1
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
2
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
3
|
Altamura C, Mangiatordi GF, Nicolotti O, Sahbani D, Farinato A, Leonetti F, Carratù MR, Conte D, Desaphy JF, Imbrici P. Mapping ligand binding pockets in chloride ClC-1 channels through an integrated in silico and experimental approach using anthracene-9-carboxylic acid and niflumic acid. Br J Pharmacol 2018; 175:1770-1780. [PMID: 29500929 DOI: 10.1111/bph.14192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Although chloride channels are involved in several physiological processes and acquired diseases, the availability of compounds selectively targeting CLC proteins is limited. ClC-1 channels are responsible for sarcolemma repolarization after an action potential in skeletal muscle and have been associated with myotonia congenita and myotonic dystrophy as well as with other muscular physiopathological conditions. To date only a few ClC-1 blockers have been discovered, such as anthracene-9-carboxylic acid (9-AC) and niflumic acid (NFA), whereas no activator exists. The absence of a ClC-1 structure and the limited information regarding the binding pockets in CLC channels hamper the identification of improved modulators. EXPERIMENTAL APPROACH Here we provide an in-depth characterization of drug binding pockets in ClC-1 through an integrated in silico and experimental approach. We first searched putative cavities in a homology model of ClC-1 built upon an eukaryotic CLC crystal structure, and then validated in silico data by measuring the blocking ability of 9-AC and NFA on mutant ClC-1 channels expressed in HEK 293 cells. KEY RESULTS We identified four putative binding cavities in ClC-1. 9-AC appears to interact with residues K231, R421 and F484 within the channel pore. We also identified one preferential binding cavity for NFA and propose R421 and F484 as critical residues. CONCLUSIONS AND IMPLICATIONS This study represents the first effort to delineate the binding sites of ClC-1. This information is fundamental to discover compounds useful in the treatment of ClC-1-associated dysfunctions and might represent a starting point for specifically targeting other CLC proteins.
Collapse
Affiliation(s)
- C Altamura
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - G F Mangiatordi
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - O Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - D Sahbani
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - A Farinato
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - F Leonetti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - M R Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - D Conte
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - J-F Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - P Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
4
|
Minooei F, Martin MD, Fried JR, Brian JP. Electrophysiological measurements reveal that a succinyl linker enhances performance of the synthetic chloride channel SCMTR. Chem Commun (Camb) 2018; 54:4689-4691. [DOI: 10.1039/c8cc01565a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel electrophysiological measurements reveal the values of conductance states, voltage gating properties and qualitative activity of a synthetic chloride channel.
Collapse
Affiliation(s)
- Farnaz Minooei
- Department of Chemical Engineering
- University of Louisville
- Louisville
- USA
| | - Michael D. Martin
- Department of Chemical Engineering
- University of Louisville
- Louisville
- USA
| | - J. R. Fried
- Department of Chemical Engineering
- University of Louisville
- Louisville
- USA
| | - J. Patrick Brian
- Department of Chemical Engineering
- University of Louisville
- Louisville
- USA
| |
Collapse
|
5
|
Yu Y, Tsai MF, Yu WP, Chen TY. Modulation of the slow/common gating of CLC channels by intracellular cadmium. ACTA ACUST UNITED AC 2017; 146:495-508. [PMID: 26621774 PMCID: PMC4664824 DOI: 10.1085/jgp.201511413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cd2+ binding to the CLC channel dimer interface inhibits slow gating by altering subunit interactions. Members of the CLC family of Cl− channels and transporters are homodimeric integral membrane proteins. Two gating mechanisms control the opening and closing of Cl− channels in this family: fast gating, which regulates opening and closing of the individual pores in each subunit, and slow (or common) gating, which simultaneously controls gating of both subunits. Here, we found that intracellularly applied Cd2+ reduces the current of CLC-0 because of its inhibition on the slow gating. We identified CLC-0 residues C229 and H231, located at the intracellular end of the transmembrane domain near the dimer interface, as the Cd2+-coordinating residues. The inhibition of the current of CLC-0 by Cd2+ was greatly enhanced by mutation of I225W and V490W at the dimer interface. Biochemical experiments revealed that formation of a disulfide bond within this Cd2+-binding site is also affected by mutation of I225W and V490W, indicating that these two mutations alter the structure of the Cd2+-binding site. Kinetic studies showed that Cd2+ inhibition appears to be state dependent, suggesting that structural rearrangements may occur in the CLC dimer interface during Cd2+ modulation. Mutations of I290 and I556 of CLC-1, which correspond to I225 and V490 of CLC-0, respectively, have been shown previously to cause malfunction of CLC-1 Cl− channel by altering the common gating. Our experimental results suggest that mutations of the corresponding residues in CLC-0 change the subunit interaction and alter the slow gating of CLC-0. The effect of these mutations on modulations of slow gating of CLC channels by intracellular Cd2+ likely depends on their alteration of subunit interactions.
Collapse
Affiliation(s)
- Yawei Yu
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618 Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | - Ming-Feng Tsai
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Wei-Ping Yu
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618 Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | - Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618 Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| |
Collapse
|
6
|
Galván J, Contreras Aguilar E, Defonsi Lestard M, Tuttolomondo M, Ulic S, Ben Altabef A. Theoretical and experimental study of a new thiosulfonate derivative: Methyl trifluoromethanethiosulfonate, CF 3 SO 2 SCH 3 . Conformational transferability in CX 3 SO 2 S-R compounds. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Miller C. In the beginning: a personal reminiscence on the origin and legacy of ClC-0, the 'Torpedo Cl(-) channel'. J Physiol 2015; 593:4085-90. [PMID: 25433078 DOI: 10.1113/jphysiol.2014.286260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/21/2014] [Indexed: 11/08/2022] Open
Abstract
This unapologetically subjective essay recalls the Torpedo Cl(-) channel in the years when it had neither a molecular identity nor proper name (ClC-0), and membership in a large superfamily. I discuss the circumstances surrounding its discovery and subsequent research through the 1980s that revealed its unusual molecular architecture and other strange mechanistic characteristics.
Collapse
Affiliation(s)
- Christopher Miller
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| |
Collapse
|
8
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|
9
|
Tuttolomondo ME, Navarro A, Ruiz TP, Varetti EL, Hayes SA, Wann DA, Robertson HE, Rankin DWH, Altabef AB. Gas-Phase Structure, Rotational Barrier, and Vibrational Properties of Methyl Methanethiosulfonate, CH3SO2SCH3: An Experimental and Computational Study. J Phys Chem A 2007; 111:9952-60. [PMID: 17760430 DOI: 10.1021/jp073611n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular structure of methyl methanethiosulfonate, CH3SO2SCH3, has been determined in the gas phase from electron-diffraction data supplemented by ab initio (HF, MP2) and density functional theory (DFT) calculations using 6-31G(d), 6-311++G(d,p), and 6-311G(3df,3pd) basis sets. Both experimental and theoretical data indicate that although both anti and gauche conformers are possible by rotating about the S-S bond, the preferred conformation is gauche. The barrier to internal rotation in the CSSC skeleton has been calculated using the RHF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) methods as well as MP2 with a 6-31G(3df) basis set on sulfur and 6-31G(d) on C, H, and O. A 6-fold decomposition of the rotational barrier has been performed in terms of a Fourier-type expansion, enabling us to analyze the nature of the potential function, showing that the coefficients V1 and V2 are the dominant terms; V1 is associated with nonbonding interactions, and V2 is associated with hyperconjugative interactions. A natural bond orbital analysis showed that the lone pair --> sigma* hyperconjugative interactions favor the gauche conformation. Furthermore, the infrared spectra for the liquid and solid phases and the Raman spectrum for the liquid have been recorded, and the observed bands have been assigned to the vibrational normal modes. The experimental vibrational data, along with calculated theoretical force constants, were used to define a scaled quantum mechanical force field for the target system that enabled us to estimate the measured frequencies with a final root-mean-square deviation of 6 cm-1.
Collapse
Affiliation(s)
- María E Tuttolomondo
- Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de TucumAn, San Lorenzo 456, 4000 TucumAn, R. Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schmieder S, Bogliolo S, Ehrenfeld J. N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane. J Cell Physiol 2007; 210:479-88. [PMID: 17111367 DOI: 10.1002/jcp.20882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the gene encoding ClC-5 lead to X-linked hypercalciuric nephrolithiasis (XLHN), characterized by proteinuria, hypercalciuria, and phosphaturia. In renal proximal tubule cells, ClC-5 was identified as an important player in endocytosis, which ensures reabsorption of filtered protein. However, the recent finding that ClC-5 is a Cl(-)/H(+) antiporter and not a Cl(-) channel as long thought points to the lack of understanding of its functional role. Also, little biochemical data are available about ClC-5 and its post-translational modifications have not been investigated. Here, we examined the role of N-glycosylation of xClC-5 in the Xenopus oocyte expression system by comparing wild-type (WT) xClC-5 and N-glycosylation site mutants. We found that xClC-5 is N-glycosylated on asparagines 169 and 470, which are the only N-glycosylated sites. xClC-5 mutants have an increased susceptibility to polyubiquitination and proteasomal degradation; however, without a notable impact on the expression level. Using a cross-linking reagent, we showed that xClC-5 assembles into protein complexes, independent of its N-glycosylation. Voltage-clamp measurements showed a reduced conductance in the presence of tunicamycin and with xClC-5 N-glycosylation site mutants. Using immunocytochemistry, we localized xClC-5 mainly in intracellular compartments, and found that its cell surface pool is reduced in the absence of N-glycans. We further examined the plasma membrane retrieval of WT and mutant xClC-5 in the presence of Brefeldin A (BFA), and found that the non-glycosylated mutant was retrieved more than five times faster than the WT protein. We conclude that N-glycosylation enhances cell surface expression of xClC-5, increasing its plasma membrane transport activity.
Collapse
Affiliation(s)
- Sandra Schmieder
- Laboratoire de Physiologie Cellulaire et Moléculaire Des Systèmes Intégrés, Université de Nice-Sophia Antipolis/CNRS, UMR 6548, Nice, France
| | | | | |
Collapse
|
11
|
Abstract
Cl(-) channels are widely found anion pores that are regulated by a variety of signals and that play various roles. On the basis of molecular biologic findings, ligand-gated Cl(-) channels in synapses, cystic fibrosis transmembrane conductors (CFTRs) and ClC channel types have been established, followed by bestrophin and possibly by tweety, which encode Ca(2+)-activated Cl(-) channels. The ClC family has been shown to possess a variety of functions, including stabilization of membrane potential, excitation, cell-volume regulation, fluid transport, protein degradation in endosomal vesicles and possibly cell growth. The molecular structure of Cl(-) channel types varies from 1 to 12 transmembrane segments. By means of computer-based prediction, functional Cl(-) channels have been synthesized artificially, revealing that many possible ion pores are hidden in channel, transporter or unidentified hydrophobic membrane proteins. Thus, novel Cl(-)-conducting pores may be occasionally discovered, and evidence from molecular biologic studies will clarify their physiologic and pathophysiologic roles.
Collapse
Affiliation(s)
- M Suzuki
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical School, Tochigi 329-0498, Japan.
| | | | | |
Collapse
|
12
|
Jurkat-Rott K, Lehmann-Horn F. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 2005; 115:2000-9. [PMID: 16075040 PMCID: PMC1180551 DOI: 10.1172/jci25525] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Muscle channelopathies are caused by mutations in ion channel genes, by antibodies directed against ion channel proteins, or by changes of cell homeostasis leading to aberrant splicing of ion channel RNA or to disturbances of modification and localization of channel proteins. As ion channels constitute one of the only protein families that allow functional examination on the molecular level, expression studies of putative mutations have become standard in confirming that the mutations cause disease. Functional changes may not necessarily prove disease causality of a putative mutation but could be brought about by a polymorphism instead. These problems are addressed, and a more critical evaluation of the underlying genetic data is proposed.
Collapse
|
13
|
Britton FC, Wang GL, Huang ZM, Ye L, Horowitz B, Hume JR, Duan D. Functional characterization of novel alternatively spliced ClC-2 chloride channel variants in the heart. J Biol Chem 2005; 280:25871-80. [PMID: 15883157 DOI: 10.1074/jbc.m502826200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel volume-regulated hyperpolarization-activated chloride inward rectifier channel (Cl.ir) was identified in mammalian heart. To investigate whether ClC-2 is the gene encoding Cl.ir channels in heart, ClC-2 cDNAs cloned from rat (rClC-2) and guinea pig (gpClC-2) hearts were functionally characterized. When expressed in NIH/3T3 cells, full-length rClC-2 yielded inwardly rectifying whole-cell currents with very slow activation kinetics (time constants > 1.7 s) upon hyperpolarization under hypotonic condition. The single-channel rClC-2 currents had a unitary slope conductance of 3.9 +/- 0.2 picosiemens. A novel variant with an in-frame deletion at the beginning of exon 15 that leads to a deletion of 45 bp (corresponding to 15 amino acids in alpha-helices O and P, rClC-2(Delta509-523)) was identified in rat heart. The relative transcriptional expression levels of full-length rClC-2 and rClC-2(Delta509-523) in rat heart were 0.018 +/- 0.003 and 0.028 +/- 0.006 arbitrary units, respectively, relative to glyceraldehyde-3-phosphate dehydrogenase (n = 5, p = nonsignificant). A similar partial exon 15 skipping with a deletion of 105 bp (35 amino acids in alpha-helices O-Q, gpClC-2(Delta509-543)) was also identified in guinea pig heart. Expression of both rClC-2(Delta509-523) and gpClC-2(Delta509-543) resulted in functional channels with phenotypic activation kinetics and many properties identical to those of endogenous Cl.ir channels in native rat and guinea pig cardiac myocytes, respectively. Intracellular dialysis of anti-ClC-2 antibody inhibited expressed ClC-2 channels and endogenous Cl.ir currents in native rat and guinea pig cardiac myocytes. These results demonstrate that novel deletion variants of ClC-2 due to partial exon 15 skipping may be expressed normally in heart and contribute to the formation of endogenous Cl.ir channels in native cardiac cells.
Collapse
Affiliation(s)
- Fiona C Britton
- Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, Nevada 89557-0270, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The CLC family comprises a group of integral membrane proteins whose major action is to translocate chloride (Cl-) ions across the cell membranes. Recently, the structures of CLC orthologues from two bacterial species, Salmonella typhimurium and Escherichia coli, were solved, providing the first framework for understanding the operating mechanisms of these molecules. However, most of the previous mechanistic understanding of CLC channels came from electrophysiological studies of a branch of the channel family, the muscle-type CLC channels in vertebrate species. These vertebrate CLC channels were predicted to contain two identical but independent pores, and this hypothesis was confirmed by the solved bacterial CLC structures. The opening and closing of the vertebrate CLC channels are also known to couple to the permeant ions via their binding sites in the ion-permeation pathway. The bacterial CLC structures can probably serve as a structural model to explain the gating-permeation coupling mechanism. However, the CLC-ec1 protein in E. coli was most recently shown to be a Cl- -H+ antiporter, but not an ion channel. The molecular basis to explain the difference between vertebrate and bacterial CLCs, especially the distinction between an ion channel and a transporter, remains a challenge in the structure/function studies for the CLC family.
Collapse
Affiliation(s)
- Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, California 95616, USA.
| |
Collapse
|
15
|
Li Y, Yu WP, Lin CW, Chen TY. Oxidation and reduction control of the inactivation gating of Torpedo ClC-0 chloride channels. Biophys J 2005; 88:3936-45. [PMID: 15778445 PMCID: PMC1305625 DOI: 10.1529/biophysj.104.055012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oxidation and reduction (redox) are known to modulate the function of a variety of ion channels. Here, we report a redox regulation of the function of ClC-0, a chloride (Cl(-)) channel from the Torpedo electric organ. The study was motivated by the occasional observation of oocytes with hyperpolarization-activated Cl(-) current when these oocytes expressed ClC-0. We find that these atypical recording traces can be turned into typical ClC-0 current by incubating the oocyte in millimolar concentrations of reducing agents, suggesting that the channel function is regulated by oxidation and reduction. The redox control apparently results from an effect of oxidation on the slow (inactivation) gating: oxidation renders it more difficult for the channel to recover from the inactivated states. Introducing the point mutation C212S in ClC-0 suppresses the inactivation state, and this inactivation-suppressed mutant is no longer sensitive to the inhibition by oxidizing reagents. However, C212 is probably not the target for the redox reaction because the regulation of the inactivation gating by oxidation is still present in a pore mutant (K165C/K165 heterodimer) in which the C212S mutation is present. Taking advantage of the K165C/K165 heterodimer, we further explore the oxidation effect in ClC-0 by methane thiosulfonate (MTS) modifications. We found that trimethylethylammonium MTS modification of the introduced cysteine can induce current in the K165C/K165 heterodimer, an effect attributed to the recovery of the channel from the inactivation state. The current induction by MTS reagents is subjected to redox controls, and thus the extent of this current induction can serve as an indicator to report the oxidation state of the channel. These results together suggest that the inactivation gating of ClC-0 is affected by redox regulation. The finding also provides a convenient method to "cure" those atypical recording traces of ClC-0 expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- Yong Li
- Center for Neuroscience and Department of Neurology, University of California, Davis, 95616, USA
| | | | | | | |
Collapse
|
16
|
Grunnet M, Jespersen T, Colding-Jørgensen E, Schwartz M, Klaerke DA, Vissing J, Olesen SP, Dunø M. Characterization of two new dominant ClC-1 channel mutations associated with myotonia. Muscle Nerve 2003; 28:722-32. [PMID: 14639587 DOI: 10.1002/mus.10501] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ClC-1 chloride channels encoded by the CLCN1 gene have a major role in setting the membrane potential in skeletal muscle. More than 60 CLCN1 mutations have been associated with myotonia congenita. These mutations are traditionally classified as recessive (Becker's disease) or dominant (Thomsen's disease). In this study, we have electrophysiologically characterized two new dominant ClC-1 mutations, thereby elucidating the observed phenotype in patients. The two ClC-1 mutants M128V and E193K were identified, and the DNA was isolated from patients and subsequently expressed in Xenopus laevis oocytes for electrophysiological characterization. Both ClC-1 mutants, M128V and E193K, showed a large rightward shift in the current-voltage relationship. In addition, the activation kinetics were slowed in the ClC-1 M128V mutant, as compared to the wild-type ClC-1. Interestingly, ClC-1 E193K revealed a change in reversal potential compared to wild-type channels. This finding supports the notion that the E193 amino acid is an important determinant in the selectivity filter of the human ClC-1 channel. The electrophysiological behavior of both mutants demonstrates a severe reduction in ClC-1 channel conductance under physiologically relevant membrane potentials. These studies thereby explain the molecular background for the observed myotonia in patients.
Collapse
Affiliation(s)
- Morten Grunnet
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The subunits that compose eukaryotic glutamate ion channel receptors have three transmembrane domains (TMs) and terminate with intracellular tails that are important for controlling channel expression and localization. Truncation of NMDA receptor subunits before the final TM showed that this TM and intracellular tail region are necessary to form functional channels. However, it is shown here that these truncated subunits may be partially rescued by coexpressing the final TM and tail as a separate protein. The whole-cell currents so produced are somewhat lower than with full-length subunits, and they do not show the sag characteristic of currents from channels containing NR1 and NR2A subunits in the continued presence of an agonist. In addition, these truncated subunits were joined to full-length subunits to generate tandems. The functional expression of these tandems confirmed the tetrameric structure of NMDA receptors and also suggested that the subunits making up NMDA receptors are arranged as a dimer of dimers in the receptors with a 1-1-2-2 orientation of the subunits in the channel, and not in an alternating pattern of subunits around the pore. These results may redirect future studies into the mechanism of binding and gating in these receptors toward schemes including dimers, and may also be relevant to studies of glutamate receptor ion channels in general.
Collapse
|
18
|
Abstract
AIM This review describes molecular and functional properties of the following Cl- channels: the ClC family of voltage-dependent Cl- channels, the cAMP-activated transmembrane conductance regulator (CFTR), Ca2+ activated Cl- channels (CaCC) and volume-regulated anion channels (VRAC). If structural data are available, their relationship with the function of Cl- channels will be discussed. We also describe shortly some recently discovered channels, including high conductance Cl- channels and the family of bestrophins. We illustrate the growing physiological importance of these channels in the plasma membrane and in intracellular membranes, including their involvement in transepithelial transport, pH regulation of intracellular organelles, regulation of excitability and volume regulation. Finally, we discuss the role of Cl- channels in various diseases and describe the pathological phenotypes observed in knockout mice models.
Collapse
Affiliation(s)
- B Nilius
- KU Leuven, Laboratorium voor Fysiologie, Campus Gasthuisberg, Leuven, Belgium
| | | |
Collapse
|
19
|
Devuyst O, Guggino WB. Chloride channels in the kidney: lessons learned from knockout animals. Am J Physiol Renal Physiol 2002; 283:F1176-91. [PMID: 12426234 DOI: 10.1152/ajprenal.00184.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cl- channels are involved in a range of functions, including regulation of cell volume and/or intracellular pH, acidification of intracellular vesicles, and vectorial transport of NaCl across many epithelia. Numerous Cl- channels have been identified in the kidney, based on single-channel properties such as conductance, anion selectivity, gating, and response to inhibitors. The molecular counterpart of many of these Cl- channels is still not known. This review will focus on gene-targeted mouse models disrupting two structural classes of Cl- channels that are relevant for the kidney: the CLC family of voltage-gated Cl- channels and the CFTR. Disruption of several members of the CLC family in the mouse provided useful models for various inherited diseases of the kidney, including Dent's disease and diabetes insipidus. Mice with disrupted CFTR are valuable models for cystic fibrosis (CF), the most common autosomal recessive, lethal disease in Caucasians. Although CFTR is expressed in various nephron segments, there is no overt renal phenotype in CF. Analysis of CF mice has been useful to identify the role and potential interactions of CFTR in the kidney. Furthermore, observations made in CF mice are potentially relevant to all other models of Cl- channel knockouts because they emphasize the importance of alternative Cl- pathways in such models.
Collapse
Affiliation(s)
- Olivier Devuyst
- Division of Nephrology, Université Catholique de Louvain Medical School, B-1200 Brussels, Belgium
| | | |
Collapse
|
20
|
Abstract
Ion channels are complex proteins that span the lipid bilayer of the cell membrane, where they orchestrate the electrical signals necessary for normal function of the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. The role of ion channel defects in the pathogenesis of numerous disorders, many of them neuromuscular, has become increasingly apparent over the last decade. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the study of expressed proteins at the level of single channel molecules possible. Understanding the molecular basis of ion channel function and dysfunction will facilitate both the accurate classification of these disorders and the rational development of specific therapeutic interventions. This review encompasses clinical, genetic, and pathophysiological aspects of ion channels disorders, focusing mainly on those with neuromuscular manifestations.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Department of Neurology, University of Pennsylvania School of Medicine, 122 College Hall, Philadelphia, PA 19104, USA
| | | |
Collapse
|
21
|
Abstract
CLC chloride channels form a large gene family that is found in bacteria, archae and eukaryotes. Previous mutagenesis studies on CLC chloride channels, combined with electrophysiology, strongly supported the theory that these channels form a homodimeric structure with one pore per subunit (a'double-barrelled' channel), and also provided clues about gating and permeation. Recently, the crystal structures of two bacterial CLC proteins have been obtained by X-ray diffraction analysis. They confirm the double-barrelled architecture, and reveal a surprisingly complex and unprecedented channel structure. At its binding site in the pore, chloride interacts with the ends of four helices that come from both sides of the membrane. A glutamate residue that protrudes into the pore is proposed to participate in gating. The structure confirms several previous conclusions from mutagenesis studies and provides an excellent framework for their interpretation.
Collapse
Affiliation(s)
- Raúl Estévez
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Falkenried 94, Germany
| | | |
Collapse
|
22
|
Wu H, Olson EN. Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice. J Clin Invest 2002; 109:1327-33. [PMID: 12021248 PMCID: PMC150985 DOI: 10.1172/jci15417] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Becker syndrome, a recessive nondystrophic myotonia caused by mutations in the chloride channel 1 gene (CLCN1), is characterized by delayed muscle relaxation after contraction. The ADR (arrested development of righting response) mouse is an animal model for Becker syndrome. Skeletal muscles from ADR myotonic animals show an increased number of oxidative fibers with a lack of glycolytic fibers as well as signs of muscle hypertrophy. Through breeding ADR myotonic mice with mice harboring a MEF2-dependent reporter gene, we found that the transcriptional activity of MEF2 was dramatically enhanced in myotonic muscles. Post-translational induction of MEF2 transcriptional activity correlated with the activation of p38 MAPK and did not affect MEF2 DNA-binding affinity. Expression of class II histone deacetylases (HDACs), which repress MEF2-dependent gene expression, was significantly reduced in skeletal muscles from myotonic mice. These findings suggest that the combined effects of class II HDAC deficiency and p38 MAPK activation lead to potent upregulation of MEF2 transcriptional activity, which contributes to the long-term changes in gene expression and fiber-type transformation observed in myotonic skeletal muscles. These findings provide new molecular targets for potential treatment of congenital myotonia.
Collapse
Affiliation(s)
- Hai Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas 75390-9148, USA
| | | |
Collapse
|
23
|
Wu H, Olson EN. Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice. J Clin Invest 2002. [DOI: 10.1172/jci0215417] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Abstract
Pure non-syndromic, non-dystrophic myotonia in humans is caused by mutations in the genes coding for the skeletal muscle sodium channel (SCN5A) or the skeletal muscle chloride channel (CLCN1) with similar phenotypes. Chloride-channel myotonia can be dominant (Thomsen-type myotonia) or recessive (Becker-type myotonia). More than 60 myotonia-causing mutations in the CLCN1 gene have been identified, with only a few of them being dominant. A common phenotype of dominant mutations is a dominant negative effect of mutant subunits in mutant-WT heterodimers, causing a large shift of the steady-state open probability voltage-dependence towards more positive, unphysiological voltages. The study of the properties of disease causing mutations has helped in understanding the functional properties of the CLC-1 channel that is part of a nine-member gene family of chloride channels. The large body of knowledge obtained for CLC-1 may also help to better understand the other CLC channels, three of which are also involved in genetic diseases.
Collapse
Affiliation(s)
- Michael Pusch
- Istituto di Cibernetica e Biofisica, CNR, Genova, Italy.
| |
Collapse
|
25
|
Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82:503-68. [PMID: 11917096 DOI: 10.1152/physrev.00029.2001] [Citation(s) in RCA: 945] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl- channels reside both in the plasma membrane and in intracellular organelles. Their functions range from ion homeostasis to cell volume regulation, transepithelial transport, and regulation of electrical excitability. Their physiological roles are impressively illustrated by various inherited diseases and knock-out mouse models. Thus the loss of distinct Cl- channels leads to an impairment of transepithelial transport in cystic fibrosis and Bartter's syndrome, to increased muscle excitability in myotonia congenita, to reduced endosomal acidification and impaired endocytosis in Dent's disease, and to impaired extracellular acidification by osteoclasts and osteopetrosis. The disruption of several Cl- channels in mice results in blindness. Several classes of Cl- channels have not yet been identified at the molecular level. Three molecularly distinct Cl- channel families (CLC, CFTR, and ligand-gated GABA and glycine receptors) are well established. Mutagenesis and functional studies have yielded considerable insights into their structure and function. Recently, the detailed structure of bacterial CLC proteins was determined by X-ray analysis of three-dimensional crystals. Nonetheless, they are less well understood than cation channels and show remarkably different biophysical and structural properties. Other gene families (CLIC or CLCA) were also reported to encode Cl- channels but are less well characterized. This review focuses on molecularly identified Cl- channels and their physiological roles.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
26
|
|
27
|
The endogenous calcium-activated Cl channel in Xenopus oocytes: A physiologically and biophysically rich model system. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)53026-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Abstract
Due to the relative ease of obtaining their crystal structures, bacterial ion channels provide a unique opportunity to analyse structure and function of their eukaryotic homologues. This review describes prokaryotic channels whose structures have been determined. These channels are KcsA, a bacterial homologue of eukaryotic potassium channels, MscL, a bacterial mechanosensitive ion channel and ClC0, a prokaryotic homologue of the eukaryotic ClC family of anion-selective channels. General features of their structure and function are described with a special emphasis on the advantages that these channels offer for understanding the properties of their eukaryotic homologues. We present amino-acid sequences of eukaryotic proteins related in their primary sequences to bacterial mechanosensitive channels. The usefulness of bacterial mechanosensitive channels for the studies on general principles of mechanosensation is discussed.
Collapse
Affiliation(s)
- P Koprowski
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
29
|
Abstract
Chloride (Cl(-)) is the most abundant extracellular anion in multicellular organisms. Passive movement of Cl(-) through membrane ion channels enables several cellular and physiological processes including transepithelial salt transport, electrical excitability, cell volume regulation and acidification of internal and external compartments. One family of proteins mediating Cl(-) permeability, the ClC channels, has emerged as important for all of these biological processes. The importance of ClC channels has in part been realized through studies of inherited human diseases and genetically engineered mice that display a wide range of phenotypes from kidney stones to petrified bones. These recent findings have demonstrated many eclectic functions of ClC channels and have placed Cl(-) channels in the physiological limelight.
Collapse
Affiliation(s)
- A L George
- Department of Medicine, Division of Genetic Medicine, 451 Preston Research Building, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6304, USA.
| | | | | | | |
Collapse
|
30
|
Pusch M, Accardi A, Liantonio A, Ferrera L, De Luca A, Camerino DC, Conti F. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB). J Gen Physiol 2001; 118:45-62. [PMID: 11432801 PMCID: PMC2233749 DOI: 10.1085/jgp.118.1.45] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.
Collapse
Affiliation(s)
- M Pusch
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, I-6149 Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Amar M, Perin-Dureau F, Neyton J. High-affinity Zn block in recombinant N-methyl-D-aspartate receptors with cysteine substitutions at the Q/R/N site. Biophys J 2001; 81:107-16. [PMID: 11423399 PMCID: PMC1301496 DOI: 10.1016/s0006-3495(01)75684-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In ionotropic glutamate receptors, many channel properties (e.g., selectivity, ion permeation, and ion block) depend on the residue (glutamine, arginine, or asparagine) located at the tip of the pore loop (the Q/R/N site). We substituted a cysteine for the asparagine present at that position in both NR1 and NR2 N-methyl-D-aspartate (NMDA) receptor subunits. Under control conditions, receptors containing mutated NR1 and NR2 subunits show much smaller glutamate responses than wild-type receptors. However, this difference disappears upon addition of heavy metal chelators in the extracellular bath. The presence of cysteines at the Q/R/N site in both subunits of NR1/NR2C receptors results in a 220,000-fold increase in sensitivity of the inhibition by extracellular Zn. In contrast with the high-affinity Zn inhibition of wild-type NR1/NR2A receptors, the high-affinity Zn inhibition of mutated NR1/NR2C receptors shows a voltage dependence, which resembles very much that of the block by extracellular Mg. This indicates that the Zn inhibition of the mutated receptors results from a channel block involving Zn binding to the thiol groups introduced into the selectivity filter. Taking advantage of the slow kinetics of the Zn block, we show that both blocking and unblocking reactions require prior opening of the channel.
Collapse
Affiliation(s)
- M Amar
- Laboratoire de Neurobiologie, Ecole Normale Supérieure, 75005 Paris, France
| | | | | |
Collapse
|
32
|
Abstract
Voltage-gated anion channels are present in almost every living cell and have many physiological functions. Recently, a novel gene family encoding voltage-gated chloride channels, the ClC family, was identified. The knowledge of primary amino acid sequences has allowed for the study of these anion channels in heterologous expression systems and made possible the combination of site-directed mutagenesis and high-resolution electrophysiological measurements as a means of gaining insights into the molecular basis of channel function. This review focuses on one particular aspect of chloride channel function, the selective transport of anions through biological membranes. I will describe recent experiments using a combination of cellular electrophysiology, molecular genetics, and recombinant DNA technology to study the molecular basis of ion permeation and selection in ClC-type chloride channels. These novel tools have provided new insights into basic mechanisms underlying the function of these biologically important channels.
Collapse
Affiliation(s)
- C Fahlke
- Institute of Physiology, RWTH Aachen, Pauwelsstr. 30, 52057 Aachen, Germany.
| |
Collapse
|
33
|
Maduke M, Miller C, Mindell JA. A decade of CLC chloride channels: structure, mechanism, and many unsettled questions. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:411-38. [PMID: 10940254 DOI: 10.1146/annurev.biophys.29.1.411] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ClC-type chloride channels are ubiquitous throughout the biological world. Expressed in nearly every cell type, these proteins have a host of biological functions. With nine distinct homologues known in eukaryotes, the ClCs represent the only molecularly defined family of chloride channels. ClC channels exhibit features of molecular architecture and gating mechanisms unprecedented in other types of ion channels. They form two-pore homodimers, and their voltage-dependence arises not from charged residues in the protein, but rather via coupling of gating to the movement of chloride ions within the pore. Because the functional characteristics of only a few ClC channels have been studied in detail, we are still learning which properties are general to the whole family. New approaches, including structural analyses, will be crucial to an understanding of ClC architecture and function.
Collapse
Affiliation(s)
- M Maduke
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
34
|
Weinreich F, Jentsch TJ. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J Biol Chem 2001; 276:2347-53. [PMID: 11035003 DOI: 10.1074/jbc.m005733200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CLC chloride channels comprise a gene family with nine mammalian members. Probably all CLC channels form homodimers, and some CLC proteins may also associate to heterodimers. ClC-0 and ClC-1, the only CLC channels investigated at the single-channel level, display two conductances of equal size which are thought to result from two separate pores, formed individually by the two monomers. We generated concatemeric channels containing one subunit of ClC-0 together with one subunit of ClC-1 or ClC-2. They should display two different conductances if one monomer were sufficient to form one pore. Indeed, we found a 8-picosiemens (pS) conductance (corresponding to ClC-0) that was associated with either a 1.8-pS (ClC-1) or a 2.8-pS (ClC-2) conductance. These conductances retained their typical gating, but the slow gating of ClC-0 that affects both pores simultaneously was lost. ClC-2 and ClC-0 current components were modified by point mutations in the corresponding subunit. The ClC-2 single pore of the mixed dimer was compared with the pores in the ClC-2 homodimer and found to be unaltered. We conclude that each monomer individually forms a gated pore. CLC dimers in general must be imagined as having two pores, as shown previously for ClC-0.
Collapse
Affiliation(s)
- F Weinreich
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Hamburg University, Martinistrasse 85, D-20246 Hamburg, Germany
| | | |
Collapse
|
35
|
Fahlke C, Desai RR, Gillani N, George AL. Residues lining the inner pore vestibule of human muscle chloride channels. J Biol Chem 2001; 276:1759-65. [PMID: 11035024 DOI: 10.1074/jbc.m007649200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloride channels belonging to the ClC family are ubiquitous and participate in a wide variety of physiological and pathophysiological processes. To define sequence segments in ClC channels that contribute to the formation of their ion conduction pathway, we employed a combination of site-directed mutagenesis, heterologous expression, patch clamp recordings, and chemical modification of the human muscle ClC isoform, hClC-1. We demonstrate that a highly conserved 8-amino acid motif (P3) located in the linker between transmembrane domains D2 and D3 contributes to the formation of a wide pore vestibule facing the cell interior. Similar to a previously defined pore region (P1 region), this segment functionally interacts with the corresponding segment of the contralateral subunit. The use of cysteine-specific reagents of different size revealed marked differences in the diameter of pore-forming regions implying that ClC channels exhibit a pore architecture quite similar to that of certain cation channels, in which a narrow constriction containing major structural determinants of ion selectivity is neighbored by wide vestibules on both sides of the membrane.
Collapse
Affiliation(s)
- C Fahlke
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
36
|
Mindell JA, Maduke M, Miller C, Grigorieff N. Projection structure of a ClC-type chloride channel at 6.5 A resolution. Nature 2001; 409:219-23. [PMID: 11196649 DOI: 10.1038/35051631] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virtually all cells in all eukaryotic organisms express ion channels of the ClC type, the only known molecular family of chloride-ion-selective channels. The diversity of ClC channels highlights the multitude and range of functions served by gated chloride-ion conduction in biological membranes, such as controlling electrical excitability in skeletal muscle, maintaining systemic blood pressure, acidifying endosomal compartments, and regulating electrical responses of GABA (gamma-aminobutyric acid)-containing interneurons in the central nervous system. Previously, we expressed and purified a prokaryotic ClC channel homologue. Here we report the formation of two-dimensional crystals of this ClC channel protein reconstituted into phospholipid bilayer membranes. Cryo-electron microscopic analysis of these crystals yields a projection structure at 6.5 A resolution, which shows off-axis water-filled pores within the dimeric channel complex.
Collapse
Affiliation(s)
- J A Mindell
- Department of Biochemistry, Howard Hughes Medical Institute, Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
SUMMARY Chloride-conducting ion channels of the ClC family are emerging as critical contributors to a host of biological processes. These polytopic membrane proteins form aqueous pathways through which anions are selectively allowed to pass down their concentration gradients. The ClCs are found in nearly all organisms, with members in every mammalian tissue, yet relatively little is known about their mechanism or regulation. It is clear, however, that they are fundamentally different in molecular construction and mechanism from the well-known potassium-, sodium-, and calcium-selective channels. The medical importance of ClC channels - four inherited diseases have been blamed on familial ClC dysfunction to date - highlights their diverse physiological functions and provides strong motivation for further study.
Collapse
Affiliation(s)
- Joe Mindell
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA02454, USA. E-mail:
| | - Merritt Maduke
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA02454, USA. E-mail:
| |
Collapse
|
38
|
Lin CW, Chen TY. Cysteine modification of a putative pore residue in ClC-0: implication for the pore stoichiometry of ClC chloride channels. J Gen Physiol 2000; 116:535-46. [PMID: 11004203 PMCID: PMC2230621 DOI: 10.1085/jgp.116.4.535] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ClC channel family consists of chloride channels important for various physiological functions. Two members in this family, ClC-0 and ClC-1, share approximately 50-60% amino acid identity and show similar gating behaviors. Although they both contain two subunits, the number of pores present in the homodimeric channel is controversial. The double-barrel model proposed for ClC-0 was recently challenged by a one-pore model partly based on experiments with ClC-1 exploiting cysteine mutagenesis followed by modification with methanethiosulfonate (MTS) reagents. To investigate the pore stoichiometry of ClC-0 more rigorously, we applied a similar strategy of MTS modification in an inactivation-suppressed mutant (C212S) of ClC-0. Mutation of lysine 165 to cysteine (K165C) rendered the channel nonfunctional, but modification of the introduced cysteine by 2-aminoethyl MTS (MTSEA) recovered functional channels with altered properties of gating-permeation coupling. The fast gate of the MTSEA-modified K165C homodimer responded to external Cl(-) less effectively, so the P(o)-V curve was shifted to a more depolarized potential by approximately 45 mV. The K165C-K165 heterodimer showed double-barrel-like channel activity after MTSEA modification, with the fast-gating behaviors mimicking a combination of those of the mutant and the wild-type pore, as expected for the two-pore model. Without MTSEA modification, the heterodimer showed only one pore, and was easier to inactivate than the two-pore channel. These results showed that K165 is important for both the fast and slow gating of ClC-0. Therefore, the effects of MTS reagents on channel gating need to be carefully considered when interpreting the apparent modification rate.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan 11221
| | - Tsung-Yu Chen
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan 11221
| |
Collapse
|
39
|
Abstract
Gating of the muscle chloride channel CLC-1 involves at least two processes evidenced by double-exponential current relaxations when stepping the voltage to negative values. However, there is little information about the gating of CLC-1 at positive voltages. Here, we analyzed macroscopic gating of CLC-1 over a large voltage range (from -160 to +200 mV). Activation was fast at positive voltages but could be easily followed using envelope protocols that employed a tail pulse to -140 mV after stepping the voltage to a certain test potential for increasing durations. Activation was biexponential, demonstrating the presence of two gating processes. Both time constants became exponentially faster at positive voltages. A similar voltage dependence was also seen for the fast gate time constant of CLC-0. The voltage dependence of the time constant of the fast process of CLC-1, tau(f), was steeper than that of the slow one, tau(s) (apparent activation valences were z(f) approximately -0. 79 and z(s) approximately -0.42) such that at +200 mV the two processes became kinetically distinct by almost two orders of magnitude (tau(f) approximately 16 micros, tau(s) approximately 1 ms). This voltage dependence is inconsistent with a previously published gating model for CLC-1 (Fahlke, C., A. Rosenbohm, N. Mitrovic, A.L. George, and R. Rüdel. 1996. Biophys. J. 71:695-706). The kinetic difference at 200 mV allowed us to separate the steady state open probabilities of the two processes assuming that they reflect two parallel (not necessarily independent) gates that have to be open simultaneously to allow ion conduction. Both open probabilities could be described by Boltzmann functions with gating valences around one and with nonzero "offsets" at negative voltages, indicating that the two "gates" never close completely. For comparison with single channel data and to correlate the two gating processes with the two gates of CLC-0, we characterized their voltage, pH(int), and [Cl](ext) dependence, and the dominant myotonia inducing mutation, I290M. Assuming a double-barreled structure of CLC-1, our results are consistent with the identification of the fast and slow gating processes with the single-pore and the common-pore gate, respectively.
Collapse
Affiliation(s)
- A Accardi
- Istituto di Cibernetica e Biofisica, Consiglio Nazionale delle Ricerche, Via de Marini 6, I-16149 Genova, Italy
| | | |
Collapse
|
40
|
Köhler K, Forster IC, Lambert G, Biber J, Murer H. The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J Biol Chem 2000; 275:26113-20. [PMID: 10859311 DOI: 10.1074/jbc.m003564200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The composition of the functional unit of the rat renal type IIa Na(+)/P(i) cotransporter (NaPi-IIa) was investigated by using two approaches based on the differential sensitivities of the wild type (WT) and mutant S460C proteins to 2-aminoethylmethanethiosulfonate hydrobromide (MTSEA), a charged cysteine modifier. Transport activity of S460C is completely blocked after incubation in MTSEA, whereas that of the WT remains unaffected. First, Xenopus laevis oocytes were coinjected with cRNAs coding for the WT and S460C in different proportions, and the transport inhibition after MTSEA incubation was assayed by electrophysiology. The relationship between MTSEA inhibition and proportion of cRNA was consistent with that for a functional monomer. Second, concatameric proteins were constructed that either comprised two WT proteins (WT-WT), two S460C mutants (S460C-S460C), or one of each (WT-S460C). Western blots of oocytes injected with fusion protein cRNA showed bands at approximately 200 kDa, whereas a main band at approximately 90 kDa was obtained for the WT cRNA alone. The kinetic properties of concatamers were the same as for the single proteins. Transport activity of the WT-WT concatamer was unaffected by MTSEA incubation, fully inhibited for S460C-S460C, but 50% inhibited for WT-S460C. This behavior was also consistent with NaPi-IIa being a functional monomer.
Collapse
Affiliation(s)
- K Köhler
- Physiologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Nobile M, Pusch M, Rapisarda C, Ferroni S. Single-channel analysis of a ClC-2-like chloride conductance in cultured rat cortical astrocytes. FEBS Lett 2000; 479:10-4. [PMID: 10940379 DOI: 10.1016/s0014-5793(00)01876-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The single-channel behavior of the hyperpolarization-activated, ClC-2-like inwardly rectifying Cl- current (IClh), induced by long-term dibutyryl-cyclic-AMP-treated cultured cortical rat astrocytes, was analyzed with the patch-clamp technique. In outside-out patches in symmetrical 144 mM Cl-solutions, openings of hyperpolarization-activated small-conductance Cl channels revealed burst activity of two equidistant conductance levels of 3 and 6 pS. The unitary openings displayed slow activation kinetics. The probabilities of the closed and conducting states were consistent with a double-barrelled structure of the channel protein. These results suggest that the astrocytic ClC-2-like Cl- current Iclh is mediated by a small-conductance Cl channel, which has the same structural motif as the Cl- channel prototype CIC-0.
Collapse
Affiliation(s)
- M Nobile
- Institute of Cybernetics and Biophysics, CNR, Genoa, Italy.
| | | | | | | |
Collapse
|
42
|
Waldegger S, Jentsch TJ. Functional and structural analysis of ClC-K chloride channels involved in renal disease. J Biol Chem 2000; 275:24527-33. [PMID: 10831588 DOI: 10.1074/jbc.m001987200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClC-K channels belong to the CLC family of chloride channels and are predominantly expressed in the kidney. Genetic evidence suggests their involvement in transepithelial transport of chloride in distal nephron segments; ClC-K1 gene deletion leads to nephrogenic diabetes insipidus in mice, and mutations of the hClC-Kb gene cause Bartter's syndrome type III in humans. Expression of rClC-K1 in Xenopus oocytes yielded voltage-independent currents that were pH-sensitive, had a Br(-) > NO(3)(-) = Cl(-) > I(-) conductance sequence, and were activated by extracellular calcium. A glutamate for valine exchange at amino acid position 166 induced strong voltage dependence and altered the conductance sequence of ClC-K1. This demonstrates that rClC-K1 indeed functions as an anion channel. By contrast, we did not detect currents upon hClC-Kb expression in Xenopus oocytes. Using a chimeric approach, we defined a protein domain that, when replaced by that of rClC-K1, allowed the functional expression of a chimera consisting predominantly of hClC-Kb. Its currents were linear and were inhibited by extracellular acidification. Contrasting with rClC-K1, they displayed a Cl(-) > Br(-)> I(-) > NO(3)(-) conductance sequence and were not augmented by extracellular calcium. Insertion of point mutations associated with Bartter's syndrome type III destroyed channel activity. We conclude that ClC-K proteins form constitutively open chloride channels with distinct physiological characteristics.
Collapse
Affiliation(s)
- S Waldegger
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistr. 85, D-20246 Hamburg, Germany.
| | | |
Collapse
|
43
|
Waldegger S, Jentsch TJ. From tonus to tonicity: physiology of CLC chloride channels. J Am Soc Nephrol 2000; 11:1331-1339. [PMID: 10864591 DOI: 10.1681/asn.v1171331] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Chloride channels are involved in a multitude of physiologic processes ranging from basal cellular functions such as cell volume regulation and acidification of intracellular vesicles to more specialized mechanisms such as vectorial transepithelial transport and regulation of cellular excitability. This plethora of functions is accomplished by numerous functionally highly diverse chloride channels that are only partially identified at the molecular level. The CLC family of chloride channels comprises at present nine members in mammals that differ with respect to biophysical properties, cellular compartmentalization, and tissue distribution. Their common structural features include a predicted topology model with 10 to 12 transmembrane regions together with two C-terminal CBS domains. Loss of function mutations affecting three different members of the CLC channel family lead to three human inherited diseases : myotonia congenita, Dent's disease, and Bartter's syndrome. These diseases, together with the diabetes insipidus symptoms of a knockout mouse model, emphasize the physiologic relevance of this ion channel family.
Collapse
Affiliation(s)
| | - Thomas J Jentsch
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, Germany
| |
Collapse
|
44
|
Fahlke C. Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations. Kidney Int 2000; 57:780-6. [PMID: 10720929 DOI: 10.1046/j.1523-1755.2000.00915.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The muscle Cl- channel, ClC-1, is a member of the ClC family of voltage-gated Cl- channels. Mutations in CLCN1, the gene encoding this channel, cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen). The functional characterization of these naturally occurring mutations not only allowed a better understanding of the pathophysiology of myotonia, it also provided important insights into the structure and function of the entire ClC channel family. This review describes recent experiments using a combination of cellular electrophysiology, molecular genetics, and recombinant DNA technology to study the molecular basis of ion permeation and selection in ClC-type chloride channels.
Collapse
Affiliation(s)
- C Fahlke
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
45
|
Abstract
Anion transport proteins in mammalian cells participate in a wide variety of cell and intracellular organelle functions, including regulation of electrical activity, pH, volume, and the transport of osmolites and metabolites, and may even play a role in the control of immunological responses, cell migration, cell proliferation, and differentiation. Although significant progress over the past decade has been achieved in understanding electrogenic and electroneutral anion transport proteins in sarcolemmal and intracellular membranes, information on the molecular nature and physiological significance of many of these proteins, especially in the heart, is incomplete. Functional and molecular studies presently suggest that four primary types of sarcolemmal anion channels are expressed in cardiac cells: channels regulated by protein kinase A (PKA), protein kinase C, and purinergic receptors (I(Cl.PKA)); channels regulated by changes in cell volume (I(Cl.vol)); channels activated by intracellular Ca(2+) (I(Cl.Ca)); and inwardly rectifying anion channels (I(Cl.ir)). In most animal species, I(Cl.PKA) is due to expression of a cardiac isoform of the epithelial cystic fibrosis transmembrane conductance regulator Cl(-) channel. New molecular candidates responsible for I(Cl.vol), I(Cl.Ca), and I(Cl.ir) (ClC-3, CLCA1, and ClC-2, respectively) have recently been identified and are presently being evaluated. Two isoforms of the band 3 anion exchange protein, originally characterized in erythrocytes, are responsible for Cl(-)/HCO(3)(-) exchange, and at least two members of a large vertebrate family of electroneutral cotransporters (ENCC1 and ENCC3) are responsible for Na(+)-dependent Cl(-) cotransport in heart. A 223-amino acid protein in the outer mitochondrial membrane of most eukaryotic cells comprises a voltage-dependent anion channel. The molecular entities responsible for other types of electroneutral anion exchange or Cl(-) conductances in intracellular membranes of the sarcoplasmic reticulum or nucleus are unknown. Evidence of cardiac expression of up to five additional members of the ClC gene family suggest a rich new variety of molecular candidates that may underlie existing or novel Cl(-) channel subtypes in sarcolemmal and intracellular membranes. The application of modern molecular biological and genetic approaches to the study of anion transport proteins during the next decade holds exciting promise for eventually revealing the actual physiological, pathophysiological, and clinical significance of these unique transport processes in cardiac and other mammalian cells.
Collapse
Affiliation(s)
- J R Hume
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada, USA.
| | | | | | | | | |
Collapse
|
46
|
Schriever AM, Friedrich T, Pusch M, Jentsch TJ. CLC chloride channels in Caenorhabditis elegans. J Biol Chem 1999; 274:34238-44. [PMID: 10567397 DOI: 10.1074/jbc.274.48.34238] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of the nematode Caenorhabditis elegans encodes six putative chloride channels (CeCLC-1 through CeCLC-6) that represent all three known branches of the mammalian CLC gene family. Using promoter fragments to drive the expression of the green fluorescent protein, CeCLC-2, -3, and -4 expression was studied in transgenic C. elegans. CeCLC-4 was specifically expressed in the large H-shaped excretory cell, where it was co-expressed with CeCLC-3, which is also expressed in other cells, including neurons, muscles, and epithelial cells. Also, CeCLC-2 was expressed in several cells of the nervous system, intestinal cells, and vulval muscle cells. Similar to mammalian CLC proteins, only two nematode CLC channels elicited detectable plasma membrane currents in Xenopus oocytes. CeCLC-3 currents were inwardly rectifying and were activated by positive prepulses. Its complex gating behavior can be explained by two gates, at least one of which depends on extracellular anions. In this respect it resembles some mammalian chloride channels with which it also shares a preference of chloride over iodide. C. elegans thus provides new opportunities to understand common mechanisms underlying structure and function in CLC channels and will allow for a genetic dissection of chloride channels in this simple model organism.
Collapse
Affiliation(s)
- A M Schriever
- Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), Hamburg University, Martinistrasse 85, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
47
|
Raymond V, Lapied B. Hyperpolarization-activated inward potassium and calcium-sensitive chloride currents in beating pacemaker insect neurosecretory cells (dorsal unpaired median neurons). Neuroscience 1999; 93:1207-18. [PMID: 10473286 DOI: 10.1016/s0306-4522(99)00218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperpolarization-activated inward currents were studied in single adult cockroach Periplaneta americana pacemaker neurosecretory cells, identified as dorsal unpaired median neurons using the whole-cell patch-clamp technique. Under current clamp, injection of negative current produced a hyperpolarization of the cell membrane with a sag in the membrane potential toward the resting value. Under voltage clamp, the whole-cell current-voltage relationship exhibited an unexpected biphasic aspect. The global hyperpolarization-activated inward current could be dissociated by means of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and tetraethylammonium chloride sensitivity, ionic selectivity, voltage dependence and activation threshold as inward potassium and calcium-sensitive chloride currents. The inward potassium current was activated around -80 mV. The reversal potential followed the potassium equilibrium potential when the extracellular potassium concentration was raised. This current was not dependent on the external sodium concentration and was sensitive to 10 mM tetraethylammonium chloride or 5 mM barium chloride. The hyperpolarization-activated inward calcium-sensitive chloride current was activated in a range of potential 20 mV more positive than the potassium current. The estimated reversal potential (-71 mV) was very close to the equilibrium potential for chloride ions ( 73 mV). Intracellularly applied 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and external application of 1 mM zinc chloride, calcium-free saline or high concentrations of intracellular 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate blocked the inward chloride current. Current-clamp experiments indicated that the inward potassium current accounted for inward rectification of dorsal unpaired median neurons. Our findings report, for the first time in pacemaker neurosecretory cells, the co-existence of two distinct hyperpolarization-activated inward currents which have specialized function in pacemaker activity.
Collapse
Affiliation(s)
- V Raymond
- Laboratoire de Neurophysiologie, UPRES EA 2647, Université d'Angers, France
| | | |
Collapse
|
48
|
Abstract
The field of molecular physiology of ClC chloride channels has witnessed a tremendous surge in knowledge over the past few years; however, fundamental issues such as the stoichiometry of ClC channels and the identification of pore-lining sequences have only recently begun to be addressed. New studies have also provided important insights into the role of ClC channels in cell volume regulation and their function in intracellular organelles.
Collapse
Affiliation(s)
- M A Valverde
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 80, 08003, Barcelona, Spain.
| |
Collapse
|
49
|
Kürz LL, Klink H, Jakob I, Kuchenbecker M, Benz S, Lehmann-Horn F, Rüdel R. Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel. J Biol Chem 1999; 274:11687-92. [PMID: 10206982 DOI: 10.1074/jbc.274.17.11687] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Currents through the human skeletal muscle chloride channel hClC-1 can be blocked by external application of 1 mM Zn2+ or the histidine-reactive compound diethyl pyrocarbonate (DEPC). The current block by Zn2+ strongly depends on the external pH (pKa near 6.9), whereas the block by DEPC is rather independent of the pH in the range of 5.5 to 8.5. To identify the target sites of these reagents, we constructed a total of twelve cysteine- and/or histidine-replacement mutants, transfected tsA201 cells with them, and investigated the resulting whole-cell chloride currents. The majority of the mutants exhibited a similar sensitivity toward Zn2+ or DEPC as wild type (WT) channels. Block by 1 mM Zn2+ was nearly absent only with the mutant C546A. Four mutants (C242A, C254A, H180A, and H451A) were slightly less sensitive to Zn2+ than WT. Tests with double, triple, and quadruple mutants yielded that, in addition to C546, C242 and C254 are also most likely participating in Zn2+-binding.
Collapse
Affiliation(s)
- L L Kürz
- Departments of General and Applied Physiology, University of Ulm, D-89069 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Pusch M, Jordt SE, Stein V, Jentsch TJ. Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol 1999; 515 ( Pt 2):341-53. [PMID: 10050002 PMCID: PMC2269146 DOI: 10.1111/j.1469-7793.1999.341ac.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. ClC proteins are a class of voltage-dependent Cl- channels with several members mutated in human diseases. The prototype ClC-0 Torpedo channel is a dimeric protein; each subunit forms a pore that can gate independently from the other one. A common slower gating mechanism acts on both pores simultaneously; slow gating activates ClC-0 at hyperpolarized voltages. The ClC-2 Cl- channel is also activated by hyperpolarization, as are some ClC-1 mutants (e.g. D136G) and wild-type (WT) ClC-1 at certain pH values. 2. We studied the dependence on internal Cl- ([Cl-]i) of the hyperpolarization-activated gates of several ClC channels (WT ClC-0, ClC-0 mutant P522G, ClC-1 mutant D136G and an N-terminal deletion mutant of ClC-2), by patch clamping channels expressed in Xenopus oocytes. 3. With all these channels, reducing [Cl-]i shifted activation to more negative voltages and reduced the maximal activation at most negative voltages. 4. We also investigated the external halide dependence of WT ClC-2 using two-electrode voltage-clamp recording. Reducing external Cl- ([Cl-]o) activated ClC-2 currents. Replacing [Cl-]o by the less permeant Br- reduced channel activity and accelerated deactivation. 5. Gating of the ClC-2 mutant K566Q in normal [Cl-]o resembled that of WT ClC-2 in low [Cl-]o, i.e. channels had a considerable open probability (Po) at resting membrane potential. Substituting external Cl- by Br- or I- led to a decrease in Po. 6. The [Cl-]i dependence of the hyperpolarization-activated gates of various ClC channels suggests a similar gating mechanism, and raises the possibility that the gating charge for the hyperpolarization-activated gate is provided by Cl-. 7. The external halide dependence of hyperpolarization-activated gating of ClC-2 suggests that it is mediated or modulated by anions as in other ClC channels. In contrast to the depolarization-activated fast gates of ClC-0 and ClC-1, the absence of Cl- favours channel opening. Lysine 556 may be important for the relevant binding site.
Collapse
Affiliation(s)
- M Pusch
- Centre for Molecular Neurobiology (ZMNH), University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|