1
|
King DE, Copeland WC. DNA repair pathways in the mitochondria. DNA Repair (Amst) 2025; 146:103814. [PMID: 39914164 PMCID: PMC11848857 DOI: 10.1016/j.dnarep.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria contain their own small, circular genome that is present in high copy number. The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain. Mutations in the mitochondrial genome are associated with a wide range of mitochondrial diseases and the maintenance and replication of mtDNA is crucial to cellular health. Despite the importance of maintaining mtDNA genomic integrity, fewer DNA repair pathways exist in the mitochondria than in the nucleus. However, mitochondria have numerous pathways that allow for the removal and degradation of DNA damage that may prevent accumulation of mutations. Here, we briefly review the DNA repair pathways present in the mitochondria, sources of mtDNA mutations, and discuss the passive role that mtDNA mutagenesis may play in cancer progression.
Collapse
Affiliation(s)
- Dillon E King
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
2
|
Li-Harms X, Lu J, Fukuda Y, Lynch J, Sheth A, Pareek G, Kaminski MM, Ross HS, Wright CW, Smith AL, Wu H, Wang YD, Valentine M, Neale G, Vogel P, Pounds S, Schuetz JD, Ni M, Kundu M. Somatic mtDNA mutation burden shapes metabolic plasticity in leukemogenesis. SCIENCE ADVANCES 2025; 11:eads8489. [PMID: 39742470 PMCID: PMC11691655 DOI: 10.1126/sciadv.ads8489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
The role of somatic mitochondrial DNA (mtDNA) mutations in leukemogenesis remains poorly characterized. To determine the impact of somatic mtDNA mutations on this process, we assessed the leukemogenic potential of hematopoietic progenitor cells (HPCs) from mtDNA mutator mice (Polg D257A) with or without NMyc overexpression. We observed a higher incidence of spontaneous leukemogenesis in recipients transplanted with heterozygous Polg HPCs and a lower incidence of NMyc-driven leukemia in those with homozygous Polg HPCs compared to controls. Although mtDNA mutations in heterozygous and homozygous HPCs caused similar baseline impairments in mitochondrial function, only heterozygous HPCs responded to and supported altered metabolic demands associated with NMyc overexpression. Homozygous HPCs showed altered glucose utilization with pyruvate dehydrogenase inhibition due to increased phosphorylation, exacerbated by NMyc overexpression. The impaired growth of NMyc-expressing homozygous HPCs was partially rescued by inhibiting pyruvate dehydrogenase kinase, highlighting a relationship between mtDNA mutation burden and metabolic plasticity in leukemogenesis.
Collapse
Affiliation(s)
- Xiujie Li-Harms
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jingjun Lu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yu Fukuda
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Lynch
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aditya Sheth
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Gautam Pareek
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marcin M. Kaminski
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hailey S. Ross
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher W. Wright
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amber L. Smith
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Min Ni
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
3
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
6
|
Wang H, Liu Y, Lu XS, Wu Y, Gu W, Yin G. Targeting POLRMT by IMT1 inhibits colorectal cancer cell growth. Cell Death Dis 2024; 15:643. [PMID: 39227564 PMCID: PMC11372113 DOI: 10.1038/s41419-024-07023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
This study investigates the potential anti-colorectal cancer (CRC) activity of IMT1, a novel specific inhibitor of mitochondrial RNA polymerase (POLRMT). Single-cell RNA sequencing data reveal that POLRMT is overexpressed in CRC cells. Additionally, elevated POLRMT expression was observed in local CRC tissues and cells, while its expression remained relatively low in colon epithelial tissues and cells. IMT1 significantly inhibited colony formation, cell viability, proliferation, cell cycle progression, and migration in both primary and immortalized CRC cells. Furthermore, IMT1 induced apoptosis and cell death in CRC cells. The inhibition of POLRMT by IMT1 disrupted mitochondrial functions in CRC cells, leading to mitochondrial depolarization, oxidative damage, and decreased ATP levels. Using targeted shRNA to silence POLRMT closely mirrored the effects of IMT1, showing robust anti-CRC cell activity. Crucially, the efficacy of IMT1 was diminished in CRC cells with silenced POLRMT. Contrarily, boosting POLRMT expression externally by a lentiviral construct promoted the proliferation and migration of CRC cells. Importantly, treatment with IMT1 or silencing POLRMT in primary colon cancer cells decreased the phosphorylation of Akt1-S6K1, whereas overexpression of POLRMT had the opposite effect. In nude mice, orally administering IMT1 potently restrained primary colon cancer xenograft growth. IMT1 suppressed POLRMT activity, disrupted mitochondrial function, hindered Akt-mTOR activation, and prompted apoptosis within the xenograft tissues. In addition, IMT1 administration suppressed lung metastasis of primary colon cancer cells in nude mice. These combined results highlight the robust anti-CRC activity of IMT1 by specifically targeting POLRMT.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Yancheng No.1 People's Hospital, Yancheng, China
| | - Yuxin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xing-Sheng Lu
- Departments of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wen Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guojian Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
8
|
An J, Nam CH, Kim R, Lee Y, Won H, Park S, Lee WH, Park H, Yoon CJ, An Y, Kim JH, Jun JK, Bae JM, Shin EC, Kim B, Cha YJ, Kwon HW, Oh JW, Park JY, Kim MJ, Ju YS. Mitochondrial DNA mosaicism in normal human somatic cells. Nat Genet 2024; 56:1665-1677. [PMID: 39039280 PMCID: PMC11319206 DOI: 10.1038/s41588-024-01838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/21/2024] [Indexed: 07/24/2024]
Abstract
Somatic cells accumulate genomic alterations with age; however, our understanding of mitochondrial DNA (mtDNA) mosaicism remains limited. Here we investigated the genomes of 2,096 clones derived from three cell types across 31 donors, identifying 6,451 mtDNA variants with heteroplasmy levels of ≳0.3%. While the majority of these variants were unique to individual clones, suggesting stochastic acquisition with age, 409 variants (6%) were shared across multiple embryonic lineages, indicating their origin from heteroplasmy in fertilized eggs. The mutational spectrum exhibited replication-strand bias, implicating mtDNA replication as a major mutational process. We evaluated the mtDNA mutation rate (5.0 × 10-8 per base pair) and a turnover frequency of 10-20 per year, which are fundamental components shaping the landscape of mtDNA mosaicism over a lifetime. The expansion of mtDNA-truncating mutations toward homoplasmy was substantially suppressed. Our findings provide comprehensive insights into the origins, dynamics and functional consequences of mtDNA mosaicism in human somatic cells.
Collapse
Affiliation(s)
- Jisong An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Inocras Inc, Daejeon, Republic of Korea
| | - Yunah Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyein Won
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Inocras Inc, Daejeon, Republic of Korea
| | - Won Hee Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hansol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Inocras Inc, Daejeon, Republic of Korea
| | - Christopher J Yoon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jie-Hyun Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bun Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Yong Jun Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Inocras Inc, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Manjunath M, Ravindran F, Sharma S, Siddiqua H, Raghavan SC, Choudhary B. Disarib, a Specific BCL2 Inhibitor, Induces Apoptosis in Triple-Negative Breast Cancer Cells and Impedes Tumour Progression in Xenografts by Altering Mitochondria-Associated Processes. Int J Mol Sci 2024; 25:6485. [PMID: 38928195 PMCID: PMC11203414 DOI: 10.3390/ijms25126485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Targeted cancer therapy aims to disrupt the functions of proteins that regulate cancer progression, mainly by using small molecule inhibitors (SMIs). SMIs exert their effect by modulating signalling pathways, organelle integrity, chromatin components, and several biosynthetic processes essential for cell division and survival. Antiapoptotic protein BCL2 is highly upregulated in many cancers compared with normal cells, making it an ideal target for cancer therapy. Around 75% of primary breast cancers overexpress BCL2, providing an opportunity to explore BCL2 inhibitors as a therapeutic option. Disarib is an SMI that has been developed as a selective BCL2 inhibitor. Disarib works by disrupting BCL2-BAK interaction and activating intrinsic apoptotic pathways in leukemic cells while sparing normal cells. We investigated the effects of Disarib, a BCL2 specific inhibitor, on breast cancer cells and xenografts. Cytotoxicity and fluorometric assays revealed that Disarib induced cell death by increasing reactive oxygen species and activating intrinsic apoptotic pathways in Triple-Negative Breast Cancer cells (MDA-MB-231 and MDA-MB-468). Disarib also affected the colony-forming properties of these cells. MDA-MB-231- and MDA-MB-468-derived xenografts showed a significant reduction in tumours upon Disarib treatment. Through the transcriptomics approach, we also explored the influence of BCL2 inhibitors on energy metabolism, mitochondrial dynamics, and epithelial-to-mesenchymal transition (EMT). Mitochondrial dynamics and glucose metabolism mainly regulate energy metabolism. The change in energetics regulates tumour growth through epithelial-mesenchymal transition, and angiogenesis. RNA sequencing (RNAseq) analysis revealed that BCL2 inhibitors ABT-199 and Disarib maintain Oxphos levels in MDA-MB-231. However, key glycolytic genes were significantly downregulated. Mitochondrial fission genes were seen to be downregulated both in RNAseq data and semi quantitative real time polymerase chain reaction (qRTPCR) in Disarib-treated TNBC cells and xenografts. Lastly, Disarib inhibited wound healing and epithelial-to-mesenchymal transition. This study showed that Disarib disrupts mitochondrial function, activates the intrinsic apoptotic pathway in breast cancer, and inhibits epithelial-to-mesenchymal transition both in vitro and in vivo. These findings highlight Disarib's potential as a multifaceted therapeutic strategy for patients with Triple-Negative Breast Cancer.
Collapse
Affiliation(s)
- Meghana Manjunath
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Febina Ravindran
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Shivangi Sharma
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | - Humaira Siddiqua
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | | | - Bibha Choudhary
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| |
Collapse
|
10
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
11
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
13
|
San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12040782. [PMID: 37107158 PMCID: PMC10135185 DOI: 10.3390/antiox12040782] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Paolini E, Longo M, Corsini A, Dongiovanni P. The Non-Invasive Assessment of Circulating D-Loop and mt-ccf Levels Opens an Intriguing Spyhole into Novel Approaches for the Tricky Diagnosis of NASH. Int J Mol Sci 2023; 24:ijms24032331. [PMID: 36768654 PMCID: PMC9916898 DOI: 10.3390/ijms24032331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers.
Collapse
Affiliation(s)
- Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- IRCCS Multimedica, 20099 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5032-0296
| |
Collapse
|
15
|
Rahman MK, Umashankar B, Choucair H, Pazderka C, Bourget K, Chen Y, Dunstan CR, Rawling T, Murray M. Inclusion of the in-chain sulfur in 3-thiaCTU increases the efficiency of mitochondrial targeting and cell killing by anticancer aryl-urea fatty acids. Eur J Pharmacol 2023; 939:175470. [PMID: 36543287 DOI: 10.1016/j.ejphar.2022.175470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.
Collapse
Affiliation(s)
- Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Curtis Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Yongjuan Chen
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia; Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Colin R Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
16
|
Non-invasive diagnosis of endometriosis: Immunologic and genetic markers. Clin Chim Acta 2023; 538:70-86. [PMID: 36375526 DOI: 10.1016/j.cca.2022.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Endometriosis, a benign gynecologic and chronic inflammatory disease, is defined by the presence of endometrial tissue outside the uterus characterized mainly by pelvic pain and infertility. Because endometriosis affects approximately 10% of females, it represents a significant socioeconomic burden worldwide having tremendous impact on daily quality of life. Accurate and prompt diagnosis is crucial for the management of this debilitating disorder. Unfortunately, diagnosis is typically delayed to lack of specific symptoms and readily accessible biomarkers. Although histopathologic examination remains the current gold standard, this approach is highly invasive and not applicable for early screening. Recent work has focused on the identification of reliable biomarkers including immunologic, ie, immune cells, antibodies and cytokines, as well as genetic and biochemical markers, ie, microRNAs, lncRNAs, circulating and mitochondrial nucleic acids, along with some hormones, glycoproteins and signaling molecules. Confirmatory research studies are, however, needed to more fully establish these markers in the diagnosis, progression and staging of these endometrial lesions.
Collapse
|
17
|
Alexiou A, Tsagkaris C, Chatzichronis S, Koulouris A, Haranas I, Gkigkitzis I, Zouganelis G, Mukerjee N, Maitra S, Jha NK, Batiha GES, Kamal MA, Nikolaou M, Ashraf GM. The Fractal Viewpoint of Tumors and Nanoparticles. Curr Med Chem 2023; 30:356-370. [PMID: 35927901 DOI: 10.2174/0929867329666220801152347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
Even though the promising therapies against cancer are rapidly improved, the oncology patients population has seen exponential growth, placing cancer in 5th place among the ten deadliest diseases. Efficient drug delivery systems must overcome multiple barriers and maximize drug delivery to the target tumors, simultaneously limiting side effects. Since the first observation of the quantum tunneling phenomenon, many multidisciplinary studies have offered quantum-inspired solutions to optimized tumor mapping and efficient nanodrug design. The property of a wave function to propagate through a potential barrier offer the capability of obtaining 3D surface profiles using imaging of individual atoms on the surface of a material. The application of quantum tunneling on a scanning tunneling microscope offers an exact surface roughness mapping of tumors and pharmaceutical particles. Critical elements to cancer nanotherapeutics apply the fractal theory and calculate the fractal dimension for efficient tumor surface imaging at the atomic level. This review study presents the latest biological approaches to cancer management based on fractal geometry.
Collapse
Affiliation(s)
- Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia.,AFNP Med, 1030 Wien, Austria
| | - Christos Tsagkaris
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia.,European Student Think Tank, Public Health and Policy Working Group, 1058, Amsterdam, Netherlands
| | - Stylianos Chatzichronis
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Andreas Koulouris
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden.,Faculty of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ioannis Haranas
- Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, ON, N2L-3C5, Canada
| | - Ioannis Gkigkitzis
- NOVA Department of Mathematics, 8333 Little River Turnpike, Annandale, VA 22003 USA
| | - Georgios Zouganelis
- Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, East Midlands, DE22 1GB England, UK
| | - Nobendu Mukerjee
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia.,Department of Microbiology; Ramakrishna Mission Vivekananda Centenary College, Akhil Mukherjee Rd, Chowdhary Para, Rahara, Khardaha, West Bengal, Kolkata- 700118, India
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.,Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Michail Nikolaou
- 1st Oncology Department, "Saint Savas" Anticancer, Oncology Hospital, 11522 Athens, Greece
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Kim M, Mahmood M, Reznik E, Gammage PA. Mitochondrial DNA is a major source of driver mutations in cancer. Trends Cancer 2022; 8:1046-1059. [PMID: 36041967 PMCID: PMC9671861 DOI: 10.1016/j.trecan.2022.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are among the most common genetic events in all tumors and directly impact metabolic homeostasis. Despite the central role mitochondria play in energy metabolism and cellular physiology, the role of mutations in the mitochondrial genomes of tumors has been contentious. Until recently, genomic and functional studies of mtDNA variants were impeded by a lack of adequate tumor mtDNA sequencing data and available methods for mitochondrial genome engineering. These barriers and a conceptual fog surrounding the functional impact of mtDNA mutations in tumors have begun to lift, revealing a path to understanding the role of this essential metabolic genome in cancer initiation and progression. Here we discuss the history, recent developments, and challenges that remain for mitochondrial oncogenetics as the impact of a major new class of cancer-associated mutations is unveiled.
Collapse
Affiliation(s)
- Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Payam A Gammage
- CRUK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
20
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR mt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol 2022; 15:98. [PMID: 35864539 PMCID: PMC9306209 DOI: 10.1186/s13045-022-01317-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.
Collapse
Affiliation(s)
- Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
22
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
23
|
Mitochondrial Proteins as Source of Cancer Neoantigens. Int J Mol Sci 2022; 23:ijms23052627. [PMID: 35269772 PMCID: PMC8909979 DOI: 10.3390/ijms23052627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the past decade, anti-tumour immune responses have been successfully exploited to improve the outcome of patients with different cancers. Significant progress has been made in taking advantage of different types of T cell functions for therapeutic purposes. Despite these achievements, only a subset of patients respond favorably to immunotherapy. Therefore, there is a need of novel approaches to improve the effector functions of immune cells and to recognize the major targets of anti-tumour immunity. A major hallmark of cancer is metabolic rewiring associated with switch of mitochondrial functions. These changes are a consequence of high energy demand and increased macromolecular synthesis in cancer cells. Such adaptations in tumour cells might generate novel targets of tumour therapy, including the generation of neoantigens. Here, we review the most recent advances in research on the immune response to mitochondrial proteins in different cellular conditions.
Collapse
|
24
|
Gáspárdy A, Zenke P, Kovács E, Annus K, Posta J, Sáfár L, Maróti-Agóts Á. Evaluation of Maternal Genetic Background of Two Hungarian Autochthonous Sheep Breeds Coming from Different Geographical Directions. Animals (Basel) 2022; 12:218. [PMID: 35158542 PMCID: PMC8833378 DOI: 10.3390/ani12030218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our research was the evaluation of the maternal genetic background of two Hungarian autochthonous sheep breeds of different geographical origin. A major argument for the preservation of endangered animal breeds is their documented past and historical importance. These also include the registration of pedigree data. This is the first study to evaluate and compare Tsigai and Cikta sheep in Hungary. Our investigation is based on two complete sequences of mitochondrial DNA (cytochrome b gene and control region). Our research was performed on these two sheep breeds with markedly different breed histories and breed characteristics to determine a possible common maternal genetic background, as ultimately the origin of both breeds can be traced back to Asia Minor. Between 2015 and 2017, a total of 203 biological samples were taken using a newly introduced founder sampling method. We found that the prevailing haplogroup B accounted for over 80% of both breeds, strengthening the common ancestral root. However, the pairwise genetic differentiation estimates (KST) calculated using the sequence-based statistics for cytochrome b gene and control region were 0.034 and 0.021, respectively (both at level p < 0.05); thus, revealing genetic differentiation in both sequences between the Tsigai and Cikta. We note that the known different history of the breeds is clearly justified by the currently studied deviations in their maternal genetic background.
Collapse
Affiliation(s)
- András Gáspárdy
- Department for Animal Breeding and Genetics, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (E.K.); (Á.M.-A.)
| | - Petra Zenke
- Rex Pet Clinic, Lakkozó u. 13, H-1048 Budapest, Hungary;
| | - Endre Kovács
- Department for Animal Breeding and Genetics, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (E.K.); (Á.M.-A.)
| | - Kata Annus
- Rex Pet Clinic, Lakkozó u. 13, H-1048 Budapest, Hungary;
| | - János Posta
- Department of Animal Husbandry, University of Debrecen, Böszörményi u. 138, H-4032 Debrecen, Hungary;
| | - László Sáfár
- Hungarian Sheep- and Goat Breeders’ Association, Lőportár u. 16, H-1134 Budapest, Hungary;
| | - Ákos Maróti-Agóts
- Department for Animal Breeding and Genetics, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (E.K.); (Á.M.-A.)
| |
Collapse
|
25
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
26
|
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Rzymowska J. The Role of Mitochondria in Carcinogenesis. Int J Mol Sci 2021; 22:ijms22105100. [PMID: 34065857 PMCID: PMC8151940 DOI: 10.3390/ijms22105100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.
Collapse
Affiliation(s)
- Paulina Kozakiewicz
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
- Correspondence:
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
| | - Marzanna Ciesielka
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Chair and Department of Forensic Medicine, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Rzymowska
- Chair and Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
27
|
Mitochondria-targeted antioxidant, mito-TEMPO mitigates initiation phase of N-Nitrosodiethylamine-induced hepatocarcinogenesis. Mitochondrion 2021; 58:123-130. [PMID: 33711502 DOI: 10.1016/j.mito.2021.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023]
Abstract
Targeting mitochondrial oxidative stress during initial stages of hepatocarcinogenesis can be an effective and promising strategy to prevent hepatocellular carcinoma (HCC). In the present study, mitochondria targeted antioxidant, mito-TEMPO was administered to male BALB/c mice at a dosage 0.1 mg/kg b.w. (intraperitoneal) twice a week, followed by single N-Nitrosodiethylamine (NDEA) intraperitoneal injection (10 mg/kg b.w.). After 24 h of NDEA administration, animals were sacrificed, blood and liver tissue were collected. Liver injury markers, histoarchitecture, antioxidant defence status, mitochondrial reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial dysfunction analysis, and mitochondrial membrane potential were investigated. Mito-TEMPO pre-treatment protected animals from the damaging effects of NDEA as observed by normalization of liver injury markers. NDEA metabolism resulted in a significantly increased intracellular and mitochondrial ROS generation with concomitant increase in LPO formation. The activity of mitochondrial complex I, complex II, malate dehydrogenase were significantly reduced and mitochondrial membrane potential was increased. Mito-TEMPO effectively scavenged NDEA-induced ROS generation and reduced LPO formation. A significant improvement was also observed in the activity of mitochondrial complex I, complex II, malate dehydrogenase and normalisation of mitochondrial membrane potential. Results suggested that mito-TEMPO had significant impact on the initiation phase of hepatocarcinogensis which could be one of the reason for its reported chemopreventive effect.
Collapse
|
28
|
Koklesova L, Samec M, Liskova A, Zhai K, Büsselberg D, Giordano FA, Kubatka P, Golunitschaja O. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J 2021; 12:27-40. [PMID: 33686350 PMCID: PMC7931170 DOI: 10.1007/s13167-021-00237-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Mitochondrial injury plays a key role in the aetiopathology of multifactorial diseases exhibiting a "vicious circle" characteristic for pathomechanisms of the mitochondrial and multi-organ damage frequently developed in a reciprocal manner. Although the origin of the damage is common (uncontrolled ROS release, diminished energy production and extensive oxidative stress to life-important biomolecules such as mtDNA and chrDNA), individual outcomes differ significantly representing a spectrum of associated pathologies including but not restricted to neurodegeneration, cardiovascular diseases and cancers. Contextually, the role of predictive, preventive and personalised (PPPM/3P) medicine is to introduce predictive analytical approaches which allow for distinguishing between individual outcomes under circumstance of mitochondrial impairments followed by cost-effective targeted prevention and personalisation of medical services. Current article considers innovative concepts and analytical instruments to advance management of mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Olga Golunitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
29
|
Wu Z, Zuo M, Zeng L, Cui K, Liu B, Yan C, Chen L, Dong J, Shangguan F, Hu W, He H, Lu B, Song Z. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep 2021; 22:e50827. [PMID: 33314701 PMCID: PMC7788456 DOI: 10.15252/embr.202050827] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Many cancer cells maintain enhanced aerobic glycolysis due to irreversible defective mitochondrial oxidative phosphorylation (OXPHOS). This phenomenon, known as the Warburg effect, is recently challenged because most cancer cells maintain OXPHOS. However, how cancer cells coordinate glycolysis and OXPHOS remains largely unknown. Here, we demonstrate that OMA1, a stress-activated mitochondrial protease, promotes colorectal cancer development by driving metabolic reprogramming. OMA1 knockout suppresses colorectal cancer development in AOM/DSS and xenograft mice models of colorectal cancer. OMA1-OPA1 axis is activated by hypoxia, increasing mitochondrial ROS to stabilize HIF-1α, thereby promoting glycolysis in colorectal cancer cells. On the other hand, under hypoxia, OMA1 depletion promotes accumulation of NDUFB5, NDUFB6, NDUFA4, and COX4L1, supporting that OMA1 suppresses OXPHOS in colorectal cancer. Therefore, our findings support a role for OMA1 in coordination of glycolysis and OXPHOS to promote colorectal cancer development and highlight OMA1 as a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhida Wu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Meiling Zuo
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Ling Zeng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Bing Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Chaojun Yan
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Li Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Jun Dong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Fugen Shangguan
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wanglai Hu
- School of Basic Medical ScienceAnhui Medical UniversityHefeiAnhuiChina
| | - He He
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Bin Lu
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyin Song
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| |
Collapse
|
30
|
Vila-Sanjurjo A, Smith PM, Elson JL. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Methods Mol Biol 2021; 2277:203-245. [PMID: 34080154 DOI: 10.1007/978-1-0716-1270-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we summarize our latest efforts to elucidate the role of mtDNA variants affecting the mitochondrial translation machinery, namely variants mapping to the mt-rRNA and mt-tRNA genes. Evidence is accumulating to suggest that the cellular response to interference with mitochondrial translation is different from that occurring as a result of mutations in genes encoding OXPHOS proteins. As a result, it appears safe to state that a complete view of mitochondrial disease will not be obtained until we understand the effect of mt-rRNA and mt-tRNA variants on mitochondrial protein synthesis. Despite the identification of a large number of potentially pathogenic variants in the mitochondrially encoded rRNA (mt-rRNA) genes, we lack direct methods to firmly establish their pathogenicity. In the absence of such methods, we have devised an indirect approach named heterologous inferential analysis (HIA ) that can be used to make predictions concerning the disruptive potential of a large subset of mt-rRNA variants. We have used HIA to explore the mutational landscape of 12S and 16S mt-rRNA genes. Our HIA studies include a thorough classification of all rare variants reported in the literature as well as others obtained from studies performed in collaboration with physicians. HIA has also been used with non-mammalian mt-rRNA genes to elucidate how mitotypes influence the interaction of the individual and the environment. Regarding mt-tRNA variations, rapidly growing evidence shows that the spectrum of mutations causing mitochondrial disease might differ between the different mitochondrial haplogroups seen in human populations.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións en Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain.
| | - Paul M Smith
- Department of Paediatrics, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Joanna L Elson
- Biosciences Institute Newcastle, Newcastle University, Newcastle upon Tyne, UK.
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
31
|
Macasoi I, Mioc A, Mioc M, Racoviceanu R, Soica I, Chevereșan A, Dehelean C, Dumitrașcu V. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents. Curr Med Chem 2020; 27:5730-5757. [DOI: 10.2174/0929867326666190712150638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria are key players with a multi-functional role in many vital cellular processes,
such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species
(ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated
through important enzyme signaling cascades, which if altered may influence the outcome of cell
viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways
are emerging as important targets for new anticancer agent development. Mitocans are compounds
aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus
causing cell growth inhibition or apoptosis. This review summarizes the till present known classes
of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.
Collapse
Affiliation(s)
- Ioana Macasoi
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Irina Soica
- Earlscliffe Sixth Form, Earlscliffe, 29 Shorncliffe Road, Folkestone, CT20 2NB, United Kingdom
| | - Adelina Chevereșan
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Victor Dumitrașcu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| |
Collapse
|
32
|
Smith AL, Whitehall JC, Bradshaw C, Gay D, Robertson F, Blain AP, Hudson G, Pyle A, Houghton D, Hunt M, Sampson JN, Stamp C, Mallett G, Amarnath S, Leslie J, Oakley F, Wilson L, Baker A, Russell OM, Johnson R, Richardson CA, Gupta B, McCallum I, McDonald SA, Kelly S, Mathers JC, Heer R, Taylor RW, Perkins ND, Turnbull DM, Sansom OJ, Greaves LC. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. NATURE CANCER 2020; 1:976-989. [PMID: 33073241 PMCID: PMC7116185 DOI: 10.1038/s43018-020-00112-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Oxidative phosphorylation (OXPHOS) defects caused by somatic mitochondrial DNA (mtDNA) mutations increase with age in human colorectal epithelium and are prevalent in colorectal tumours, but whether they actively contribute to tumorigenesis remains unknown. Here we demonstrate that mtDNA mutations causing OXPHOS defects are enriched during the human adenoma/carcinoma sequence, suggesting they may confer a metabolic advantage. To test this we deleted the tumour suppressor Apc in OXPHOS deficient intestinal stem cells in mice. The resulting tumours were larger than in control mice due to accelerated cell proliferation and reduced apoptosis. We show that both normal crypts and tumours undergo metabolic remodelling in response to OXPHOS deficiency by upregulating the de novo serine synthesis pathway (SSP). Moreover, normal human colonic crypts upregulate the SSP in response to OXPHOS deficiency prior to tumorigenesis. Our data show that age-associated OXPHOS deficiency causes metabolic remodelling that can functionally contribute to accelerated intestinal cancer development.
Collapse
Affiliation(s)
- Anna Lm Smith
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Gay
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow. G61 1QH, UK
| | - Fiona Robertson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alasdair P Blain
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew Hunt
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - James N Sampson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig Stamp
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Wilson
- Newcastle Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Angela Baker
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Riem Johnson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claire A Richardson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Bhavana Gupta
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Iain McCallum
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Stuart Ac McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Seamus Kelly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH
| | - Rakesh Heer
- Newcastle Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow. G61 1QH, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
33
|
Zhou K, Mo Q, Guo S, Liu Y, Yin C, Ji X, Guo X, Xing J. A Novel Next-Generation Sequencing-Based Approach for Concurrent Detection of Mitochondrial DNA Copy Number and Mutation. J Mol Diagn 2020; 22:1408-1418. [PMID: 33011442 DOI: 10.1016/j.jmoldx.2020.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023] Open
Abstract
Numerous studies have identified essential contributions of altered mitochondrial DNA (mtDNA) copy number and mutations in many common disorders, including cancer. To date, capture-based next-generation sequencing (NGS) has been widely applied to detect mtDNA mutations, although it lacks the ability to assess mtDNA copy number. The current strategy for quantifying mtDNA copy number relies mainly on real-time quantitative PCR, which is limited in degraded samples. A novel capture-based NGS approach was developed using both mtDNA and nuclear DNA probes to capture target fragments, enabling simultaneous detection of mtDNA mutations and copy number in different sample types. First, the impact of selecting reference genes on mtDNA copy number calculation was evaluated, and finally, 3 nuclear DNA fragments of 4000 bp were selected as an internal reference for detection. Then, the effective application of this approach was verified in DNA samples of formalin-fixed, paraffin-embedded specimens and body fluids, indicating the widespread applicability. This approach showed more accurate and stable results in detecting mtDNA copy number compared with real-time quantitative PCR in degraded DNA samples. Moreover, data indicated this approach had good reproducibility in detecting both mtDNA copy number and mutations among three sample types. Altogether, a versatile and cost-effective capture-based NGS approach has been developed for concurrent detection of mtDNA copy number and mutations, which has numerous applications in research and diagnosis.
Collapse
Affiliation(s)
- Kaixiang Zhou
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qinqin Mo
- Department of Laboratory Medicine, Medical College of Yanan University, Yan'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Chun Yin
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
34
|
Tasdogan A, McFadden DG, Mishra P. Mitochondrial DNA Haplotypes as Genetic Modifiers of Cancer. Trends Cancer 2020; 6:1044-1058. [PMID: 32980320 DOI: 10.1016/j.trecan.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in cellular metabolism, generation of reactive oxygen species (ROS), and the initiation of apoptosis. These properties enable mitochondria to be crucial integrators in the pathways of tumorigenesis. An open question is to what extent variation in the mitochondrial genome (mtDNA) contributes to the biological heterogeneity observed in human tumors. In this review, we summarize our current understanding of the role of mtDNA genetics in relation to human cancers.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, Department of Biochemistry, Simmons Comprehensive Cancer Center, Division of Endocrinology, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
35
|
Sharma P, Bharat, Dogra N, Singh S. Small Regulatory Molecules Acting Big in Cancer: Potential Role of Mito-miRs in Cancer. Curr Mol Med 2020; 19:621-631. [PMID: 31340735 DOI: 10.2174/1566524019666190723165357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs [miRNAs] are short, non-coding, single stranded RNA molecules regulating gene expression of their targets at the posttranscriptional level by either degrading mRNA or by inhibiting translation. Previously, miRNAs have been reported to be present inside the mitochondria and these miRNAs have been termed as mito-miRs. Origin of these mito-miRs may either be from mitochondrial genome or import from nucleus. The second class of mito-miRs makes it important to unravel the involvement of miRNAs in crosstalk between nucleus and mitochondria. Since miRNAs are involved in various physiological processes, their deregulation is often associated with disease progression, including cancer. The current review focuses on the involvement of miRNAs in different mitochondrial mediated processes. It also highlights the importance of exploring the interaction of miRNAs with mitochondrial genome, which may lead to the development of small regulatory RNA based therapeutic options.
Collapse
Affiliation(s)
- Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Mansa Road, Bathinda 151001, Punjab, India
| | - Bharat
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Mansa Road, Bathinda 151001, Punjab, India
| | - Nilambra Dogra
- Centre for Systems Biology and Bioinformatics, Panjab University, Sector-25, Chandigarh 160014, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Mansa Road, Bathinda 151001, Punjab, India
| |
Collapse
|
36
|
Yin C, Li DY, Guo X, Cao HY, Chen YB, Zhou F, Ge NJ, Liu Y, Guo SS, Zhao Z, Yang HS, Xing JL. NGS-based profiling reveals a critical contributing role of somatic D-loop mtDNA mutations in HBV-related hepatocarcinogenesis. Ann Oncol 2020; 30:953-962. [PMID: 30887045 DOI: 10.1093/annonc/mdz105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Somatic mutations of mitochondrial DNA (mtDNA) have been extensively identified mainly by traditional Sanger sequencing technology in various cancer types. However, low detection sensitivity of traditional methods greatly limits the comprehensive profiling of mtDNA somatic mutations in cancers, especially in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Moreover, the functional roles of mtDNA mutation in HBV-related hepatocarcinogenesis have not been systematically revealed. PATIENTS AND METHODS Next-generation sequencing (NGS) platform was applied to profile the somatic mtDNA mutations of HCC and paired paratumor (non-HCC) tissues from a large cohort of 156 HBV-HCC patients. RESULTS Our data revealed the common existence of mtDNA mutation in both inflammatory and cancer tissues with significantly different mutation pattern. The mutation density (mutation number/region length) of D-loop region was much higher than that of other regions in both HCC and non-HCC tissues. Unexpectedly, the average mutation number in D-loop region of HCC tissues was significantly less than that of non-HCC tissues. In contrast, the heteroplasmy level of D-loop region mutations was significantly increased in HCC tissues, implying that the D-loop mutations might be positively selected in HCC tissues. Furthermore, our results indicated that the patients with D-loop mutations had a significantly lower mtDNA copy number and were more likely to relapse. In vitro experiments demonstrated that proliferation, invasion and metastasis ability of HCC cells with D-loop region mutations were significantly higher than those without D-loop region mutations. CONCLUSION These results emphasize the critical contributing role of somatic mtDNA D-loop mutations in HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- C Yin
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an
| | - D Y Li
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an
| | - X Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an
| | - H Y Cao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an
| | - Y B Chen
- Department of Gynecology and Obstetrics, Genetic and Prenatal Diagnosis Center, First Affiliated Hospital, Zhengzhou University, Zhengzhou
| | - F Zhou
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an
| | - N J Ge
- Department of Radioactive Intervention, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai
| | - Y Liu
- Department of Pathology, Basic Medical College, Inner Mongolia Medical University, Huhhot
| | - S S Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an
| | - Z Zhao
- Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - H S Yang
- Division of Population Science, Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - J L Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an.
| |
Collapse
|
37
|
Luo Y, Ma J, Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int J Mol Sci 2020; 21:ijms21165598. [PMID: 32764295 PMCID: PMC7460667 DOI: 10.3390/ijms21165598] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
As an essential organelle in nucleated eukaryotic cells, mitochondria play a central role in energy metabolism, maintenance of redox balance, and regulation of apoptosis. Mitochondrial dysfunction, either due to the TCA cycle enzyme defects, mitochondrial DNA genetic mutations, defective mitochondrial electron transport chain, oxidative stress, or aberrant oncogene and tumor suppressor signaling, has been observed in a wide spectrum of human cancers. In this review, we summarize mitochondrial dysfunction induced by these alterations that promote human cancers.
Collapse
Affiliation(s)
- Yongde Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Jianjia Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
38
|
Nguyen H, LaFramboise T. Complexities and pitfalls in analyzing and interpreting mitochondrial DNA content in human cancer. J Genet Genomics 2020; 47:349-359. [PMID: 33004308 DOI: 10.1016/j.jgg.2020.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022]
Abstract
Mutations in the human mitochondrial genome have been observed in all types of human cancer, indicating that mutations might contribute to tumorigenesis, metastasis, recurrence, or drug response. This possibility is appealing because of the known shift from oxidative metabolism to glycolysis, known as the Warburg effect, that occurs in malignancy. Mitochondrial DNA (mtDNA) mutations could either be maternally inherited and predispose to cancer (germ line mutations) or occur sporadically in the mtDNA of specific tissues (tissue- or tumor-specific somatic mutations) and contribute to the tumor initiation and progression process. High-throughput sequencing technologies now enable comprehensive detection of mtDNA variation in tissues and bodily fluids, with the potential to be used as an early detection tool that may impact the treatment of cancer. Here, we discuss insights into the roles of mtDNA mutations in carcinogenesis, highlighting the complexities involved in the analysis and interpretation of mitochondrial genomic content, technical challenges in studying their contribution to pathogenesis, and the value of mtDNA mutations in developing early detection, diagnosis, prognosis, and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Hieu Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRSIG), 458 Minh Khai, Vinh Tuy, Hai Ba Trung, Hanoi, Viet Nam; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
39
|
Chang LC, Fan CW, Tseng WK, Hua CC. Associations between the Nrf2/Keap1 pathway and mitochondrial functions in colorectal cancer are affected by metastasis. Cancer Biomark 2020; 27:163-171. [PMID: 31796664 DOI: 10.3233/cbm-190828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Both mitochondria and the Nrf2/Keap1 pathway are targets of cancer therapy. Reactive oxygen species released from mitochondria can activate Nrf2, and the Nrf2/Keap1 pathway affects glycolysis, oxidative phosphorylation, mitochondrial biogenesis and mitophagy. OBJECTIVE This study investigates the associations between the expressions of proteins in the Nrf2/Keap1 pathway and those related to mitochondrial function and glycolysis in colorectal cancer (CRC) with or without metastasis. METHODS The protein levels of HO1, Nrf2, Keap1, Bach1, p21, p62, NRF1, LC3, ATP5B, HSP60 and GAPDH in the normal and tumor tissues of 60 CRC subjects were determined by Western blot. RESULTS The Keap1 protein levels, the ATP5B/HSP60 ratio and the BEC index were higher in the tumor than in the normal tissues of CRC with or without metastasis. The following clusters were found in the dendrogram: Nrf2 and p21 with ATP5B and GADPH in all the tissues and with NRF1 in all except the tumor tissues with metastasis; Bach1 with ATP5B and GAPDH in the tumor tissues; Keap1 with p62 in all the tissues, with LC3 in the tumor tissues and with NRF1 and HO1 in the tumor tissues with metastasis. CONCLUSIONS Nrf2, Keap1, Bach1 and p21 have the association with the proteins related to mitochondrial functions different among the tissues of CRC with or without metastasis.
Collapse
Affiliation(s)
- Liang-Che Chang
- Department of Pathology, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| | - Chung-Wei Fan
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| | - Wen-Ko Tseng
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| | - Chung-Ching Hua
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung and Chang Gung University, Keelung, Taiwan
| |
Collapse
|
40
|
Bridges AE, Ramachandran S, Pathania R, Parwal U, Lester A, Rajpurohit P, Morera DS, Patel N, Singh N, Korkaya H, Manicassamy S, Prasad PD, Lokeshwar VB, Lokeshwar BL, Ganapathy V, Thangaraju M. RAD51AP1 Deficiency Reduces Tumor Growth by Targeting Stem Cell Self-Renewal. Cancer Res 2020; 80:3855-3866. [PMID: 32665355 DOI: 10.1158/0008-5472.can-19-3713] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/31/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022]
Abstract
RAD51-associated protein 1 (RAD51AP1) plays an integral role in homologous recombination by activating RAD51 recombinase. Homologous recombination is essential for preserving genome integrity and RAD51AP1 is critical for D-loop formation, a key step in homologous recombination. Although RAD51AP1 is involved in maintaining genomic stability, recent studies have shown that RAD51AP1 expression is significantly upregulated in human cancers. However, the functional role of RAD51AP1 in tumor growth and the underlying molecular mechanism(s) by which RAD51AP1 regulates tumorigenesis have not been fully understood. Here, we use Rad51ap1-knockout mice in genetically engineered mouse models of breast cancer to unravel the role of RAD51AP1 in tumor growth and metastasis. RAD51AP1 gene transcript was increased in both luminal estrogen receptor-positive breast cancer and basal triple-negative breast cancer, which is associated with poor prognosis. Conversely, knockdown of RAD51AP1 (RADP51AP1 KD) in breast cancer cell lines reduced tumor growth. Rad51ap1-deficient mice were protected from oncogene-driven spontaneous mouse mammary tumor growth and associated lung metastasis. In vivo, limiting dilution studies provided evidence that Rad51ap1 plays a critical role in breast cancer stem cell (BCSC) self-renewal. RAD51AP1 KD improved chemotherapy and radiotherapy response by inhibiting BCSC self-renewal and associated pluripotency. Overall, our study provides genetic and biochemical evidences that RAD51AP1 is critical for tumor growth and metastasis by increasing BCSC self-renewal and may serve as a novel target for chemotherapy- and radiotherapy-resistant breast cancer. SIGNIFICANCE: This study provides in vivo evidence that RAD51AP1 plays a critical role in breast cancer growth and metastasis by regulating breast cancer stem cell self-renewal.
Collapse
Affiliation(s)
- Allison E Bridges
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Sabarish Ramachandran
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Rajneesh Pathania
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Utkarsh Parwal
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Adrienne Lester
- Depatment of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, Georgia
| | - Pragya Rajpurohit
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Daley S Morera
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, Georgia
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Vinata B Lokeshwar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bal L Lokeshwar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia. .,Georgia Cancer Center Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
41
|
Kumari S, Adewale R, Klubo-Gwiezdzinska J. The Molecular Landscape of Hürthle Cell Thyroid Cancer Is Associated with Altered Mitochondrial Function-A Comprehensive Review. Cells 2020; 9:E1570. [PMID: 32605113 PMCID: PMC7408323 DOI: 10.3390/cells9071570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Hürthle cell thyroid carcinoma (HTC) accounts for 3-5% of all thyroid malignancies. Widely invasive HTC is characterized by poor prognosis and limited responsiveness to standard therapy with radioiodine. The molecular landscape of HTC is significantly different from the genetic signature seen in other forms of thyroid cancer. We performed a comprehensive literature review on the association between the molecular features of HTC and cancer metabolism. We searched the Pubmed, Embase, and Medline databases for clinical and translational studies published between 1980 and 2020 in English, coupling "HTC" with the following keywords: "genomic analysis", "mutations", "exome sequencing", "molecular", "mitochondria", "metabolism", "oxidative phosphorylation", "glycolysis", "oxidative stress", "reactive oxygen species", and "oncogenes". HTC is characterized by frequent complex I mitochondrial DNA mutations as early clonal events. This genetic signature is associated with the abundance of malfunctioning mitochondria in cancer cells. HTC relies predominantly on aerobic glycolysis as a source of energy production, as oxidative phosphorylation-related genes are downregulated. The enhanced glucose utilization by HTC is used for diagnostic purposes in the clinical setting for the detection of metastases by fluorodeoxyglucose positron emission tomography (FGD-PET/CT) imaging. A comprehensive metabolomic profiling of HTC in association with its molecular landscape might be necessary for the implementation of tumor-specific therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.K.); (R.A.)
| |
Collapse
|
42
|
Nakhle J, Rodriguez AM, Vignais ML. Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer. Int J Mol Sci 2020; 21:E4405. [PMID: 32575796 PMCID: PMC7352686 DOI: 10.3390/ijms21124405] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are essential cellular components that ensure physiological metabolic functions. They provide energy in the form of adenosine triphosphate (ATP) through the electron transport chain (ETC). They also constitute a metabolic hub in which metabolites are used and processed, notably through the tricarboxylic acid (TCA) cycle. These newly generated metabolites have the capacity to feed other cellular metabolic pathways; modify cellular functions; and, ultimately, generate specific phenotypes. Mitochondria also provide intracellular signaling cues through reactive oxygen species (ROS) production. As expected with such a central cellular role, mitochondrial dysfunctions have been linked to many different diseases. The origins of some of these diseases could be pinpointed to specific mutations in both mitochondrial- and nuclear-encoded genes. In addition to their impressive intracellular tasks, mitochondria also provide intercellular signaling as they can be exchanged between cells, with resulting effects ranging from repair of damaged cells to strengthened progression and chemo-resistance of cancer cells. Several therapeutic options can now be envisioned to rescue mitochondria-defective cells. They include gene therapy for both mitochondrial and nuclear defective genes. Transferring exogenous mitochondria to target cells is also a whole new area of investigation. Finally, supplementing targeted metabolites, possibly through microbiota transplantation, appears as another therapeutic approach full of promises.
Collapse
Affiliation(s)
- Jean Nakhle
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, F-34090 Montpellier, France;
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, Univ Montpellier, F-34090 Montpellier, France
| | - Anne-Marie Rodriguez
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, Mondor Institute for Biomedical Research (IMRB), F-94010 Creteil, France
- AP-HP, Hopital Mondor, Service d’histologie, F-94010 Creteil, France
| | - Marie-Luce Vignais
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, F-34090 Montpellier, France;
| |
Collapse
|
43
|
Zhu X, Xuan Z, Chen J, Li Z, Zheng S, Song P. How DNA methylation affects the Warburg effect. Int J Biol Sci 2020; 16:2029-2041. [PMID: 32549751 PMCID: PMC7294934 DOI: 10.7150/ijbs.45420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
Significant enhancement of the glycolysis pathway is a major feature of tumor cells, even in the presence of abundant oxygen; this enhancement is known as the Warburg effect, and also called aerobic glycolysis. The Warburg effect was discovered nearly a hundred years ago, but its specific mechanism remains difficult to explain. DNA methylation is considered to be a potential trigger for the Warburg effect, as the two processes have many overlapping links during tumorigenesis. Based on a widely recognized potential mechanism of the Warburg effect, we here summarized the relationship between DNA methylation and the Warburg effect with regard to cellular energy metabolism factors, such as glycolysis related enzymes, mitochondrial function, glycolysis bypass pathways, the tumor oxygen sensing pathway and abnormal methylation conditions. We believe that clarifying the relationship between these different mechanisms may further help us understand how DNA methylation works on tumorigenesis and provide new opportunities for cancer therapy.
Collapse
Affiliation(s)
- Xingxin Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019).,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Zefeng Xuan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019).,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jun Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019).,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019).,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019).,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019).,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
44
|
Wei W, Chinnery PF. Cracking the enigma of mitochondrial-DNA variants and cancer. Nat Metab 2020; 2:221-222. [PMID: 32694774 DOI: 10.1038/s42255-020-0180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Wei
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
Payen VL, Zampieri LX, Porporato PE, Sonveaux P. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 2020; 38:189-203. [PMID: 30820778 DOI: 10.1007/s10555-019-09789-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.,Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium.,Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
46
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
47
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Wang Q, Stringer JM, Liu J, Hutt KJ. Evaluation of mitochondria in oocytes following γ-irradiation. Sci Rep 2019; 9:19941. [PMID: 31882895 PMCID: PMC6934861 DOI: 10.1038/s41598-019-56423-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/03/2019] [Indexed: 01/04/2023] Open
Abstract
Standard cytotoxic cancer treatments, such as radiation, can damage and deplete the supply of oocytes stored within the ovary, which predisposes females to infertility and premature menopause later in life. The mechanisms by which radiation induces oocyte damage have not been completely elucidated. The objective of this study was to determine if γ-irradiation changes mitochondrial characteristics in oocytes, possibly contributing to a reduction in oocyte number and quality. Immature oocytes were collected from postnatal day (PN) 9–11 C57Bl6 mice 3, 6 and 24 hours after 0.1 Gy γ-irradiation to monitor acute mitochondrial changes. Oocytes were classified as small (>20 µm) or growing (40–60 µm). Mitochondrial membrane potential was lost in 20% and 44% of small oocytes (~20 µm) at 3 and 6 hours after γ-irradiation, respectively, consistent with the induction of apoptosis. However, mitochondrial mass, distribution and membrane potential in the surviving small oocytes were similar to the non-irradiated controls at both time points. At 24 hours after γ-irradiation, all mitochondrial parameters analysed within immature oocytes were similar to untreated controls. Mitochondrial parameters within growing oocytes were also similar to untreated controls. When mice were superovulated more than 3 weeks after γ-irradiation, there was a significant reduction in the number of mature oocytes harvested compared to controls (Control 18 ± 1 vs 0.1 Gy 4 ± 1, n = 6/16 mice, p < 0.05). There was a slight reduction in mitochondrial mass in mature oocytes after γ-irradiation, though mitochondrial localization, mtDNA copy number and ATP levels were similar between groups. In summary, this study shows that γ-irradiation of pre-pubertal mice is associated with loss of mitochondrial membrane potential in a significant proportion of small immature oocytes and a reduction in the number of mature oocytes harvested from adult mice. Furthermore, these results suggest that immature oocytes that survive γ-irradiation and develop through to ovulation contain mitochondria with normal characteristics. Whether the oocytes that survive radiation and eventually undergo meiosis can support fertility remains to be determined.
Collapse
Affiliation(s)
- Qiaochu Wang
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jessica M Stringer
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jun Liu
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Karla J Hutt
- Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.
| |
Collapse
|
49
|
Ziada AS, Lu MY, Ignas‐Menzies J, Paintsil E, Li M, Ogbuagu O, Saberi S, Hsieh AYY, Sattha B, Harrigan PR, Kalloger S, Côté HCF. Mitochondrial DNA somatic mutation burden and heteroplasmy are associated with chronological age, smoking, and HIV infection. Aging Cell 2019; 18:e13018. [PMID: 31407474 PMCID: PMC6826146 DOI: 10.1111/acel.13018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 12/03/2022] Open
Abstract
The gradual accumulation of mitochondrial DNA (mtDNA) mutations is implicated in aging and may contribute to the accelerated aging phenotype seen with tobacco smoking and HIV infection. mtDNA mutations are thought to arise from oxidative damage; however, recent reports implicate polymerase γ errors during mtDNA replication. Investigations of somatic mtDNA mutations have been hampered by technical challenges in measuring low-frequency mutations. We use primer ID-based next-generation sequencing to quantify both somatic and heteroplasmic blood mtDNA point mutations within the D-loop, in 164 women and girls aged 2-72 years, of whom 35% were smokers and 56% were HIV-positive. Somatic mutations and the occurrence of heteroplasmic mutations increased with age. While transitions are theorized to result from polymerase γ errors, transversions are believed to arise from DNA oxidative damage. In our study, both transition and transversion mutations were associated with age. However, transition somatic mutations were more prevalent than transversions, and no heteroplasmic transversions were observed. We also measured elevated somatic mutations, but not heteroplasmy, in association with high peak HIV viremia. Conversely, heteroplasmy was higher among smokers, but somatic mutations were not, suggesting that smoking promotes the expansion of preexisting mutations rather than de novo mutations. Taken together, our results are consistent with blood mtDNA mutations increasing with age, inferring a greater contribution of polymerase γ errors in mtDNA mutagenesis. We further suggest that smoking and HIV infection both contribute to the accumulation of mtDNA mutations, though in different ways.
Collapse
Affiliation(s)
- Adam S. Ziada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Meng Ying Lu
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Jarek Ignas‐Menzies
- Department of Mechanical EngineeringUniversity of British ColumbiaVancouverBCCanada
| | - Elijah Paintsil
- Department of PediatricsYale School of MedicineNew HavenCTUSA
- School of Public HealthYale UniversityNew HavenCTUSA
- Department of Pharmacology, Yale School of MedicineNew HavenCTUSA
| | - Min Li
- Department of PediatricsYale School of MedicineNew HavenCTUSA
| | - Onyema Ogbuagu
- Department of MedicineYale School of MedicineNew HavenCTUSA
| | - Sara Saberi
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Anthony Y. Y. Hsieh
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | - Beheroze Sattha
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
| | | | - Steve Kalloger
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBCCanada
- Women’s Health Research InstituteVancouverBCCanada
| |
Collapse
|
50
|
Associations of Mitochondrial Deoxyribonucleic Acid Polymorphisms With Behçet's Disease in the Korean Population. Arch Rheumatol 2019; 34:211-219. [PMID: 31497768 DOI: 10.5606/archrheumatol.2019.7113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022] Open
Abstract
Objectives This study aims to examine the possible associations of mitochondrial single nucleotide polymorphisms (SNPs) and Behçet's disease (BD) in a larger patient group. Patients and methods Whole blood or buffy coat was collected from 98 BD patients (31 males, 67 females; mean age 48±2.8 years; range 20 to 60 years) from four university hospitals located in the Chung-Cheong district of the Republic of Korea, and 196 age- and sex-matched healthy controls (HCs) (62 males, 134 females; mean age 46.91±12.90 years; range 20 to 68 years) from Konyang University Hospital. Twenty targeted mitochondrial deoxyribonucleic acids (DNAs) were genotyped and compared using the revised Cambridge Reference Sequence. Chi square and Fisher's exact tests were used to analyze association of mitochondrial DNA SNPs with BD susceptibility and its clinical characteristics. Results There were no differences for m.248A>G, m.304C>A, m.709G>A, m.3010G>A, m.3970C>T, m.4883C>T, m.5178C>A, m.6392T>C, m.6962G>A, m.10310G>A, m.10609T>C, m.12406G>A, m.12882C>T, m.13928G>C, m.14668C>T, m.16129G>A, and m16304T> between patient and HC groups. However, m.16182A>C and m.16183A>C were more frequently observed in the patient group than the HC group (22 [22.4%] vs. 24 [12.2%], p=0.061 and 32 [32.7%] vs. 42 [21.4%], p=0.092) but without statistical significance. m.4883C>T and m.5178C>A were associated with posterior location of oral ulcers (p=0.025 for each) and m.16183A>C was associated with deep oral ulcers (p=0.001), while m.16189T>C was associated with deep oral ulcers and thrombosis (p=0.042, 0.048, respectively). Conclusion m.16182A>C and m.16183A>C may be associated with BD in the Korean population.
Collapse
|