1
|
Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C, Yuan H, Li J, Lin Z, Lin W. Role of iron in brain development, aging, and neurodegenerative diseases. Ann Med 2025; 57:2472871. [PMID: 40038870 PMCID: PMC11884104 DOI: 10.1080/07853890.2025.2472871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
It is now understood that iron crosses the blood-brain barrier via a complex metabolic regulatory network and participates in diverse critical biological processes within the central nervous system, including oxygen transport, energy metabolism, and the synthesis and catabolism of myelin and neurotransmitters. During brain development, iron is distributed throughout the brain, playing a pivotal role in key processes such as neuronal development, myelination, and neurotransmitter synthesis. In physiological aging, iron can selectively accumulate in specific brain regions, impacting cognitive function and leading to intracellular redox imbalance, mitochondrial dysfunction, and lipid peroxidation, thereby accelerating aging and associated pathologies. Furthermore, brain iron accumulation may be a primary contributor to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Comprehending the role of iron in brain development, aging, and neurodegenerative diseases, utilizing iron-sensitive Magnetic Resonance Imaging (MRI) technology for timely detection or prediction of abnormal neurological states, and implementing appropriate interventions may be instrumental in preserving normal central nervous system function.
Collapse
Affiliation(s)
- Qiqi Gao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Pineiro-Alonso L, Rubio-Prego I, Lobyntseva A, González-Freire E, Langer R, Alonso MJ. Nanomedicine for targeting brain Neurodegeneration: Critical barriers and circadian rhythm Considerations. Adv Drug Deliv Rev 2025; 222:115606. [PMID: 40383234 DOI: 10.1016/j.addr.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
The development of novel therapies for central nervous system (CNS) diseases, particularly neurodegenerative disorders like Alzheimer's disease (AD), is a critical global health priority. Biotherapeutics, such as monoclonal antibodies (mAbs) and RNA-based therapies, have shown potential for treating brain disorders. However, their clinical progress is limited by their difficult access to their brain targets. At the preclinical level, nanotechnology has been shown, to help these molecules overcome the biological barriers that imped their adequate brain delivery. This review highlights advances in this area and the challenges for the translation to the clinic. Key nanotechnology-based strategies, such as surface modifications utilizing endogenous protein corona, functionalization with targeting ligands, therapeutic ultrasound-mediated microbubble oscillation were particularly analyzed. Additionally, in line with the focus of the Special Issue, this review integrates the concept of chronotherapy, with a focus on AD treatment, highlighting the idea that, by aligning nanoparticle (NP)-based drug delivery with circadian rhythms, it may be possible to improve therapeutic outcomes. Finally, the article analyzes current strategies in CNS drug delivery in clinical trials and provides future directions within this frame, notably in the area of AD.
Collapse
Affiliation(s)
- Laura Pineiro-Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Inés Rubio-Prego
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Alexandra Lobyntseva
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Eva González-Freire
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - María José Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Spain.
| |
Collapse
|
3
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Song Y, Wang L, Peng T, Shan L, Wan B, Tang M, Luan Y, Jiang Y, He W. Brain-targeting biomimetic nanozyme enhances neuroprotection in ischemic stroke by remodeling the neurovascular unit. J Control Release 2025; 382:113750. [PMID: 40254137 DOI: 10.1016/j.jconrel.2025.113750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Dysfunction of the neurovascular unit significantly impacts the prognostic outcomes of ischemic stroke. However, effective strategies to comprehensively modulate the neurovascular unit have yet to be developed. In this work, we introduce a brain-targeting biomimetic nanozyme, A@HPB@THSA, designed to mitigate neurovascular unit dysfunction following ischemia/reperfusion. Specifically, aspirin is encapsulated within a hollow Prussian blue nanozyme, which is subsequently modified with brain-targeting T7 peptide-conjugated human serum albumin, ultimately forming the composite A@HPB@THSA. The overexpression of transferrin receptors on cerebral vascular endothelial cells, along with compromised blood-brain barrier (BBB) permeability, facilitates the accumulation of A@HPB@THSA at cerebral ischemic lesions. The hollow Prussian blue nanozyme component effectively scavenges reactive oxygen species in ischemia/reperfusion-affected brain cells, while the aspirin component inhibits platelet aggregation and neutrophil infiltration, thereby preventing microvascular "no-reflow" and preserving the integrity of the BBB. In rat models of transient middle cerebral artery occlusion, A@HPB@THSA demonstrated comprehensive modulation of the neurovascular unit, including reduced BBB permeability, promoted microglia polarization toward an anti-inflammatory phenotype, and enhanced neuronal survival. This work provides a promising platform to reverse dysfunctional neurovascular unit for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yan Song
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luyao Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tingting Peng
- Departent of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Lingling Shan
- Departent of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Bo Wan
- Departent of Pharmacy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Mingtan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Wenxiu He
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Choi MS, Seiger ER, Murray-Kolb LE. Cognitive Function in Peri- and Postmenopausal Women: Implications for Considering Iron Supplementation. Nutrients 2025; 17:1762. [PMID: 40507031 PMCID: PMC12157887 DOI: 10.3390/nu17111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/16/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Menopause is associated with significant hormonal and reproductive changes in women. Evidence documents interindividual differences in the signs and symptoms associated with menopause, including cognitive decline. Hypothesized reasons for the cognitive decline include changes in hormone levels, especially estrogen, but study findings have been inconsistent. Hormone replacement therapies (HRTs) are often recommended to alleviate menopause-related symptoms in both peri- and postmenopausal women. However, the North American Menopause Society does not recommend the use of HRT for the management of cognitive complaints in perimenopausal women due to lack of evidence. Additionally, there are many women for which the use of HRT is contraindicated. As such, it would be helpful to have an alternative method for alleviating symptoms, including declines in cognition, during the menopause transition. Iron supplementation may be a promising candidate as it has been associated with improved cognitive performance in premenopausal women with iron deficiency and iron deficiency anemia. Because many women will experience heavy blood losses during perimenopause, they are at risk of becoming iron deficient and/or anemic. The use of iron supplementation in women with iron deficiency may serve to not only improve iron status but also to alleviate many of the signs and symptoms associated with perimenopause (lethargy, depressed affect, etc.), including cognitive decline. However, evidence to inform treatment protocols is lacking. Well-designed studies of iron supplementation in perimenopausal women are needed in order to understand the potential of such supplementation to alleviate the cognitive decline associated with perimenopause.
Collapse
Affiliation(s)
| | | | - Laura E. Murray-Kolb
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Blvd., Stone Hall Rm. 214, West Lafayette, IN 47907, USA; (M.S.C.); (E.R.S.)
| |
Collapse
|
6
|
Wade QW, Connor JR. What Does Iron Mean to an Oligodendrocyte? Glia 2025. [PMID: 40401729 DOI: 10.1002/glia.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Iron is essential for life and plays a key role in multiple fundamental cellular functions. The brain has the highest rate of energy consumption, and within the brain, oligodendrocytes have the highest level of oxidative metabolism per volume. Oligodendrocytes also stain the strongest for iron. The high requirement for iron is related to an oligodendrocyte's primary function to produce the myelin sheath, which requires iron as a cofactor. In addition to the high-energy demands that accompany the production of such dense and extensive membranous sheaths, iron is also required for lipid synthesis. Although the involvement of iron in oligodendrocyte functioning is clear, how iron is specifically acquired and utilized by oligodendrocytes is not completely understood. The purpose of this review is to provide a complete and thorough overview of the role of iron in oligodendrocytes. Here, we discuss in detail what is currently known about key iron transport proteins that participate in the balance of iron in oligodendrocytes. Understanding how oligodendrocytes utilize iron is beneficial in understanding dysmyelinating diseases, and the knowledge could be utilized to develop treatment options.
Collapse
Affiliation(s)
- Quinn W Wade
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
de Koning LA, Vazquez-Matias DA, Beaino W, Vugts DJ, van Dongen GAMS, van der Flier WM, Ries M, van Vuurden DG, Vijverberg EGB, van de Giessen E. Drug delivery strategies to cross the blood-brain barrier in Alzheimer's disease: a comprehensive review on three promising strategies. J Prev Alzheimers Dis 2025:100204. [PMID: 40393907 DOI: 10.1016/j.tjpad.2025.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
The field of Alzheimer's disease (AD) drug development is rapidly changing, with two anti-amyloid monoclonal antibodies (mAbs) having received Food and Drug Administration (FDA) approval, additionally many compounds are in the pipeline. A major obstacle for novel AD therapeutics is the blood-brain barrier (BBB), which restricts passage of particles larger than 400-500 Da. It is estimated that only ∼1 % of mAbs, being ∼150 kDa, passes the BBB, which greatly hampers the efficacy of treatment. To enhance treatment efficacy and to lower the drug dose needed, mechanisms that effectively increase drug delivery across the BBB are urgently sought for. This narrative review describes three promising strategies to enhance drug delivery across the BBB in AD: focused ultrasound (FUS) with microbubbles, receptor-mediated transcytosis (RMT) and delivery using nanoparticle carrier systems. FUS and RMT have shown promising preclinical results and are now being tested in humans whereas nanoparticle carrier systems still need further preclinical validation before clinical application in humans. 89Zr-Immuno-PET provides a unique opportunity to noninvasively monitor and quantitatively assess novel brain delivery methods.
Collapse
Affiliation(s)
- Lotte A de Koning
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.
| | - Daniel A Vazquez-Matias
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Daniëlle J Vugts
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam (CCA), Amsterdam, the Netherlands
| | - Guus A M S van Dongen
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands; Cancer Center Amsterdam (CCA), Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Epidemiology & Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Mario Ries
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Lafrance-Vanasse J, Sadekar SS, Yang Y, Yadav DB, Meilandt WJ, Wetzel-Smith MK, Cai H, Crowell SR, Nguyen V, Lee V, Chih B, Kwong M, Chan P, Santagostino S, Lee D, Chung S, Lazar GA, Ernst JA, Atwal JK. Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier. Nat Commun 2025; 16:4143. [PMID: 40319060 PMCID: PMC12049489 DOI: 10.1038/s41467-025-59447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
The blood-brain barrier (BBB) restricts efficient penetration of systemically delivered therapeutic antibodies into the brain, limiting the development of this class of drugs to treat neurodegenerative diseases. Here we demonstrate that the neonatal Fc receptor (FcRn), which is highly expressed at the BBB, can be used to facilitate IgG transport to the brain. Engineering of the antibody Fc region to promote binding to FcRn at neutral pH enhances antibody transcytosis in a cellular model. In vivo, these modifications improve brain penetration, as well as brain target engagement and activity, of systemically administered antibodies in both mice and non-human primates. This engineering approach can be broadly implemented to enhance central nervous system (CNS) exposure of antibody- and Fc-based drugs, improving the clinical potential of biotherapeutics for the treatment of human brain diseases.
Collapse
Affiliation(s)
| | - Shraddha S Sadekar
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yanli Yang
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Daniela Bumbaca Yadav
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | | | - Hao Cai
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Susan R Crowell
- Department of Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Van Nguyen
- Department of Bioanalytical Science, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Vivian Lee
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Mandy Kwong
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Sara Santagostino
- Department of Translational Safety, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Donna Lee
- Department of Translational Safety, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Shan Chung
- Department of Bioanalytical Science, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
9
|
Tong H, Ma Z, Yu J, Li D, Zhu Q, Shi H, Wu Y, Yang H, Zheng Y, Sun D, Shi P, Chu J, Lv P, Li B, Tian C. Optimizing Peptide-Conjugated Lipid Nanoparticles for Efficient siRNA Delivery across the Blood-Brain Barrier and Treatment of Glioblastoma Multiforme. ACS Chem Biol 2025; 20:942-952. [PMID: 40080657 DOI: 10.1021/acschembio.5c00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade 4 glioma and the most common malignant primary brain tumor. Addressing the clinical management of GBM presents an exceptionally daunting and intricate challenge, particularly in overcoming the blood-brain barrier (BBB) to deliver effective therapies to the brain. Nanotechnology-based drug delivery systems have exhibited considerable promise in tackling this aggressive brain cancer. However, the BBB remains a key challenge in achieving effective brain delivery of nanocarriers. Here, we have optimized a lipid nanoparticle (LNP) formulation (C2) and modified the LNP with Angiopep-2 peptide, which exhibits the most significant improvements in blood-brain barrier penetration and brain accumulation (about 2.23% injection dose). Using the Ang-2-coupled C2 LNP formulation, we researched the therapeutic effect of Polo-like Kinase 1(PLK1)-targeted siRNA delivery to treat a mouse model of GBM. The optimized LNP formulation was demonstrated to significantly inhibit mouse GBM growth and extend the median survival of mice (2.18-fold). This work demonstrates the efficacy of a brain-targeted siRNA delivery system in GBM treatment. As the understanding of the role of RNAs in GBM deepens and innovative delivery methods are continually developed and refined, RNA-based therapies could emerge as a crucial breakthrough in the advancement of brain tumor treatment.
Collapse
Affiliation(s)
- Haiyang Tong
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Zesen Ma
- University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jin Yu
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Dongsheng Li
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Qingjun Zhu
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Huajian Shi
- University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yun Wu
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Hongyi Yang
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Yanmin Zheng
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Demeng Sun
- University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Pan Shi
- University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Jiaru Chu
- University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Pei Lv
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Baoqing Li
- University of Science and Technology of China, Hefei, Anhui 230031, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230031, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Studies, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Said N, Venketaraman V. Neuroinflammation, Blood-Brain Barrier, and HIV Reservoirs in the CNS: An In-Depth Exploration of Latency Mechanisms and Emerging Therapeutic Strategies. Viruses 2025; 17:572. [PMID: 40285014 PMCID: PMC12030944 DOI: 10.3390/v17040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, the blood-brain barrier (BBB), neuroinflammation, and the roles of viral proteins, immune cell trafficking, and pro-inflammatory mediators in establishing and maintaining latent viral reservoirs in the CNS, particularly microglia and astrocytes. Key findings show disruption of the BBB, monocyte infiltration, and activation of CNS-resident cells by HIV proteins like Tat and gp120, contributing to the neuroinflammatory environment and neuronal damage. Advances in epigenetic regulation of latency have identified targets like histone modifications and DNA methylation, and new therapeutic strategies like latency-reversing agents (LRAs), gene editing (CRISPR/Cas9), and nanoparticle-based drug delivery also offer hope. While we have made significant progress in understanding the molecular basis of HIV persistence in the CNS, overcoming the challenges of BBB penetration and neuroinflammation is key to developing effective therapies. Further research into combination therapies and novel drug delivery systems will help improve outcomes for HAND patients and bring us closer to a functional cure for HIV.
Collapse
Affiliation(s)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| |
Collapse
|
11
|
Zhang CL, Ma JJ, Li X, Yan HQ, Gui YK, Yan ZX, You MF, Zhang P. The role of transcytosis in the blood-retina barrier: from pathophysiological functions to drug delivery. Front Pharmacol 2025; 16:1565382. [PMID: 40308764 PMCID: PMC12040858 DOI: 10.3389/fphar.2025.1565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-retina barrier (BRB) serves as a critical interface that separates the retina from the circulatory system, playing an essential role in preserving the homeostasis of the microenvironment within the retina. Specialized tight junctions and limited vesicle trafficking restrict paracellular and transcellular transport, respectively, thereby maintaining BRB barrier properties. Additionally, transcytosis of macromolecules through retinal vascular endothelial cells constitutes a primary mechanism for transporting substances from the vascular compartment into the surrounding tissue. This review summarizes the fundamental aspects of transcytosis including its function in the healthy retina, the biochemical properties of transcytosis, and the methodologies used to study this process. Furthermore, we discuss the current understanding of transcytosis in the context of pathological BRB breakdown and present recent findings that highlight significant advances in drug delivery to the retina based on transcytosis.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jing-Jie Ma
- Department of Audit, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hai-Qing Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong-Kun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhi-Xin Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ming-Feng You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
Brooks J, Everett J, Sadler PJ, Telling N, Collingwood JF. On the origin of metal species in the human brain: a perspective on key physicochemical properties. Metallomics 2025; 17:mfaf004. [PMID: 39924175 PMCID: PMC11890113 DOI: 10.1093/mtomcs/mfaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Normal functioning of the human brain is dependent on adequate regulation of essential metal nutrients. However, it is also highly sensitive to metal-mediated toxicity, linked to various neurodegenerative disorders. Exposure to environmental metal sources (especially to particulate air pollution) can stimulate toxicity and neuropathologic effects, which is particularly evident in populations chronically exposed to high levels of air pollution. Identifying the sources of metal-rich deposits in the human brain is important in not only distinguishing the effects of environmentally acquired metals from endogenous metal dysregulation, but also for tracing pollutant sources which may be subject to exposure control. This perspective reviews evidence for key physicochemical properties (size/morphology, chemical composition, oxidation state, magnetic properties, and isotopic composition) concerning their capacity to distinguish sources of metals in the brain. The scope for combining analytical techniques to study properties in tandem is also discussed.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - James Everett
- School of Engineering, University of Warwick, Coventry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | | |
Collapse
|
13
|
Prades R, Teixidó M, Oller-Salvia B. New Trends in Brain Shuttle Peptides. Mol Pharm 2025; 22:1100-1109. [PMID: 39899901 PMCID: PMC11881811 DOI: 10.1021/acs.molpharmaceut.4c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
The pharmacological treatment of central nervous system diseases faces significant challenges due to the presence of the blood-brain barrier (BBB). This barrier naturally protects the brain and prevents therapeutics from reaching their targets efficiently. However, the BBB allows the passage of nutrients and other molecules that guarantee brain homeostasis through selective transport mechanisms present at the BBB. These mechanisms provide an opportunity for delivering therapeutic agents into the central nervous system using brain shuttles. Here we review the progress of brain shuttle peptide development from 2015 until 2025. We highlight the most utilized peptides and describe trends in strategies to develop new shuttles and enhance their transport efficiency. Additionally, we compared them with other types of brain shuttles and emphasize the progress of peptide shuttles toward clinical translation.
Collapse
Affiliation(s)
- Roger Prades
- Accure
Therapeutics, Barcelona
Science Park 08028 Barcelona, Spain
| | | | - Benjamí Oller-Salvia
- Institut
Químic de Sarrià (IQS), Universitat
Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
14
|
Vera-López KJ, Aranzamendi-Zenteno M, Davila-Del-Carpio G, Nieto-Montesinos R. Using Immunoliposomes as Carriers to Enhance the Therapeutic Effectiveness of Macamide N-3-Methoxybenzyl-Linoleamide. Neurol Int 2025; 17:38. [PMID: 40137459 PMCID: PMC11945115 DOI: 10.3390/neurolint17030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Epilepsy is one of the most common chronic neurological disorders, characterized by alterations in neuronal electrical activity that result in recurrent seizures and involuntary body movements. Anticonvulsants are the primary treatment for this condition, helping patients improve their quality of life. However, the development of new drugs with fewer side effects and greater economic accessibility remains a key focus in nanomedicine. Macamides, secondary metabolites derived from Maca (Lepidium meyenii), represent a promising class of novel drugs with diverse therapeutic applications, particularly in the treatment of neurological disorders. METHODS In this study, we optimized the potential of the macamide N-3-methoxybenzyl-linoleamide (3-MBL) as an anticonvulsant agent through its encapsulation in PEGylated liposomes conjugated with OX26 F(ab')2 fragments. RESULTS These immunoliposomes exhibited a size of 120.52 ± 9.46 nm and a zeta potential of -8.57 ± 0.80 mV. Furthermore, in vivo tests using a pilocarpine-induced status epilepticus model revealed that the immunoliposomes provided greater efficacy against epileptic seizures compared to the free form of N-3-methoxybenzyl-linoleamide at the same dose. Notably, the observed anticonvulsant effect was comparable to that of carbamazepine, a traditional FDA-approved antiepileptic drug. CONCLUSIONS This pioneering work employs liposomal nanocarriers to deliver macamides to the brain, aiming to set a new standard for the use of modified liposomes in anticonvulsant epilepsy treatment.
Collapse
Affiliation(s)
| | | | | | - Rita Nieto-Montesinos
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04000, Peru; (K.J.V.-L.); (M.A.-Z.); (G.D.-D.-C.)
| |
Collapse
|
15
|
Hammarlund-Udenaes M, Loryan I. Assessing central nervous system drug delivery. Expert Opin Drug Deliv 2025; 22:421-439. [PMID: 39895003 DOI: 10.1080/17425247.2025.2462767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Delivering drugs to the central nervous system (CNS) remains a major challenge due to the blood-brain barrier, restricting the entry of drugs into the brain. This limitation contributes to the ongoing lack of effective treatments for CNS diseases. To improve the process of drug discovery and development, it is crucial to streamline methods that measure clinically relevant parameters, allowing for good selection of drug candidates. AREA COVERED In this paper, we discuss the essential prerequisites for successful CNS drug delivery and review relevant methods. We emphasize the need for closer collaboration between in vitro and in vivo scientists to improve the relevance of these methods and increase the success rate of developing effective CNS therapies. While our focus is on small molecule drugs, we also touch on some aspects of larger molecules. EXPERT OPINION Significant progress has been made in recent years in method development and their application. However, there is still work to be done before the use of in silico models, in vitro cell systems, and AI can consistently offer meaningful correlations and relationships to clinical data. This gap is partly due to limited patient data, but a lot can be achieved through in vivo research in animal models.
Collapse
Affiliation(s)
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Khoury N, Pizzo ME, Discenza CB, Joy D, Tatarakis D, Todorov MI, Negwer M, Ha C, De Melo GL, Sarrafha L, Simon MJ, Chan D, Chau R, Chew KS, Chow J, Clemens A, Robles-Colmenares Y, Dugas JC, Duque J, Kaltenecker D, Kane H, Leung A, Lozano E, Moshkforoush A, Roche E, Sandmann T, Tong M, Xa K, Zhou Y, Lewcock JW, Ertürk A, Thorne RG, Calvert MEK, Yu Zuchero YJ. Fc-engineered large molecules targeting blood-brain barrier transferrin receptor and CD98hc have distinct central nervous system and peripheral biodistribution. Nat Commun 2025; 16:1822. [PMID: 39979268 PMCID: PMC11842567 DOI: 10.1038/s41467-025-57108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Blood brain barrier-crossing molecules targeting transferrin receptor (TfR) and CD98 heavy chain (CD98hc) are widely reported to promote enhanced brain delivery of therapeutics. Here, we provide a comprehensive and unbiased biodistribution characterization of TfR and CD98hc antibody transport vehicles (ATVTfR and ATVCD98hc) compared to control IgG. Mouse whole-body tissue clearing reveals distinct organ localization for each molecule. In the brain, ATVTfR and ATVCD98hc achieve enhanced exposure and parenchymal distribution even when brain exposures are matched between ATV and control IgG in bulk tissue. Using a combination of cell sorting and single-cell RNAseq, we reveal that control IgG is nearly absent from parenchymal cells and is distributed primarily to brain perivascular and leptomeningeal cells. In contrast, ATVTfR and ATVCD98hc exhibit broad and unique parenchymal cell-type distribution. Finally, we profile in detail brain region-specific biodistribution of ATVTfR in cynomolgus monkey brain and spinal cord. Taken together, this in-depth multiscale characterization will guide platform selection for therapeutic targets of interest.
Collapse
Affiliation(s)
- Nathalie Khoury
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Claire B Discenza
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Joy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Tatarakis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | | | - Connie Ha
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Gabrielly L De Melo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Lily Sarrafha
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Matthew J Simon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Darren Chan
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Roni Chau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kylie S Chew
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Johann Chow
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Allisa Clemens
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Jason C Dugas
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph Duque
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Holly Kane
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Amy Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Edwin Lozano
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Arash Moshkforoush
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Elysia Roche
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Thomas Sandmann
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mabel Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaitlin Xa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Yinhan Zhou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph W Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Robert G Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Y Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| |
Collapse
|
17
|
Flores-Prieto DE, Stabenfeldt SE. Nanoparticle targeting strategies for traumatic brain injury. J Neural Eng 2024; 21:061007. [PMID: 39622184 DOI: 10.1088/1741-2552/ad995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Collapse
Affiliation(s)
- David E Flores-Prieto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
18
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
19
|
Mayr E, Rotter J, Kuhrt H, Winter K, Stassart RM, Streit WJ, Bechmann I. Detection of molecular markers of ferroptosis in human Alzheimer's disease brains. J Alzheimers Dis 2024; 102:1133-1154. [PMID: 39529255 DOI: 10.1177/13872877241296563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND We have previously shown that droplet degeneration (DD) signifies the beginning of neuritic plaque formation during Alzheimer's disease (AD) pathogenesis. As microglia associated with neuritic plaques exhibited strong ferritin expression and Perl's iron staining showed iron in microglia, droplet spheres and neuritic plaque cores, we hypothesized that DD is a form of ferroptosis. OBJECTIVE Detection of molecular markers of ferroptosis in AD brains. METHODS Immunohistochemical detection of transferrin receptor (TfR) and ferritin as ferroptosis markers in prefrontal cortex of AD brains, investigation of spatial correlation of these with histopathological hallmarks of AD, visualization of ferroptotic marker genes by in situ hybridization, comparison of expression of ferroptosis genes with snRNAseq analyses and comparison of TfR and ferritin expression in different neurofibrillary tangle (NFT) stages. RESULTS TfR was found on neurons that appeared to be degenerating and exhibited typical features of droplet degeneration. Co-localization with hyperphosphorylated tau (p-tau) was a rare event. TfR-positive neurons increased with higher NFT stages as did ferritin expression in microglia. mRNA of genes linked to ferroptosis was detected in pretangles and p-tau negative neurons, less in DD. snRNAseq analyses support a link between AD, ferroptosis and TfR as a ferroptosis marker. CONCLUSIONS Increased expression of TfR and ferritin in high NFT stages, demonstration of ferroptotic marker genes in Alzheimer's lesions, as well as snRNAseq analyses strengthen our hypothesis that DD represents ferroptosis. Because of the morphological similarity between TfR-positive structures and DD, TfR might be an early ferroptosis marker expressed transiently during AD pathogenesis.
Collapse
Affiliation(s)
- Emily Mayr
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Jonas Rotter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Ruth Martha Stassart
- Paul Flechsig Institute of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
20
|
Yan C, Gu J, Yin S, Wu H, Lei X, Geng F, Zhang N, Wu X. Design and preparation of naringenin loaded functional biomimetic nano-drug delivery system for Alzheimer's disease. J Drug Target 2024; 32:80-92. [PMID: 38044844 DOI: 10.1080/1061186x.2023.2290453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Efficient brain drug delivery has been a challenge in the treatment of Alzheimer's Disease and other brain disorders as blood-brain barrier (BBB) impedes most drugs to reach brain. To overcome this obstacle, we developed a novel TGN decorated erythrocyte membrane-coated poly (lactic-co-glycolic acid) nanoparticle (TRNNs). The nanoparticle significantly boosted the penetration (7.3 times) in a U-118MG and HCMEC/D3 cell co-culture BBB model in vitro. Living image was performed to assess the TRNNs distribution in vivo. The fluorescence intensity in the isolated brain of TRDNs-treated mice was about 8 times that of the DNs-treated. In the novel object recognition test, the mice after administration of TRDNs showed higher recognition index (0.414 ± 0.016) than the model group (0.275 ± 0.019). A significant increase in the number of dendritic spines from TRNNs administrated mice hippocampi neurons was observed after Golgi stain. This improvement of neurons was also confirmed by the significant high expression of PSD95 protein level in hippocampi. We measured the OD values of Aβ25-35 induced PC12 cells that pre-treatment with different nanoparticles and concluded that TRNNs had a robust neuroprotection effect. Above all, functional biomimetic nanoparticles could increase the accumulation of naringenin into brain, thereby enable the drug to exert greater therapeutic effects.
Collapse
Affiliation(s)
- Chang Yan
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Jinlian Gu
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Shun Yin
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Xia Lei
- Jiangsu MC Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Fang Geng
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| | - Ning Zhang
- Jiangsu MC Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaodan Wu
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, China
| |
Collapse
|
21
|
Virameteekul S, Lees AJ, Bhidayasiri R. Small Particles, Big Potential: Polymeric Nanoparticles for Drug Delivery in Parkinson's Disease. Mov Disord 2024; 39:1922-1937. [PMID: 39077831 DOI: 10.1002/mds.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the availability of a number of efficacious treatments for Parkinson's disease, their limitations and drawbacks, particularly related to low brain bioavailability and associated side effects, emphasize the need for alternative and more effective therapeutic approaches. Nanomedicine, the application of nanotechnology in medicine, has received considerable interest in recent years as a method of effectively delivering potentially therapeutic molecules to the brain. In particular, polymeric nanoparticles, constructed from biodegradable polymer, have shown great promise in enhancing therapeutic efficacy, reducing toxicity, and ensuring targeted delivery. However, their clinical translation remains a considerable challenge. This article reviews recent in vitro and in vivo studies using polymeric nanoparticles as drug and gene delivery systems for Parkinson's disease with their challenges and future directions. We are also particularly interested in the technical properties, mechanism, drugs release patterns, and delivery strategies to overcome the blood-brain barrier. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
22
|
Yao Z, Jiao Q, Du X, Jia F, Chen X, Yan C, Jiang H. Ferroptosis in Parkinson's disease -- The iron-related degenerative disease. Ageing Res Rev 2024; 101:102477. [PMID: 39218077 DOI: 10.1016/j.arr.2024.102477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron metabolism related proteins are involved in the ferroptosis progression in PD. However, the effect of these proteins in the ferroptosis of PD has not been systematically summarized. This review focuses on the roles of iron metabolism related proteins in the ferroptosis of PD. Finally, we put forward the iron early diagnosis according to the observation of iron deposits in the brain and showed the recent advances in iron chelation therapy in PD.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
23
|
Wang F, Qi L, Zhang Z, Duan H, Wang Y, Zhang K, Li J. The Mechanism and Latest Research Progress of Blood-Brain Barrier Breakthrough. Biomedicines 2024; 12:2302. [PMID: 39457617 PMCID: PMC11504064 DOI: 10.3390/biomedicines12102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The bloodstream and the central nervous system (CNS) are separated by the blood-brain barrier (BBB), an intricate network of blood vessels. Its main role is to regulate the environment within the brain. The primary obstacle for drugs to enter the CNS is the low permeability of the BBB, presenting a significant hurdle in treating brain disorders. In recent years, significant advancements have been made in researching methods to breach the BBB. However, understanding how to penetrate the BBB is essential for researching drug delivery techniques. Therefore, this article reviews the methods and mechanisms for breaking through the BBB, as well as the current research progress on this mechanism.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Liujie Qi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Zhongna Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Huimin Duan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Yanchao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (F.W.); (L.Q.); (Z.Z.); (H.D.); (Y.W.)
| |
Collapse
|
24
|
Burkhart A, Johnsen KB, Skjørringe T, Nielsen AH, Routhe LJ, Hertz S, Møller LB, Thomsen LL, Moos T. Normalization of Fetal Cerebral and Hepatic Iron by Parental Iron Therapy to Pregnant Rats with Systemic Iron Deficiency without Anemia. Nutrients 2024; 16:3264. [PMID: 39408231 PMCID: PMC11479134 DOI: 10.3390/nu16193264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Iron (Fe) is a co-factor for enzymes of the developing brain necessitating sufficient supply. We investigated the effects of administering ferric derisomaltose/Fe isomaltoside (FDI) subcutaneously to Fe-deficient (ID) pregnant rats on cerebral and hepatic concentrations of essential metals and the expression of iron-relevant genes. METHODS Pregnant rats subjected to ID were injected with FDI on the day of mating (E0), 14 days into pregnancy (E14), or the day of birth (postnatal (P0)). The efficacy was evaluated by determination of cerebral and hepatic Fe, copper (Cu), and zinc (Zn) and gene expression of ferroportin, hepcidin, and ferritin H + L in pups on P0 and as adults on P70. RESULTS Females fed an ID diet (5.2 mg/kg Fe) had offspring with significantly lower cerebral and hepatic Fe compared to female controls fed a standard diet (158 mg/kg Fe). Cerebral Cu increased irrespective of supplying a standard diet or administering FDI combined with the standard diet. Hepatic hepcidin mRNA was significantly lower following ID. Cerebral hepcidin mRNA was hardly detectable irrespective of iron status. CONCLUSIONS In conclusion, administering FDI subcutaneously to ID pregnant rats on E0 normalizes fetal cerebral and hepatic Fe. When applied at later gestational ages, supplementation with additional Fe to the offspring is needed to normalize cerebral and hepatic Fe.
Collapse
Affiliation(s)
- Annette Burkhart
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Kasper Bendix Johnsen
- Section of Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Tina Skjørringe
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Asbjørn Haaning Nielsen
- Division of Water and Soil, Department of the Built Environment, Aalborg University, 9220 Aalborg, Denmark;
| | - Lisa Juul Routhe
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Sandra Hertz
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| | - Lisbeth Birk Møller
- Center for Applied Human Genetics, Kennedy Center, Copenhagen University Hospital, 2600 Glostrup, Denmark;
| | | | - Torben Moos
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (A.B.); (T.S.); (L.J.R.)
| |
Collapse
|
25
|
Rodrigues RO, Shin SR, Bañobre-López M. Brain-on-a-chip: an emerging platform for studying the nanotechnology-biology interface for neurodegenerative disorders. J Nanobiotechnology 2024; 22:573. [PMID: 39294645 PMCID: PMC11409741 DOI: 10.1186/s12951-024-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Neurological disorders have for a long time been a global challenge dismissed by drug companies, especially due to the low efficiency of most therapeutic compounds to cross the brain capillary wall, that forms the blood-brain barrier (BBB) and reach the brain. This has boosted an incessant search for novel carriers and methodologies to drive these compounds throughout the BBB. However, it remains a challenge to artificially mimic the physiology and function of the human BBB, allowing a reliable, reproducible and throughput screening of these rapidly growing technologies and nanoformulations (NFs). To surpass these challenges, brain-on-a-chip (BoC) - advanced microphysiological platforms that emulate key features of the brain composition and functionality, with the potential to emulate pathophysiological signatures of neurological disorders, are emerging as a microfluidic tool to screen new brain-targeting drugs, investigate neuropathogenesis and reach personalized medicine. In this review, the advance of BoC as a bioengineered screening tool of new brain-targeting drugs and NFs, enabling to decipher the intricate nanotechnology-biology interface is discussed. Firstly, the main challenges to model the brain are outlined, then, examples of BoC platforms to recapitulate the neurodegenerative diseases and screen NFs are summarized, emphasizing the current most promising nanotechnological-based drug delivery strategies and lastly, the integration of high-throughput screening biosensing systems as possible cutting-edge technologies for an end-use perspective is discussed as future perspective.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
- CMEMS-UMinho, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Su-Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA.
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal.
| |
Collapse
|
26
|
Madadi AK, Sohn MJ. Advances in Intrathecal Nanoparticle Delivery: Targeting the Blood-Cerebrospinal Fluid Barrier for Enhanced CNS Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1070. [PMID: 39204177 PMCID: PMC11357388 DOI: 10.3390/ph17081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The blood-cerebrospinal fluid barrier (BCSFB) tightly regulates molecular exchanges between the bloodstream and cerebrospinal fluid (CSF), creating challenges for effective central nervous system (CNS) drug delivery. This review assesses intrathecal (IT) nanoparticle (NP) delivery systems that aim to enhance drug delivery by circumventing the BCSFB, complementing approaches that target the blood-brain barrier (BBB). Active pharmaceutical ingredients (APIs) face hurdles like restricted CNS distribution and rapid clearance, which diminish the efficacy of IT therapies. NPs can be engineered to extend drug circulation times, improve CNS penetration, and facilitate sustained release. This review discusses key pharmacokinetic (PK) parameters essential for the effectiveness of these systems. NPs can quickly traverse the subarachnoid space and remain within the leptomeninges for extended periods, often exceeding three weeks. Some designs enable deeper brain parenchyma penetration. Approximately 80% of NPs in the CSF are cleared through the perivascular glymphatic pathway, with microglia-mediated transport significantly contributing to their paravascular clearance. This review synthesizes recent progress in IT-NP delivery across the BCSFB, highlighting critical findings, ongoing challenges, and the therapeutic potential of surface modifications and targeted delivery strategies.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjingu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, Inje University Ilsan Paik Hospital, College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
27
|
Lau K, Kotzur R, Richter F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy. Transl Neurodegener 2024; 13:37. [PMID: 39075566 PMCID: PMC11285262 DOI: 10.1186/s40035-024-00430-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) alterations in Parkinson's disease (PD), the second most common neurodegenerative disorder with rapidly rising prevalence. Altered tight junction and transporter protein levels, accumulation of α-synuclein and increase in inflammatory processes lead to extravasation of blood molecules and vessel degeneration. This could result in a self-perpetuating pathophysiology of inflammation and BBB alteration, which contribute to neurodegeneration. Toxin exposure or α-synuclein over-expression in animal models has been shown to initiate similar pathologies, providing a platform to study underlying mechanisms and therapeutic interventions. Here we provide a comprehensive review of the current knowledge on BBB alterations in PD patients and how rodent models that replicate some of these changes can be used to study disease mechanisms. Specific challenges in assessing the BBB in patients and in healthy controls are discussed. Finally, a potential role of BBB alterations in disease pathogenesis and possible implications for therapy are explored. The interference of BBB alterations with current and novel therapeutic strategies requires more attention. Brain region-specific BBB alterations could also open up novel opportunities to target specifically vulnerable neuronal subpopulations.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Rebecca Kotzur
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
28
|
Helgudóttir SS, Johnsen KB, Routhe LG, Rasmussen CLM, Thomsen MS, Moos T. Upregulation of Transferrin Receptor 1 (TfR1) but Not Glucose Transporter 1 (GLUT1) or CD98hc at the Blood-Brain Barrier in Response to Valproic Acid. Cells 2024; 13:1181. [PMID: 39056763 PMCID: PMC11275047 DOI: 10.3390/cells13141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Transferrin receptor 1 (TfR1), glucose transporter 1 (GLUT1), and CD98hc are candidates for targeted therapy at the blood-brain barrier (BBB). Our objective was to challenge the expression of TfR1, GLUT1, and CD98hc in brain capillaries using the histone deacetylase inhibitor (HDACi) valproic acid (VPA). METHODS Primary mouse brain capillary endothelial cells (BCECs) and brain capillaries isolated from mice injected intraperitoneally with VPA were examined using RT-qPCR and ELISA. Targeting to the BBB was performed by injecting monoclonal anti-TfR1 (Ri7217)-conjugated gold nanoparticles measured using ICP-MS. RESULTS In BCECs co-cultured with glial cells, Tfrc mRNA expression was significantly higher after 6 h VPA, returning to baseline after 24 h. In vivo Glut1 mRNA expression was significantly higher in males, but not females, receiving VPA, whereas Cd98hc mRNA expression was unaffected by VPA. TfR1 increased significantly in vivo after VPA, whereas GLUT1 and CD98hc were unchanged. The uptake of anti-TfR1-conjugated nanoparticles was unaltered by VPA despite upregulated TfR expression. CONCLUSIONS VPA upregulates TfR1 in brain endothelium in vivo and in vitro. VPA does not increase GLUT1 and CD98hc proteins. The increase in TfR1 does not result in higher anti-TfR1 antibody targetability, suggesting targeting sufficiently occurs with available transferrin receptors without further contribution from accessory VPA-induced TfR1.
Collapse
Affiliation(s)
- Steinunn Sara Helgudóttir
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Kasper Bendix Johnsen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Lisa Greve Routhe
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Charlotte Laurfelt Munch Rasmussen
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| | - Torben Moos
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.S.H.); (L.G.R.); (C.L.M.R.)
| |
Collapse
|
29
|
Liang Y, Fan T, Bai M, Cui N, Li W, Wang J, Guan Y. Chikusetsu Saponin IVa liposomes modified with a retro-enantio peptide penetrating the blood-brain barrier to suppress pyroptosis in acute ischemic stroke rats. J Nanobiotechnology 2024; 22:393. [PMID: 38965602 PMCID: PMC11223377 DOI: 10.1186/s12951-024-02641-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The therapeutic strategies for acute ischemic stroke were faced with substantial constraints, emphasizing the necessity to safeguard neuronal cells during cerebral ischemia to reduce neurological impairments and enhance recovery outcomes. Despite its potential as a neuroprotective agent in stroke treatment, Chikusetsu saponin IVa encounters numerous challenges in clinical application. RESULT Brain-targeted liposomes modified with THRre peptides showed substantial uptake by bEnd. 3 and PC-12 cells and demonstrated the ability to cross an in vitro blood-brain barrier model, subsequently accumulating in PC-12 cells. In vivo, they could significantly accumulate in rat brain. Treatment with C-IVa-LPs-THRre notably reduced the expression of proteins in the P2RX7/NLRP3/Caspase-1 pathway and inflammatory factors. This was evidenced by decreased cerebral infarct size and improved neurological function in MCAO rats. CONCLUSION The findings indicate that C-IVa-LPs-THRre could serve as a promising strategy for targeting cerebral ischemia. This approach enhances drug concentration in the brain, mitigates pyroptosis, and improves the neuroinflammatory response associated with stroke.
Collapse
Affiliation(s)
- Yitong Liang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Min Bai
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Na Cui
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Wangting Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China.
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Changle West Road 127, Xi'an, Shaanxi, China.
| |
Collapse
|
30
|
Rintz E, Banacki M, Ziemian M, Kobus B, Wegrzyn G. Causes of death in mucopolysaccharidoses. Mol Genet Metab 2024; 142:108507. [PMID: 38815294 DOI: 10.1016/j.ymgme.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished. Despite the common primary metabolic deficit (inefficient GAG degradation), the course and symptoms of various MPS types can be different, though majority of the diseases from the group are characterized by severe symptoms and significantly shortened live span. Here, we analysed the frequency of specific, direct causes of death of patients with different MPS types, the subject which was not investigated comprehensively to date. We examined a total of 1317 cases of death among MPS patients, including 393 cases of MPS I, 418 cases of MPS II, 232 cases of MPS III, 45 cases of MPS IV, 208 cases of MPS VI, and 22 cases of MPS VII. Our analyses indicated that the most frequent causes of death differ significantly between MPS types, with cardiovascular and respiratory failures being predominant in MPS I, MPS II, and MPS VI, neurological deficits in MPS III, respiratory issues in MPS IV, and hydrops fetalis in MPS VII. Results of such studies suggest what specific clinical problems should be considered with the highest priority in specific MPS types, apart from attempts to correct the primary causes of the diseases, to improve the quality of life of patients and to prolong their lives.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland.
| | - Marcin Banacki
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Maja Ziemian
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Barbara Kobus
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| |
Collapse
|
31
|
Zhang T, Yin H, Li Y, Yang H, Ge K, Zhang J, Yuan Q, Dai X, Naeem A, Weng Y, Huang Y, Liang XJ. Optimized lipid nanoparticles (LNPs) for organ-selective nucleic acids delivery in vivo. iScience 2024; 27:109804. [PMID: 38770138 PMCID: PMC11103379 DOI: 10.1016/j.isci.2024.109804] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Nucleic acid therapeutics offer tremendous promise for addressing a wide range of common public health conditions. However, the in vivo nucleic acids delivery faces significant biological challenges. Lipid nanoparticles (LNPs) possess several advantages, such as simple preparation, high stability, efficient cellular uptake, endosome escape capabilities, etc., making them suitable for delivery vectors. However, the extensive hepatic accumulation of LNPs poses a challenge for successful development of LNPs-based nucleic acid therapeutics for extrahepatic diseases. To overcome this hurdle, researchers have been focusing on modifying the surface properties of LNPs to achieve precise delivery. The review aims to provide current insights into strategies for LNPs-based organ-selective nucleic acid delivery. In addition, it delves into the general design principles, targeting mechanisms, and clinical development of organ-selective LNPs. In conclusion, this review provides a comprehensive overview to provide guidance and valuable insights for further research and development of organ-selective nucleic acid delivery systems.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yin
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002 China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xuyan Dai
- Apharige Therapeutics Co., Ltd, Beijing 102629, China
| | - Abid Naeem
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
32
|
Huang Q, Chan KY, Wu J, Botticello-Romero NR, Zheng Q, Lou S, Keyes C, Svanbergsson A, Johnston J, Mills A, Lin CY, Brauer PP, Clouse G, Pacouret S, Harvey JW, Beddow T, Hurley JK, Tobey IG, Powell M, Chen AT, Barry AJ, Eid FE, Chan YA, Deverman BE. An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery. Science 2024; 384:1220-1227. [PMID: 38753766 DOI: 10.1126/science.adm8386] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.
Collapse
Affiliation(s)
- Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Ken Y Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Jason Wu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Nuria R Botticello-Romero
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Shan Lou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Casey Keyes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Alexander Svanbergsson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Jencilin Johnston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Allan Mills
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Chin-Yen Lin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Pamela P Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Gabrielle Clouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Simon Pacouret
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - John W Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Jenna K Hurley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Isabelle G Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Megan Powell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Albert T Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Andrew J Barry
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Fatma-Elzahraa Eid
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Department of Systems and Computer Engineering, Faculty of Engineering, Al-Azhar University, Cairo 11651, Egypt
| | - Yujia A Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Benjamin E Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
33
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
34
|
Yeoh YQ, Amin A, Cuic B, Tomas D, Turner BJ, Shabanpoor F. Efficient systemic CNS delivery of a therapeutic antisense oligonucleotide with a blood-brain barrier-penetrating ApoE-derived peptide. Biomed Pharmacother 2024; 175:116737. [PMID: 38749176 DOI: 10.1016/j.biopha.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.
Collapse
Affiliation(s)
- Yuan Qi Yeoh
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Doris Tomas
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
35
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
36
|
Hameedat F, Mendes BB, Conniot J, Di Filippo LD, Chorilli M, Schroeder A, Conde J, Sousa F. Engineering nanomaterials for glioblastoma nanovaccination. NATURE REVIEWS MATERIALS 2024; 9:628-642. [DOI: 10.1038/s41578-024-00684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 01/03/2025]
|
37
|
Körbelin J, Arrulo A, Schwaninger M. Gene therapy targeting the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:191-217. [PMID: 39029973 DOI: 10.1016/bs.vh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
Collapse
Affiliation(s)
- Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana Arrulo
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
38
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
39
|
Huang Q, Chan KY, Lou S, Keyes C, Wu J, Botticello-Romero NR, Zheng Q, Johnston J, Mills A, Brauer PP, Clouse G, Pacouret S, Harvey JW, Beddow T, Hurley JK, Tobey IG, Powell M, Chen AT, Barry AJ, Eid FE, Chan YA, Deverman BE. An AAV capsid reprogrammed to bind human Transferrin Receptor mediates brain-wide gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572615. [PMID: 38187643 PMCID: PMC10769326 DOI: 10.1101/2023.12.20.572615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an AAV capsid, BI-hTFR1, that binds human Transferrin Receptor (TfR1), a protein expressed on the blood-brain barrier (BBB). BI-hTFR1 was actively transported across a human brain endothelial cell layer and, relative to AAV9, provided 40-50 times greater reporter expression in the CNS of human TFRC knock-in mice. The enhanced tropism was CNS-specific and absent in wild type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared to AAV9. These findings establish BI-hTFR1 as a promising vector for human CNS gene therapy.
Collapse
Affiliation(s)
- Qin Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Shan Lou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Casey Keyes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jason Wu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | | | - Qingxia Zheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jencilin Johnston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Allan Mills
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Pamela P. Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Gabrielle Clouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Simon Pacouret
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - John W. Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Thomas Beddow
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Jenna K. Hurley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Isabelle G. Tobey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Megan Powell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Albert T. Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Andrew J. Barry
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Fatma-Elzahraa Eid
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
- Department of Systems and Computer Engineering, Faculty of Engineering, Al-Azhar University; Cairo, Egypt
| | - Yujia A. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, USA
| |
Collapse
|
40
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
41
|
Bangari DS, Lanigan LG, Cramer SD, Grieves JL, Meisner R, Rogers AB, Galbreath EJ, Bolon B. Toxicologic Neuropathology of Novel Biotherapeutics. Toxicol Pathol 2023; 51:414-431. [PMID: 38380881 DOI: 10.1177/01926233241230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - René Meisner
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | |
Collapse
|
42
|
Amruta A, Iannotta D, Cheetham SW, Lammers T, Wolfram J. Vasculature organotropism in drug delivery. Adv Drug Deliv Rev 2023; 201:115054. [PMID: 37591370 PMCID: PMC10693934 DOI: 10.1016/j.addr.2023.115054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Over the past decades, there has been an exponential increase in the development of preclinical and clinical nanodelivery systems, and recently, an accelerating demand to deliver RNA and protein-based therapeutics. Organ-specific vasculature provides a promising intermediary for site-specific delivery of nanoparticles and extracellular vesicles to interstitial cells. Endothelial cells express organ-specific surface marker repertoires that can be used for targeted delivery. This article highlights organ-specific vasculature properties, nanodelivery strategies that exploit vasculature organotropism, and overlooked challenges and opportunities in targeting and simultaneously overcoming the endothelial barrier. Impediments in the clinical translation of vasculature organotropism in drug delivery are also discussed.
Collapse
Affiliation(s)
- A Amruta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO-ABCD), 52074 Aachen, Germany
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Fatani AS, Petkova A, Schatzlein AG, Uchegbu IF. Dose-dependent delivery of genes to the cerebral cortex via the nasal route. Int J Pharm 2023; 644:123343. [PMID: 37633538 DOI: 10.1016/j.ijpharm.2023.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The use of nucleic acids to treat various brain diseases could offer new therapeutic modalities, providing the nucleic acids may be effectively delivered to areas of the brain using non-toxic vectors. In this study, we present evidence that genes may be successfully delivered in a dose-dependent manner via the nose, primarily to the cerebral cortex using a 6-O-glycolchitosan (GC) formulation of plasmid DNA. Positively charged (zeta potential = +13 - + 25 mV) GC-DNA nanoparticles of 100-500 nm in diameter with favourable cell biocompatibility were shown to deliver the reporter Green Fluorescent Protein (GFP) plasmid to the U87MG cell line and the resulting protein expression was not significantly different from that obtained with Lipofectamine 2000. On intranasal delivery of GC-luciferase-plasmid nanoparticles to Balb/ C mice at 4 doses, ranging from 0.02 to 0.1 mg/ kg, luciferase activity was observed qualitatively in intact mouse brains, 48 h after intranasal, using the IV-VIS visualisation. In further confirmation of brain delivery, dose-dependent protein expression was quantified in multiple brain areas 48 h after dosing; with protein expression seen mainly in the cerebral cortex and striatum and following expression levels: cerebral cortex = olfactory bulb > striatum > brain stem > mid brain = cerebellum. No protein expression was observed in the liver and lungs of dosed animals. GC-DNA protein expression was not significantly different to that observed with Lipofectamine 2000. These results demonstrate that GC-DNA nanoparticles are able to deliver genes preferably to specific brain regions such as the cerebral cortex and striatum; offering the possibility of using genes to treat a range of neurological disorders using a non-invasive method of dosing.
Collapse
Affiliation(s)
| | - Asya Petkova
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Andreas G Schatzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., Block Y, Northwick Park and St Mark's Hospital, Watford Road, Harrow HA1 3UJ, UK.
| |
Collapse
|
44
|
Li X, Pu X, Wang X, Wang J, Liao X, Huang Z, Yin G. A dual-targeting peptide for glioblastoma screened by phage display peptide library biopanning combined with affinity-adaptability analysis. Int J Pharm 2023; 644:123306. [PMID: 37572856 DOI: 10.1016/j.ijpharm.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The obstruction of blood-brain barrier (BBB) and the poor specific targeting are still the major obstacles and challenges of targeted nano-pharmaceutical therapy for glioblastoma (GBM) up to now. It is critical to find appropriate targeting ligands that can effectively mediate the nano-pharmaceuticals to penetrate brain capillary endothelial cells (BCECs) and then specifically bind to glioblastoma cells (GCs). Herein, a dual-targeting ligand for GBM was screened by the combination of phage display peptide library biopanning and affinity-adaptability analysis. Based on the acquisition of sub-library of peptide which exhibited the specific affinity to both BCECs and GCs, a comparison parameter of relative affinity was deliberately introduced to evaluate the relative affinity of candidate peptides to U251-MG cells and bEnd.3 cells. The optimized WTW peptide (sequenced as WTWEYTK) was provided with a high relative affinity (RU/B = 2.44), implying that its high affinity to U251-MG cells and moderate affinity to bEnd.3 cells might synergistically promote its receptor-mediated internalization and transport, the dissociation from bEnd.3, and the binding to U251-MG. The results of BBB model trials in vitro showed that the BBB penetration efficiency and GBM accumulation of WTW peptide were significantly higher than those of WSL peptide, GNH peptide, and REF peptide. Results of orthotopic GBM xenograft model assays in vivo also indicated that WTW peptide had successfully penetrated the BBB and improved accumulation in GBM. The screened WTW peptide might be the potential dual-targeting ligand to motivate the advancement of GBM targeted therapy.
Collapse
Affiliation(s)
- Xiaoxu Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Zhongbin Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
45
|
Martins C, Sarmento B. Multi-ligand functionalized blood-to-tumor sequential targeting strategies in the field of glioblastoma nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1893. [PMID: 37186374 DOI: 10.1002/wnan.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/17/2023]
Abstract
Glioblastoma (GBM) is an unmet clinical need characterized by a standard of care (SOC) 5-year survival rate of only 5%, and a treatment mostly palliative. Significant hurdles in GBM therapies include an effective penetration of therapeutics through the brain protective barrier, namely the blood-brain barrier (BBB), and a successful therapeutic delivery to brain-invading tumor cells post-BBB crossing. These hurdles, along with the poor prognosis and critical heterogeneity of the disease, have shifted attention to treatment modalities with capacity to precisely and sequentially target (i) BBB cells, inducing blood-to-brain transport, and (ii) GBM cells, leading to a higher therapeutic accumulation at the tumor site. This sequential targeting allows therapeutic molecules to reach the brain parenchyma and compromise molecular processes that support tumor cell invasion. Besides improving formulation and pharmacokinetics constraints of drugs, nanomedicines offer the possibility of being surface functionalized with multiple possibilities of targeting ligands, while delivering the desired therapeutic cargos to the biological sites of interest. Targeting ligands exploit the site-specific expression or overexpression of specific molecules on BBB and GBM cells, triggering brain plus tumor transport. Since the efficacy of single-ligand functionalized nanomedicines is limited due to the GBM anatomical site (brain) and disease complexity, this review presents an overview of multi-ligand functionalized, BBB and GBM sequentially- and dual-targeted nanomedicines reported in literature over the last 10 years. The role of the BBB in GBM progression, treatment options, and the multiple possibilities of currently available targeting ligands will be summarized. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- IUCS-CESPU, Gandra, Portugal
| |
Collapse
|
46
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW, Guo DY. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int J Nanomedicine 2023; 18:4275-4311. [PMID: 37534056 PMCID: PMC10392909 DOI: 10.2147/ijn.s410688] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Ya-Jun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jun-Bo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jia-Wen Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
47
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
48
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
49
|
Feng Y, Cao Y, Singh R, Janjua TI, Popat A. Silica nanoparticles for brain cancer. Expert Opin Drug Deliv 2023; 20:1749-1767. [PMID: 37905998 DOI: 10.1080/17425247.2023.2273830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Brain cancer is a debilitating disease with a poor survival rate. There are significant challenges for effective treatment due to the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB) which impedes drug delivery to tumor sites. Many nanomedicines have been tested in improving both the survival and quality of life of patients with brain cancer with the recent focus on inorganic nanoparticles such as silica nanoparticles (SNPs). This review examines the use of SNPs as a novel approach for diagnosing, treating, and theranostics of brain cancer. AREAS COVERED The review provides an overview of different brain cancers and current therapies available. A special focus on the key functional properties of SNPs is discussed which makes them an attractive material in the field of onco-nanomedicine. Strategies to overcome the BBB using SNPs are analyzed. Furthermore, recent advancements in active targeting, combination therapies, and innovative nanotherapeutics utilizing SNPs are discussed. Safety considerations, toxicity profiles, and regulatory aspects are addressed to provide an understanding of SNPs' translational potential. EXPERT OPINION SNPs have tremendous prospects in brain cancer research. The multifunctionality of SNPs has the potential to overcome both the BBB and BTB limitations and can be used for brain cancer imaging, drug delivery, and theranostics. The insights provided will facilitate the development of next-generation, innovative strategies, guiding future research toward improved diagnosis, targeted therapy, and better outcomes in brain cancer patients.
Collapse
Affiliation(s)
- Yuran Feng
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Ravi Singh
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|