1
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
2
|
Shi W, Shan Z, Jiang L, Wang G, Wang X, Chang Y, Hu Y, Wang B, Li Q, Wang Y, Deng G, Shi J, Jiang Y, Zeng X, Tian G, Chen H, Li C. ABTB1 facilitates the replication of influenza A virus by counteracting TRIM4-mediated degradation of viral NP protein. Emerg Microbes Infect 2023; 12:2270073. [PMID: 37823597 PMCID: PMC10623896 DOI: 10.1080/22221751.2023.2270073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Influenza A viruses (IAVs) continue to cause tremendous economic losses to the global animal industry and respiratory diseases and deaths among humans. The nuclear import of the vRNP complex, composed of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic protein (PA), nucleoprotein (NP), and viral RNA, is essential for the efficient replication of IAV. Host factors involved in this process can be targeted for the development of countermeasures against IAV infection. Here, we found that Ankyrin Repeat and BTB Domain Containing 1 (ABTB1) promotes the replication of IAV, and positively regulates the nuclear import of the vRNP complex. ABTB1 did not interact directly with NP, indicating that ABTB1 plays an indirect role in facilitating the nuclear import of the vRNP complex. Immunoprecipitation and mass spectrometry revealed that Tripartite Motif Containing 4 (TRIM4) interacts with ABTB1. We found that TRIM4 relies on its E3 ubiquitin ligase activity to inhibit the replication of IAV by targeting and degrading NP within the incoming vRNP complex as well as the newly synthesized NP. ABTB1 interacted with TRIM4, leading to TRIM4 degradation through the proteasome system. Notably, ABTB1-mediated degradation of TRIM4 blocked the effect of TRIM4 on NP stability, and largely counteracted the inhibitory effect of TRIM4 on IAV replication. Our findings define a novel role for ABTB1 in aiding the nuclear import of the vRNP complex of IAV by counteracting the destabilizing effect of TRIM4 on the viral NP protein.
Collapse
Affiliation(s)
- Wenjun Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibo Shan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xuyuan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yu Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yuzhen Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Bo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Qibing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yihan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
3
|
Kleinehr J, Schöfbänker M, Daniel K, Günl F, Mohamed FF, Janowski J, Brunotte L, Boergeling Y, Liebmann M, Behrens M, Gerdemann A, Klotz L, Esselen M, Humpf HU, Ludwig S, Hrincius ER. Glycolytic interference blocks influenza A virus propagation by impairing viral polymerase-driven synthesis of genomic vRNA. PLoS Pathog 2023; 19:e1010986. [PMID: 37440521 DOI: 10.1371/journal.ppat.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Influenza A virus (IAV), like any other virus, provokes considerable modifications of its host cell's metabolism. This includes a substantial increase in the uptake as well as the metabolization of glucose. Although it is known for quite some time that suppression of glucose metabolism restricts virus replication, the exact molecular impact on the viral life cycle remained enigmatic so far. Using 2-deoxy-d-glucose (2-DG) we examined how well inhibition of glycolysis is tolerated by host cells and which step of the IAV life cycle is affected. We observed that effects induced by 2-DG are reversible and that cells can cope with relatively high concentrations of the inhibitor by compensating the loss of glycolytic activity by upregulating other metabolic pathways. Moreover, mass spectrometry data provided information on various metabolic modifications induced by either the virus or agents interfering with glycolysis. In the presence of 2-DG viral titers were significantly reduced in a dose-dependent manner. The supplementation of direct or indirect glycolysis metabolites led to a partial or almost complete reversion of the inhibitory effect of 2-DG on viral growth and demonstrated that indeed the inhibition of glycolysis and not of N-linked glycosylation was responsible for the observed phenotype. Importantly, we could show via conventional and strand-specific qPCR that the treatment with 2-DG led to a prolonged phase of viral mRNA synthesis while the accumulation of genomic vRNA was strongly reduced. At the same time, minigenome assays showed no signs of a general reduction of replicative capacity of the viral polymerase. Therefore, our data suggest that the significant reduction in IAV replication by glycolytic interference occurs mainly due to an impairment of the dynamic regulation of the viral polymerase which conveys the transition of the enzyme's function from transcription to replication.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Michael Schöfbänker
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Katharina Daniel
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Fakry Fahmy Mohamed
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Josua Janowski
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Andrea Gerdemann
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
4
|
Wang G, Zhao Y, Zhou Y, Jiang L, Liang L, Kong F, Yan Y, Wang X, Wang Y, Wen X, Zeng X, Tian G, Deng G, Shi J, Liu L, Chen H, Li C. PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence. PLoS Pathog 2022; 18:e1010446. [PMID: 35377920 PMCID: PMC9009768 DOI: 10.1371/journal.ppat.1010446] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/14/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yuan Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Fandi Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Ya Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xuyuan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Yihan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xia Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, The People’s Republic of China
| |
Collapse
|
5
|
Inhibitory Potentiality of Secondary Metabolites Extracted from Marine Fungus Target on Avian Influenza Virus-A Subtype H5N8 (Neuraminidase) and H5N1 (Nucleoprotein): A Rational Virtual Screening. Vet Anim Sci 2022; 15:100231. [PMID: 35059528 PMCID: PMC8760399 DOI: 10.1016/j.vas.2022.100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Highly contagious avian influenza virus’ (AIV) subtypes, including H5N1 and H5N8 are considered as serious threats for poultry industry. Despite its severity, treatment and mitigation attempts are fall into baffling. Though a few approved anti-influenza medications are available, the M2 channel blockers amantadine and rimantadine, as well as the neuraminidase inhibitor oseltamivir are being less effective due to widespread drug resistance. To cope up with these circumstances, scientists have found nucleoprotein as a novice drug targeting site for H5N1. Hence, the current study used a rational screening method to find the best candidates for nucleoprotein inhibitors of H5N1 subtype and neuraminidase inhibitors for H5N8 subtype against pathogenic AIV. Finding the best candidates, molecular docking method and computational pharmacokinetics and pharmacology was developed to estimate the potential of the multi-targeting fungal-derived natural compounds for the development of drug. Chevalone E compound was found as the best inhibitor for both nucleoprotein and neuraminidase of H5N1 and H5N8 subtypes respectively, whereas, Brevione F and Brocazine-A for nucleoprotein with Penilactone-A and Aspergifuranone for neuraminidase. In case of drug prediction, the study recommends Estramustine and Iloprost against both nucleoprotein and neuraminidase. Besides these, Butorphanol, Desvenlafaxine, Zidovudine and Nadolol are the best drug candidates for nucleoprotein inhibitors, meanwhile, Sitaxentan, Ergoloid mesylate, Capecitabine and Fenoterol act as speculated candidates against neuraminidase.
Collapse
|
6
|
Meier K, Thorkelsson SR, Quemin ERJ, Rosenthal M. Hantavirus Replication Cycle-An Updated Structural Virology Perspective. Viruses 2021; 13:1561. [PMID: 34452426 PMCID: PMC8402763 DOI: 10.3390/v13081561] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Hantaviruses infect a wide range of hosts including insectivores and rodents and can also cause zoonotic infections in humans, which can lead to severe disease with possible fatal outcomes. Hantavirus outbreaks are usually linked to the population dynamics of the host animals and their habitats being in close proximity to humans, which is becoming increasingly important in a globalized world. Currently there is neither an approved vaccine nor a specific and effective antiviral treatment available for use in humans. Hantaviruses belong to the order Bunyavirales with a tri-segmented negative-sense RNA genome. They encode only five viral proteins and replicate and transcribe their genome in the cytoplasm of infected cells. However, many details of the viral amplification cycle are still unknown. In recent years, structural biology methods such as cryo-electron tomography, cryo-electron microscopy, and crystallography have contributed essentially to our understanding of virus entry by membrane fusion as well as genome encapsidation by the nucleoprotein. In this review, we provide an update on the hantavirus replication cycle with a special focus on structural virology aspects.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Sigurdur R. Thorkelsson
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Emmanuelle R. J. Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Maria Rosenthal
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| |
Collapse
|
7
|
Park YH, Woo SJ, Chungu K, Lee SB, Shim JH, Lee HJ, Kim I, Rengaraj D, Song CS, Suh JY, Lim JM, Han JY. Asp149 and Asp152 in chicken and human ANP32A play an essential role in the interaction with influenza viral polymerase. FASEB J 2021; 35:e21630. [PMID: 33982347 DOI: 10.1096/fj.202002006rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/05/2023]
Abstract
The acidic nuclear phosphoprotein 32 family member A (ANP32A) is a cellular host factor that determines the host tropism of the viral polymerase (vPol) of avian influenza viruses (AIVs). Compared with human ANP32A (hANP32A), chicken ANP32A contains an additional 33 amino acid residues (176-208) duplicated from amino acid residues 149-175 (27 residues), suggesting that these residues could be involved in increasing vPol activity by strengthening interactions between ANP32A and vPol. However, the molecular interactions and functional roles of the 27 residues within hANP32A during AIV vPol activity remain unclear. Here, we examined the functional role of 27 residues of hANP32A based on comparisons with other human (h) ANP32 family members. It was notable that unlike hANP32A and hANP32B, hANP32C could not support vPol activity or replication of AIVs, despite the fact that hANP32C shares a higher sequence identity with hANP32A than hANP32B. Pairwise comparison between hANP32A and hANP32C revealed that Asp149 (D149) and Asp152 (D152) are involved in hydrogen bonding and electrostatic interactions, respectively, which support vPol activity. Mutation of these residues reduced the interaction between hANP32A and vPol. Finally, we demonstrated that precise substitution of the identified residues within chicken ANP32A via homology-directed repair using the CRISPR/Cas9 system resulted in a marked reduction of viral replication in chicken cells. These results increase our understanding of ANP32A function and may facilitate the development of AIV-resistant chickens via precise modification of residues within ANP32A.
Collapse
Affiliation(s)
- Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kelly Chungu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Su Bin Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Shim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Iktae Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Krischuns T, Lukarska M, Naffakh N, Cusack S. Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus. Annu Rev Biochem 2021; 90:321-348. [PMID: 33770447 DOI: 10.1146/annurev-biochem-072820-100645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.
Collapse
Affiliation(s)
- Tim Krischuns
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Maria Lukarska
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France; .,Current affiliation: Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA;
| | - Nadia Naffakh
- Unité Biologie des ARN et Virus Influenza, Département de Virologie, Institut Pasteur, CNRS UMR 3569, F-75015 Paris, France; ,
| | - Stephen Cusack
- European Molecular Biology Laboratory, 38042 Grenoble CEDEX 9, France;
| |
Collapse
|
9
|
Zhang X, Lin X, Qin C, Huang K, Sun X, Zhao L, Jin M. Avian Chaperonin Containing TCP1 Subunit 5 Supports Influenza A Virus Replication by Interacting With Viral Nucleoprotein, PB1, and PB2 Proteins. Front Microbiol 2020; 11:538355. [PMID: 33178142 PMCID: PMC7593399 DOI: 10.3389/fmicb.2020.538355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Humans and avian species are prone to influenza viral infection, which may cause serious clinical consequences. Many studies have documented the critical role of host factors in the influenza virus life cycle based on human models, but knowledge about their roles in birds is very limited. In this study, using immunoprecipitation coupled with mass spectrometry, a total of 72 potential interacting proteins of influenza nucleoprotein (NP) were identified in DF-1 cells. Among these proteins, avian chaperonin containing TCP1 subunit 5 (CCT5) was demonstrated to interact with influenza A virus (IAV) NP directly, as well as polymerase basic protein 1 (PB1) and polymerase basic protein 2 (PB2) but not with polymerase acidic protein (PA). Further investigation showed that viral infection profoundly elevated the expression level of cellular CCT5, whose expression, in turn, promoted the nuclear export of NP, as well as viral polymerase activity, thereby facilitating the replication of IAV. The obtained results suggested an important role of avian CCT5 in supporting influenza virus replication, which may serve as an anti-influenza target.
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chenghuang Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
10
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
11
|
Dawson AR, Wilson GM, Freiberger EC, Mondal A, Coon JJ, Mehle A. Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. PLoS Pathog 2020; 16:e1008841. [PMID: 32881973 PMCID: PMC7494117 DOI: 10.1371/journal.ppat.1008841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 07/25/2020] [Indexed: 12/03/2022] Open
Abstract
The influenza virus polymerase transcribes and replicates the viral genome. The proper timing and balance of polymerase activity is important for successful replication. Genome replication is controlled in part by phosphorylation of NP that regulates assembly of the replication machinery. However, it remains unclear whether phosphorylation directly regulated polymerase activity. Here we identified polymerase phosphosites that control its function. Mutating phosphosites in the catalytic subunit PB1 altered polymerase activity and virus replication. Biochemical analyses revealed phosphorylation events that disrupted global polymerase function by blocking the NTP entry channel or preventing RNA binding. We also identified a regulatory site that split polymerase function by specifically suppressing transcription. These experiments show that host kinases phospho-regulate viral RNA synthesis directly by modulating polymerase activity and indirectly by controlling assembly of replication machinery. Further, they suggest polymerase phosphorylation may bias replication versus transcription at discrete times or locations during the infectious cycle. The influenza virus polymerase is a multifunctional enzyme directing viral gene expression and genome replication. Immediately following infection, the polymerase primarily performs transcription to make the viral mRNAs that program the replication cycle. The polymerase then shifts output to produce more copies of the viral genome at later stages of infection. The balance between transcription and replication is critical for successful infection. Here we identify phosphorylation sites within the viral polymerase and describe how these post-translational modifications control polymerase activity. Cellular kinases modify the viral polymerase. We identified a phosphorylation site in the catalytic subunit PB1 that selectively disables transcription, but not replication. We also describe a phosphorylation site in PB1 that disrupts binding to viral RNAs, disabling all activities of the polymerase. These modifications may establish polymerases with specialized function, and help regulate the balance between transcription and replication throughout the viral life cycle.
Collapse
Affiliation(s)
- Anthony R. Dawson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Elyse C. Freiberger
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Arindam Mondal
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
12
|
Qin Z, Qu X, Lei L, Xu L, Pan Z. Y-Box-Binding Protein 3 (YBX3) Restricts Influenza A Virus by Interacting with Viral Ribonucleoprotein Complex and Imparing its Function. J Gen Virol 2020; 101:385-398. [DOI: 10.1099/jgv.0.001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao Qu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
13
|
Yager EJ, Konan KV. Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses. Viruses 2019; 11:v11100912. [PMID: 31581580 PMCID: PMC6832137 DOI: 10.3390/v11100912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
Several notable human diseases are caused by enveloped RNA viruses: influenza, AIDS, hepatitis C, dengue hemorrhagic fever, microcephaly, and Guillain-Barré Syndrome. Being enveloped, the life cycle of this group of viruses is critically dependent on host lipid biosynthesis. Viral binding and entry involve interactions between viral envelope glycoproteins and cellular receptors localized to lipid-rich regions of the plasma membrane. Subsequent infection by these viruses leads to reorganization of cellular membranes and lipid metabolism to support the production of new viral particles. Recent work has focused on defining the involvement of specific lipid classes in the entry, genome replication assembly, and viral particle formation of these viruses in hopes of identifying potential therapeutic targets for the treatment or prevention of disease. In this review, we will highlight the role of host sphingolipids in the lifecycle of several medically important enveloped RNA viruses.
Collapse
Affiliation(s)
- Eric J Yager
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Kouacou V Konan
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208-3479, USA.
| |
Collapse
|
14
|
Tome-Amat J, Ramos I, Amanor F, Fernández-Sesma A, Ashour J. Influenza A Virus Utilizes Low-Affinity, High-Avidity Interactions with the Nuclear Import Machinery To Ensure Infection and Immune Evasion. J Virol 2019; 93:e01046-18. [PMID: 30305352 PMCID: PMC6288324 DOI: 10.1128/jvi.01046-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
The incoming influenza A virus (IAV) genome must pass through two distinct barriers in order to establish infection in the cell: the plasma membrane and the nuclear membrane. A precise understanding of the challenges imposed by the nuclear barrier remains outstanding. Passage across is mediated by host karyopherins (KPNAs), which bind to the viral nucleoprotein (NP) via its N-terminal nuclear localization sequence (NLS). The binding affinity between the two molecules is low, but NP is present in a high copy number, which suggests that binding avidity plays a compensatory role during import. Using nanobody-based technology, we demonstrate that a high binding avidity is required for infection, though the absolute value differs between cell types and correlates with their relative susceptibility to infection. In addition, we demonstrate that increasing the affinity level caused a decrease in avidity requirements for some cell types but blocked infection in others. Finally, we show that genomes that become frustrated by low avidity and remain cytoplasmic trigger the type I interferon response. Based on these results, we conclude that IAV balances affinity and avidity considerations in order to overcome the nuclear barrier across a broad range of cell types. Furthermore, these results provide evidence to support the long-standing hypothesis that IAV's strategy of import and replication in the nucleus facilitates immune evasion.IMPORTANCE We used intracellular nanobodies to block influenza virus infection at the step prior to nuclear import of its ribonucleoproteins. By doing so, we were able to answer an important but outstanding question that could not be addressed with conventional tools: how many of the ∼500 available NLS motifs are needed to establish infection? Furthermore, by controlling the subcellular localization of the incoming viral ribonucleoproteins and measuring the cell's antiviral response, we were able to provide direct evidence for the long-standing hypothesis that influenza virus exploits nuclear localization to delay activation of the innate immune response.
Collapse
Affiliation(s)
- Jaime Tome-Amat
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irene Ramos
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ferdinand Amanor
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ana Fernández-Sesma
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph Ashour
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
15
|
Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method. Cell Rep 2018; 20:251-263. [PMID: 28683318 DOI: 10.1016/j.celrep.2017.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/20/2017] [Accepted: 06/06/2017] [Indexed: 02/03/2023] Open
Abstract
Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.
Collapse
|
16
|
Luo W, Zhang J, Liang L, Wang G, Li Q, Zhu P, Zhou Y, Li J, Zhao Y, Sun N, Huang S, Zhou C, Chang Y, Cui P, Chen P, Jiang Y, Deng G, Bu Z, Li C, Jiang L, Chen H. Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathog 2018; 14:e1006851. [PMID: 29352288 PMCID: PMC5792031 DOI: 10.1371/journal.ppat.1006851] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/31/2018] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription and replication of the influenza A virus (IAV) genome occur in the nucleus of infected cells and are carried out by the viral ribonucleoprotein complex (vRNP). As a major component of the vRNP complex, the viral nucleoprotein (NP) mediates the nuclear import of the vRNP complex via its nuclear localization signals (NLSs). Clearly, an effective way for the host to antagonize IAV infection would be by targeting vRNP nuclear import. Here, we identified phospholipid scramblase 1 (PLSCR1) as a binding partner of NP by using a yeast two-hybrid (Y2H) screen. The interaction between NP and PLSCR1 in mammalian cells was demonstrated by using co-immunoprecipitation and pull-down assays. We found that the stable overexpression of PLSCR1 suppressed the nuclear import of NP, hindered the virus life cycle, and significantly inhibited the replication of various influenza subtypes. In contrast, siRNA knockdown or CRISPR/Cas9 knockout of PLSCR1 increased virus propagation. Further analysis indicated that the inhibitory effect of PLSCR1 on the nuclear import of NP was not caused by affecting the phosphorylation status of NP or by stimulating the interferon (IFN) pathways. Instead, PLSCR1 was found to form a trimeric complex with NP and members of the importin α family, which inhibited the incorporation of importin β, a key mediator of the classical nuclear import pathway, into the complex, thus impairing the nuclear import of NP and suppressing virus replication. Our results demonstrate that PLSCR1 negatively regulates virus replication by interacting with NP in the cytoplasm and preventing its nuclear import.
Collapse
Affiliation(s)
- Weiyu Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qibing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengyang Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junping Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shanyu Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenchen Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
17
|
Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem 2017; 17:2271-2285. [PMID: 28240183 DOI: 10.2174/1568026617666170224122508] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Abstract
Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Hannah Sneyd
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Raphael Dekant
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| |
Collapse
|
18
|
Chaimayo C, Hayashi T, Underwood A, Hodges E, Takimoto T. Selective incorporation of vRNP into influenza A virions determined by its specific interaction with M1 protein. Virology 2017; 505:23-32. [PMID: 28219018 PMCID: PMC5366082 DOI: 10.1016/j.virol.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
Influenza A viruses contain eight single-stranded, negative-sense RNA segments as viral genomes in the form of viral ribonucleoproteins (vRNPs). During genome replication in the nucleus, positive-sense complementary RNPs (cRNPs) are produced as replicative intermediates, which are not incorporated into progeny virions. To analyze the mechanism of selective vRNP incorporation into progeny virions, we quantified vRNPs and cRNPs in the nuclear and cytosolic fractions of infected cells, using a strand-specific qRT-PCR. Unexpectedly, we found that cRNPs were also exported to the cytoplasm. This export was chromosome region maintenance 1 (CRM1)-independent unlike that of vRNPs. Although both vRNPs and cRNPs were present in the cytosol, viral matrix (M1) protein, a key regulator for viral assembly, preferentially bound vRNPs over cRNPs. These results indicate that influenza A viruses selectively uptake cytosolic vRNPs through a specific interaction with M1 during viral assembly.
Collapse
Affiliation(s)
- Chutikarn Chaimayo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States; Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Andrew Underwood
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Erin Hodges
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
19
|
Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 2016; 14:479-93. [PMID: 27396566 DOI: 10.1038/nrmicro.2016.87] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The genomes of influenza viruses consist of multiple segments of single-stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, which form viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, and insights that have been gained into the molecular mechanisms of viral transcription and replication, and their regulation by viral and host factors. Furthermore, we discuss how advances in our understanding of the structure and function of polymerases could help in identifying new antiviral targets.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
20
|
Influenza Virus and Chromatin: Role of the CHD1 Chromatin Remodeler in the Virus Life Cycle. J Virol 2016; 90:3694-707. [PMID: 26792750 DOI: 10.1128/jvi.00053-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Influenza A virus requires ongoing cellular transcription to carry out the cap-snatching process. Chromatin remodelers modify chromatin structure to produce an active or inactive conformation, which enables or prevents the recruitment of transcriptional complexes to specific genes; viral transcription thus depends on chromatin dynamics. Influenza virus polymerase associates with chromatin components of the infected cell, such as RNA polymerase II (RNAP II) or the CHD6 chromatin remodeler. Here we show that another CHD family member, CHD1 protein, also interacts with the influenza virus polymerase complex. CHD1 recognizes the H3K4me3 (histone 3 with a trimethyl group in lysine 4) histone modification, a hallmark of active chromatin. Downregulation of CHD1 causes a reduction in viral polymerase activity, viral RNA transcription, and the production of infectious particles. Despite the dependence of influenza virus on cellular transcription, RNAP II is degraded when viral transcription is complete, and recombinant viruses unable to degrade RNAP II show decreased pathogenicity in the murine model. We describe the CHD1-RNAP II association, as well as the parallel degradation of both proteins during infection with viruses showing full or reduced induction of degradation. The H3K4me3 histone mark also decreased during influenza virus infection, whereas a histone mark of inactive chromatin, H3K27me3, remained unchanged. Our results indicate that CHD1 is a positive regulator of influenza virus multiplication and suggest a role for chromatin remodeling in the control of the influenza virus life cycle. IMPORTANCE Although influenza virus is not integrated into the genome of the infected cell, it needs continuous cellular transcription to synthesize viral mRNA. This mechanism implies functional association with host genome expression and thus depends on chromatin dynamics. Influenza virus polymerase associates with transcription-related factors, such as RNA polymerase II, and with chromatin remodelers, such as CHD6. We identified the association of viral polymerase with another chromatin remodeler, the CHD1 protein, which positively modulated viral polymerase activity, viral RNA transcription, and virus multiplication. Once viral transcription is complete, RNAP II is degraded in infected cells, probably as a virus-induced mechanism to reduce the antiviral response. CHD1 associated with RNAP II and paralleled its degradation during infection with viruses that induce full or reduced degradation. These findings suggest that RNAP II degradation and CHD1 degradation cooperate to reduce the antiviral response.
Collapse
|
21
|
Sugiyama K, Kawaguchi A, Okuwaki M, Nagata K. pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. eLife 2015; 4. [PMID: 26512887 PMCID: PMC4718810 DOI: 10.7554/elife.08939] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/20/2015] [Indexed: 12/02/2022] Open
Abstract
Replication of influenza viral genomic RNA (vRNA) is catalyzed by viral RNA-dependent RNA polymerase (vRdRP). Complementary RNA (cRNA) is first copied from vRNA, and progeny vRNAs are then amplified from the cRNA. Although vRdRP and viral RNA are minimal requirements, efficient cell-free replication could not be reproduced using only these viral factors. Using a biochemical complementation assay system, we found a novel activity in the nuclear extracts of uninfected cells, designated IREF-2, that allows robust unprimed vRNA synthesis from a cRNA template. IREF-2 was shown to consist of host-derived proteins, pp32 and APRIL. IREF-2 interacts with a free form of vRdRP and preferentially upregulates vRNA synthesis rather than cRNA synthesis. Knockdown experiments indicated that IREF-2 is involved in in vivo viral replication. On the basis of these results and those of previous studies, a plausible role(s) for IREF-2 during the initiation processes of vRNA replication is discussed. DOI:http://dx.doi.org/10.7554/eLife.08939.001 The influenza or “flu” virus infects millions of people each year, with young children and elderly individuals most vulnerable to infection. The influenza virus stores its genetic material in the form of segments of single-stranded viral RNA. After the virus infects a cell, it replicates this genetic material in a two-part process. First, an enzyme made by the virus – called RNA polymerase – uses the viral genomic RNA as a template to form a “complementary” RNA strand (called cRNA). This cRNA molecule is then itself used as a template to make more viral genomic RNA strands, which can go on to form new viruses. Exactly how viral genomic RNA is made from cRNA is poorly understood, although previous research had suggested that this process may also involve proteins belonging to the invaded host cell. However, these host proteins had not been identified. By mixing virus particles with extracts from uninfected human cells, Sugiyama et al. have now found that two host proteins called pp32 and APRIL help viral genomic RNA to form from a cRNA template. Both of these proteins directly interact with the viral RNA polymerase. Sugiyama et al. then reduced the amounts of pp32 and APRIL in human cells that were infected with the influenza virus. Much less viral genomic RNA – and so fewer new virus particles – formed in these cells than in normal cells. Further work is now needed to understand how the pp32 and APRIL proteins interact with viral RNA polymerase. This could eventually lead to the development of new treatments for influenza. DOI:http://dx.doi.org/10.7554/eLife.08939.002
Collapse
Affiliation(s)
- Kenji Sugiyama
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mitsuru Okuwaki
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Abstract
UNLABELLED Transcription and replication of influenza A virus are carried out in the nuclei of infected cells in the context of viral ribonucleoproteins (RNPs). The viral polymerase responsible for these processes is a protein complex composed of the PB1, PB2, and PA proteins. We previously identified a set of polymerase-associated cellular proteins by proteomic analysis of polymerase-containing intracellular complexes expressed and purified from human cells. Here we characterize the role of NXP2/MORC3 in the infection cycle. NXP2/MORC3 is a member of the Microrchidia (MORC) family that is associated with the nuclear matrix and has RNA-binding activity. Influenza virus infection led to a slight increase in NXP2/MORC3 expression and its partial relocalization to the cytoplasm. Coimmunoprecipitation and immunofluorescence experiments indicated an association of NXP2/MORC3 with the viral polymerase and RNPs during infection. Downregulation of NXP2/MORC3 by use of two independent short hairpin RNAs (shRNAs) reduced virus titers in low-multiplicity infections. Consistent with these findings, analysis of virus-specific RNA in high-multiplicity infections indicated a reduction of viral RNA (vRNA) and mRNA after NXP2/MORC3 downregulation. Silencing of NXP2/MORC3 in a recombinant minireplicon system in which virus transcription and replication are uncoupled showed reductions in cat mRNA and chloramphenicol acetyltransferase (CAT) protein accumulation but no alterations in cat vRNA levels, suggesting that NXP2/MORC3 is important for influenza virus transcription. IMPORTANCE Influenza virus infections appear as yearly epidemics and occasional pandemics of respiratory disease, with high morbidity and occasional mortality. Influenza viruses are intracellular parasites that replicate and transcribe their genomic ribonucleoproteins in the nuclei of infected cells, in a complex interplay with host cell factors. Here we characterized the role of the human NXP2/MORC3 protein, a member of the Microrchidia family that is associated with the nuclear matrix, during virus infection. NXP2/MORC3 associates with the viral ribonucleoproteins in infected cells. Downregulation of NXP2/MORC3 reduced virus titers and accumulations of viral genomic RNA and mRNAs. Silencing of NXP2/MORC3 in an influenza virus CAT minireplicon system diminished CAT protein and cat mRNA levels but not genomic RNA levels. We propose that NXP2/MORC3 plays a role in influenza virus transcription.
Collapse
|
23
|
Tripathi S, Batra J, Lal SK. Interplay between influenza A virus and host factors: targets for antiviral intervention. Arch Virol 2015; 160:1877-91. [PMID: 26016443 DOI: 10.1007/s00705-015-2452-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
Influenza A viruses (IAVs) pose a major public health threat worldwide. Recent experience with the 2013 H7N9 outbreak in China and the 2009 "swine flu" pandemic have shown that antiviral vaccines and drugs fall short of controlling the spread of disease in a timely and effective manner. Major problems include rapid emergence of drug-resistant influenza virus strains and the slow process of vaccine production. With the threat of a highly pathogenic H5N1 bird-flu pandemic looming large, it is crucial to develop novel ways of combating influenza A viruses. Targeting the host factors critical for influenza A virus replication has shown promise as a strategy to develop novel antiviral molecules with broad-spectrum protection. In this review, we summarize the role of currently identified host factors that play a critical role in the influenza A virus life cycle and discuss the most promising candidates for anti-influenza therapeutics.
Collapse
Affiliation(s)
- Shashank Tripathi
- Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | |
Collapse
|
24
|
Ma DY, Suthar MS. Mechanisms of innate immune evasion in re-emerging RNA viruses. Curr Opin Virol 2015; 12:26-37. [PMID: 25765605 PMCID: PMC4470747 DOI: 10.1016/j.coviro.2015.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
RNA viruses passively evade host detection by masking viral PAMPs and replicating within vesicles. Many emerging viruses harbor multiple strategies for innate immune evasion. Viral antagonists have been found to target the pattern recognition receptor and interferon signaling pathways. Knowledge of host–pathogen interactions is essential for vaccine/therapeutic development and understanding innate immunity.
Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus–host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health.
Collapse
Affiliation(s)
- Daphne Y Ma
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
25
|
Hu W, Zhang H, Han Q, Li L, Chen Y, Xia N, Chen Z, Shu Y, Xu K, Sun B. A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages. Vaccine 2015; 33:374-81. [DOI: 10.1016/j.vaccine.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 02/01/2023]
|
26
|
Abstract
The influenza A virus causes a highly contagious respiratory disease that significantly impacts our economy and health. Its replication and transcription is catalyzed by the viral RNA polymerase. This enzyme is also crucial for the virus, because it is involved in the adaptation of zoonotic strains. It is thus of major interest for the development of antiviral therapies and is being intensively studied. In this article, we will discuss recent advances that have improved our knowledge of the structure of the RNA polymerase and how mutations in the polymerase help the virus to spread effectively among new hosts.
Collapse
Affiliation(s)
- Thomas M Stubbs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK ; Babraham Institute, Brabraham Research Campus, Cambridge, CB22 3AT, UK
| | - Aartjan Jw Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
27
|
Conserved features of the PB2 627 domain impact influenza virus polymerase function and replication. J Virol 2014; 88:5977-86. [PMID: 24623411 DOI: 10.1128/jvi.00508-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Successful replication of influenza virus requires the coordinated expression of viral genes and replication of the genome by the viral polymerase, composed of the subunits PA, PB1, and PB2. Polymerase activity is regulated by both viral and host factors, yet the mechanisms of regulation and how they contribute to viral pathogenicity and tropism are poorly understood. To characterize these processes, we created a series of mutants in the 627 domain of the PB2 subunit. This domain contains a conserved "P[F/P]AAAPP" sequence motif and the well-described amino acid 627, whose identity regulates host range. A lysine present at position 627 in most mammalian viral isolates creates a basic face on the domain surface and confers high-level activity in humans compared to the glutamic acid found at this position in avian isolates. Mutation of the basic face or the P[F/P]AAAPP motif impaired polymerase activity, assembly of replication complexes, and viral replication. Most of these residues are required for general polymerase activity, whereas PB2 K586 and R589 were preferentially required for function in human versus avian cells. Thus, these data identify residues in the 627 domain and other viral proteins that regulate polymerase activity, highlighting the importance of the surface charge and structure of this domain for virus replication and host adaptation. IMPORTANCE Influenza virus faces barriers to transmission across species as it emerges from its natural reservoir in birds to infect mammals. The viral polymerase is an important regulator of this process and undergoes discrete changes to adapt to replication in mammals. Many of these changes occur in the polymerase subunit PB2. Here we describe the systematic analysis of a key region in PB2 that controls species-specific polymerase activity. We report the importance of conserved residues that contribute to the overall charge of the protein as well as those that likely affect protein structure. These findings provide further insight into the molecular events dictating species-specific polymerase function and viral replication.
Collapse
|
28
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
29
|
CHD6, a cellular repressor of influenza virus replication, is degraded in human alveolar epithelial cells and mice lungs during infection. J Virol 2013; 87:4534-44. [PMID: 23408615 DOI: 10.1128/jvi.00554-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The influenza virus polymerase associates to an important number of transcription-related proteins, including the largest subunit of the RNA polymerase II complex (RNAP II). Despite this association, degradation of the RNAP II takes place in the infected cells once viral transcription is completed. We have previously shown that the chromatin remodeler CHD6 protein interacts with the influenza virus polymerase complex, represses viral replication, and relocalizes to inactive chromatin during influenza virus infection. In this paper, we report that CHD6 acts as a negative modulator of the influenza virus polymerase activity and is also subjected to degradation through a process that includes the following characteristics: (i) the cellular proteasome is not implicated, (ii) the sole expression of the three viral polymerase subunits from its cloned cDNAs is sufficient to induce proteolysis, and (iii) degradation is also observed in vivo in lungs of infected mice and correlates with the increase of viral titers in the lungs. Collectively, the data indicate that CHD6 degradation is a general effect exerted by influenza A viruses and suggest that this viral repressor may play an important inhibitory role since degradation and accumulation into inactive chromatin occur during the infection.
Collapse
|
30
|
Cianci C, Gerritz SW, Deminie C, Krystal M. Influenza nucleoprotein: promising target for antiviral chemotherapy. Antivir Chem Chemother 2012; 23:77-91. [PMID: 22837443 DOI: 10.3851/imp2235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 12/25/2022] Open
Abstract
In the search for new anti-influenza agents, the viral polymerase has often been targeted due to the involvement of multiple conserved proteins and their distinct activities. Polymerase associates with each of the eight singled-stranded negative-sense viral RNA segments. These transcriptionally competent segments are coated with multiple copies of nucleoprotein (NP) to form the ribonucleoprotein. NP is an abundant essential protein, possessing operative and structural functions, and participating in genome organization, nuclear trafficking and RNA transcription and replication. This review examines the NP structure and function, and explores NP as an emerging target for anti-influenza drug development, focusing on recently discovered aryl piperazine amide inhibitor chemotypes.
Collapse
|
31
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012; 86:9122-33. [PMID: 22696656 DOI: 10.1128/jvi.00789-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
32
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012. [PMID: 22696656 DOI: 10.1128/jv1.00789.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
33
|
Hutchinson EC, Fodor E. Nuclear import of the influenza A virus transcriptional machinery. Vaccine 2012; 30:7353-8. [PMID: 22652398 DOI: 10.1016/j.vaccine.2012.04.085] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/24/2012] [Indexed: 11/18/2022]
Abstract
Unusually for an RNA virus, influenza A viruses transcribe and replicate their genomes in the nuclei of infected cells. As a result the viral ribonucleoprotein complexes (RNPs), and their newly synthesised protein subunits, must interact with the host nuclear import machinery. In this review we discuss how the virus exploits nuclear import pathways to allow regulated and chaperoned assembly of RNPs in the nucleus, and describe how the import machinery itself can be a determinant of host tropism.
Collapse
Affiliation(s)
- E C Hutchinson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
34
|
Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network. J Virol 2011; 85:13010-8. [PMID: 21994455 DOI: 10.1128/jvi.02651-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.
Collapse
|
35
|
Alfonso R, Lutz T, Rodriguez A, Chavez JP, Rodriguez P, Gutierrez S, Nieto A. CHD6 chromatin remodeler is a negative modulator of influenza virus replication that relocates to inactive chromatin upon infection. Cell Microbiol 2011; 13:1894-906. [PMID: 21899694 DOI: 10.1111/j.1462-5822.2011.01679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influenza virus establishes close functional and structural connections with the nucleus of the infected cell. Thus, viral ribonucleoproteins (RNPs) are closely bound to chromatin components and the main constituent of viral RNPs, the nucleoprotein (NP) protein, interacts with histone tails. Using a yeast two-hybrid screening, we previously found that the PA influenza virus polymerase subunit interacts with the CHD6 protein, a member of the CHD family of chromatin remodelers. Here we show that CHD6 also interacts with the viral polymerase complex and colocalizes with viral RNPs in the infected cells. To study the relationships between RNPs, chromatin and CHD6, we have analysed whether NP and CHD6 binds to peptides representing trimethylated lysines of histone 3 tails that mark transcriptionally active or inactive chromatin. Upon infection, NP binds to marks of repressed chromatin and, interestingly an important recruitment of CHD6 to these heterochromatin marks occurs in this situation. Silencing experiments indicate that CHD6 acts as a negative modulator of influenza virus replication. Hence, the CHD6 association with inactive chromatin could be part of a process where the influenza virus triggers modifications of chromatin-associated proteins that could contribute to the pathogenic events used by the virus to induce host cell shut-off.
Collapse
Affiliation(s)
- Roberto Alfonso
- Centro Nacional de Biotecnología. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Res 2011; 158:12-27. [PMID: 21376763 DOI: 10.1016/j.virusres.2011.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 01/12/2023]
Abstract
SUMOylation, the post-translational conjugation of the Small Ubiquitin-like MOdifier (SUMO) to a target protein, regulates a wide array of cellular processes and plays important roles for numerous viruses during infection. However, the relevance of the cellular SUMOylation system for influenza virus infection remains mostly unexplored. We previously reported that the non-structural protein of influenza A virus NS1 is a bona fide SUMO target. Here we determine that at least four additional influenza virus proteins, namely PB1, NP, M1, and NS2, are also authentic SUMO targets, and provide data supporting that PB1, NP, and M1 are SUMOylated during viral infection. The functional relevance of SUMOylation for these proteins is supported by the observation that, despite no apparent changes in the cellular levels of the E1 and E2 SUMO enzymes, influenza viral infection leads to a global increase in cellular SUMOylation. This increase, characterized by the appearance of two new SUMOylated proteins of ∼70kDa and ∼52kDa of molecular weight, is dependent upon viral replication and cannot be recreated by interferon stimulation alone. Altogether, these observations indicate that influenza A virus interacts extensively with the cellular SUMOylation system during infection and suggest that SUMOylation plays an important role during influenza virus infection, potentially contributing to the functional diversity exhibited by influenza viral proteins.
Collapse
|
37
|
Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010; 140:397-408. [PMID: 20144762 DOI: 10.1016/j.cell.2010.01.020] [Citation(s) in RCA: 473] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 11/01/2009] [Accepted: 01/06/2010] [Indexed: 12/24/2022]
Abstract
RIG-I is a key mediator of antiviral immunity, able to couple detection of infection by RNA viruses to the induction of interferons. Natural RIG-I stimulatory RNAs have variously been proposed to correspond to virus genomes, virus replication intermediates, viral transcripts, or self-RNA cleaved by RNase L. However, the relative contribution of each of these RNA species to RIG-I activation and interferon induction in virus-infected cells is not known. Here, we use three approaches to identify physiological RIG-I agonists in cells infected with influenza A virus or Sendai virus. We show that RIG-I agonists are exclusively generated by the process of virus replication and correspond to full-length virus genomes. Therefore, nongenomic viral transcripts, short replication intermediates, and cleaved self-RNA do not contribute substantially to interferon induction in cells infected with these negative strand RNA viruses. Rather, single-stranded RNA viral genomes bearing 5'-triphosphates constitute the natural RIG-I agonists that trigger cell-intrinsic innate immune responses during infection.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A3PX, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pal S, Rosas JM, Rosas-Acosta G. Identification of the non-structural influenza A viral protein NS1A as a bona fide target of the Small Ubiquitin-like MOdifier by the use of dicistronic expression constructs. J Virol Methods 2009; 163:498-504. [PMID: 19917317 DOI: 10.1016/j.jviromet.2009.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/26/2009] [Accepted: 11/05/2009] [Indexed: 01/01/2023]
Abstract
The cellular SUMOylation system affects the function of numerous viral proteins. Hence, the identification of novel viral targets for the Small Ubiquitin-like MOdifier (SUMO) is key to our understanding of virus-host interactions. The data obtained in this study demonstrate that the non-structural influenza A viral protein NS1A is an authentic SUMO target through the use of a dicistronic expression plasmid containing SUMO (the modifier) and Ubc9 (the SUMO-conjugating enzyme) separated by an Internal Ribosomal Entry Site (IRES). This dual expression plasmid produces a robust increase in cellular SUMOylation, therefore facilitating the characterization of cellular and viral SUMO targets. The identification of NS1A as a bona fide SUMO target suggests, for the first time, a role for SUMOylation during influenza virus infection.
Collapse
Affiliation(s)
- Sangita Pal
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | | | | |
Collapse
|
39
|
Loucaides EM, von Kirchbach JC, Foeglein A, Sharps J, Fodor E, Digard P. Nuclear dynamics of influenza A virus ribonucleoproteins revealed by live-cell imaging studies. Virology 2009; 394:154-63. [PMID: 19744689 PMCID: PMC2771073 DOI: 10.1016/j.virol.2009.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/06/2009] [Accepted: 08/07/2009] [Indexed: 11/25/2022]
Abstract
The negative sense RNA genome of influenza A virus is transcribed and replicated in the nuclei of infected cells by the viral RNA polymerase. Only four viral polypeptides are required but multiple cellular components are potentially involved. We used fluorescence recovery after photobleaching (FRAP) to characterise the dynamics of GFP-tagged viral ribonucleoprotein (RNP) components in living cells. The nucleoprotein (NP) displayed very slow mobility that significantly increased on formation of transcriptionally active RNPs. Conversely, single or dimeric polymerase subunits showed fast nuclear dynamics that decreased upon formation of heterotrimers, suggesting increased interaction of the full polymerase complex with a relatively immobile cellular component(s). Treatment with inhibitors of cellular transcription indicated that in part, this reflected an interaction with cellular RNA polymerase II. Analysis of mutated influenza virus polymerase complexes further suggested that this was through an interaction between PB2 and RNA Pol II separate from PB2 cap-binding activity.
Collapse
Affiliation(s)
- Eva M Loucaides
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
40
|
Jorba N, Coloma R, Ortín J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog 2009; 5:e1000462. [PMID: 19478885 PMCID: PMC2682650 DOI: 10.1371/journal.ppat.1000462] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/30/2009] [Indexed: 11/18/2022] Open
Abstract
The influenza A viruses genome comprises eight single-stranded RNA segments of negative polarity. Each one is included in a ribonucleoprotein particle (vRNP) containing the polymerase complex and a number of nucleoprotein (NP) monomers. Viral RNA replication proceeds by formation of a complementary RNP of positive polarity (cRNP) that serves as intermediate to generate many progeny vRNPs. Transcription initiation takes place by a cap-snatching mechanism whereby the polymerase steals a cellular capped oligonucleotide and uses it as primer to copy the vRNP template. Transcription termination occurs prematurely at the polyadenylation signal, which the polymerase copies repeatedly to generate a 3′-terminal polyA. Here we studied the mechanisms of the viral RNA replication and transcription. We used efficient systems for recombinant RNP transcription/replication in vivo and well-defined polymerase mutants deficient in either RNA replication or transcription to address the roles of the polymerase complex present in the template RNP and newly synthesised polymerase complexes during replication and transcription. The results of trans-complementation experiments showed that soluble polymerase complexes can synthesise progeny RNA in trans and become incorporated into progeny vRNPs, but only transcription in cis could be detected. These results are compatible with a new model for virus RNA replication, whereby a template RNP would be replicated in trans by a soluble polymerase complex and a polymerase complex distinct from the replicative enzyme would direct the encapsidation of progeny vRNA. In contrast, transcription of the vRNP would occur in cis and the resident polymerase complex would be responsible for mRNA synthesis and polyadenylation. The influenza A viruses produce annual epidemics and occasional pandemics of respiratory disease. There is great concern about a potential new pandemic being caused by presently circulating avian influenza viruses, and hence increasing interest in understanding how the virus replicates its genome. This comprises eight molecules of RNA, each one bound to a polymerase complex and encapsidated by multiple copies of the nucleoprotein, in the form of ribonucleoprotein complexes (RNPs). These structures are responsible for virus RNA replication and transcription but the detailed mechanisms of these processes are not fully understood. We report here the results of genetic complementation experiments using proficient in vitro and in vivo recombinant systems for transcription and replication, and polymerase point mutants that are either transcription-defective or replication-defective. These results are compatible with a new model for virus replication whereby a polymerase distinct from that present in the parental RNP is responsible for RNA replication in trans and the progeny RNP is associated to a polymerase distinct from that performing replication. In contrast, transcription is carried out in cis by the polymerase resident in the RNP.
Collapse
Affiliation(s)
- Núria Jorba
- Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias, Campus de Cantoblanco, Madrid, Spain
| | - Rocío Coloma
- Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias, Campus de Cantoblanco, Madrid, Spain
| | - Juan Ortín
- Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias, Campus de Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Influenza A replication and host nuclear compartments: Many changes and many questions. J Clin Virol 2008; 43:381-90. [DOI: 10.1016/j.jcv.2008.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/14/2008] [Indexed: 11/18/2022]
|
42
|
An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe 2008; 4:111-22. [PMID: 18692771 DOI: 10.1016/j.chom.2008.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/15/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022]
Abstract
Transmission of avian influenza virus into human populations has the potential to cause pandemic outbreaks. A major determinant of species tropism is the identity of amino acid 627 in the PB2 subunit of the heterotrimeric influenza polymerase; glutamic acid predominates in avian PB2, whereas lysine occupies this position in human isolates. We show that a dominant inhibitory activity in human cells potently and selectively restricts the function of polymerases containing an avian-like PB2 with glutamic acid at residue 627. Restricted polymerases fail to assemble into ribonucleoprotein complexes, resulting in decreased genome transcription, replication, and virus production without any significant effect on relative viral infectivity. Understanding the molecular basis of this species-specific restriction should provide strategies to prevent and treat avian influenza outbreaks in humans.
Collapse
|
43
|
Goić B, Bustamante J, Miquel A, Alvarez M, Vera MI, Valenzuela PDT, Burzio LO. The nucleoprotein and the viral RNA of infectious salmon anemia virus (ISAV) are localized in the nucleolus of infected cells. Virology 2008; 379:55-63. [PMID: 18632128 DOI: 10.1016/j.virol.2008.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/21/2008] [Accepted: 05/30/2008] [Indexed: 11/20/2022]
Abstract
The infectious salmon anemia virus (ISAV), which belongs to the new genus Isavirus of the Orthomyxoviridae family, is an important pathogen of the salmon farming industry. Indirect immunofluorescence assays carried out with monoclonal antibodies specific for the nucleoprotein (NP) reveal differential staining of sub-cellular compartments in infected cells. Particularly interesting was the staining of the nucleolus, which showed co-localization with nucleolin in CHSE-214, EPC and SHK-1 cells infected with ISAV. These results were confirmed by co-immunoprecipitation studies showing an interaction between NP and nucleolin. In addition, in situ hybridization carried out with probes specific for each of the 8 RNA segments of ISAV showed that the genomic as well as the anti-genomic strands were also localized in the nucleolus. These results suggest a role of the nucleolus in the replication and/or in the packaging of the ISAV genome.
Collapse
|
44
|
Jorba N, Juarez S, Torreira E, Gastaminza P, Zamarreño N, Albar JP, Ortín J. Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics 2008; 8:2077-88. [PMID: 18491320 DOI: 10.1002/pmic.200700508] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The influenza virus polymerase is formed by the PB1, PB2 and PA subunits and is required for virus transcription and replication in the nucleus of infected cells. Here we present the characterisation of the complexes formed intracellularly by the influenza polymerase in human cells. The virus polymerase was expressed by cotransfection of the polymerase subunits cDNAs, one of which fused to the tandem-affinity purification (TAP) tag. The intracellular complexes were purified by the TAP approach, which involves IgG-Sepharose and calmodulin-agarose chromatography, under very mild conditions. The purified complexes contained the heterotrimeric polymerase and a series of associated proteins that were not apparent in purifications of untagged polymerase used as a control. Several influenza polymerase-associated proteins were identified by MALDI-MS and their presence in purified polymerase-containing complexes were verified by Western blot. Their relevance for influenza infection was established by colocalisation with virus ribonucleoproteins in human infected cells. Most of the associated human factors were nuclear proteins involved in cellular RNA synthesis, modification and nucleo-cytoplasmic export, but some were cytosolic proteins involved in translation and transport. The interactions recognised in this proteomic approach suggest that the influenza polymerase might be involved in steps of the infection cycle other than RNA replication and transcription.
Collapse
Affiliation(s)
- Núria Jorba
- Centro Nacional de Biotecnología (CSIC), Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The outbreaks of avian influenza A virus in poultry and humans over the last decade posed a pandemic threat to human. Here, we discuss the basic classification and the structure of influenza A virus. The viral genome contains eight RNA viral segments and the functions of viral proteins encoded by this genome are described. In addition, the RNA transcription and replication of this virus are reviewed.
Collapse
Affiliation(s)
- Timothy K W Cheung
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | |
Collapse
|
46
|
Elton D, Amorim MJ, Medcalf L, Digard P. 'Genome gating'; polarized intranuclear trafficking of influenza virus RNPs. Biol Lett 2007; 1:113-7. [PMID: 17148142 PMCID: PMC1626216 DOI: 10.1098/rsbl.2004.0253] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many viruses exploit cellular polarity to constrain the assembly and release of progeny virions to a desired surface. Influenza virus particles are released only from the apical surface of epithelial cells and this polarization is partly owing to specific targeting of the viral membrane proteins to the apical plasma membrane. The RNA genome of the virus is transcribed and replicated in the nucleus, necessitating nuclear export of the individual ribonucleoprotein (RNP) segments before they can be incorporated into budding virus particles. We show that the process of polarized virus assembly begins in the nucleus with the RNPs adopting a novel asymmetric distribution at the inner nuclear membrane prior to their export to the cytoplasm. The viral nucleoprotein, the major protein component of RNPs, displays the same polarized intranuclear distribution in the absence of other influenza virus components, suggesting the existence of a hitherto unrecognized polarity within the mammalian cell nucleus.
Collapse
|
47
|
Abstract
It is over 20 years since the publication of experiments that showed that influenza A virus RNA synthesis takes place in the cell nucleus and that here, the virus subverts the cellular transcription machinery to express and replicate its own single-strand RNA genome. In the years since, our understanding of the organisation of the nucleus has increased enormously, particularly with regards to the functional integration of the RNA polymerase II transcriptosome. This review summarises recent progress in defining the intimate association between the viral and cellular transcriptional machinery.
Collapse
Affiliation(s)
- Maria Joao Amorim
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
48
|
Engelhardt OG, Fodor E. Functional association between viral and cellular transcription during influenza virus infection. Rev Med Virol 2006; 16:329-45. [PMID: 16933365 DOI: 10.1002/rmv.512] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza viruses replicate and transcribe their segmented negative-sense single-stranded RNA genome in the nucleus of the infected host cell. All RNA synthesising activities associated with influenza virus are performed by the virally encoded RNA-dependent RNA polymerase (RdRp) that consists of three subunits, PA, PB1 and PB2. However, viral transcription is critically dependent on on-going cellular transcription, in particular, on activities associated with the cellular DNA-dependent RNA polymerase II (Pol II). Thus, the viral RdRp uses short 5' capped RNA fragments, derived from cellular Pol II transcripts, as primers for viral mRNA synthesis. These capped RNA primers are generated by cleavage of host Pol II transcripts by an endonuclease activity associated with the viral RdRp. Moreover, some viral transcripts require splicing and since influenza virus does not encode splicing machinery, it is dependent on host splicing, an activity also related to Pol II transcription. Despite these functional links between viral and host Pol II transcription, there has been no evidence that a physical association existed between the two transcriptional machineries. However, recently it was reported that there is a physical interaction between the trimeric viral RdRp and cellular Pol II. The viral RdRp was found to interact with the C-terminal domain (CTD) of initiating Pol II, at a stage in the transcription cycle when capping takes place. It was therefore proposed that this interaction may be required for the viral RNA (vRNA) polymerase to gain access to capped RNA substrates for endonucleolytic cleavage. The virus not only relies on cellular factors to support its own RNA synthesis, but also subverts cellular pathways in order to generate an environment optimised for viral multiplication. In this respect, the interaction of the viral NS1 protein with factors involved in cellular pre-mRNA processing is of particular relevance. The virus also alters the distribution of Pol II on cellular genes, leading to a reduction in elongating Pol II thereby contributing to the phenomenon known as host shut-off.
Collapse
|
49
|
Carr SM, Carnero E, García-Sastre A, Brownlee GG, Fodor E. Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology 2005; 344:492-508. [PMID: 16242167 DOI: 10.1016/j.virol.2005.08.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/11/2005] [Accepted: 08/17/2005] [Indexed: 11/24/2022]
Abstract
Influenza virus RNA polymerase is a heterotrimeric complex consisting of PB1, PB2, and PA subunits. These polymerase subunits accumulate in the nucleus of infected cells. We report here that PB2, from both human and avian influenza viruses, could also localize to mitochondria in transfected cells. Importantly, cells infected with influenza A virus also displayed mitochondrial PB2. We show that an N-terminal motif composed of 120 amino acids is sufficient for localization of PB2 to mitochondria. In particular, leucine residues at positions 7 and 10 were essential for mitochondrial targeting. Recombinant influenza A/WSN/33 viruses expressing PB2 proteins with L7A and/or L10A mutations showed reduced viral titers, but unaffected levels of transcription, replication, and protein expression. The introduction of L7A and/or L10A mutations into recombinant viruses correlated with reduced mitochondrial membrane potential in infected cells, suggesting that mitochondrial localization of PB2 contributes to the preservation of mitochondrial function during influenza virus infection.
Collapse
Affiliation(s)
- Simon M Carr
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
50
|
Deng T, Sharps J, Fodor E, Brownlee GG. In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J Virol 2005; 79:8669-74. [PMID: 15956611 PMCID: PMC1143706 DOI: 10.1128/jvi.79.13.8669-8674.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus RNA-dependent RNA polymerase is a heterotrimeric complex of PB1, PB2, and PA. We show that the individually expressed PB2 subunit can be assembled with the coexpressed PB1-PA dimer in vitro into a transcriptionally active complex. Furthermore, we demonstrate that a model viral RNA promoter can bind to the PB1-PA dimer prior to assembly with PB2. Our results are consistent with a recently proposed model for the sequential assembly of viral RNA polymerase complex in which the PB1-PA dimeric complex and the PB2 monomer are transported into the nucleus separately and then assembled in the nucleus.
Collapse
Affiliation(s)
- Tao Deng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|