1
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
2
|
Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Catacchio CR, Porubsky D, Mao Y, Yoo D, Rautiainen M, Koren S, Nurk S, Lucas JK, Hoekzema K, Munson KM, Gerton JL, Phillippy AM, Ventura M, Alexandrov IA, Eichler EE. The variation and evolution of complete human centromeres. Nature 2024; 629:136-145. [PMID: 38570684 PMCID: PMC11062924 DOI: 10.1038/s41586-024-07278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison N Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Claudia R Catacchio
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Julian K Lucas
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ivan A Alexandrov
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Kyriacou E, Heun P. Centromere structure and function: lessons from Drosophila. Genetics 2023; 225:iyad170. [PMID: 37931172 PMCID: PMC10697814 DOI: 10.1093/genetics/iyad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 11/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster serves as a powerful model organism for advancing our understanding of biological processes, not just by studying its similarities with other organisms including ourselves but also by investigating its differences to unravel the underlying strategies that evolved to achieve a common goal. This is particularly true for centromeres, specialized genomic regions present on all eukaryotic chromosomes that function as the platform for the assembly of kinetochores. These multiprotein structures play an essential role during cell division by connecting chromosomes to spindle microtubules in mitosis and meiosis to mediate accurate chromosome segregation. Here, we will take a historical perspective on the study of fly centromeres, aiming to highlight not only the important similarities but also the differences identified that contributed to advancing centromere biology. We will discuss the current knowledge on the sequence and chromatin organization of fly centromeres together with advances for identification of centromeric proteins. Then, we will describe both the factors and processes involved in centromere organization and how they work together to provide an epigenetic identity to the centromeric locus. Lastly, we will take an evolutionary point of view of centromeres and briefly discuss current views on centromere drive.
Collapse
Affiliation(s)
- Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patrick Heun
- Wellcome Centre of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF Edinburgh, UK
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
He Y, Guo L, Zheng L, Ren C, Wang T, Lu J. Clinical and molecular cytogenetic findings and pregnancy outcomes of fetuses with isochromosome Y. Mol Cytogenet 2022; 15:32. [PMID: 35927742 PMCID: PMC9351221 DOI: 10.1186/s13039-022-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mosaic forms and clinical phenotypes of fetuses with isochromosome Y are difficult to predict. Therefore, we summarized the cases of nine fetuses with isochromosome Y identified in prenatal diagnosis with a combination of molecular cytogenetic techniques, providing clinical evidence for prenatal genetic counseling. METHODS The prenatal diagnosis and pregnancy outcomes of nine fetuses with isochromosome Y were obtained by a retrospective analysis. Isochromosome Y was identified prenatally by different approaches, such as conventional karyotyping, chromosomal microarray analysis (CMA), quantitative fluorescent polymerase chain reaction (QF-PCR) and fluorescence in situ hybridization (FISH). RESULTS Seven idic(Y) fetuses and two i(Y) fetuses were identified. One fetus was complete for i(Y)(p10), and the rest with 45,X had mosaic forms. A break and fusion locus was identified in Yp11.3 in one fetus, in Yq11.22 in six fetuses and in Yp10 in two fetuses. The CMA results suggested that different deletions and duplications were found on the Y chromosome. The deletion fragments ranged from 4.7 Mb to the entire Y chromosome, and the duplication fragments ranged from 10.4 to 18.0 Mb. QF-PCR analysis suggested that the AZF region was intact in one fetus, four fetuses had AZFb+c+d deletion, one fetus had AZFa+b+c+d deletion, and one fetus had AZFc+d deletion. Finally, four healthy male neonates were delivered successfully, but the parents of the remaining five fetuses, including three healthy and two unhealthy fetuses, chose to terminate their pregnancies. CONCLUSION The fetus and neonate phenotype of prenatally detected isochromosome Y usually is that of a normally developed male, ascertained in the absence of other indicators of a fetal structural anomaly. Our study provides clinical reference materials for risk assessment and permits better prenatally counseling and preparation of parents facing the birth of isochromosome Y fetuses.
Collapse
Affiliation(s)
- Yiqun He
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Li Guo
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Laiping Zheng
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Congmian Ren
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Ting Wang
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China
| | - Jian Lu
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, 521-523 Xingnan Road, Guangzhou, 511442, Guangdong, China.
| |
Collapse
|
5
|
Wang Y, Wu L, Yuen KWY. The roles of transcription, chromatin organisation and chromosomal processes in holocentromere establishment and maintenance. Semin Cell Dev Biol 2022; 127:79-89. [PMID: 35042676 DOI: 10.1016/j.semcdb.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
The centromere is a unique functional region on each eukaryotic chromosome where the kinetochore assembles and orchestrates microtubule attachment and chromosome segregation. Unlike monocentromeres that occupy a specific region on the chromosome, holocentromeres are diffused along the length of the chromosome. Despite being less common, holocentromeres have been verified in almost 800 nematode, insect, and plant species. Understanding of the molecular and epigenetic regulation of holocentromeres is lagging that of monocentromeres. Here we review how permissive locations for holocentromeres are determined across the genome, potentially by chromatin organisation, transcription, and non-coding RNAs, specifically in the nematode C. elegans. In addition, we discuss how holocentric CENP-A or CENP-T-containing nucleosomes are recruited and deposited, through the help of histone chaperones, licensing factors, and condensin complexes, both during de novo holocentromere establishment, and in each mitotic cell cycle. The process of resolving sister centromeres after DNA replication in holocentric organisms is also mentioned. Conservation and diversity between holocentric and monocentric organisms are highlighted, and outstanding questions are proposed.
Collapse
Affiliation(s)
- Yue Wang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Lillian Wu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong; Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
6
|
Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture. Nat Commun 2021; 12:6910. [PMID: 34824211 PMCID: PMC8617174 DOI: 10.1038/s41467-021-26805-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Most cancers are characterized by the somatic acquisition of genomic rearrangements during tumour evolution that eventually drive the oncogenesis. Here, using multiplatform sequencing technologies, we identify and characterize a remarkable mutational mechanism in human hepatocellular carcinoma caused by Hepatitis B virus, by which DNA molecules from the virus are inserted into the tumour genome causing dramatic changes in its configuration, including non-homologous chromosomal fusions, dicentric chromosomes and megabase-size telomeric deletions. This aberrant mutational mechanism, present in at least 8% of all HCC tumours, can provide the driver rearrangements that a cancer clone requires to survive and grow, including loss of relevant tumour suppressor genes. Most of these events are clonal and occur early during liver cancer evolution. Real-time timing estimation reveals some HBV-mediated rearrangements occur as early as two decades before cancer diagnosis. Overall, these data underscore the importance of characterising liver cancer genomes for patterns of HBV integration.
Collapse
|
7
|
Abstract
We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA; .,Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ivan A Alexandrov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; .,Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199004, Russia.,Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
8
|
Manotas MC, García-Acero M, González DM, Moreno OM, Suárez-Obando F, Céspedes C, Forero C, Pérez J, Fernández N, Rojas A. Clinical and Molecular Cytogenetic Characteristics of Five Cases with Isodicentric Y Chromosome. Sex Dev 2021; 14:12-20. [PMID: 33677455 DOI: 10.1159/000512803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/01/2020] [Indexed: 11/19/2022] Open
Abstract
Isodicentric Y chromosome [idic(Y)] is one of the most common structural abnormalities of the Y chromosome and has been observed in patients with reproductive disorders and in patients with disorders of sexual development. Most idic(Y) chromosomes are found in mosaic form with a 45,X cell line. These chromosomes are highly unstable during mitosis due to the presence of 2 centromers, which explains their probable loss in early mitosis or mitosis of the embryo and therefore the presence of the 45,X line. It has been hypothesized that the proportion of 45,X cells in various tissues probably influences the phenotypic sex of individuals carrying an idic(Y) chromosome, ranging from infertile men, hypospadias, ambiguous genitalia, and Turner syndrome to sex reversal. In this article we present 5 cases of patients with idic(Y) referred for suspected disorder of sex development (DSD), 3 with a male assignment and 2 with a female assignment. All cases have variable clinical characteristics, which were assessed by the transdisciplinary group of Disorders of Sex Development of the Hospital Universitario San Ignacio, Bogotá, Colombia. Patients were analyzed by conventional and molecular cytogenetics using high-resolution G-band and FISH techniques. Our findings highlight the importance of cytogenetic studies in the diagnosis of DSD patients.
Collapse
Affiliation(s)
- María C Manotas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mary García-Acero
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Daniel M González
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Olga M Moreno
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Suárez-Obando
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.,Clinical Genetics, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camila Céspedes
- School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.,Pediactric Endocrinology, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Catalina Forero
- School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.,Pediactric Endocrinology, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jaime Pérez
- School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.,Division of Urology, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Nicolás Fernández
- School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.,Division of Urology, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia,
| |
Collapse
|
9
|
Palladino J, Chavan A, Sposato A, Mason TD, Mellone BG. Targeted De Novo Centromere Formation in Drosophila Reveals Plasticity and Maintenance Potential of CENP-A Chromatin. Dev Cell 2020; 52:379-394.e7. [PMID: 32049040 DOI: 10.1016/j.devcel.2020.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/17/2019] [Accepted: 01/06/2020] [Indexed: 11/25/2022]
Abstract
Centromeres are essential for accurate chromosome segregation and are marked by centromere protein A (CENP-A) nucleosomes. Mis-targeted CENP-A chromatin has been shown to seed centromeres at non-centromeric DNA. However, the requirements for such de novo centromere formation and transmission in vivo remain unknown. Here, we employ Drosophila melanogaster and the LacI/lacO system to investigate the ability of targeted de novo centromeres to assemble and be inherited through development. De novo centromeres form efficiently at six distinct genomic locations, which include actively transcribed chromatin and heterochromatin, and cause widespread chromosomal instability. During tethering, de novo centromeres sometimes prevail, causing the loss of the endogenous centromere via DNA breaks and HP1-dependent epigenetic inactivation. Transient induction of de novo centromeres and chromosome healing in early embryogenesis show that, once established, these centromeres can be maintained through development. Our results underpin the ability of CENP-A chromatin to establish and sustain mitotic centromere function in Drosophila.
Collapse
Affiliation(s)
- Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Ankita Chavan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Anthony Sposato
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Timothy D Mason
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
10
|
De Novo Centromere Formation: One's Company, Two's a Crowd. Dev Cell 2020; 52:257-258. [PMID: 32049036 DOI: 10.1016/j.devcel.2020.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosomes containing two centromeres (dicentrics) trigger chromosome instability that is avoided by the enigmatic process of centromere inactivation. In this issue of Developmental Cell, Palladino et al. (2020) combine in vivo chromosome engineering and Drosophila genetics to assess consequences of de novo centromere formation and clarify models of centromere inactivation.
Collapse
|
11
|
Schotanus K, Heitman J. Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions. eLife 2020; 9:56026. [PMID: 32310085 PMCID: PMC7188483 DOI: 10.7554/elife.56026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The human fungal pathogen Cryptococcus deuterogattii is RNAi-deficient and lacks active transposons in its genome. C. deuterogattii has regional centromeres that contain only transposon relics. To investigate the impact of centromere loss on the C. deuterogattii genome, either centromere 9 or 10 was deleted. Deletion of either centromere resulted in neocentromere formation and interestingly, the genes covered by these neocentromeres maintained wild-type expression levels. In contrast to cen9∆ mutants, cen10∆ mutant strains exhibited growth defects and were aneuploid for chromosome 10. At an elevated growth temperature (37°C), the cen10∆ chromosome was found to have undergone fusion with another native chromosome in some isolates and this fusion restored wild-type growth. Following chromosomal fusion, the neocentromere was inactivated, and the native centromere of the fused chromosome served as the active centromere. The neocentromere formation and chromosomal fusion events observed in this study in C. deuterogattii may be similar to events that triggered genomic changes within the Cryptococcus/Kwoniella species complex and may contribute to speciation throughout the eukaryotic domain.
Collapse
Affiliation(s)
- Klaas Schotanus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
12
|
Chadwick BP. Characterization of chromatin at structurally abnormal inactive X chromosomes reveals potential evidence of a rare hybrid active and inactive isodicentric X chromosome. Chromosome Res 2019; 28:155-169. [PMID: 31776830 DOI: 10.1007/s10577-019-09621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
X chromosome structural abnormalities are relatively common in Turner syndrome patients, in particular X isochromosomes. Reports over the last five decades examining asynchronous DNA replication between the normal X and isochromosome have clearly established that the structurally abnormal chromosome is the inactive X chromosome (Xi). Here the organization of chromatin at a deleted X chromosome, an Xq isochromosome, and two isodicentric chromosomes were examined. Consistent with previous differential staining methods, at interphase, the X isochromosome and isodicentric X chromosomes frequently formed bipartite Barr bodies, observed by fluorescence microscopy using numerous independent bona fide markers of Xi heterochromatin. At metaphase, with the exception of the pseudoautosomal region and the duplicated locus of the macrosatellite DXZ4 (if present on the abnormal X chromosome based on break points), euchromatin markers were absent from the Xi, whereas histone variant macroH2A formed reproducible banded mirror-image chromosomes. Unexpectedly, the isodicentric chromosome in 46,X,idic(X)(q28) cells, which carry a near full-length q-arm-to-q-arm fused chromosome, showed at interphase very rare instances of Xi chromatin bodies that were separated by large distances in the nucleus. Further examination using immunofluorescence and FISH support the possibility that these rare cells may represent ones in which one half of the isodicentric chromosome is active and the other half is inactive.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|
13
|
The nucleosomes that mark centromere location on chromosomes old and new. Essays Biochem 2019; 63:15-27. [DOI: 10.1042/ebc20180060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023]
Abstract
Abstract
Proper segregation of chromosomes is an essential component of cell division. The centromere is the locus at which the kinetochore—the proteinaceous complex that ties chromosomes to microtubules—forms during mitosis and meiosis. Thus, the centromere is critical for equal segregation of chromosomes. The centromere is characterized by both protein and DNA elements: the histone H3 variant CENP-A epigenetically defines the location of the centromere while centromeric DNA sequences are neither necessary nor sufficient for centromere function. Paradoxically, the DNA sequences play a critical role in new centromere formation. In this essay, we discuss the contribution of both epigenetics and genetics at the centromere. Understanding these contributions is vital to efforts to control centromere formation on synthetic/artificial chromosomes and centromere strength on natural ones.
Collapse
|
14
|
Barra V, Fachinetti D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 2018; 9:4340. [PMID: 30337534 PMCID: PMC6194107 DOI: 10.1038/s41467-018-06545-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Centromeres are the chromosomal domains required to ensure faithful transmission of the genome during cell division. They have a central role in preventing aneuploidy, by orchestrating the assembly of several components required for chromosome separation. However, centromeres also adopt a complex structure that makes them susceptible to being sites of chromosome rearrangements. Therefore, preservation of centromere integrity is a difficult, but important task for the cell. In this review, we discuss how centromeres could potentially be a source of genome instability and how centromere aberrations and rearrangements are linked with human diseases such as cancer.
Collapse
Affiliation(s)
- V Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
15
|
Drpic D, Almeida AC, Aguiar P, Renda F, Damas J, Lewin HA, Larkin DM, Khodjakov A, Maiato H. Chromosome Segregation Is Biased by Kinetochore Size. Curr Biol 2018; 28:1344-1356.e5. [PMID: 29706521 PMCID: PMC5954971 DOI: 10.1016/j.cub.2018.03.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Chromosome missegregation during mitosis or meiosis is a hallmark of cancer and the main cause of prenatal death in humans. The gain or loss of specific chromosomes is thought to be random, with cell viability being essentially determined by selection. Several established pathways including centrosome amplification, sister-chromatid cohesion defects, or a compromised spindle assembly checkpoint can lead to chromosome missegregation. However, how specific intrinsic features of the kinetochore—the critical chromosomal interface with spindle microtubules—impact chromosome segregation remains poorly understood. Here we used the unique cytological attributes of female Indian muntjac, the mammal with the lowest known chromosome number (2n = 6), to characterize and track individual chromosomes with distinct kinetochore size throughout mitosis. We show that centromere and kinetochore functional layers scale proportionally with centromere size. Measurement of intra-kinetochore distances, serial-section electron microscopy, and RNAi against key kinetochore proteins confirmed a standard structural and functional organization of the Indian muntjac kinetochores and revealed that microtubule binding capacity scales with kinetochore size. Surprisingly, we found that chromosome segregation in this species is not random. Chromosomes with larger kinetochores bi-oriented more efficiently and showed a 2-fold bias to congress to the equator in a motor-independent manner. Despite robust correction mechanisms during unperturbed mitosis, chromosomes with larger kinetochores were also strongly biased to establish erroneous merotelic attachments and missegregate during anaphase. This bias was impervious to the experimental attenuation of polar ejection forces on chromosome arms by RNAi against the chromokinesin Kif4a. Thus, kinetochore size is an important determinant of chromosome segregation fidelity. Centromere/kinetochore functional layers scale proportionally with centromere size Kinetochore microtubule binding capacity scales with kinetochore size Chromosome congression and bi-orientation are biased by kinetochore size Error formation leading to chromosome missegregation is biased by kinetochore size
Collapse
Affiliation(s)
- Danica Drpic
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana C Almeida
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
16
|
Hou H, Cooper JP. Stretching, scrambling, piercing and entangling: Challenges for telomeres in mitotic and meiotic chromosome segregation. Differentiation 2018; 100:12-20. [PMID: 29413748 DOI: 10.1016/j.diff.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022]
Abstract
The consequences of telomere loss or dysfunction become most prominent when cells enter the nuclear division stage of the cell cycle. At this climactic stage when chromosome segregation occurs, telomere fusions or entanglements can lead to chromosome breakage, wreaking havoc on genome stability. Here we review recent progress in understanding the mechanisms of detangling and breaking telomere associations at mitosis, as well as the unique ways in which telomeres are processed to allow regulated sister telomere separation. Moreover, we discuss unexpected roles for telomeres in orchestrating nuclear envelope breakdown and spindle formation, crucial processes for nuclear division. Finally, we discuss the discovery that telomeres create microdomains in the nucleus that are conducive to centromere assembly, cementing the unexpectedly influential role of telomeres in mitosis.
Collapse
Affiliation(s)
- Haitong Hou
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA.
| |
Collapse
|
17
|
Chiatante G, Giannuzzi G, Calabrese FM, Eichler EE, Ventura M. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region. Mol Biol Evol 2017; 34:1669-1681. [PMID: 28333343 DOI: 10.1093/molbev/msx108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.
Collapse
Affiliation(s)
- Giorgia Chiatante
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.,Department of Biology, Anthropology Laboratories University of Florence, Florence, Italy
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Mario Ventura
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Kumar P, Jain M, Kalsi AK, Halder A. Molecular characterisation of a case of dicentric Y presented as nonobstructive azoospermia with testicular early maturation arrest. Andrologia 2017; 50. [PMID: 28836280 DOI: 10.1111/and.12886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
The dicentric Y chromosome is the most common cytogenetically visible structural abnormality of Y chromosome. The sites of break and fusion of dicentric Y are variable, but break and fusion at Yq12 (proximal to the pseudoautosomal region 2/PAR 2) is very rare. Dicentric Y chromosome is unstable during cell division and likely to generate chromosomal mosaicism. Here, we report a case of infertile male with nonmosaic 46,XY where chromosome Y was dicentric with break and fusion at Yq12 (proximal to PAR 2). Clinical presentation of the case was nonobstructive azoospermia due to early maturation arrest at the primary spermatocyte stage. Various molecular techniques such as FISH, STS-PCR and DNA microarray were carried out to characterise genetic defect leading to testicular maturation arrest in the patient. The break and fusion was found at Yq12 (proximal to PAR 2) and resulted in near total duplication of Y chromosome (excluding PAR 2). The reason for maturation arrest seems due to CNVs of PARs (gain in PAR 1 and loss of PAR 2) and azoospermia factors (gain).
Collapse
Affiliation(s)
- P Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - M Jain
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - A K Kalsi
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - A Halder
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Using human artificial chromosomes to study centromere assembly and function. Chromosoma 2017; 126:559-575. [DOI: 10.1007/s00412-017-0633-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
|
20
|
Abstract
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequence features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.
Collapse
|
21
|
Halder A, Kumar P, Jain M, Iyer VK. Copy number variations in testicular maturation arrest. Andrology 2017; 5:460-472. [DOI: 10.1111/andr.12330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 01/01/2023]
Affiliation(s)
- A. Halder
- Department of Reproductive Biology; All India Institute of Medical Sciences; New Delhi India
| | - P. Kumar
- Department of Reproductive Biology; All India Institute of Medical Sciences; New Delhi India
| | - M. Jain
- Department of Reproductive Biology; All India Institute of Medical Sciences; New Delhi India
| | - V. K. Iyer
- Department of Pathology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
22
|
Dumont M, Fachinetti D. DNA Sequences in Centromere Formation and Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:305-336. [PMID: 28840243 DOI: 10.1007/978-3-319-58592-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Faithful chromosome segregation during cell division depends on the centromere, a complex DNA/protein structure that links chromosomes to spindle microtubules. This chromosomal domain has to be marked throughout cell division and its chromosomal localization preserved across cell generations. From fission yeast to human, centromeres are established on a series of repetitive DNA sequences and on specialized centromeric chromatin. This chromatin is enriched with the histone H3 variant, named CENP-A, that was demonstrated to be the epigenetic mark that maintains centromere identity and function indefinitely. Although centromere identity is thought to be exclusively epigenetic, the presence of specific DNA sequences in the majority of eukaryotes and of the centromeric protein CENP-B that binds to these sequences, suggests the existence of a genetic component as well. In this review, we will highlight the importance of centromeric sequences for centromere formation and function, and discuss the centromere DNA sequence/CENP-B paradox.
Collapse
Affiliation(s)
- M Dumont
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
23
|
Dutrillaux AM, Carton B, Cacheux L, Dutrillaux B. Interstitial NORs, Fragile Sites, and Chromosome Evolution: A Not So Simple Relationship - The Example of Melolontha melolontha and Genus Protaetia (Coleoptera: Scarabaeidae). Cytogenet Genome Res 2016; 149:304-311. [DOI: 10.1159/000448931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
In the present study, the origin of recurrent rearrangements involving chromosome 6 in 3.2% of cells of Melolontha melolontha (Coleoptera, Scarabaeidae) was investigated. Various chromosome staining techniques, including C-banding, Giemsa and silver staining, as well as fluorescence in situ hybridization with a human 28S rDNA probe, were applied to M. melolontha chromosome spreads. In addition, related species of the genera Melolontha and Protaetia were studied. On chromosome 6 of M. melolontha, there is a fragile site-like structure which corresponds to an interstitial nucleolus organizer region (NOR). Despite this instability, the NOR remains unique and interstitial in this species, as well as in the other species studied. It is proposed that the intercalary position of the NOR both facilitates the detection of its fragile site-like instability and correlates with its relative stability during evolution. We explain this apparent paradox by strong counter-selection for imbalances of the chromosome fragment distal to the interstitial NORs, which would recurrently occur in the progeny of translocation carriers. Thus, the frequent telomeric position of the NORs in most animal and plant taxa would have no functional rationale but would be the consequence of selection against the meiotic transmission of chromosome imbalances.
Collapse
|
24
|
Ishchuk OP, Vojvoda Zeljko T, Schifferdecker AJ, Mebrahtu Wisén S, Hagström ÅK, Rozpędowska E, Rørdam Andersen M, Hellborg L, Ling Z, Sibirny AA, Piškur J. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2. PLoS One 2016; 11:e0161741. [PMID: 27560164 PMCID: PMC4999066 DOI: 10.1371/journal.pone.0161741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains’ chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast’s autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known “point” CEN elements, and their biological activity is retained within ~900–1300 bp DNA segments. CEN1 and CEN2 have features of both “point” and “regional” centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast’s enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches.
Collapse
Affiliation(s)
- Olena P. Ishchuk
- Department of Biology, Lund University, Lund, Sweden
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
- * E-mail:
| | - Tanja Vojvoda Zeljko
- Department of Biology, Lund University, Lund, Sweden
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | | | | | | | | | - Zhihao Ling
- Department of Biology, Lund University, Lund, Sweden
| | - Andrei A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Cech JN, Peichel CL. Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish. Chromosome Res 2016; 24:437-450. [PMID: 27553478 DOI: 10.1007/s10577-016-9535-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023]
Abstract
Having one and only one centromere per chromosome is essential for proper chromosome segregation during both mitosis and meiosis. Chromosomes containing two centromeres are known as dicentric and often mis-segregate during cell division, resulting in aneuploidy or chromosome breakage. Dicentric chromosome can be stabilized by centromere inactivation, a process which reestablishes monocentric chromosomes. However, little is known about this process in naturally occurring dicentric chromosomes. Using a combination of fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on metaphase chromosome spreads, we demonstrate that centromere inactivation has evolved on a neo-Y chromosome fusion in the Japan Sea threespine stickleback fish (Gasterosteus nipponicus). We found that the centromere derived from the ancestral Y chromosome has been inactivated. Our data further suggest that there have been genetic changes to this centromere in the two million years since the formation of the neo-Y chromosome, but it remains unclear whether these genetic changes are a cause or consequence of centromere inactivation.
Collapse
Affiliation(s)
- Jennifer N Cech
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave North, Mailstop C2-023, Seattle, WA, 98109, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - Catherine L Peichel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.
| |
Collapse
|
26
|
Niikura Y, Kitagawa R, Kitagawa K. CENP-A Ubiquitylation Is Inherited through Dimerization between Cell Divisions. Cell Rep 2016; 15:61-76. [PMID: 27052173 DOI: 10.1016/j.celrep.2016.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022] Open
Abstract
The presence of chromatin containing the histone H3 variant CENP-A dictates the location of the centromere in a DNA sequence-independent manner. But the mechanism by which centromere inheritance occurs is largely unknown. We previously reported that CENP-A K124 ubiquitylation, mediated by CUL4A-RBX1-COPS8 E3 ligase activity, is required for CENP-A deposition at the centromere. Here, we show that pre-existing ubiquitylated CENP-A is necessary for recruitment of newly synthesized CENP-A to the centromere and that CENP-A ubiquitylation is inherited between cell divisions. In vivo and in vitro analyses using dimerization mutants and dimerization domain fusion mutants revealed that the inheritance of CENP-A ubiquitylation requires CENP-A dimerization. Therefore, we propose models in which CENP-A ubiquitylation is inherited and, through dimerization, determines centromere location. Consistent with this model is our finding that overexpression of a monoubiquitin-fused CENP-A mutant induces neocentromeres at noncentromeric regions of chromosomes.
Collapse
Affiliation(s)
- Yohei Niikura
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Risa Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Katsumi Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
27
|
Garavís M, Méndez-Lago M, Gabelica V, Whitehead SL, González C, Villasante A. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs. Sci Rep 2015; 5:13307. [PMID: 26289671 PMCID: PMC4542561 DOI: 10.1038/srep13307] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Centromeres are the chromosomal loci at which spindle microtubules attach to mediate chromosome segregation during mitosis and meiosis. In most eukaryotes, centromeres are made up of highly repetitive DNA sequences (satellite DNA) interspersed with middle repetitive DNA sequences (transposable elements). Despite the efforts to establish complete genomic sequences of eukaryotic organisms, the so-called 'finished' genomes are not actually complete because the centromeres have not been assembled due to the intrinsic difficulties in constructing both physical maps and complete sequence assemblies of long stretches of tandemly repetitive DNA. Here we show the first molecular structure of an endogenous Drosophila centromere and the ability of the C-rich dodeca satellite strand to form dimeric i-motifs. The finding of i-motif structures in simple and complex centromeric satellite DNAs leads us to suggest that these centromeric sequences may have been selected not by their primary sequence but by their ability to form noncanonical secondary structures.
Collapse
Affiliation(s)
- Miguel Garavís
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - María Méndez-Lago
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Valérie Gabelica
- Univ. Bordeaux, ARNA Laboratory, IECB, 2 rue Robert Escarpit, F-33600 Pessac, France.,Inserm ARNA Laboratory, 146 rue Leo Saignat, F-33000 Bordeaux, France
| | - Siobhan L Whitehead
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Alfredo Villasante
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
28
|
Cuacos M, H. Franklin FC, Heckmann S. Atypical centromeres in plants-what they can tell us. FRONTIERS IN PLANT SCIENCE 2015; 6:913. [PMID: 26579160 PMCID: PMC4620154 DOI: 10.3389/fpls.2015.00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/12/2015] [Indexed: 05/20/2023]
Abstract
The centromere, visible as the primary constriction of condensed metaphase chromosomes, is a defined chromosomal locus essential for genome stability. It mediates transient assembly of a multi-protein complex, the kinetochore, which enables interaction with spindle fibers and thus faithful segregation of the genetic information during nuclear divisions. Centromeric DNA varies in extent and sequence composition among organisms, but a common feature of almost all active eukaryotic centromeres is the presence of the centromeric histone H3 variant cenH3 (a.k.a. CENP-A). These typical centromere features apply to most studied species. However, a number of species display "atypical" centromeres, such as holocentromeres (centromere extension along almost the entire chromatid length) or neocentromeres (ectopic centromere activity). In this review, we provide an overview of different atypical centromere types found in plants including holocentromeres, de novo formed centromeres and terminal neocentromeres as well as di-, tri- and metapolycentromeres (more than one centromere per chromosomes). We discuss their specific and common features and compare them to centromere types found in other eukaryotic species. We also highlight new insights into centromere biology gained in plants with atypical centromeres such as distinct mechanisms to define a holocentromere, specific adaptations in species with holocentromeres during meiosis or various scenarios leading to neocentromere formation.
Collapse
|
29
|
Zhou L, Chen C, Li H, Chen Y, Xu X, Lin X, Tang S. Delineation variable genotype/phenotype correlations of 6q27 terminal deletion derived from dic(6;18)(q27;p10). Mol Cytogenet 2014; 7:78. [PMID: 25426168 PMCID: PMC4243269 DOI: 10.1186/s13039-014-0078-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
Background Terminal deletion of 6q27 produces a rare syndrome associated with unexplained mental retardation, hypotonia, epilepsy, and multiple malformations. Structural brain malformations are consistently observed, including agenesis of the corpus callosum, hydrocephalus, periventricular nodular heterotopia, polymicrogyria, and cerebellar malformations. Here we report a fetal risk assessment of a 27-year-old woman with mental retardation, hypotonia and dysmorphic features at 17 weeks of pregnancy. Results Cytogenetic analyses revealed an addition at chromosome 6qter in the mother. Haploinsufficiency of 6q27 to 6qter (1.3 Mb) and trisomy of the entire short arm of chromosome 18 (15.2 Mb) were found using a single nucleotide polymorphism based array. Results were confirmed by molecular cytogenetics and multiplex ligation-dependent probe amplification. The karyotype of the mother was 46,XX dic(6;18)(6pter → 6q27::18p10 → 18pter).arr [hg19]6q27(169,591,548-170,898,549) × 1,18p11.3p10(12,842-15,375,878) × 3.ish dic(6;18)(q27;p10)(RP11-614P3-,RP11-1035E2+,D18Z1+). Deletion of 6q27 was associated with the structural brain malformations, whereas trisomy of 18p had minor clinical effects. The unbalanced rearrangement of chromosome 6 and chromosome 18 was de novo and was not inherited by the developing fetus. Conclusions A rare rearrangement between 6q27 and 18p was identified, which led to a de novo 1.3 Mb deletion of 6q27 and a 15.2 Mb duplication of 18p in an adult with mental retardation, hypotonia, epilepsy, and multiple malformations.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Chong Chen
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Huanzheng Li
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Yunying Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, China
| | - Xueqin Xu
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Xiaoling Lin
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Shaohua Tang
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China ; Key Laboratory of Medical Genetics, Zhejiang, China
| |
Collapse
|
30
|
Centromere identity from the DNA point of view. Chromosoma 2014; 123:313-25. [PMID: 24763964 PMCID: PMC4107277 DOI: 10.1007/s00412-014-0462-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 02/05/2023]
Abstract
The centromere is a chromosomal locus responsible for the faithful segregation of genetic material during cell division. It has become evident that centromeres can be established literally on any DNA sequence, and the possible synergy between DNA sequences and the most prominent centromere identifiers, protein components, and epigenetic marks remains uncertain. However, some evolutionary preferences seem to exist, and long-term established centromeres are frequently formed on long arrays of satellite DNAs and/or transposable elements. Recent progress in understanding functional centromere sequences is based largely on the high-resolution DNA mapping of sequences that interact with the centromere-specific histone H3 variant, the most reliable marker of active centromeres. In addition, sequence assembly and mapping of large repetitive centromeric regions, as well as comparative genome analyses offer insight into their complex organization and evolution. The rapidly advancing field of transcription in centromere regions highlights the functional importance of centromeric transcripts. Here, we comprehensively review the current state of knowledge on the composition and functionality of DNA sequences underlying active centromeres and discuss their contribution to the functioning of different centromere types in higher eukaryotes.
Collapse
|
31
|
Scott KC, Sullivan BA. Neocentromeres: a place for everything and everything in its place. Trends Genet 2013; 30:66-74. [PMID: 24342629 DOI: 10.1016/j.tig.2013.11.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/07/2023]
Abstract
Centromeres are essential for chromosome inheritance and genome stability. Centromeric proteins, including the centromeric histone centromere protein A (CENP-A), define the site of centromeric chromatin and kinetochore assembly. In many organisms, centromeres are located in or near regions of repetitive DNA. However, some atypical centromeres spontaneously form on unique sequences. These neocentromeres, or new centromeres, were first identified in humans, but have since been described in other organisms. Neocentromeres are functionally and structurally similar to endogenous centromeres, but lack the added complication of underlying repetitive sequences. Here, we discuss recent studies in chicken and fungal systems where genomic engineering can promote neocentromere formation. These studies reveal key genomic and epigenetic factors that support de novo centromere formation in eukaryotes.
Collapse
Affiliation(s)
- Kristin C Scott
- Institute for Genome Sciences & Policy, Duke University, DUMC 3382, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Division of Human Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Division of Human Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Mazen IM, Kamel AK, Mohamed AM, Hussien HA, Essawi ML, Hassan HA, El-Ruby MO, Aref A, Mekkawy MK. Unique karyotype: mos 46,X,dic(X;Y)(p22.33;p11.32)/ 45,X/45,dic(X;Y)(p22.33;p11.32) in an Egyptian patient with Ovotesticular disorder of sexual development. Sex Dev 2013; 7:235-43. [PMID: 23689268 DOI: 10.1159/000351039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
Ovotesticular disorder of sexual development (OT-DSD) is an unusual form of DSD, characterized by the coexistence of testicular and ovarian tissue in the same individual. In this report, we present clinical, cytogenetic and molecular data of an Egyptian patient with ambiguous genitalia and OT-DSD, who had a unique karyotype comprising 3 different cell lines: mos 46,X,dic(X;Y)(p22.33;p11.32)/45,X/ 45,dic(X;Y)(p22.33;p11.32). This mosaic karyotype probably represents 2 different events: abnormal recombination between the X and Y chromosomes during paternal meiosis and postzygotic abnormality in mitotic segregation of the dic(X;Y) chromosome, resulting in a mosaic karyotype. The presence of the sex-determining region Y (SRY) gene explains the development of testicular tissue. On the other hand, other factors, including the presence of a 45,X cell line, partial SRY deletion, X inactivation pattern, and position effect, could be contributed to genital ambiguity. Explanation of the patient's phenotype in relation to the genotype is discussed with a literature review. We conclude that FISH analysis with X- and Y-specific probes and molecular analysis of the SRY gene are highly recommended and allow accurate diagnosis for optimal management of cases with ambiguous genitalia.
Collapse
Affiliation(s)
- I M Mazen
- Department of Clinical Genetics, National Research Center, Cairo, Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang G, Li H, Cheng Z, Jin W. A novel translocation event leads to a recombinant stable chromosome with interrupted centromeric domains in rice. Chromosoma 2013; 122:295-303. [DOI: 10.1007/s00412-013-0413-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/29/2023]
|
34
|
Stimpson KM, Matheny JE, Sullivan BA. Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res 2012; 20:595-605. [PMID: 22801777 DOI: 10.1007/s10577-012-9302-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation.
Collapse
Affiliation(s)
- Kaitlin M Stimpson
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
35
|
Abstract
Advances in human genomics have accelerated studies in evolution, disease, and cellular regulation. However, centromere sequences, defining the chromosomal interface with spindle microtubules, remain largely absent from ongoing genomic studies and disconnected from functional, genome-wide analyses. This disparity results from the challenge of predicting the linear order of multi-megabase-sized regions that are composed almost entirely of near-identical satellite DNA. Acknowledging these challenges, the field of human centromere genomics possesses the potential to rapidly advance given the availability of individual, or personalized, genome projects matched with the promise of long-read sequencing technologies. Here I review the current genomic model of human centromeres in consideration of those studies involving functional datasets that examine the role of sequence in centromere identity.
Collapse
|
36
|
Centromere retention and loss during the descent of maize from a tetraploid ancestor. Proc Natl Acad Sci U S A 2012. [PMID: 23197827 DOI: 10.1073/pnas.1218668109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although centromere function is highly conserved in eukaryotes, centromere sequences are highly variable. Only a few centromeres have been sequenced in higher eukaryotes because of their repetitive nature, thus hindering study of their structure and evolution. Conserved single-copy sequences in pericentromeres (CSCPs) of sorghum and maize were found to be diagnostic characteristics of adjacent centromeres. By analyzing comparative map data and CSCP sequences of sorghum, maize, and rice, the major evolutionary events related to centromere dynamics were discovered for the maize lineage after its divergence from a common ancestor with sorghum. (i) Remnants of ancient CSCP regions were found for the 10 lost ancestral centromeres, indicating that two ancient homeologous chromosome pairs did not contribute any centromeres to the current maize genome, whereas two other pairs contributed both of their centromeres. (ii) Five cases of long-distance, intrachromosome movement of CSCPs were detected in the retained centromeres, with inversion the major process involved. (iii) The 12 major chromosomal rearrangements that led to maize chromosome number reduction from 20 to 10 were uncovered. (iv) In addition to whole chromosome insertion near (but not always into) other centromeres, translocation and fusion were found to be important mechanisms underlying grass chromosome number reduction. (v) Comparison of chromosome structures confirms the polyploid event that led to the tetraploid ancestor of modern maize.
Collapse
|
37
|
Fu S, Gao Z, Birchler J, Han F. Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics 2012; 39:125-30. [PMID: 22464471 DOI: 10.1016/j.jgg.2012.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 12/30/2022]
Abstract
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.
Collapse
Affiliation(s)
- Shulan Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | | | | | | |
Collapse
|
38
|
Pasantes JJ, Wimmer R, Knebel S, Münch C, Kelbova C, Junge A, Kieback P, Küpferling P, Schempp W. 47,X,idic(Y),inv dup(Y): a non-mosaic case of a phenotypically normal boy with two different Y isochromosomes and neocentromere formation. Cytogenet Genome Res 2012; 136:157-62. [PMID: 22286088 DOI: 10.1159/000335705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2011] [Indexed: 11/19/2022] Open
Abstract
A de novo aberrant karyotype with 47 chromosomes including 2 different-sized markers was identified during prenatal diagnosis. Fluorescence in situ hybridization (FISH) with a Y painting probe tagged both marker chromosomes which were supposed to be isochromosomes of the short and the long arm, respectively. A normal boy was born in time who shows normal physical and mental development. To characterize both Y markers in detail, we postnatally FISH-mapped a panel of Y chromosomal probes including SHOX (PAR1), TSPY, DYZ3 (Y centromere), UTY, XKRY, CDY, RBMY, DAZ, DYZ1 (Yq12 heterochromatin), SYBL1 (PAR2), and the human telomeric sequence (TTAGGG)(n). The smaller Y marker turned out to be an isochromosome containing an inverted duplication of the entire short arm, the original Y centromere, and parts of the proximal long arm, including AZFa. The bigger Y marker was an isochromosome of the rest of the Y long arm. Despite a clearly visible primary constriction within one of the DAPI- and DYZ1-positive heterochromatic regions, hybridization of DYZ3 detected no Y-specific alphoid sequences in that constriction. Because of its stable mitotic distribution, a de novo formation of a neocentromere has to be assumed.
Collapse
Affiliation(s)
- J J Pasantes
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mackinnon RN, Campbell LJ. The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. GENETICS RESEARCH INTERNATIONAL 2011; 2011:643628. [PMID: 22567363 PMCID: PMC3335544 DOI: 10.4061/2011/643628] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/20/2011] [Indexed: 01/16/2023]
Abstract
Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.
Collapse
Affiliation(s)
- Ruth N Mackinnon
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital (Melbourne) Ltd., P.O. Box 2900, Fitzroy, VIC 3065, Australia
| | | |
Collapse
|
40
|
Koumbaris G, Hatzisevastou-Loukidou H, Alexandrou A, Ioannides M, Christodoulou C, Fitzgerald T, Rajan D, Clayton S, Kitsiou-Tzeli S, Vermeesch JR, Skordis N, Antoniou P, Kurg A, Georgiou I, Carter NP, Patsalis PC. FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation. Hum Mol Genet 2011; 20:1925-36. [PMID: 21349920 PMCID: PMC3428953 DOI: 10.1093/hmg/ddr074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The recently described DNA replication-based mechanisms of fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR) were previously shown to catalyze complex exonic, genic and genomic rearrangements. By analyzing a large number of isochromosomes of the long arm of chromosome X (i(Xq)), using whole-genome tiling path array comparative genomic hybridization (aCGH), ultra-high resolution targeted aCGH and sequencing, we provide evidence that the FoSTeS and MMBIR mechanisms can generate large-scale gross chromosomal rearrangements leading to the deletion and duplication of entire chromosome arms, thus suggesting an important role for DNA replication-based mechanisms in both the development of genomic disorders and cancer. Furthermore, we elucidate the mechanisms of dicentric i(Xq) (idic(Xq)) formation and show that most idic(Xq) chromosomes result from non-allelic homologous recombination between palindromic low copy repeats and highly homologous palindromic LINE elements. We also show that non-recurrent-breakpoint idic(Xq) chromosomes have microhomology-associated breakpoint junctions and are likely catalyzed by microhomology-mediated replication-dependent recombination mechanisms such as FoSTeS and MMBIR. Finally, we stress the role of the proximal Xp region as a chromosomal rearrangement hotspot.
Collapse
Affiliation(s)
- George Koumbaris
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | | | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Marios Ioannides
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Christodoulos Christodoulou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Tomas Fitzgerald
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Diana Rajan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Clayton
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sophia Kitsiou-Tzeli
- Department of Medical Genetics, University of Athens, St Sophia Children’s Hospital, Athens 11527, Greece
| | - Joris R. Vermeesch
- Centre for Human Genetics, University Hospital, Catholic University of Leuven, 3000 Leuven, Belgium
| | - Nicos Skordis
- Pediatric Endocrine Unit, Makarios III Hospital, Nicosia 1474, Cyprus
| | - Pavlos Antoniou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| | - Ants Kurg
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | | | - Nigel P. Carter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Philippos C. Patsalis
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
41
|
Scott SA, Cohen N, Brandt T, Warburton PE, Edelmann L. Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome. Hum Mol Genet 2010; 19:3383-93. [PMID: 20570968 PMCID: PMC2916707 DOI: 10.1093/hmg/ddq250] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/14/2010] [Indexed: 02/01/2023] Open
Abstract
Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearrangement is poorly understood and breakpoint sequence information is unknown, this study sought to investigate the molecular mechanism of idic(X)(p11) formation by determining their precise breakpoint intervals. Karyotype analysis and fluorescence in situ hybridization mapping of eight idic(X)(p11) cell lines and three unbalanced Xp11.2 translocation lines identified the majority of breakpoints within a 5 Mb region, from approximately 53 to 58 Mb, in Xp11.1-p11.22, clustering into four regions. To further refine the breakpoints, a high-resolution oligonucleotide microarray (average of approximately 350 bp) was designed and array-based comparative genomic hybridization (aCGH) was performed on all 11 idic(X)(p11) and Xp11.2 translocation lines. aCGH analyses identified all breakpoint regions, including an idic(X)(p11) line with two potential breakpoints, one breakpoint shared between two idic(X)(p11) lines and two Xp translocations that shared breakpoints with idic(X)(p11) lines. Four of the breakpoint regions included large inverted repeats composed of repetitive gene clusters and segmental duplications, which corresponded to regions of copy-number variation. These data indicate that the rearrangement sites on Xp11.2 that lead to isodicentric chromosome formation and translocations are probably not random and suggest that the complex repetitive architecture of this region predisposes it to rearrangements, some of which are recurrent.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of New York University, New York 10029, USA
| |
Collapse
|
42
|
Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE, Bridger JM, Sullivan BA. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet 2010; 6. [PMID: 20711355 PMCID: PMC2920838 DOI: 10.1371/journal.pgen.1001061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/12/2010] [Indexed: 01/05/2023] Open
Abstract
Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the α-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same α-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment. Endogenous human centromeres are defined by large arrays of α-satellite DNA. A portion of each α-satellite array is assembled into CENP-A chromatin, the structural and functional platform for kinetochore formation. Most chromosomes are monocentric, meaning they have a single centromere. However, genome rearrangement can produce chromosomes with two centromeres (dicentrics). In most organisms, dicentrics typically break during cell division; however, dicentric human chromosomes can be stable in mitosis and meiosis. This stability reflects centromere inactivation, a poorly understood phenomenon in which one centromere is functionally silenced. To explore molecular and genomic events that occur at the time of dicentric formation, we describe a cell-based system to create dicentric human chromosomes and monitor their behavior after formation. Such dicentrics can experience several fates, including centromere inactivation, breakage, or maintaining two functional centromeres. Unexpectedly, we also find that dicentrics with large (>20Mb) inter-centromeric distances are stable through at least 20 cell divisions. Our results highlight similarities and differences in dicentric behavior between humans and model organisms, and they provide evidence for one mechanism of centromere inactivation by centromeric deletion in some dicentrics. The ability to create dicentric human chromosomes provides a system to test other mechanisms of centromere disassembly and dicentric chromosome stability.
Collapse
Affiliation(s)
- Kaitlin M. Stimpson
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Ihn Young Song
- Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anna Jauch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Heidi Holtgreve-Grez
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Karen E. Hayden
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Joanna M. Bridger
- Laboratory of Nuclear and Genomic Health, Centre for Cell and Chromosome Biology, Division of Biosciences, Brunel University, Uxbridge, United Kingdom
| | - Beth A. Sullivan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Stimpson KM, Sullivan BA. Epigenomics of centromere assembly and function. Curr Opin Cell Biol 2010; 22:772-80. [PMID: 20675111 DOI: 10.1016/j.ceb.2010.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/04/2010] [Indexed: 12/13/2022]
Abstract
The centromere is a complex chromosomal locus where the kinetochore is formed and microtubules attach during cell division. Centromere identity involves both genomic and sequence-independent (epigenetic) mechanisms. Current models for how centromeres are formed and, conversely, turned off have emerged from studies of unusual or engineered chromosomes, such as neocentromeres, artificial chromosomes, and dicentric chromosomes. Recent studies have highlighted the importance of unique chromatin marked by the histone H3 variant CENP-A, classical chromatin (heterochromatin and euchromatin), and transcription during centromere activation and inactivation. These advances have deepened our view of what defines a centromere and how it behaves in various genomic and chromatin contexts.
Collapse
Affiliation(s)
- Kaitlin M Stimpson
- Duke Institute for Genome Sciences & Policy and Department of Molecular Genetics and Microbiology, Duke University, 101 Science Drive, Box 3382, Durham, NC 27708, USA
| | | |
Collapse
|
44
|
Mehta GD, Agarwal MP, Ghosh SK. Centromere identity: a challenge to be faced. Mol Genet Genomics 2010; 284:75-94. [PMID: 20585957 DOI: 10.1007/s00438-010-0553-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/16/2010] [Indexed: 11/26/2022]
Abstract
The centromere is a genetic locus, required for faithful chromosome segregation, where spindle fibers attach to the chromosome through kinetochore. Loss of centromere or formation of multiple centromeres on a single chromosome leads to chromosome missegregation or chromosome breakage, respectively, which are detrimental for fitness and survival of a cell. Therefore, understanding the mechanism of centromere locus determination on the chromosome and perpetuation of such a locus in subsequent generation (known as centromere identity) is very fundamental to combat conditions like aneuploidy, spontaneous abortion, developmental defects, cell lethality and cancer. Recent studies have come up with different models to explain centromere identity. However, the exact mechanism still remains elusive. It has been observed that most eukaryotic centromeres are determined epigenetically rather than by a DNA sequence. The epigenetic marks that are instrumental in determining centromere identity are the histone H3 variant, CENP-A and the specialized posttranslational modification of the core histones. Here we will review the recent studies on the factors responsible for generating unique centromeric chromatin and how it perpetuates during cell division giving the present-day models. We will further focus on the probable mechanism of de novo centromere formation with an example of neocentromere. As a matter of similitude, this review will include marking extrachromosomal chromatin to be served as a partitioning locus by deposition of CENP-A homolog in budding yeast.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|
45
|
Characterisation of the chromosome fusions in Oreochromis karongae. Chromosome Res 2010; 18:575-86. [PMID: 20574823 DOI: 10.1007/s10577-010-9141-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
Oreochromis karongae, one of the "chambo" tilapia species from Lake Malawi, has a karyotype of 2n = 38, making it one of the few species investigated to differ from the typical tilapia karyotype (2n = 44). The O. karongae karyotype consists of one large subtelocentric pair of chromosomes, four medium-sized pairs (three subtelocentric and one submetacentric) and 14 small pairs. The five largest pairs could be distinguished from each other on the basis of size, morphology and a series of fluorescence in situ hybridisation (FISH) probes. The largest pair is easily distinguished on the basis of size and a chromosome 1 (linkage group 3) bacterial artificial chromosome (BAC) FISH probe from Oreochromis niloticus. BAC clones from O. niloticus chromosome 2 (linkage group 7) hybridised to one of the medium-sized subtelocentric chromosome pairs (no. 5) of O. karongae, distinguishing the ancestral medium-sized pair from the three other medium-sized chromosome pairs (nos. 2, 3 and 4) that appear to have resulted from fusions. SATA repetitive DNA hybridised to the centromeres of all 19 chromosome pairs and also revealed the locations of the relic centromeres in the three fused pairs. Telomeric (TTAGGG)(n) repeats were identified in the telomeres of all chromosomes, and an interstitial telomeric site (ITS) was identified in three chromosomal pairs (no. 2, 3 and 4). Additionally, two ITS sites were identified in the largest chromosome pair (pair 1), confirming the origin of this chromosome from three ancestral chromosomes. SATA and ITS sites allowed the orientation of the fusions in pairs 2, 3 and 4, which all appear to have been in different orientations (q-q, p-q and p-p, respectively). One of these fusions (O. karongae chromosome pair no. 2) involves a small chromosome (equivalent to linkage group 1), which in O. niloticus carries the main sex-determining gene. 4',6-Diamidino-2-phenyloindole staining of the synaptonemal complex in male O. karongae revealed the presumptive positions of the kinetochores, which correspond well to the centromeric positions observed in the mitotic karyotype.
Collapse
|
46
|
Ewers E, Yoda K, Hamid AB, Weise A, Manvelyan M, Liehr T. Centromere activity in dicentric small supernumerary marker chromosomes. Chromosome Res 2010; 18:555-62. [PMID: 20568005 DOI: 10.1007/s10577-010-9138-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/25/2022]
Abstract
Twenty-five dicentric small supernumerary marker chromosomes (sSMC) derived from #13/21, #14, #15, #18, and #22 were studied by immunohistochemistry for their centromeric activity. Centromere protein (CENP)-B was applied as marker for all centromeres and CENP-C to label the active ones. Three different 'predominant' activation patterns could be observed, i.e., centric fusion or either only one or all two centromeres were active. In one inherited case, the same activation pattern was found in mother and son. In acrocentric-derived sSMC, all three activation patterns could be present. In contrary, in chromosome 18-derived sSMC, only the fusion type was observed. In concordance with previous studies a certain centromeric plasticity was observed in up to 13% of the cells of an individual case. Surprisingly, the obtained data suggests a possible influence of the sSMC carrier's gender on the implementation of the predominant activation pattern; especially, only one active centromere was found more frequently in female than in male carriers. Also, it might be suggested that dicentric sSMC with one active centromere could be less stable than such with two active ones-centromeric plasticity might have an influence here, as well. Also, centromere activity in acrocentric-derived dicentrics could be influenced by heteromorphisms of the corresponding short arms. Finally, evidence is provided that the closer the centromeres of a dicentric are and if they are not fused, the more likely it was that both of them became active. In concordance and refinement with previous studies, a distance of 1.4 Mb up to about 13 Mb the two active centromere state was favored, while centromeric distance of over approximately 15 Mb lead to inactivation of one centromere. Overall, here, the first and largest ever undertaken study in dicentric sSMC is presented, providing evidence that the centromeric activation pattern is, and parental origin may be of interest for their biology. Influence of mechanisms similar or identical to meiotic imprinting in the centromeric regions of human chromosomes might be present. Furthermore, centromeric activation pattern could be at least in parts meaningful for the clinical outcome of dicentric sSMC, as sSMC stability and mosaicism can make the difference between clinically normal and abnormal phenotypes.
Collapse
Affiliation(s)
- Elisabeth Ewers
- Institute of Human Genetics and Anthropology, Jena University Hospital, Kollegiengasse 10, 07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Zhang W, Friebe B, Gill BS, Jiang J. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma 2010; 119:553-63. [PMID: 20499078 DOI: 10.1007/s00412-010-0278-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 05/07/2010] [Accepted: 05/08/2010] [Indexed: 12/21/2022]
Abstract
A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
48
|
Pironon N, Puechberty J, Roizès G. Molecular and evolutionary characteristics of the fraction of human alpha satellite DNA associated with CENP-A at the centromeres of chromosomes 1, 5, 19, and 21. BMC Genomics 2010; 11:195. [PMID: 20331851 PMCID: PMC2853522 DOI: 10.1186/1471-2164-11-195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 03/23/2010] [Indexed: 11/15/2022] Open
Abstract
Background The mode of evolution of the highly homogeneous Higher-Order-Repeat-containing alpha satellite arrays is still subject to discussion. This is also true of the CENP-A associated repeats where the centromere is formed. Results In this paper, we show that the molecular mechanisms by which these arrays evolve are identical in multiple chromosomes: i) accumulation of crossovers that homogenise and expand the arrays into different domains and subdomains that are mostly unshared between homologues and ii) sporadic mutations and conversion events that simultaneously differentiate them from one another. Individual arrays are affected by these mechanisms to different extents that presumably increase with time. Repeats associated with CENP-A, where the centromere is formed, are subjected to the same evolutionary mechanisms, but constitute minor subsets that exhibit subtle sequence differences from those of the bulk repeats. While the DNA sequence per se is not essential for centromere localisation along an array, it appears that certain sequences can be selected against. On chromosomes 1 and 19, which are more affected by the above evolutionary mechanisms than are chromosomes 21 and 5, CENP-A associated repeats were also recovered from a second homogeneous array present on each chromosome. This could be a way for chromosomes to sustain mitosis and meiosis when the normal centromere locus is ineluctably undermined by the above mechanisms. Conclusion We discuss, in light of these observations, possible scenarios for the normal evolutionary fates of human centromeric regions.
Collapse
Affiliation(s)
- Nathalie Pironon
- Institut de Génétique Humaine, UPR 1142, CNRS, 141 Rue de Cardonille, 34396 Montpellier Cedex 5, France
| | | | | |
Collapse
|
49
|
|
50
|
Schueler MG, Swanson W, Thomas PJ, Green ED. Adaptive evolution of foundation kinetochore proteins in primates. Mol Biol Evol 2010; 27:1585-97. [PMID: 20142441 DOI: 10.1093/molbev/msq043] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapid evolution is a hallmark of centromeric DNA in eukaryotic genomes. Yet, the centromere itself has a conserved functional role that is mediated by the kinetochore protein complex. To broaden our understanding about both the DNA and proteins that interact at the functional centromere, we sought to gain a detailed view of the evolutionary events that have shaped the primate kinetochore. Specifically, we performed comparative mapping and sequencing of the genomic regions encompassing the genes encoding three foundation kinetochore proteins: Centromere Proteins A, B, and C (CENP-A, CENP-B, and CENP-C). A histone H3 variant, CENP-A provides the foundation of the centromere-specific nucleosome. Comparative sequence analyses of the CENP-A gene in 14 primate species revealed encoded amino-acid residues within both the histone-fold domain and the N-terminal tail that are under strong positive selection. Similar comparative analyses of CENP-C, another foundation protein essential for centromere function, identified amino-acid residues throughout the protein under positive selection in the primate lineage, including several in the centromere localization and DNA-binding regions. Perhaps surprisingly, the gene encoding CENP-B, a kinetochore protein that binds specifically to alpha-satellite DNA, was not found to be associated with signatures of positive selection. These findings point to important and distinct evolutionary forces operating on the DNA and proteins of the primate centromere.
Collapse
Affiliation(s)
- Mary G Schueler
- Genome Technology Branch, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|