1
|
Surya A, Sarinay-Cenik E. Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways. Open Biol 2022; 12:210308. [PMID: 35472285 PMCID: PMC9042575 DOI: 10.1098/rsob.210308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023] Open
Abstract
Translation machinery is responsible for the production of cellular proteins; thus, cells devote the majority of their resources to ribosome biogenesis and protein synthesis. Single-copy loss of function in the translation machinery components results in rare ribosomopathy disorders, such as Diamond-Blackfan anaemia in humans and similar developmental defects in various model organisms. Somatic copy number alterations of translation machinery components are also observed in specific tumours. The organism-wide response to haploinsufficient loss-of-function mutations in ribosomal proteins or translation machinery components is complex: variations in translation machinery lead to reduced ribosome biogenesis, protein translation and altered protein homeostasis and cellular signalling pathways. Cells are affected both autonomously and non-autonomously by changes in translation machinery or ribosome biogenesis through cell-cell interactions and secreted hormones. We first briefly introduce the model organisms where mutants or knockdowns of protein synthesis and ribosome biogenesis are characterized. Next, we specifically describe observations in Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein synthesis in a subset of cells triggers cell non-autonomous growth or apoptosis responses that affect nearby cells and tissues. We then cover the characterized signalling pathways that interact with ribosome biogenesis/protein synthesis machinery with an emphasis on their respective functions during organism development.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay-Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Huang W, Liu Z, Rong YS. Dynamic localization of DNA topoisomerase I and its functional relevance during Drosophila development. G3-GENES GENOMES GENETICS 2021; 11:6298592. [PMID: 34544118 PMCID: PMC8661406 DOI: 10.1093/g3journal/jkab202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022]
Abstract
DNA topoisomerase I (Top1) maintains chromatin conformation during transcription. While Top1 is not essential in simple eukaryotic organisms such as yeast, it is required for the development of multicellular organisms. In fact, tissue and cell-type-specific functions of Top1 have been suggested in the fruit fly Drosophila. A better understanding of Top1’s function in the context of development is important as Top1 inhibitors are among the most widely used anticancer drugs. As a step toward such a better understanding, we studied its localization in live cells of Drosophila. Consistent with prior results, Top1 is highly enriched at the nucleolus in transcriptionally active polyploid cells, and this enrichment responds to perturbation of transcription. In diploid cells, we uncovered evidence for Top1 foci formation at genomic regions not limited to the active rDNA locus, suggestive of novel regulation of Top1 recruitment. In the male germline, Top1 is highly enriched at the paired rDNA loci on sex chromosomes suggesting that it might participate in regulating their segregation during meiosis. Results from RNAi-mediated Top1 knockdown lend support to this hypothesis. Our study has provided one of the most comprehensive descriptions of Top1 localization during animal development.
Collapse
Affiliation(s)
- Wuqiang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, China.,Hengyang College of Medicine, University of South China, Hengyang 421001, China
| | - Zhiping Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, China
| | - Yikang S Rong
- Hengyang College of Medicine, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
A superfamily of DNA transposons targeting multicopy small RNA genes. PLoS One 2013; 8:e68260. [PMID: 23874566 PMCID: PMC3706591 DOI: 10.1371/journal.pone.0068260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/29/2013] [Indexed: 01/29/2023] Open
Abstract
Target-specific integration of transposable elements for multicopy genes, such as ribosomal RNA and small nuclear RNA (snRNA) genes, is of great interest because of the relatively harmless nature, stable inheritance and possible application for targeted gene delivery of target-specific transposable elements. To date, such strict target specificity has been observed only among non-LTR retrotransposons. We here report a new superfamily of sequence-specific DNA transposons, designated Dada. Dada encodes a DDE-type transposase that shows a distant similarity to transposases encoded by eukaryotic MuDR, hAT, P and Kolobok transposons, as well as the prokaryotic IS256 insertion element. Dada generates 6-7 bp target site duplications upon insertion. One family of Dada DNA transposons targets a specific site inside the U6 snRNA genes and are found in various fish species, water flea, oyster and polycheate worm. Other target sequences of the Dada transposons are U1 snRNA genes and different tRNA genes. The targets are well conserved in multicopy genes, indicating that copy number and sequence conservation are the primary constraints on the target choice of Dada transposons. Dada also opens a new frontier for target-specific gene delivery application.
Collapse
|
4
|
Elser J, Sterner R, Gorokhova E, Fagan W, Markow T, Cotner J, Harrison J, Hobbie S, Odell G, Weider L. Biological stoichiometry from genes to ecosystems. Ecol Lett 2008. [DOI: 10.1111/j.1461-0248.2000.00185.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ye J, Eickbush TH. Chromatin structure and transcription of the R1- and R2-inserted rRNA genes of Drosophila melanogaster. Mol Cell Biol 2006; 26:8781-90. [PMID: 17000772 PMCID: PMC1636831 DOI: 10.1128/mcb.01409-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
About half of the rRNA gene units (rDNA units) of Drosophila melanogaster are inserted by the retrotransposable elements R1 and R2. Because transcripts to R1 and R2 were difficult to detect on blots and electron microscopic observations of rRNA synthesis suggested that only uninserted rDNA units were transcribed, it has long been postulated that inserted rDNA units are in a repressed (inactive) chromatin structure. Studies described here suggest that inserted and uninserted units are equally accessible to DNase I and micrococcal nuclease and contain similar levels of histone H3 and H4 acetylation and H3K9 methylation. These studies have low sensitivity, because psoralen cross-linking suggested few (estimated <10%) of the rDNA units of any type are transcriptionally active. Nuclear run-on experiments revealed that R1-inserted and R2-inserted units are activated for transcription at about 1/5 and 1/10, respectively, the rate of uninserted units. Most transcription complexes of the inserted units terminate within the elements, thus explaining why previous molecular and electron microscopic methods indicated inserted units are seldom transcribed. The accumulating data suggest that all units within small regions of the rDNA loci are activated for transcription, with most control over R1 and R2 activity involving steps downstream of transcription initiation.
Collapse
Affiliation(s)
- Junqiang Ye
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
6
|
Penton EH, Crease TJ. Evolution of the Transposable Element Pokey in the Ribosomal DNA of Species in the Subgenus Daphnia (Crustacea: Cladocera). Mol Biol Evol 2004; 21:1727-39. [PMID: 15201395 DOI: 10.1093/molbev/msh189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pokey is a member of the piggyBac (previously called the TTAA-specific) family of transposons and inserts into a conserved region of the large subunit ribosomal RNA gene. This location is a "hot spot" for insertional activity, as it is known to contain other arthropod transposable elements. However, Pokey is unique in that it is the first DNA transposon yet known to insert into this region. All other insertions are class I non-LTR retrotransposons. This study surveyed variation in Pokey elements through phylogenetic analysis of the 3' ends of Pokey elements from ribosomal DNA (rDNA) in species from the nominate subgenus of the genus Daphnia (Crustacea: Cladocera). The results suggest that Pokey has been stably, vertically inherited within rDNA over long periods of evolutionary time. No evidence was found to support horizontal transfer, which commonly occurs in other DNA transposons, such as P and mariner. Furthermore, Pokey has diverged into sublineages that have persisted across speciation events in some groups. In addition, a new highly divergent paralogous Pokey element was discovered in the rDNA of one species.
Collapse
Affiliation(s)
- Erin H Penton
- Department of Zoology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
7
|
Pérez-González CE, Eickbush TH. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans. Genetics 2001; 158:1557-67. [PMID: 11514447 PMCID: PMC1461747 DOI: 10.1093/genetics/158.4.1557] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mobile elements R1 and R2 insert specifically into the rRNA gene locus (rDNA locus) of arthropods, a locus known to undergo concerted evolution, the recombinational processes that preserve the sequence homogeneity of all repeats. To monitor how rapidly individual R1 and R2 insertions are turned over in the rDNA locus by these processes, we have taken advantage of the many 5' truncation variants that are generated during the target-primed reverse transcription mechanism used by these non-LTR retrotransposons for their integration. A simple PCR assay was designed to reveal the pattern of the 5' variants present in the rDNA loci of individual X chromosomes in a population of Drosophila simulans. Each rDNA locus in this population was found to have a large, unique collection of 5' variants. Each variant was present at low copy number, usually one copy per chromosome, and was seldom distributed to other chromosomes in the population. The failure of these variants to spread to other units in the same rDNA locus suggests a strong recombinational bias against R1 and R2 that results in the individual copies of these elements being rapidly lost from the rDNA locus. This bias suggests a significantly higher frequency of R1 and R2 retrotransposition than we have previously suggested.
Collapse
Affiliation(s)
- C E Pérez-González
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
8
|
Gentile KL, Burke WD, Eickbush TH. Multiple lineages of R1 retrotransposable elements can coexist in the rDNA loci of Drosophila. Mol Biol Evol 2001; 18:235-45. [PMID: 11158382 DOI: 10.1093/oxfordjournals.molbev.a003797] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
R1 non-long terminal repeat retrotransposable elements insert specifically into the 28S rRNA genes of arthropods. One aspect of R1 evolution that has been difficult to explain is the presence of divergent lineages of R1 in the rDNA loci of the same species. Multiple lineages should compete for a limited number of insertion sites, in addition to being subject to the concerted evolution processes homogenizing the rRNA genes. The presence of multiple lineages suggests either the ability of the elements to overcome these factors and diverge within rDNA loci, or the introduction of new lineages by horizontal transmission. To address this issue, we attempted to characterize the complete set of R1 elements in the rDNA locus from five Drosophila species groups (melanogaster, obscura, testacea, quinaria, and repleta). Two major R1 lineages, A and B, that diverged about 100 MYA were found to exist in Drosophila. Elements of the A lineage were found in all 35 Drosophila species tested, while elements of the B lineage were found in only 11 species from three species groups. Phylogenetic analysis of the R1 elements, supported by comparison of their rates of nucleotide sequence substitution, revealed that both the A and the B lineages have been maintained by vertical descent. The B lineage was less stable and has undergone numerous, independent elimination events, while the A lineage has diverged into three sublineages, which were, in turn, differentially stable. We conclude that while the differential retention of multiple lineages greatly complicates its phylogenetic history, the available R1 data continue to be consistent with the strict vertical descent of these elements.
Collapse
Affiliation(s)
- K L Gentile
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
9
|
Elser J, Sterner R, Gorokhova E, Fagan W, Markow T, Cotner J, Harrison J, Hobbie S, Odell G, Weider L. Biological stoichiometry from genes to ecosystems. Ecol Lett 2000. [DOI: 10.1046/j.1461-0248.2000.00185.x] [Citation(s) in RCA: 722] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Malik HS, Eickbush TH. Retrotransposable elements R1 and R2 in the rDNA units of Drosophila mercatorum: abnormal abdomen revisited. Genetics 1999; 151:653-65. [PMID: 9927458 PMCID: PMC1460499 DOI: 10.1093/genetics/151.2.653] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
R1 and R2 retrotransposable elements are stable components of the 28S rRNA genes of arthropods. While each retrotransposition event leads to incremental losses of rDNA unit expression, little is known about the selective consequences of these elements on the host genome. Previous reports suggested that in the abnormal abdomen (aa) phenotype of Drosophila mercatorum, high levels of rDNA insertions (R1) in conjunction with the under-replication locus (ur), enable the utilization of different ecological conditions via a population level shift to younger age. We have sequenced the R1 and R2 elements of D. mercatorum and show that the levels of R1- and R2-inserted rDNA units were inaccurately scored in the original studies of aa, leading to several misinterpretations. In particular, contrary to earlier reports, aa flies differentially underreplicate R1- and R2-inserted rDNA units, like other species of Drosophila. However, aa flies do not undergo the lower level of underreplication of their functional rDNA units (general underreplication) that is seen in wild-type strains. The lack of general underreplication is expected to confer a selective advantage and, thus, can be interpreted as an adaptation to overcome high levels of R1 and R2 insertions. These results allow us to reconcile some of the apparently contradictory effects of aa and the bobbed phenotype found in other species of Drosophila.
Collapse
Affiliation(s)
- H S Malik
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
12
|
|
13
|
Eid JE, Sollner-Webb B. Homologous recombination in the tandem calmodulin genes of Trypanosoma brucei yields multiple products: compensation for deleterious deletions by gene amplification. Genes Dev 1991; 5:2024-32. [PMID: 1936992 DOI: 10.1101/gad.5.11.2024] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homologous recombination between a calmodulin-neomycin-resistance fusion gene and the Trypanosoma brucei chromosome takes place not only in the large 5'- and 3'-flanking segments of the calmodulin locus but also in any of the four tandem genomic calmodulin genes. This results in a recombined locus consisting of the chimeric neor gene and four, three, two, one, or zero functional calmodulin genes. Cells bearing this latter event have half of their normal number of intact calmodulin genes and an accompanying phenotype of slow growth. Over months of propagation, these lines acquire additional calmodulin genes, frequently by amplifying a calmodulin gene at the untargeted locus, and concomitantly revert to normal growth rate. This response could be related to the property of the trypanosome of maintaining most housekeeping genes in tandem chromosomal arrays. Recombination appears to be initiated by a crossover event between the linearized end of the transfecting plasmid and a homologous region in the host genome; the second crossover generally occurs internally and in that region requires no more than 87 bp of homology.
Collapse
Affiliation(s)
- J E Eid
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
14
|
Abstract
In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus.
Collapse
|
15
|
Cluster PD, Marinković D, Allard RW, Ayala FJ. Correlations between development rates, enzyme activities, ribosomal DNA spacer-length phenotypes, and adaptation in Drosophila melanogaster. Proc Natl Acad Sci U S A 1987; 84:610-4. [PMID: 3099299 PMCID: PMC304260 DOI: 10.1073/pnas.84.2.610] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Selection for "fast" preadult development rate among the progeny of flies collected in a natural population of Drosophila melanogaster produced a line that developed more rapidly than a line selected for "slow" preadult development rate. Assays for enzyme activity levels showed that the activities of alpha-glycerophosphate dehydrogenase, alcohol dehydrogenase, and malic enzyme were higher in the fast than in the slow line, but that the activity of superoxide dismutase was lower in the fast line. Differences in the frequencies of spacer-length phenotypes of X chromosome-linked rRNA genes (rDNA), which developed between the lines during the selection process, are larger than can be explained on the basis of genetic drift alone. Long rDNA spacers had high frequency in the fast line; short spacers, in the slow line. We conclude that enzyme levels affected adaptation under the selective regimes imposed and that the different X-linked rDNA spacer-length phenotypes are either adaptive in themselves or that they mark chromosomal segments carrying genes relevant to adaptation.
Collapse
|
16
|
Terracol R, Prud'homme N. Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster. Mol Cell Biol 1986; 6:1023-31. [PMID: 3023865 PMCID: PMC367611 DOI: 10.1128/mcb.6.4.1023-1031.1986] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Drosophila melanogaster, the multiply repeated genes encoding 18S and 28S rRNA are located on the X and Y chromosomes. A large percentage of these repeats are interrupted in the 28S region by insertions of two types. We compared the restriction patterns from a subcloned wild-type Oregon R strain to those of spontaneous and ethyl methanesulfonate-induced bobbed mutants. Bobbed mutations were found to be deficiencies that modified the organization of the rDNA locus. Genes without insertions were deleted about twice as often as genes with type I insertions. Type II insertion genes were not decreased in number, except in the mutant having the most bobbed phenotype. Reversion to wild type was associated with an increase in gene copy number, affecting exclusively genes without insertions. One hypothesis which explains these results is the partial clustering of genes by type. The initial deletion could then be due either to an unequal crossover or to loss of material without exchange. Some of our findings indicated that deletion may be associated with an amplification phenomenon, the magnitude of which would be dependent on the amount of clustering of specific gene types at the locus.
Collapse
|
17
|
Dawid IB, Rebbert ML. Expression of ribosomal insertion in Drosophila: sensitivity to intercalating drugs. Nucleic Acids Res 1986; 14:1267-77. [PMID: 3005969 PMCID: PMC339502 DOI: 10.1093/nar/14.3.1267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ribosomal insertions in Drosophila are transcribed at very low levels. The abundance of the most prominent 0.8 kb type 1 insertion transcript increased up to 60-fold when cultured cells were exposed to the DNA intercalating drug chloroquine. After injection of insertion-containing rDNA in circular form into Xenopus laevis oocytes an apparently identical 0.8 kb insertion transcript was synthesized, and its accumulation was stimulated several fold by coinjection of chloroquine or ethidium bromide. We suggest that ribosomal insertions are assembled in a chromatin conformation that lacks unconstrained torsional stress, accounting for the inactivity of these DNA regions; introduction of stress by intercalation results in activation of transcription from the insertion sequences.
Collapse
|
18
|
Dutton FL, Krider HM. Expression and amplification of the genes for ribosomal RNA in bobbed mutants of Drosophila melanogaster. Genet Res (Camb) 1985; 45:155-65. [PMID: 3924733 DOI: 10.1017/s0016672300022084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SummaryWe have employed stocks bearing clonally derivedXchromosomes to investigate several features of the bobbed mutant syndrome, and the amplification of rDNA genes inD. melanogaster. We report that posterior macroscutellar bristle length correlates well with the rDNA content (i.e. dose ofivs–, or uninterrupted genes) in clonedXderivative strains.X/Omales andX/Xfemales with statistically indistinguishable rDNA contents have virtually identical bristle lengths. This indicates that (with respect to this phenotypic character) the rDNAs in these two genotypes are expressed equally, without apparent sexual dimorphism or dosage compensation. However, the severity of bobbed phenotype in terms of bristle morphology, turgite etching, and delayed eclosion is greater in theXbb/XNO−female than in theXbb/Omale genotype for the alleles examined. We estimate the minimum dose of functioning rRNA genes required for viability at 26 δC to be 70 genes per diploid genome. We have examined the capacity of severalXchromosomes which bear bobbed mutant alleles to compensate inX/Omales, and find that disproportionate replication of these rDNAs does not take place. In contrast, at least one of the non-compensating bobbed alleles does appear to undergo rDNA magnification.
Collapse
|
19
|
Hanna PJ, Gl�tzer KH, Liebrich W, Hess O. Genetic factors affecting normal growth of testes inDrosophila hydei. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00848313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Abstract
SUMMARYThe rDNA of fiveYchromosome mutants was examined with respect to their insert free (In−) repeat type multiplicity. The In− repeat number of each mutant was correlated with its hemizygousbobbedphenotype and additivity with anXNObobbed(bb) mutant. Four of these mutants showed a direct relationship between their In− frequency, hemizygousbbphenotype and additivity tests. A fifth mutant,bb1–4, had a sufficient number of In− repeats to ensure viability to the late pupal stage and show additivity; however, the In− repeats genetically behaved as a complete rDNA deletion. Possible mechanisms resulting in the suppression of thebb1–4In− repeats are discussed.
Collapse
|
21
|
Buescher PJ, Phillips RL, Brambl R. Ribosomal RNA contents of maize genotypes with different ribosomal RNA gene numbers. Biochem Genet 1984; 22:923-30. [PMID: 6517855 DOI: 10.1007/bf00499483] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ribosomal RNA (rRNA) contents were determined in 16 maize genotypes whose individual rRNA gene numbers varied from 5000 to 23,000 per 2C nucleus. Analytical polyacrylamide gel electrophoresis of total RNA showed that no obvious relation existed between rRNA gene number and rRNA content. Only two of nine common inbred lines contained more rRNA than W-23, the inbred with the lowest rRNA gene number. Two of four lines with altered protein content (due to long-term experimental selection) had rRNA contents significantly reduced from those of W-23. A line with an apparent duplication of the nucleolus organizer region of chromosome 6 (called 2-NOR) was expected to possess an elevated quantity of rRNA because it possesses a larger nucleolus; however, we produced a 2-NOR isogenic version and found no difference in rRNA content. The rRNA genes in maize are distributed throughout the NOR-heterochromatin and the NOR-secondary constriction portions of the NOR. The absence of an obvious correlation between rRNA gene number and cellular rRNA content may reflect the presence of a large number of rRNA genes in an inactive state, at least during the stage of growth examined in these experiments.
Collapse
|
22
|
Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol 1984; 25:138-93. [PMID: 6729751 DOI: 10.1016/0040-5809(84)90017-0] [Citation(s) in RCA: 380] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Most quantitative traits in most populations exhibit heritable genetic variation. Lande proposed that high levels of heritable variation may be maintained by mutation in the face of stabilizing selection. Several analyses have appeared of two distinct models with n additive polygenic loci subject to mutation and stabilizing selection. Each is reviewed and a new analysis and model are presented. Lande and Fleming analyzed extensions of a model originally treated by Kimura which assumes a continuum of possible allelic effects at each locus. Latter and Bulmer analyzed a model with diallelic loci. The published analyses of these models lead to qualitatively different predictions concerning the dependence of the equilibrium genetic variance on the underlying biological parameters. A new asymptotic analysis of the Kimura model shows that the different predictions are not consequences of the number of alleles assumed but rather are attributable to assumptions concerning the relative magnitudes of per locus mutation rates, the phenotypic effects of mutation, and the intensity of selection. This conclusion is reinforced by analysis of a model with triallelic loci. None of the approximate analyses presented are mathematically rigorous. To quantify their accuracy and display the domains of validity for alternative approximations, numerically determined equilibria are presented. In addition, empirical estimates of mutation rates and selection intensity are reviewed, revealing weaknesses in both the data and its connection to the models. Although the mathematical results and underlying biological requirements of my analyses are quite different from those of Lande , the results do not refute his hypothesis that considerable additive genetic variance may be maintained by mutation-selection balance. However, I argue that the validity of this hypothesis can only be determined with additional data and mathematics.
Collapse
|
23
|
The organ-specific rRNA gene number in Drosophila hydei is controlled by sex heterochromatin. Chromosoma 1984. [DOI: 10.1007/bf00302350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Franz G, Kunz W, Grimm C. Determination of the region of rDNA involved in polytenization in salivary glands of Drosophila hydei. MOLECULAR & GENERAL GENETICS : MGG 1983; 191:74-80. [PMID: 6577262 DOI: 10.1007/bf00330892] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During the formation of polytene chromosomes in salivary glands of Drosophila hydei, the genes for ribosomal RNA (rDNA) are underreplicated relative to the rest of the genome. We have measured the number of rRNA genes with and without intervening sequences (ivs+ and ivs- genes) in polytene chromosomes of different genotypes. In the group of genotypes having a large number of ivs- rRNA genes polytenization only occurs within the cluster of ivs- genes. In each of these genotypes rDNA polytenization reaches a constant level of 150 ivs- genes per two chromatid sets (2C); X/X constitutions having two nucleolus organizers (NOs) in the diploid set polytenize the same amount of rDNA as X/O constitutions. In the group of genotypes with small ivs- gene numbers, the rDNA region involved in polytenization is longer and has an average length of 1,700 kb per NO, which is constant in these genotypes. Polytenization of rDNA is extended into the cluster of ivs+ genes, in spite of the fact that these genes appear to be nonfunctional. The smaller the number of ivs- genes, the greater the number of ivs+ genes that are polytenized in the NO. In these genotypes, X/X females replicate twice as much rDNA as X/O males, suggesting that both NOs of the diploid set are polytenized. A comparison of the pattern of spacer length heterogeneity in hybrids between different stocks also demonstrates that both NOs are replicated during polytenization.
Collapse
|
25
|
Sharp ZD, Gandhi VV, Procunier JD. X chromosome nucleolus organizer mutants which alter major type I repeat multiplicity in Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1983; 190:438-43. [PMID: 6308398 DOI: 10.1007/bf00331074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nucleolus organizer (NO) of the D. melanogaster X chromosome is composed of ribosomal repeat units which contain two types (I and II) of non-rDNA insertions (In+) and repeats with no insertions (In-). Evidence from other laboratories indicate random interspersion of all types of repeat units within the X NO. An EcoRI and BamHI examination of rDNA from two bobbed mutants, bb2rI and mal12 demonstrates segregation of the major type I repeat units. The 46 rDNA repeats of the bb2rI NO contain no detectable major type I repeats whereas the majority of the 68 rDNA mal12 repeats are major type I and tandemly linked. This observation suggests that gross deletions of rDNA can result in nucleolus organizer regions with predominantly one type of repeat unit. Additivity tests demonstrate that the 46 ribosomal repeats of the bb2rI chromosome revert the phenotype of other bobbed NOs, but the 68 mal12 ribosomal repeats show no or slight additivity. This is in agreement with the observation that In+ repeats do not significantly contribute to functional rRNA. A Southern blot analysis using BamHI which cuts only in type I insertions demonstrates that the majority of major type I In+ repeating units exist in tandem linkage group(s) within the X NO.
Collapse
|
26
|
Ghogain NN, Byrne H, Timmis J. The genetic control of ribosomal RNA accumulation in flax genotrophs. Heredity (Edinb) 1982. [DOI: 10.1038/hdy.1982.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Gandhi VV, Sharp ZD, Procunier JD. Analysis of Y chromosome nucleolar organizer mutants in Drosophila melanogaster. Biochem Biophys Res Commun 1982; 104:778-84. [PMID: 6803790 DOI: 10.1016/0006-291x(82)90705-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|