liquid chromatography–mass spectrometry). (3) Results: Ten proteins with significantly different serum concentrations between groups volunteers were: complement-factor-B, apolipoprotein-A-I, fibronectin, alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, heat-shock-cognate-71kDa protein/heat-shock-related-70kDa-protein-2, thymidine phosphorylase-2, cytoplasmic-tryptophan-tRNA-ligase, ficolin-2, beta-Ala-His-dipeptidase. (4) Conclusions: This is the first dynamic LC-MS study performed on a clinical model which differentiates serum proteome of patients in acute phase of ischemic stroke in time series and compares to control group. Listed proteins should be considered as risk factors, markers of ischemic stroke or potential therapeutic targets. Further clinical validation might define their exact role in differential diagnostics, monitoring the course of the ischemic stroke or specifying them as novel drug targets.
Collapse
Affiliation(s)
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland;
| | - Maciej Jakubowski
- Lower Silesian Centre for Lung Diseases, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Jakub Gawryś
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Karolina Gawryś
- Department of Neurology, 4th Military Hospital, Weigla 5, 50-556 Wroclaw, Poland; (A.T.-J.); (K.G.)
| | - Agnieszka Janus
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Małgorzata Trocha
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicz-Radecki 2, 50-349 Wroclaw, Poland;
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
- Correspondence: ; Tel.: +48-71-736-4000
| |
Collapse
|
29
|
Enteric Glia and Enteric Neurons, Associated. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:179-190. [PMID: 36587157 DOI: 10.1007/978-3-031-05843-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peripheral neurons are never found alone and are invariably accompanied by glial cells, with which they are intimately associated in compact, highly deformable structures.Myenteric ganglia of the guinea-pig, examined in situ by electron microscopy, show that in their neuropil (axons and dendrites, and glial cells and processes) the glia constitutes almost half of the volume and almost half of membrane extent.In the glia, the expanse of the cell membrane predominates over that of their cytoplasm, the opposite being the case with the neural elements.The profile of the glial elements is passive and is dictated by the surrounding elements, mainly the axons, and hence it is predominantly concave.The enteric glia is widely developed; however, it is not sufficient to form a full wrapping around all neurons and around all axons (unlike what is found in other autonomic ganglia).Glial processes are radially expanding laminae, irregularly tapering, branching, and penetrating between axons.Some processes have a specialized termination attached to the basal lamina of the ganglion.Mitochondria are markedly more abundant in neural element that in the glia (up to a factor of 2).Many expanded axons, laden with vesicles clustered beneath membrane sites, abut on glial cells and processes, while these show no matching structural specializations.
Collapse
|
30
|
Derkinderen P, Cossais F, de Guilhem de Lataillade A, Leclair-Visonneau L, Neunlist M, Paillusson S, De Giorgio R. Gastrointestinal mucosal biopsies in Parkinson's disease: beyond alpha-synuclein detection. J Neural Transm (Vienna) 2021; 129:1095-1103. [PMID: 34816335 DOI: 10.1007/s00702-021-02445-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
Alpha-synuclein deposits, the pathological hallmarks of Parkinson's disease, are consistently found in the gastrointestinal tract of parkinsonian subjects. These observations have raised the potential that endoscopically obtainable mucosal biopsies can aid to a molecular diagnosis of the disease. The possible usefulness of mucosal biopsies is, however, not limited to the detection of alpha-synuclein, but also extends to other essential aspects underlying pathophysiological mechanisms of gastrointestinal manifestations in Parkinson's disease. The aim of the current review is to provide an appraisal of the existing studies showing that gastrointestinal biopsies can be used for the analysis of enteric neuronal and glial cell morphology, intestinal epithelial barrier function, and gastrointestinal inflammation in Parkinson's disease. A perspective on the generation of organoids with GI biopsies and the potential use of single-cell and spatial transcriptomic technologies will be also addressed.
Collapse
Affiliation(s)
- Pascal Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Inserm U1235 Nantes, Université de Nantes, 1 rue Gaston Veil, 44035, Nantes, France. .,Department of Neurology, CHU Nantes, 44093, Nantes, France.
| | | | - Adrien de Guilhem de Lataillade
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Inserm U1235 Nantes, Université de Nantes, 1 rue Gaston Veil, 44035, Nantes, France.,Department of Neurology, CHU Nantes, 44093, Nantes, France
| | - Laurène Leclair-Visonneau
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Inserm U1235 Nantes, Université de Nantes, 1 rue Gaston Veil, 44035, Nantes, France.,Department of Physiology, CHU Nantes, 44093, Nantes, France
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Inserm U1235 Nantes, Université de Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| | - Sébastien Paillusson
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Inserm U1235 Nantes, Université de Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Alsayed SSR, Suri A, Bailey AW, Lane S, Werry EL, Huang CC, Yu LF, Kassiou M, Sredni ST, Gunosewoyo H. Synthesis and antitumour evaluation of indole-2-carboxamides against paediatric brain cancer cells. RSC Med Chem 2021; 12:1910-1925. [PMID: 34825187 PMCID: PMC8597418 DOI: 10.1039/d1md00065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Paediatric glioblastomas are rapidly growing, devastating brain neoplasms with an invasive phenotype. Radiotherapy and chemotherapy, which are the current therapeutic adjuvant to surgical resection, are still associated with various toxicity profiles and only marginally improve the course of the disease and life expectancy. A considerable body of evidence supports the antitumour and apoptotic effects of certain cannabinoids, such as WIN55,212-2, against a wide spectrum of cancer cells, including gliomas. In fact, we previously highlighted the potent cytotoxic activity of the cannabinoid ligand 5 against glioblastoma KNS42 cells. Taken together, in this study, we designed, synthesised, and evaluated several indoles and indole bioisosteres for their antitumour activities. Compounds 8a, 8c, 8f, 12c, and 24d demonstrated significant inhibitory activities against the viability (IC50 = 2.34-9.06 μM) and proliferation (IC50 = 2.88-9.85 μM) of paediatric glioblastoma KNS42 cells. All five compounds further retained their antitumour activities against two atypical teratoid/rhabdoid tumour (AT/RT) cell lines. When tested against a medulloblastoma DAOY cell line, only 8c, 8f, 12c, and 24d maintained their viability inhibitory activities. The viability assay against non-neoplastic human fibroblast HFF1 cells suggested that compounds 8a, 8c, 8f, and 12c act selectively towards the panel of paediatric brain tumour cells. In contrast, compound 24d and WIN55,212-2 were highly toxic toward HFF1 cells. Due to their structural resemblance to known cannabimimetics, the most potent compounds were tested in cannabinoid 1 and 2 receptor (CB1R and CB2R) functional assays. Compounds 8a, 8c, and 12c failed to activate or antagonise both CB1R and CB2R, whereas compounds 8f and 24d antagonised CB1R and CB2R, respectively. We also performed a transcriptional analysis on KNS42 cells treated with our prototype compound 8a and highlighted a set of seven genes that were significantly downregulated. The expression levels of these genes were previously shown to be positively correlated with tumour growth and progression, indicating their implication in the antitumour activity of 8a. Overall, the drug-like and selective antitumour profiles of indole-2-carboxamides 8a, 8c, 8f, and 12c substantiate the versatility of the indole scaffold in cancer drug discovery.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Samuel Lane
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney NSW 2006 Australia
- Faculty of Medicine and Health, The University of Sydney NSW 2006 Australia
| | - Chiang-Ching Huang
- Department of Biostatistics, Zilber School of Public Health, University of Wisconsin Milwaukee WI 53205 USA
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Michael Kassiou
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine Chicago IL 60611 USA
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
32
|
Nutraceuticals and Enteric Glial Cells. Molecules 2021; 26:molecules26123762. [PMID: 34205534 PMCID: PMC8234579 DOI: 10.3390/molecules26123762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Until recently, glia were considered to be a structural support for neurons, however further investigations showed that glial cells are equally as important as neurons. Among many different types of glia, enteric glial cells (EGCs) found in the gastrointestinal tract, have been significantly underestimated, but proved to play an essential role in neuroprotection, immune system modulation and many other functions. They are also said to be remarkably altered in different physiopathological conditions. A nutraceutical is defined as any food substance or part of a food that provides medical or health benefits, including prevention and treatment of the disease. Following the description of these interesting peripheral glial cells and highlighting their role in physiological and pathological changes, this article reviews all the studies on the effects of nutraceuticals as modulators of their functions. Currently there are only a few studies available concerning the effects of nutraceuticals on EGCs. Most of them evaluated molecules with antioxidant properties in systemic conditions, whereas only a few studies have been performed using models of gastrointestinal disorders. Despite the scarcity of studies on the topic, all agree that nutraceuticals have the potential to be an interesting alternative in the prevention and/or treatment of enteric gliopathies (of systemic or local etiology) and their associated gastrointestinal conditions.
Collapse
|
33
|
Alsayed SSR, Lun S, Bailey AW, Suri A, Huang CC, Mocerino M, Payne A, Sredni ST, Bishai WR, Gunosewoyo H. Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of Mycobacterium tuberculosis and paediatric brain tumour cells. RSC Adv 2021; 11:15497-15511. [PMID: 35481189 PMCID: PMC9029315 DOI: 10.1039/d0ra10728j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/10/2021] [Indexed: 12/17/2022] Open
Abstract
The omnipresent threat of tuberculosis (TB) and the scant treatment options thereof necessitate the development of new antitubercular agents, preferably working via a novel mechanism of action distinct from the current drugs. Various studies identified the mycobacterial membrane protein large 3 transporter (MmpL3) as the target of several classes of compounds, including the indole-2-caboxamides. Herein, several indoleamide analogues were rationally designed, synthesised, and evaluated for their antitubercular and antitumour activities. Compound 8g displayed the highest activity (MIC = 0.32 μM) against the drug-sensitive (DS) Mycobacterium tuberculosis (M. tb) H37Rv strain. This compound also exhibited high selective activity towards M. tb over mammalian cells [IC50 (Vero cells) = 40.9 μM, SI = 128], suggesting its minimal cytotoxicity. In addition, when docked into the MmpL3 active site, 8g adopted a binding profile similar to the indoleamide ligand ICA38. A related compound 8f showed dual antitubercular (MIC = 0.62 μM) and cytotoxic activities against paediatric glioblastoma multiforme (GBM) cell line KNS42 [IC50 (viability) = 0.84 μM]. Compound 8f also showed poor cytotoxic activity against healthy Vero cells (IC50 = 39.9 μM). Compounds 9a and 15, which were inactive against M. tb, showed potent cytotoxic (IC50 = 8.25 and 5.04 μM, respectively) and antiproliferative activities (IC50 = 9.85 and 6.62 μM, respectively) against KNS42 cells. Transcriptional analysis of KNS42 cells treated with compound 15 revealed a significant downregulation in the expression of the carbonic anhydrase 9 (CA9) and the spleen tyrosine kinase (SYK) genes. The expression levels of these genes in GBM tumours were previously shown to contribute to tumour progression, suggesting their involvement in our observed antitumour activities. Compounds 9a and 15 were selected for further evaluations against three different paediatric brain tumour cell lines (BT12, BT16 and DAOY) and non-neoplastic human fibroblast cells HFF1. Compound 9a showed remarkable cytotoxic (IC50 = 0.89 and 1.81 μM, respectively) and antiproliferative activities (IC50 = 7.44 and 6.06 μM, respectively) against the two tested atypical teratoid/rhabdoid tumour (AT/RT) cells BT12 and BT16. Interestingly, compound 9a was not cytotoxic when tested against non-neoplastic HFF1 cells [IC50 (viability) = 119 μM]. This suggests that an indoleamide scaffold can be fine-tuned to confer a set of derivatives with selective antitubercular and/or antitumour activities. In this study, we demonstrated that an indoleamide scaffold can be fine-tuned to confer a set of derivatives with selective antitubercular and/or antitumour activities.![]()
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine 1550, Orleans Street Baltimore Maryland 21231-1044 USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Chiang-Ching Huang
- Department of Biostatistics, Zilber School of Public Health, University of Wisconsin Milwaukee WI 53205 USA
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University Perth WA 6102 Australia
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University Perth WA 6102 Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA.,Department of Surgery, Northwestern University, Feinberg School of Medicine Chicago IL 60611 USA
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine 1550, Orleans Street Baltimore Maryland 21231-1044 USA .,Howard Hughes Medical Institute 4000 Jones Bridge Road Chevy Chase Maryland 20815-6789 USA
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
34
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
35
|
De Vitis E, La Pesa V, Gervaso F, Romano A, Quattrini A, Gigli G, Moroni L, Polini A. A microfabricated multi-compartment device for neuron and Schwann cell differentiation. Sci Rep 2021; 11:7019. [PMID: 33782434 PMCID: PMC8007719 DOI: 10.1038/s41598-021-86300-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/12/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding the complex communication between different cell populations and their interaction with the microenvironment in the central and peripheral nervous systems is fundamental in neuroscience research. The development of appropriate in vitro approaches and tools, able to selectively analyze and/or probe specific cells and cell portions (e.g., axons and cell bodies in neurons), driving their differentiation into specific cell phenotypes, has become therefore crucial in this direction. Here we report a multi-compartment microfluidic device where up to three different cell populations can be cultured in a fluidically independent circuit. The device allows cell migration across the compartments and their differentiation. We showed that an accurate choice of the device geometrical features and cell culture parameters allows to (1) maximize cell adhesion and proliferation of neuron-like human cells (SH-SY5Y cells), (2) control the inter-compartment cell migration of neuron and Schwann cells, (3) perform long-term cell culture studies in which both SH-SY5Y cells and primary rat Schwann cells can be differentiated towards specific phenotypes. These results can lead to a plethora of in vitro co-culture studies in the neuroscience research field, where tuning and investigating cell-cell and cell-microenvironment interactions are essential.
Collapse
Affiliation(s)
- Eleonora De Vitis
- CNR NANOTEC - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Velia La Pesa
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesca Gervaso
- CNR NANOTEC - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Alessandro Romano
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Dipartimento di Matematica e Fisica E. de Giorgi, Università Del Salento, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Lorenzo Moroni
- CNR NANOTEC - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Alessandro Polini
- CNR NANOTEC - Institute of Nanotechnology, Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
36
|
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in Research of Adult Gliomas. Int J Mol Sci 2021; 22:ijms22020924. [PMID: 33477674 PMCID: PMC7831916 DOI: 10.3390/ijms22020924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices. We discuss the progress that has been made in understanding glioma heterogeneity, alteration in gene expression and DNA methylation, as well as advances in various in silico models. Lastly current treatment options and future clinical trials, which aim to improve early diagnosis and disease monitoring, are also discussed.
Collapse
Affiliation(s)
- Alina Finch
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
| | - Georgios Solomou
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- School of Medicine, Keele University, Staffordshire ST5 5NL, UK
| | - Victoria Wykes
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham B15 2WB, UK;
| | - Chiara Bardella
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Correspondence: (C.B.); (C.W.)
| | - Colin Watts
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
- Correspondence: (C.B.); (C.W.)
| |
Collapse
|
37
|
Song WY, Ding H, Dunn T, Gao JL, Labastida JA, Schlagal C, Ning GZ, Feng SQ, Wu P. Low-dose metformin treatment in the subacute phase improves the locomotor function of a mouse model of spinal cord injury. Neural Regen Res 2021; 16:2234-2242. [PMID: 33818507 PMCID: PMC8354108 DOI: 10.4103/1673-5374.310695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metformin, a first-line drug for type-2 diabetes, has been shown to improve locomotor recovery after spinal cord injury. However, there are studies reporting no beneficial effect. Recently, we found that high dose of metformin (200 mg/kg, intraperitoneal) and acute phase administration (immediately after injury) led to increased mortality and limited locomotor function recovery. Consequently, we used a lower dose (100 mg/kg, i.p.) metformin in mice, and compared the effect of immediate administration after spinal cord injury (acute phase) with that of administration at 3 days post-injury (subacute phase). Our data showed that metformin treatment starting at the subacute phase significantly improved mouse locomotor function evaluated by Basso Mouse Scale (BMS) scoring. Immunohistochemical studies also revealed significant inhibitions of microglia/macrophage activation and astrogliosis at the lesion site. Furthermore, metformin treatment at the subacute phase reduced neutrophil infiltration. These changes were in parallel with the increased survival rate of spinal neurons in animals treated with metformin. These findings suggest that low-dose metformin treatment for subacute spinal cord injury can effectively improve the functional recovery possibly through anti-inflammation and neuroprotection. This study was approved by the Institute Animal Care and Use Committee at the University of Texas Medical Branch (approval No. 1008041C) in 2010.
Collapse
Affiliation(s)
- Wen-Ye Song
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiffany Dunn
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jun-Ling Gao
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Caitlin Schlagal
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Guang-Zhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Wu
- Department of Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
38
|
McCallum S, Obata Y, Fourli E, Boeing S, Peddie CJ, Xu Q, Horswell S, Kelsh RN, Collinson L, Wilkinson D, Pin C, Pachnis V, Heanue TA. Enteric glia as a source of neural progenitors in adult zebrafish. eLife 2020; 9:e56086. [PMID: 32851974 PMCID: PMC7521928 DOI: 10.7554/elife.56086] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
The presence and identity of neural progenitors in the enteric nervous system (ENS) of vertebrates is a matter of intense debate. Here, we demonstrate that the non-neuronal ENS cell compartment of teleosts shares molecular and morphological characteristics with mammalian enteric glia but cannot be identified by the expression of canonical glial markers. However, unlike their mammalian counterparts, which are generally quiescent and do not undergo neuronal differentiation during homeostasis, we show that a relatively high proportion of zebrafish enteric glia proliferate under physiological conditions giving rise to progeny that differentiate into enteric neurons. We also provide evidence that, similar to brain neural stem cells, the activation and neuronal differentiation of enteric glia are regulated by Notch signalling. Our experiments reveal remarkable similarities between enteric glia and brain neural stem cells in teleosts and open new possibilities for use of mammalian enteric glia as a potential source of neurons to restore the activity of intestinal neural circuits compromised by injury or disease.
Collapse
Affiliation(s)
- Sarah McCallum
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Yuuki Obata
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Evangelia Fourli
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefan Boeing
- Bionformatics & Biostatistics Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stuart Horswell
- Bionformatics & Biostatistics Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - David Wilkinson
- Neural Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carmen Pin
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| | - Vassilis Pachnis
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Tiffany A Heanue
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
39
|
Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020; 12:toxins12070461. [PMID: 32707706 PMCID: PMC7404981 DOI: 10.3390/toxins12070461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
40
|
Fontana IC, Zimmer AR, Rocha AS, Gosmann G, Souza DO, Lourenco MV, Ferreira ST, Zimmer ER. Amyloid-β oligomers in cellular models of Alzheimer's disease. J Neurochem 2020; 155:348-369. [PMID: 32320074 DOI: 10.1111/jnc.15030] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/21/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Amyloid-β (Aβ) dysmetabolism is tightly associated with pathological processes in Alzheimer's disease (AD). Currently, it is thought that, in addition to Aβ fibrils that give rise to plaque formation, Aβ aggregates into non-fibrillar soluble oligomers (AβOs). Soluble AβOs have been extensively studied for their synaptotoxic and neurotoxic properties. In this review, we discuss physicochemical properties of AβOs and their impact on different brain cell types in AD. Additionally, we summarize three decades of studies with AβOs, providing a compelling bulk of evidence regarding cell-specific mechanisms of toxicity. Cellular models may lead us to a deeper understanding of the detrimental effects of AβOs in neurons and glial cells, putatively shedding light on the development of innovative therapies for AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Aline R Zimmer
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia S Rocha
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Grace Gosmann
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil.,Department of Pharmacology, UFRGS, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics,, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
41
|
Involvement of Enteric Glia in Small Intestine Neuromuscular Dysfunction of Toll-Like Receptor 4-Deficient Mice. Cells 2020; 9:cells9040838. [PMID: 32244316 PMCID: PMC7226836 DOI: 10.3390/cells9040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Enteric glial cells (EGCs) influence nitric oxide (NO)− and adenosine diphosphate (ADP)− mediated signaling in the enteric nervous system (ENS). Since Toll-like receptor 4 (TLR4) participates to EGC homoeostasis, this study aimed to evaluate the possible involvement of EGCs in the alterations of the inhibitory neurotransmission in TLR4−/− mice. Ileal segments from male TLR4−/− and wild-type (WT) C57BL/6J mice were incubated with the gliotoxin fluoroacetate (FA). Alterations in ENS morphology and neurochemical coding were investigated by immunohistochemistry whereas neuromuscular responses were determined by recording non-adrenergic non-cholinergic (NANC) relaxations in isometrically suspended isolated ileal preparations. TLR4−/− ileal segments showed increased iNOS immunoreactivity associated with enhanced NANC relaxation, mediated by iNOS-derived NO and sensitive to P2Y1 inhibition. Treatment with FA diminished iNOS immunoreactivity and partially abolished NO− and ADP− mediated relaxation in the TLR4−/− mouse ileum, with no changes of P2Y1 and connexin-43 immunofluorescence distribution in the ENS. After FA treatment, S100β and GFAP immunoreactivity in TLR4−/− myenteric plexus was reduced to levels comparable to those observed in WT. Our findings show the involvement of EGCs in the alterations of ENS architecture and in the increased purinergic and nitrergic-mediated relaxation, determining gut dysmotility in TLR4−/− mice.
Collapse
|
42
|
Abstract
Human and mouse studies have shown that rotavirus infection is associated with low inflammation and unaffected intestinal barrier at the time of diarrhea, properties different from most bacterial and inflammatory diseases of the gut. We showed by in vitro, ex vivo, and in vivo experiments that neurotrophic factors and 5-HT have barrier protective properties during rotavirus insult. These observations advance our understanding of how the gut barrier is protected against rotavirus and suggest that rotavirus affects the gut barrier differently from bacteria. This is the first report to show that neurotrophic factors contribute to maintain the gut epithelial barrier during viral insult. Increased intestinal permeability has been proposed as a mechanism of rotavirus-induced diarrhea. Studies with humans and mice have, however, shown that rotavirus leaves intestinal permeability unaffected or even reduced during diarrhea, in contrast to most bacterial infections. Gastrointestinal permeability is regulated by the vagus nerve and the enteric nervous system, which is composed of neurons and enteric glial cells (EGCs). We investigated whether the vagus nerve, serotonin (5-HT), EGCs, and neurotropic factors contribute to maintaining gut barrier homeostasis during rotavirus infection. Using subdiaphragmatic vagotomized and 5-HT3 receptor knockout mice, we found that the unaffected epithelial barrier during rotavirus infection is independent of the vagus nerve but dependent on 5-HT signaling through enteric intrinsic 5-HT3 receptors. Immunofluorescence analysis showed that rotavirus-infected enterocytes were in close contact with EGCs and enteric neurons and that the glial cell-derived neurotrophic factor (GDNF) was strongly upregulated in enterocytes of infected mice. Moreover, rotavirus and 5-HT activated EGCs (P < 0.001). Using Ussing chambers, we found that GDNF and S-nitrosoglutathione (GSNO) led to denser epithelial barriers in small intestinal resections from noninfected mice (P < 0.01) and humans (P < 0.001) and that permeability was unaffected in rotavirus-infected mice. GSNO made the epithelial barrier denser in Caco-2 cells by increasing the expression of the tight junction protein zona occludens 1 (P < 0.001), resulting in reduced passage of fluorescein isothiocyanate dextran (P < 0.05) in rotavirus-infected monolayers. This is the first report to show that neurotropic factors contribute to maintaining the gut epithelial barrier during viral insult.
Collapse
|
43
|
Abstract
Afferent and efferent nerve fibers cannot be distinguished based on the axonal diameter or the presence of the Remark bundle. The compaction of the myelin sheath involves 2 steps: 1) The distance between the 2 layers of cell membranes in the double-bilayer decreases; 2) the adjacent double-bilayers close to form MDL. The expression of MBP is positively correlated with the formation of the MDL. Anchoring of the myelin sheath by lipophilin particles might be required for the formation of a compacted myelin sheath. The abnormalities in nerve fiber structure observed in autologous nerve grafts do not appear to be related to either MBP or lipophilin, so further research is needed to determine their causes. Observing the structure and regeneration of the myelin sheath in peripheral nerves following injury and during repair would help in understanding the pathogenesis and treatment of neurological diseases caused by an abnormal myelin sheath. In the present study, transmission electron microscopy, immunofluorescence staining, and transcriptome analyses were used to investigate the structure and regeneration of the myelin sheath after end-to-end anastomosis, autologous nerve transplantation, and nerve tube transplantation in a rat model of sciatic nerve injury, with normal optic nerve, oculomotor nerve, sciatic nerve, and Schwann cells used as controls. The results suggested that the double-bilayer was the structural unit that constituted the myelin sheath. The major feature during regeneration was the compaction of the myelin sheath, wherein the distance between the 2 layers of cell membrane in the double-bilayer became shorter and the adjacent double-bilayers tightly closed together and formed the major dense line. The expression level of myelin basic protein was positively correlated with the formation of the major dense line, and the compacted myelin sheath could not be formed without the anchoring of the lipophilin particles to the myelin sheath.
Collapse
|
44
|
He MT, Lee AY, Park CH, Cho EJ. Protective effect of Cordyceps militaris against hydrogen peroxide-induced oxidative stress in vitro. Nutr Res Pract 2019; 13:279-285. [PMID: 31388403 PMCID: PMC6669067 DOI: 10.4162/nrp.2019.13.4.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/OBJECTIVES Excessive production of reactive oxygen species (ROS) such as hydroxyl (·OH), nitric oxide (NO), and hydrogen peroxide (H2O2) is reported to induce oxidative stress. ROS generated by oxidative stress can potentially damage glial cells in the nervous system. Cordyceps militaris (CM), a kind of natural herb widely found in East Asia. In this study, we investigated the free radical scavenging activity of the CM extract and its neuroprotective effects in H2O2-induced C6 glial cells. MATERIALS/METHODS The ethanol extract of CM (100-1,000 µg/mL) was used to measure DPPH, ·OH, and NO radical scavenging activities. In addition, hydrogen peroxide (H2O2)-induced C6 glial cells were treated with CM at 0.5-2.5 µg/mL for measurement of cell viability, ROS production, and protein expression resulting from oxidative stress. RESULTS The CM extract showed high scavenging activities against DPPH, ·OH, and NO radicals at concentration of 1,000 µg/mL. Treatment of CM with H2O2-induced oxidative stress in C6 glial cells significantly increased cell viability, and decreased ROS production. Cyclooxygenase-2 and inducible nitric oxide synthase protein expression was down-regulated in CM-treated groups. In addition, the protein expression level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK), phospho-c-Jun N-terminal kinase (p-JNK), and phospho-extracellular regulated protein kinases (p-ERK) in H2O2-induced C6 glial cells was down-regulated upon CM administration. CONCLUSION CM exhibited radical scavenging activity and protective effect against H2O2 as indicated by the increased cell viability, decreased ROS production, down-regulation of inflammation-related proteins as well as p-p38, p-JNK, and p-ERK protein levels. Therefore, we suggest that CM could play the protective role from oxidative stress in glial cells.
Collapse
Affiliation(s)
- Mei Tong He
- Department of Food Science and Nutrition, Pusan National University, Busandaehak-ro 63 beon-gil 2, geumjeong-gu, Busan 46241, Korea
| | - Ah Young Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busandaehak-ro 63 beon-gil 2, geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
45
|
Mendes CE, Palombit K, Tavares-de-Lima W, Castelucci P. Enteric glial cells immunoreactive for P2X7 receptor are affected in the ileum following ischemia and reperfusion. Acta Histochem 2019; 121:665-679. [PMID: 31202513 DOI: 10.1016/j.acthis.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to analyze the effect of ischemia and reperfusion injury (IS) on enteric glial cells (EGCs) and neurons immunoreactive for the P2X7 receptor. Intestinal ischemia was induced by obstructing blood flow in the ileal vessels for 35 min. Afterwards, the vessels were reperfused for 14 days. Tissues were prepared for immunohistochemical labeling of P2X7 receptor, HuC/D (Hu) (pan-neuronal marker) and S100β (glial marker); HuC/D (Hu) and glial fibrillary acidic protein (GFAP, glial marker)/DAPI (nuclear marker); or S100β and GFAP/DAPI. Qualitative and quantitative analyses of colocalization, density, profile area and cell proliferation were performed via fluorescence and confocal laser scanning microscopy. The quantitative analyses revealed that a) neurons and EGCs were immunoreactive for P2X7 receptor; b) the P2X7 receptor immunoreactive cells and Hu immunoreactive neurons were reduced after 0 h and 14 days of reperfusion; c) the S100β and GFAP immunoreactive EGCs were increased; d) the profile area of S100β immunoreactive EGCs was increased by IS; e) few GFAP immunoreactive proliferated at 14 days of reperfusion; f) distinct populations of glial cells can be discerned: S100β+/GFAP+ cells, S100β+/GFAP- cells and S100β-/GFAP + cells; g) histological analysis revealed less alterations in the epithelium cells in the IS groups and h) myeloperoxidase reaction revealed increased of the neutrophils in the lamina propria in the IS groups. This study showed that IS is associated with significant neuronal loss, increase of glial cells and altered purinergic receptor expression and that these changes may contribute to intestinal disorders.
Collapse
|
46
|
Dutta SK, Verma S, Jain V, Surapaneni BK, Vinayek R, Phillips L, Nair PP. Parkinson's Disease: The Emerging Role of Gut Dysbiosis, Antibiotics, Probiotics, and Fecal Microbiota Transplantation. J Neurogastroenterol Motil 2019; 25:363-376. [PMID: 31327219 PMCID: PMC6657920 DOI: 10.5056/jnm19044] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
The role of the microbiome in health and human disease has emerged at the forefront of medicine in the 21st century. Over the last 2 decades evidence has emerged to suggest that inflammation-derived oxidative damage and cytokine induced toxicity may play a significant role in the neuronal damage associated with Parkinson’s disease (PD). Presence of pro-inflammatory cytokines and T cell infiltration has been observed in the brain parenchyma of patients with PD. Furthermore, evidence for inflammatory changes has been reported in the enteric nervous system, the vagus nerve branches and glial cells. The presence of α-synuclein deposits in the post-mortem brain biopsy in patients with PD has further substantiated the role of inflammation in PD. It has been suggested that the α-synuclein misfolding might begin in the gut and spread “prion like” via the vagus nerve into lower brainstem and ultimately to the midbrain; this is known as the Braak hypothesis. It is noteworthy that the presence of gastrointestinal symptoms (constipation, dysphagia, and hypersalivation), altered gut microbiota and leaky gut have been observed in PD patients several years prior to the clinical onset of the disease. These clinical observations have been supported by in vitro studies in mice as well, demonstrating the role of genetic (α-synuclein overexpression) and environmental (gut dysbiosis) factors in the pathogenesis of PD. The restoration of the gut microbiome in patients with PD may alter the clinical progression of PD and this alteration can be accomplished by carefully designed studies using customized probiotics and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Sudhir K Dutta
- Sinai Hospital, Baltimore, MD, USA.,University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | - Padmanabhan P Nair
- Sinai Hospital, Baltimore, MD, USA.,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,NonInvasive Technologies LLC, Elkridge, MD, USA
| |
Collapse
|
47
|
Grundmann D, Loris E, Maas-Omlor S, Huang W, Scheller A, Kirchhoff F, Schäfer KH. Enteric Glia: S100, GFAP, and Beyond. Anat Rec (Hoboken) 2019; 302:1333-1344. [PMID: 30951262 DOI: 10.1002/ar.24128] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/10/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Since several years, the enteric nervous system (ENS) is getting more and more in the focus of gastrointestinal research. While the main interest was credited for years to the enteric neurons and their functional properties, less attention has been paid on the enteric glial cells (EGCs). Although the similarity of EGCs to central nervous system (CNS) astrocytes has been demonstrated a long time ago, EGCs were investigated in more detail only recently. Similar to the CNS, there is not "the" EGC, but also a broad range of diversity. Based on morphology and protein expression, such as glial fibrillary acidic protein (GFAP), S100, or Proteolipid-protein-1 (PLP1), several distinct glial types can be differentiated. Their heterogeneity in morphology, localization, and transcription as well as interaction with surrounding cells indicate versatile functional properties of these cells for gut function in health and disease. Although NG2 is found in a subset of CNS glial cells, it did not colocalize with the glial marker S100 or GFAP in the ENS. Instead, it in part colocalize with PDGFRα, as it does in the CNS, which do stain fibroblast-like cells in the gastrointestinal tract. Moreover, there seem to be species dependent differences. While GFAP is always found in the rodent ENS, this is completely different for the human gut. Only the compromised human ENS shows a significant amount of GFAP-positive glial cells. So, in general we can conclude that the EGC population is species specific and as complex as CNS glia. Anat Rec, 302:1333-1344, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Grundmann
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Eva Loris
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Silke Maas-Omlor
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
48
|
Ross CL. Energy Medicine: Current Status and Future Perspectives. Glob Adv Health Med 2019; 8:2164956119831221. [PMID: 30834177 PMCID: PMC6396053 DOI: 10.1177/2164956119831221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
Current practices in allopathic medicine measure different types of energy in the human body by using quantum field dynamics involved in nuclear medicine, radiology, and imaging diagnostics. Once diagnosed, current treatments revert to biochemistry instead of using biophysics therapies to treat the disturbances in subtle energies detected and used for diagnostics. Quantum physics teaches us there is no difference between energy and matter. All systems in the human being, from the atomic to the molecular level, are constantly in motion-creating resonance. This resonance is important to understanding how subtle energy directs and maintains health and wellness in the human being. Energy medicine (EM), whether human touch or device-based, is the use of known subtle energy fields to therapeutically assess and treat energetic imbalances, bringing the body's systems back to homeostasis (balance). The future of EM depends on the ability of allopathic medicine to merge physics with biochemistry. Biophoton emissions as well as signal transduction and cell signaling communication systems are widely accepted in today's medicine. This technology needs to be expanded to include the existence of the human biofield (or human energy field) to better understand that disturbances in the coherence of energy patterns are indications of disease and aging. Future perspectives include understanding cellular voltage potentials and how they relate to health and wellness, understanding the overlap between the endocrine and chakra systems, and understanding how EM therapeutically enhances psychoneuroimmunology (mind-body) medicine.
Collapse
Affiliation(s)
- Christina L Ross
- Wake Forest Center for Integrative Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| |
Collapse
|
49
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
50
|
Kermarrec L, Durand T, Gonzales J, Pabois J, Hulin P, Neunlist M, Neveu I, Naveilhan P. Rat enteric glial cells express novel isoforms of Interleukine-7 regulated during inflammation. Neurogastroenterol Motil 2019; 31:e13467. [PMID: 30240048 DOI: 10.1111/nmo.13467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroimmune interactions are essential to maintain gut homeostasis and prevent intestinal disorders but so far, the impact of enteric glial cells (EGC) on immune cells remains a relatively unexplored area of research. As a dysregulation of critical cytokines such as interleukine-7 (IL-7) was suggested to exacerbate gut chronic inflammation, we investigated whether EGC could be a source of IL-7 in the gastrointestinal tract. METHODS Expression of IL-7 in the rat enteric nervous system was analyzed by immunochemistry and Q-PCR. IL-7 variants were cloned and specific antibodies against rat IL-7 isoforms were raised to characterize their expression in the submucosal plexus. IL-7 isoforms were produced in vitro to analyze their impact on T-cell survival. KEY RESULTS Neurons and glial cells of the rat enteric nervous system expressed IL-7 at both mRNA and protein levels. Novel rat IL-7 isoforms with distinct C-terminal parts were detected. Three of these isoforms were found in EGC or in both enteric neurons and EGC. Exposure of EGC to pro-inflammatory cytokines (IL-1β and/or TNFα) induced an upregulation of all IL-7 isoforms. Interestingly, time-course and intensity of the upregulation varied according to the presence or absence of exon 5a in IL-7 variants. Functional analysis on T lymphocytes revealed that only canonical IL-7 protects T cells from cell death. CONCLUSIONS AND INFERENCES IL-7 and its variants are expressed by neurons and glial cells in the enteric nervous system. Their distinct expression and upregulation in inflammatory conditions suggest a role in gut homeostasis which could be critical in case of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laetitia Kermarrec
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Tony Durand
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Jacques Gonzales
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Julie Pabois
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | | | - Michel Neunlist
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Isabelle Neveu
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| | - Philippe Naveilhan
- Université de Nantes, INSERM, Institut des Maladies de l'Appareil Digestif, The enteric nervous system in gut and brain disorders, Nantes, France
| |
Collapse
|