1
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
2
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
3
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
4
|
Inoue K. Overview for the study of P2 receptors: From P2 receptor history to neuropathic pain studies. J Pharmacol Sci 2022; 149:73-80. [DOI: 10.1016/j.jphs.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
|
5
|
The Role of ATP Receptors in Pain Signaling. Neurochem Res 2022; 47:2454-2468. [DOI: 10.1007/s11064-021-03516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
|
6
|
Wood JN. Pain, purines and Geoff. Auton Neurosci 2021; 237:102902. [PMID: 34773738 DOI: 10.1016/j.autneu.2021.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/26/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
The story of purinergic neurotransmission and regulation is intimately linked to studies of the somatosensory system. Burnstock's contributions to the discovery of ATP as a primary afferent neurotransmitter, as well as a signal of peripheral tissue damage that depolarised sensory neurons initiated a new period of pain research. The neuro-immune interactions that occur after tissue damage and are important for pain have now also been found to involve purinergic signalling, and adenosine has been demonstrated to have significant analgesic effects. In the pain field as in so many other areas of neuroscience and physiology, Burnstock's contributions have been critical to the expansion of our knowledge about the significance of purines. His mechanistic insights have profound significance for understanding the pain system and further underscore his stature as a pioneer and force for progress in biomedicine.
Collapse
Affiliation(s)
- John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
7
|
Györi J, Kohn AB, Romanova DY, Moroz LL. ATP signaling in the integrative neural center of Aplysia californica. Sci Rep 2021; 11:5478. [PMID: 33750901 PMCID: PMC7943599 DOI: 10.1038/s41598-021-84981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
ATP and its ionotropic P2X receptors are components of the most ancient signaling system. However, little is known about the distribution and function of purinergic transmission in invertebrates. Here, we cloned, expressed, and pharmacologically characterized the P2X receptors in the sea slug Aplysia californica—a prominent neuroscience model. AcP2X receptors were successfully expressed in Xenopus oocytes and displayed activation by ATP with two-phased kinetics and Na+-dependence. Pharmacologically, they were different from other P2X receptors. The ATP analog, Bz-ATP, was a less effective agonist than ATP, and PPADS was a more potent inhibitor of the AcP2X receptors than the suramin. AcP2X were uniquely expressed within the cerebral F-cluster, the multifunctional integrative neurosecretory center. AcP2X receptors were also detected in the chemosensory structures and the early cleavage stages. Therefore, in molluscs, rapid ATP-dependent signaling can be implicated both in development and diverse homeostatic functions. Furthermore, this study illuminates novel cellular and systemic features of P2X-type ligand-gated ion channels for deciphering the evolution of neurotransmitters.
Collapse
Affiliation(s)
- János Györi
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary.,Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, 117485, Russia
| | - Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA. .,Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Jarvis MF. Geoffery Burnstock's influence on the evolution of P2X3 receptor pharmacology. Purinergic Signal 2021; 17:33-39. [PMID: 33029713 PMCID: PMC7955014 DOI: 10.1007/s11302-020-09744-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michael F Jarvis
- Global Medical Affairs, Abbvie, Inc., 1 N Waukegan Rd., North Chicago, IL, 60064, USA.
| |
Collapse
|
9
|
Tam TH, Salter MW. Purinergic signalling in spinal pain processing. Purinergic Signal 2020; 17:49-54. [PMID: 33169292 DOI: 10.1007/s11302-020-09748-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Purinergic signalling plays important roles in somatosensory and nociceptive transmission in the dorsal horn of the spinal cord under physiological and pathophysiological conditions. Physiologically, ATP mediates excitatory postsynaptic responses in nociceptive transmission in the superficial dorsal horn, and in transmission of innocuous primary afferent inputs in the deep dorsal horn. Additionally, extracellular conversion of ATP to adenosine mediates inhibitory postsynaptic responses from Pacinian corpuscle afferents, and is implicated in analgesia caused by transcutaneous electrical nerve stimulation in humans. In terms of pathological pain, P2X4 receptors de novo expressed on dorsal horn microglia are implicated in pain hypersensitivity following peripheral nerve injury. There is evidence that involvement of such P2X4 receptors is sexually dimorphic, occurring in males but not in females. Thus, the roles of purinergic signalling in physiological and pathological pain processing are complex and remain an ever-expanding field of research.
Collapse
Affiliation(s)
- Theresa H Tam
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,The University of Toronto Centre for the Study of Pain, Toronto, ON, Canada.,The Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael W Salter
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada. .,The University of Toronto Centre for the Study of Pain, Toronto, ON, Canada. .,The Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Inoue K, Tsuda M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol 2020; 187:114309. [PMID: 33130129 DOI: 10.1016/j.bcp.2020.114309] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Chronic pain is a debilitating condition that often occurs following peripheral tissue inflammation and nerve injury. This pain, especially neuropathic pain, is a significant clinical problem because of the ineffectiveness of clinically available drugs. Since Burnstock proposed new roles of nucleotides as neurotransmitters, the roles of extracellular ATP and P2 receptors (P2Rs) in pain signaling have been extensively studied, and ATP-P2R signaling has subsequently received much attention as it can provide clues toward elucidating the mechanisms underlying chronic pain and serve as a potential therapeutic target. This review summarizes the literature regarding the role of ATP signaling via P2X3Rs (as well as P2X2/3Rs) in primary afferent neurons and via P2X4Rs and P2X7Rs in spinal cord microglia in chronic pain, and discusses their respective therapeutic potentials.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan; Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Retrograde Labeling of Different Distribution Features of DRG P2X2 and P2X3 Receptors in a Neuropathic Pain Rat Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9861459. [PMID: 32775458 PMCID: PMC7396081 DOI: 10.1155/2020/9861459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
The distributions of P2X subtypes during peripheral neuropathic pain conditions and their differential roles are not fully understood. To explore these characteristics, the lumbosacral dorsal root ganglion (DRG) in the chronic constriction injury (CCI) sciatic nerve rat model was studied. Retrograde trace labeling combined with immunofluorescence technology was applied to analyze the distribution of neuropathic nociceptive P2X1-6 receptors. Our results suggest that Fluoro-Gold (FG) retrograde trace labeling is an efficient method for studying lumbosacral DRG neurons in the CCI rat model, especially when the DRG neurons are divided into small, medium, and large subgroups. We found that neuropathic nociceptive lumbosacral DRG neurons (i.e., FG-positive cells) were significantly increased in medium DRG neurons, while they declined in the large DRG neurons in the CCI group. P2X3 receptors were markedly upregulated in medium while P2X2 receptors were significantly decreased in small FG-positive DRG neurons. There were no significant changes in other P2X receptors (including P2X1, P2X4, P2X5, and P2X6). We anticipate that P2X receptors modulate nociceptive sensitivity primarily through P2X3 subtypes that are upregulated in medium neuropathic nociceptive DRG neurons and/or via the downregulation of P2X2 cells in neuropathic nociceptive small DRG neurons.
Collapse
|
12
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl– cotransporter 1 (NKCC1) and K+-Cl– cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
- Bettina U Wilke
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael G Leitner
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Fernandes V, Sharma D, Vaidya S, P A S, Guan Y, Kalia K, Tiwari V. Cellular and molecular mechanisms driving neuropathic pain: recent advancements and challenges. Expert Opin Ther Targets 2018; 22:131-142. [PMID: 29285962 DOI: 10.1080/14728222.2018.1420781] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Current pharmacotherapeutics for neuropathic pain offer only symptomatic relief without treating the underlying pathophysiology. Additionally, they are associated with various dose-limiting side effects. Pain research in the past few decades has revolved around the role of oxidative-nitrosative stress, protein kinases, glial cell activation, and inflammatory signaling cascades but has failed to produce specific and effective therapies. Areas covered: This review focuses on recent advances in cellular and molecular mechanisms of neuropathic pain that may be translated into future therapies. We discuss emerging targets such as WNT signaling mechanisms, the tetrahydrobiopterin pathway, Mrg receptors, endogenous lipid mediators, micro-RNAs and their roles in pain regulation. Recent evidence is also presented regarding genetic and epigenetic mechanisms of pain modulation. Expert opinion: During chronic neuropathic pain, maladaptation occurs in the peripheral and central nervous systems, including a shift in microglial phenotype from a surveillance state to an activated state. Microglial activation leads to an altered expression of cell surface proteins, growth factors, and intracellular signaling molecules that contribute to development of a neuroinflammatory cascade and chronic pain sensitization. Specific targeting of these cellular and molecular mechanisms may provide the key to development of effective neuropathic pain therapies that have minimal side effects.
Collapse
Affiliation(s)
- Valencia Fernandes
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Dilip Sharma
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shivani Vaidya
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shantanu P A
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Yun Guan
- b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Kiran Kalia
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Vinod Tiwari
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India.,b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
14
|
CB 1 Receptors Mediated Inhibition of ATP-Induced [Ca 2+]i Increase in Cultured Rat Spinal Dorsal Horn Neurons. Neurochem Res 2017; 43:267-275. [PMID: 29127599 DOI: 10.1007/s11064-017-2414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening of P2X receptor channels in DH neurons. The reduction of cAMP/PKA signaling is a key element in the inhibitory effect of CB1R on P2X-channel-induced Ca2+ mobilization.
Collapse
|
15
|
North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0427. [PMID: 27377721 DOI: 10.1098/rstb.2015.0427] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- R Alan North
- Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
16
|
Villarejo-López L, Jiménez E, Bartolomé-Martín D, Zafra F, Lapunzina P, Aragón C, López-Corcuera B. P2X receptors up-regulate the cell-surface expression of the neuronal glycine transporter GlyT2. Neuropharmacology 2017; 125:99-116. [PMID: 28734869 DOI: 10.1016/j.neuropharm.2017.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022]
Abstract
Glycinergic inhibitory neurons of the spinal dorsal horn exert critical control over the conduction of nociceptive signals to higher brain areas. The neuronal glycine transporter 2 (GlyT2) is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft and its activity modulates intra and extracellular glycine concentrations. In this report we show that the stimulation of P2X purinergic receptors with βγ-methylene adenosine 5'-triphosphate induces the up-regulation of GlyT2 transport activity by increasing total and plasma membrane expression and reducing transporter ubiquitination. We identified the receptor subtypes involved by combining pharmacological approaches, siRNA-mediated protein knockdown, and dorsal root ganglion cell enrichment in brainstem and spinal cord primary cultures. Up-regulation of GlyT2 required the combined stimulation of homomeric P2X3 and P2X2 receptors or heteromeric P2X2/3 receptors. We measured the spontaneous glycinergic currents, glycine release and GlyT2 uptake concurrently in response to P2X receptor agonists, and showed that the impact of P2X3 receptor activation on glycinergic neurotransmission involves the modulation of GlyT2 expression or activity. The recognized pro-nociceptive action of P2X3 receptors suggests that the fine-tuning of GlyT2 activity may have consequences in nociceptive signal conduction.
Collapse
Affiliation(s)
- Lucía Villarejo-López
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Esperanza Jiménez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Francisco Zafra
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; Instituto de Genética Médica y Molecular, IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid 28046, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Madrid, Spain.
| |
Collapse
|
17
|
Rocha JN. Extracellular adenosine 5'-triphosphate concentrations changes in rat spinal cord associated with the activation of urinary bladder afferents. A microdialysis study. EINSTEIN-SAO PAULO 2017; 14:541-546. [PMID: 28076603 PMCID: PMC5221382 DOI: 10.1590/s1679-45082016ao3794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 11/22/2022] Open
Abstract
Objective To determine adenosine 5’-triphosphate levels in the interstice of spinal cord L6-S1 segment, under basal conditions or during mechanical and chemical activation of urinary bladder afferents. Methods A microdialysis probe was transversally implanted in the dorsal half of spinal cord L6-S1 segment in female rats. Microdialysate was collected at 15 minutes intervals during 135 minutes, in anesthetized animals. Adenosine 5’-triphosphate concentrations were determined with a bioluminescent assay. In one group of animals (n=7) microdialysate samples were obtained with an empty bladder during a 10-minutes bladder distension to 20 or 40cmH2O with either saline, saline with acetic acid or saline with capsaicin. In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Results Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5’-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). Microdialysis with solution containing ARL 67156 (1mM) was associated with significantly higher extracellular adenosine 5’-triphosphate levels and no further increase in adenosine 5’-triphosphate was observed during bladder distension. Conclusion Adenosine 5’-triphosphate was present in the interstice of L6-S1 spinal cord segments, was degraded by ectonucleotidase, and its concentration increased following the activation of bladder mechanosensitive but not of the chemosensitive afferents fibers. Adenosine 5’-triphosphate may originate either from the central endings of bladder mechanosensitive primary afferent neurons, or most likely from intrinsic spinal neurons, or glial cells and its release appears to be modulated by capsaicin activated bladder primary afferent or by adenosine 5’-triphosphate itself.
Collapse
Affiliation(s)
- Jeová Nina Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Reznikov LR. Cystic Fibrosis and the Nervous System. Chest 2017; 151:1147-1155. [PMID: 27876591 PMCID: PMC5472519 DOI: 10.1016/j.chest.2016.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL.
| |
Collapse
|
19
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 2016; 7:12529. [PMID: 27515581 PMCID: PMC4990655 DOI: 10.1038/ncomms12529] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain. Purinergic receptor activation by extracellular ATP in the dorsal horn contributes to neuropathic pain, but which cell types release ATP in this context is not known. The authors show in a mouse model of neuropathic pain that ATP is released by dorsal horn neurons, a process requiring the vesicular nucleotide transporter, VNUT.
Collapse
|
21
|
Abstract
In the somatosensory system, P2X receptors are expressed on both peripheral and central terminals of primary afferent neurons. Those expressed on peripheral terminals are activated in response to both nociceptive and innocuous stimuli, whereas those at central terminals (“central terminal P2X receptors”) play an important role in modulating sensory transmission to the spinal cord dorsal horn. The author reviews recent studies on the central terminal P2X receptors. It is proposed that central terminal P2X receptors, once activated, may be involved in both central sensitization and initiation of pain. Thus, these receptors may repesent a promising target for therapeutic management of pathological pain.
Collapse
Affiliation(s)
- Jianguo G Gu
- Department of Oral Surgery, Division of Neuroscience, McKnight Brain Institute and College of Dentistry, University of Florida, Gainesville 32610, USA.
| |
Collapse
|
22
|
Kuan YH, Shyu BC. Nociceptive transmission and modulation via P2X receptors in central pain syndrome. Mol Brain 2016; 9:58. [PMID: 27230068 PMCID: PMC4880968 DOI: 10.1186/s13041-016-0240-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.
Collapse
Affiliation(s)
- Yung-Hui Kuan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China
| | - Bai-Chuang Shyu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
23
|
Hermes SM, Andresen MC, Aicher SA. Localization of TRPV1 and P2X3 in unmyelinated and myelinated vagal afferents in the rat. J Chem Neuroanat 2015; 72:1-7. [PMID: 26706222 DOI: 10.1016/j.jchemneu.2015.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 01/15/2023]
Abstract
The vagus nerve is dominated by afferent fibers that convey sensory information from the viscera to the brain. Most vagal afferents are unmyelinated, slow-conducting C-fibers, while a smaller portion are myelinated, fast-conducting A-fibers. Vagal afferents terminate in the nucleus tractus solitarius (NTS) in the dorsal brainstem and regulate autonomic and respiratory reflexes, as well as ascending pathways throughout the brain. Vagal afferents form glutamatergic excitatory synapses with postsynaptic NTS neurons that are modulated by a variety of channels. The organization of vagal afferents with regard to fiber type and channels is not well understood. In the present study, we used tract tracing methods to identify distinct populations of vagal afferents to determine if key channels are selectively localized to specific groups of afferent fibers. Vagal afferents were labeled with isolectin B4 (IB4) or cholera toxin B (CTb) to detect unmyelinated and myelinated afferents, respectively. We find that TRPV1 channels are preferentially found in unmyelinated vagal afferents identified with IB4, with almost half of all IB4 fibers showing co-localization with TRPV1. These results agree with prior electrophysiological findings. In contrast, we found that the ATP-sensitive channel P2X3 is found in a subset of both myelinated and unmyelinated vagal afferent fibers. Specifically, 18% of IB4 and 23% of CTb afferents contained P2X3. The majority of CTb-ir vagal afferents contained neither channel. Since neither channel was found in all vagal afferents, there are likely further degrees of heterogeneity in the modulation of vagal afferent sensory input to the NTS beyond fiber type.
Collapse
Affiliation(s)
- Sam M Hermes
- Oregon Health & Science University, Department of Physiology and Pharmacology, 3181 Sam Jackson Park Road, Mailcode: L334, Portland, OR 97239-3098, United States
| | - Michael C Andresen
- Oregon Health & Science University, Department of Physiology and Pharmacology, 3181 Sam Jackson Park Road, Mailcode: L334, Portland, OR 97239-3098, United States
| | - Sue A Aicher
- Oregon Health & Science University, Department of Physiology and Pharmacology, 3181 Sam Jackson Park Road, Mailcode: L334, Portland, OR 97239-3098, United States.
| |
Collapse
|
24
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
25
|
Hausmann R, Kless A, Schmalzing G. Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 2015; 22:799-818. [PMID: 25439586 PMCID: PMC4460280 DOI: 10.2174/0929867322666141128163215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation
channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory
and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences
became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose
key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish
P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has
ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional
models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years
have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated
ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure
eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the
pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors
are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures.
Collapse
Affiliation(s)
| | | | - Gunther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| |
Collapse
|
26
|
Krishtal O. Receptor for protons: First observations on Acid Sensing Ion Channels. Neuropharmacology 2015; 94:4-8. [PMID: 25582296 DOI: 10.1016/j.neuropharm.2014.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/19/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Oleg Krishtal
- Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024, Kiyv, Ukraine.
| |
Collapse
|
27
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
28
|
Li N, Lu ZY, Yu LH, Burnstock G, Deng XM, Ma B. Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain. Mol Pain 2014; 10:21. [PMID: 24642246 PMCID: PMC3995183 DOI: 10.1186/1744-8069-10-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/04/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUNDS ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y₂ receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y₂ receptors in pain behaviour. RESULTS In control rats: 1) UTP, an agonist of P2Y₂/P2Y₄ receptors, caused a significant decrease in the mean threshold intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons. 2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y₂ receptors by suramin or injection of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats. 3) Injection of P2Y₂ receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia. CONCLUSIONS Our data suggest that inhibition of P2Y₂ receptors leads to down-regulation of ERK-mediated phosphorylation and increase of the expression of I(A)-related Kv channels in trigeminal ganglion neurons, which might contribute to the clinical treatment of trigeminal neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-ming Deng
- Department of Physiology, The Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai 200433, P,R, China.
| | | |
Collapse
|
29
|
Nair P, Vilcek J. Journey to the summits of science: the 2014 Vilcek Foundation prizes. FASEB J 2014; 28:1035-40. [PMID: 24578136 DOI: 10.1096/fj.14-0301ufm] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prashant Nair
- 1Dept. of Microbiology, NYU School of Medicine, NYU Langone Medical Center, 522 First Ave., New York, NY 10016, USA.
| | | |
Collapse
|
30
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
31
|
Del Puerto A, Wandosell F, Garrido JJ. Neuronal and glial purinergic receptors functions in neuron development and brain disease. Front Cell Neurosci 2013; 7:197. [PMID: 24191147 PMCID: PMC3808753 DOI: 10.3389/fncel.2013.00197] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/10/2013] [Indexed: 11/23/2022] Open
Abstract
Brain development requires the interaction of complex signaling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of central nervous system development, these cells fulfilling an intrinsic program that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron–glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the nervous system.
Collapse
Affiliation(s)
- Ana Del Puerto
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas Madrid, Spain ; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas Madrid, Spain
| | | | | |
Collapse
|
32
|
Purinergic mechanisms and pain--an update. Eur J Pharmacol 2013; 716:24-40. [PMID: 23524093 DOI: 10.1016/j.ejphar.2013.01.078] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
There is a brief summary of the background literature about purinergic signalling. The review then considers purinergic mechanosensory transduction involved in visceral, cutaneous and musculoskeletal nociception and on the roles played by P2X3, P2X2/3, P2X4, P2X7 and P2Y₁₂ receptors in neuropathic and inflammatory pain. Current developments of compounds for the therapeutic treatment of both visceral and neuropathic pain are discussed.
Collapse
|
33
|
Kobayashi K, Yamanaka H, Noguchi K. Expression of ATP receptors in the rat dorsal root ganglion and spinal cord. Anat Sci Int 2012. [PMID: 23179910 DOI: 10.1007/s12565-012-0163-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extracellular purine nucleotides and nucleosides play important roles in the nervous system, e.g., neurotransmission, neuromodulation, chemoattraction and acute inflammation. Extracellular nucleotides act through ATP receptors (P2 receptors). P2 receptors are classified into two families: the P2X receptors are ionotropic ligand-gated ion channels and the P2Y receptors are metabotropic G-protein-coupled receptors. Currently, seven P2X receptors (P2X1-7) and eight P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14) are recognized. In the sensory nervous system, ATP is suggested to be one of first mediators of tissue damage, which activates primary afferents. Nerve injury often leads to neuropathic pain, such as mechanical allodynia and painful responses to normally innocuous stimuli. Peripheral nerve injury induces the upregulation of molecules in activated microglia in the spinal cord. Microglia in the spinal cord may play an important role in the development and maintenance of neuropathic pain. A prominent signaling pathway in the development of neuropathic pain involves ATP acting on microglial purinergic receptors. This review focuses on the expression of P2X and P2Y receptors mRNAs in the pain transmission pathway, i.e., in the dorsal root ganglion (DRG) and spinal cord. Furthermore, we suggest that the multiple microglial P2Y receptors activated by peripheral nerve injury may play a key role in the development of neuropathic pain.
Collapse
Affiliation(s)
- Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo, Japan.
| | | | | |
Collapse
|
34
|
Abstract
Extracellular adenosine 5' triphosphate (ATP) is a widespread cell-to-cell signaling molecule in the brain, where it activates cell surface P2X and P2Y receptors. P2X receptors define a protein family unlike other neurotransmitter-gated ion channels in terms of sequence, subunit topology, assembly, and architecture. Within milliseconds of binding ATP, they catalyze the opening of a cation-selective pore. However, recent data show that P2X receptors often underlie neuromodulatory responses on slower time scales of seconds or longer. Herein, we review these findings at molecular, cellular and systems levels. We propose that, while P2X receptors are fast ligand-gated cation channels, they are most adept at mediating slow neuromodulatory functions that are more widespread and more physiologically utilized than fast ATP synaptic transmission in the CNS.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
35
|
Abstract
Neuropathic pain, the most debilitating of all clinical pain syndromes, may be a consequence of trauma, infection or pathology from diseases that affect peripheral nerves. Here we provide a framework for understanding the spinal mechanisms of neuropathic pain as distinct from those of acute pain or inflammatory pain. Recent work suggests that a specific microglia response phenotype characterized by de novo expression of the purinergic receptor P2X4 is critical for the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. Stimulating P2X4 receptors initiates a core pain signaling pathway mediated by release of brain-derived neurotrophic factor, which produces a disinhibitory increase in intracellular chloride in nociceptive (pain-transmitting) neurons in the spinal dorsal horn. The changes caused by signaling from P2X4R(+) microglia to nociceptive transmission neurons may account for the main symptoms of neuropathic pain in humans, and they point to specific interventions to alleviate this debilitating condition.
Collapse
|
36
|
|
37
|
Lalo U, Verkhratsky A, Burnstock G, Pankratov Y. P2X receptor-mediated synaptic transmission. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Gu JG, Heft MW. P2X receptor-mediated purinergic sensory pathways to the spinal cord dorsal horn. Purinergic Signal 2011; 1:11-6. [PMID: 18404395 PMCID: PMC2096570 DOI: 10.1007/s11302-004-4743-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 02/06/2023] Open
Abstract
P2X receptors are expressed on different functional groups of primary afferent fibers. P2X receptor-mediated sensory inputs can be either innocuous or nociceptive, depending on which dorsal horn regions receive these inputs. We provide a brief review of P2X receptor-mediated purinergic sensory pathways to different regions in the dorsal horn. These P2X purinergic pathways are identified in normal animals, which provides insights into their physiological functions. Future studies on P2X purinergic pathways in animal models of pathological conditions may provide insights on how P2X receptors play a role in pathological pain states.
Collapse
Affiliation(s)
- Jianguo G Gu
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, McKnight Brain Institute and College of Dentistry, University of Florida, Gainesville, Florida, USA,
| | | |
Collapse
|
39
|
Aoyama R, Okada Y, Yokota S, Yasui Y, Fukuda K, Shinozaki Y, Yoshida H, Nakamura M, Chiba K, Yasui Y, Kato F, Toyama Y. Spatiotemporal and anatomical analyses of P2X receptor-mediated neuronal and glial processing of sensory signals in the rat dorsal horn. Pain 2011; 152:2085-2097. [PMID: 21669492 DOI: 10.1016/j.pain.2011.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/27/2011] [Accepted: 05/12/2011] [Indexed: 01/31/2023]
Abstract
Extracellularly released adenosine triphosphate (ATP) modulates sensory signaling in the spinal cord. We analyzed the spatiotemporal profiles of P2X receptor-mediated neuronal and glial processing of sensory signals and the distribution of P2X receptor subunits in the rat dorsal horn. Voltage imaging of spinal cord slices revealed that extracellularly applied ATP (5-500 μM), which was degraded to adenosine and acting on P1 receptors, inhibited depolarizing signals and that it also enhanced long-lasting slow depolarization, which was potentiated after ATP was washed out. This post-ATP rebound potentiation was mediated by P2X receptors and was more prominent in the deep than in the superficial layer. Patch clamp recording of neurons in the superficial layer revealed long-lasting enhancement of depolarization by ATP through P2X receptors during the slow repolarization phase at a single neuron level. This depolarization pattern was different from that in voltage imaging, which reflects both neuronal and glial activities. By immunohistochemistry, P2X(1) and P2X(3) subunits were detected in neuropils in the superficial layer. The P2X(5) subunit was found in neuronal somata. The P2X(6) subunit was widely expressed in neuropils in the whole gray matter except for the dorsal superficial layer. Astrocytes expressed the P2X(7) subunit. These findings indicate that extracellular ATP is degraded into adenosine and prevents overexcitation of the sensory system, and that ATP acts on pre- and partly on postsynaptic neuronal P2X receptors and enhances synaptic transmission, predominantly in the deep layer. Astrocytes are involved in sensitization of sensory network activity more importantly in the superficial than in the deep layer.
Collapse
Affiliation(s)
- Ryoma Aoyama
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan Department of Medicine, Keio University Tsukigase Rehabilitation Center, 380-2 Tsukigase, Izu City, Shizuoka 410-3215, Japan Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan Department of Neuroscience, School of Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fields RD. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol 2011; 22:214-9. [PMID: 21320624 PMCID: PMC3163842 DOI: 10.1016/j.semcdb.2011.02.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 02/07/2011] [Indexed: 12/22/2022]
Abstract
Studies on the release of ATP from neurons began with the earliest investigations of quantal neurotransmitter release in the 1950s, but in contrast to ATP release from other cells, studies of ATP release from neurons have been narrowly constrained to one mechanism, vesicular release. This is a consequence of the prominence of synaptic transmission in neuronal communication, but nonvesicular mechanisms for ATP release from neurons are likely to have a broader range of functions than synaptic release. Investigations of activity-dependent communication between axons and myelinating glia have stimulated a search for mechanisms that could release ATP from axons and other nonsynaptic regions in response to action potential firing. This has identified volume-activated anion channels as an important mechanism in activity-dependent ATP release from axons, and renewed interest in micromechanical changes in axons that accompany action potential firing.
Collapse
Affiliation(s)
- R Douglas Fields
- Nervous Systems Development and Plasticity Section, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
41
|
Tozaki-Saitoh H, Tsuda M, Inoue K. Role of purinergic receptors in CNS function and neuroprotection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:495-528. [PMID: 21586368 DOI: 10.1016/b978-0-12-385526-8.00015-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purinergic receptor family contains some of the most abundant receptors in living organisms. A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through purinergic receptors. Nucleotides are released from or leaked through nonexcitable cells and neurons during normal physiological and pathophysiological conditions. Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system (CNS), participate in the synaptic processes, and mediate intercellular communications between neuron and gila and between glia and other glia. Glial cells in the CNS are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of purinergic receptors, which are integral to their activation. Astrocytes release adenosine triphosphate (ATP) as a "gliotransmitter" that allows communication with neurons, the vascular walls of capillaries, oligodendrocytes, and microglia. Oligodendrocytes are myelin-forming cells that construct insulating layers of myelin sheets around axons, and using purinergic receptor signaling for their development and for myelination. Microglia also express many types of purinergic receptors and are known to function as immunocompetent cells in the CNS. ATP and other nucleotides work as "warning molecules" especially by activating microglia in pathophysiological conditions. Studies on purinergic signaling could facilitate the development of novel therapeutic strategies for disorder of the CNS.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | |
Collapse
|
42
|
Fu LW, Longhurst JC. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia. Am J Physiol Heart Circ Physiol 2010; 299:H1762-71. [PMID: 20870803 DOI: 10.1152/ajpheart.00822.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory neurites.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA.
| | | |
Collapse
|
43
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
44
|
Abstract
Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.
Collapse
|
45
|
Leung L, Cahill CM. TNF-alpha and neuropathic pain--a review. J Neuroinflammation 2010; 7:27. [PMID: 20398373 PMCID: PMC2861665 DOI: 10.1186/1742-2094-7-27] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 04/16/2010] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) was discovered more than a century ago, and its known roles have extended from within the immune system to include a neuro-inflammatory domain in the nervous system. Neuropathic pain is a recognized type of pathological pain where nociceptive responses persist beyond the resolution of damage to the nerve or its surrounding tissue. Very often, neuropathic pain is disproportionately enhanced in intensity (hyperalgesia) or altered in modality (hyperpathia or allodynia) in relation to the stimuli. At time of this writing, there is as yet no common consensus about the etiology of neuropathic pain - possible mechanisms can be categorized into peripheral sensitization and central sensitization of the nervous system in response to the nociceptive stimuli. Animal models of neuropathic pain based on various types of nerve injuries (peripheral versus spinal nerve, ligation versus chronic constrictive injury) have persistently implicated a pivotal role for TNF-α at both peripheral and central levels of sensitization. Despite a lack of success in clinical trials of anti-TNF-α therapy in alleviating the sciatic type of neuropathic pain, the intricate link of TNF-α with other neuro-inflammatory signaling systems (e.g., chemokines and p38 MAPK) has indeed inspired a systems approach perspective for future drug development in treating neuropathic pain.
Collapse
Affiliation(s)
- Lawrence Leung
- Centre for Neurosciences Studies, 18, Stuart Street, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
46
|
Guo Y, Hong YJ, Jang HJ, Kim MJ, Rhie DJ, Jo YH, Hahn SJ, Yoon SH. Octyl Gallate Inhibits ATP-induced Intracellular Calcium Increase in PC12 Cells by Inhibiting Multiple Pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:21-8. [PMID: 20221276 DOI: 10.4196/kjpp.2010.14.1.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/18/2010] [Accepted: 01/26/2010] [Indexed: 01/18/2023]
Abstract
Phenolic compounds affect intracellular free Ca(2+) concentration ([Ca(2+)](i)) signaling. The study examined whether the simple phenolic compound octyl gallate affects ATP-induced Ca(2+) signaling in PC12 cells using fura-2-based digital Ca(2+) imaging and whole-cell patch clamping. Treatment with ATP (100 microM) for 90 s induced increases in [Ca(2+)](i) in PC12 cells. Pretreatment with octyl gallate (100 nM to 20 microM) for 10 min inhibited the ATP-induced [Ca(2+)](i) response in a concentration-dependent manner (IC(50)=2.84 microM). Treatment with octyl gallate (3 microM) for 10 min significantly inhibited the ATP-induced response following the removal of extracellular Ca(2+) with nominally Ca(2+)-free HEPES HBSS or depletion of intracellular Ca(2+) stores with thapsigargin (1 microM). Treatment for 10 min with the L-type Ca(2+) channel antagonist nimodipine (1 microM) significantly inhibited the ATP-induced [Ca(2+)](i) increase, and treatment with octyl gallate further inhibited the ATP-induced response. Treatment with octyl gallate significantly inhibited the [Ca(2+)](i) increase induced by 50 mM KCl. Pretreatment with protein kinase C inhibitors staurosporin (100 nM) and GF109203X (300 nM), or the tyrosine kinase inhibitor genistein (50 microM) did not significantly affect the inhibitory effects of octyl gallate on the ATP-induced response. Treatment with octyl gallate markedly inhibited the ATP-induced currents. Therefore, we conclude that octyl gallate inhibits ATP-induced [Ca(2+)](i) increase in PC12 cells by inhibiting both non-selective P2X receptor-mediated influx of Ca(2+) from extracellular space and P2Y receptor-induced release of Ca(2+) from intracellular stores in protein kinase-independent manner. In addition, octyl gallate inhibits the ATP-induced Ca(2+) responses by inhibiting the secondary activation of voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Yujie Guo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jarvis MF. The neural-glial purinergic receptor ensemble in chronic pain states. Trends Neurosci 2009; 33:48-57. [PMID: 19914722 DOI: 10.1016/j.tins.2009.10.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/05/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
Abstract
Chronic pain is characterized by enhanced sensory neurotransmission that underlies increased sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful. Evidence from neurophysiological and pharmacological studies demonstrates that ATP produces pain by directly enhancing neuronal excitability via the activation of specific ligand-gated ion channels, the P2X3 and P2X2/3 receptors. In addition, ATP activates CNS glial cells (e.g. microglia) in response to persistent nociceptive stimulation. This latter effect involves several distinct receptor-mediated signaling pathways linked to the P2X4, P2X7 and P2Y(12) receptors. This review summarizes new data that places these purinergic signaling events in a mechanistic context that illustrates the ability of ATP to initiate and maintain states of heightened sensory neuron excitability associated with persistent pain.
Collapse
Affiliation(s)
- Michael F Jarvis
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6123, USA.
| |
Collapse
|
48
|
Abstract
P2X and P2Y nucleotide receptors are described on sensory neurons and their peripheral and central terminals in dorsal root, nodose, trigeminal, petrosal, retinal and enteric ganglia. Peripheral terminals are activated by ATP released from local cells by mechanical deformation, hypoxia or various local agents in the carotid body, lung, gut, bladder, inner ear, eye, nasal organ, taste buds, skin, muscle and joints mediating reflex responses and nociception. Purinergic receptors on fibres in the dorsal spinal cord and brain stem are involved in reflex control of visceral and cardiovascular activity, as well as relaying nociceptive impulses to pain centres. Purinergic mechanisms are enhanced in inflammatory conditions and may be involved in migraine, pain, diseases of the special senses, bladder and gut, and the possibility that they are also implicated in arthritis, respiratory disorders and some central nervous system disorders is discussed. Finally, the development and evolution of purinergic sensory mechanisms are considered.
Collapse
|
49
|
Skaper SD, Debetto P, Giusti P. The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 2009; 24:337-45. [PMID: 19812374 DOI: 10.1096/fj.09-138883] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purine nucleotides are well established as extracellular signaling molecules. P2X receptors are ATP-gated cation channels that mediate fast excitatory transmission in diverse regions of the brain and spinal cord. Several P2X receptor subtypes, including P2X(7), have the unusual property of changing their ion selectivity during prolonged exposure to ATP, which results in progressive dilation of the channel pore and the development of permeability to molecules as large as 900 Da. The P2X(7) receptor was originally described in cells of hematopoietic origin, including macrophages, microglia, and certain lymphocytes, and mediates the influx of Ca(2+) and Na(+) ions, as well as the release of proinflammatory cytokines. P2X(7) receptors may affect neuronal cell death through their ability to regulate the processing and release of interleukin-1beta, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X(7) receptors provides an inflammatory stimulus, and P2X(7) receptor-deficient mice have substantially attenuated inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X(7) receptor activity, by regulating the release of proinflammatory cytokines, may be involved in the pathophysiology of depression. The P2X(7) receptor may thus represent a critical communication link between the nervous and immune systems, while providing a target for therapeutic exploitation. This review discusses the current biology and cellular signaling pathways of P2X(7) receptor function, as well as insights into the role for this receptor in neurological/psychiatric diseases, outstanding questions, and the therapeutic potential of P2X(7) receptor antagonism.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Largo "E. Meneghetti" 2, 35131 Padova, Italy.
| | | | | |
Collapse
|
50
|
Hald A. Spinal astrogliosis in pain models: cause and effects. Cell Mol Neurobiol 2009; 29:609-19. [PMID: 19319675 DOI: 10.1007/s10571-009-9390-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 03/09/2009] [Indexed: 01/25/2023]
Abstract
Pathological pain has been subjected to intense research to shed light on the underlying mechanisms of key symptoms, such as allodynia and hyperalgesia. The main focus has by and large concerned plasticity of spinal cord neurons and the primary afferent nerves relaying peripheral information to the spinal cord. Animal pain models display an increased presence of reactive astrocytes in the spinal cord, but in contrast to neurons, little is known about how they contribute to abnormal pain sensation. However, astrocytes are now beginning to receive greater attention, and as new information is emerging, it appears that astrocytes undertake critical roles in manifesting pathological pain. Through the secretion of diffusible transmitters, such as interleukins, ATP, and NO, astrocytes may augment primary afferent neuronal signaling or sensitize second order neurons in the spinal cord. In addition, astrocytes might lead to altered pain perception by a direct modulation of synaptic transmission between neurons in the nociceptive pathway or through the creation of astrocytic networks capable of transducing signals for extended distances across and along the spinal cord. Future research in astrocyte activation and signaling may therefore reveal novel drug targets for managing pathological pain.
Collapse
Affiliation(s)
- Andreas Hald
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|