1
|
Wan Y, Ye L, Zheng J, Tang Y, Chan EWC, Chen S. Starvation-induced mutagenesis in rhsC and ybfD genes extends bacterial tolerance to various stresses by boosting efflux function. Microbiol Res 2025; 295:128106. [PMID: 39999722 DOI: 10.1016/j.micres.2025.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Recent evidence showed that bacteria actively maintained a range of physiological functions to enhance survival fitness under adverse growth conditions. In this study, we investigated whether bacteria need to undergo active genetic changes for stress-protection purposes if environmental stress persists. Our results revealed that mutations became detectable at specific sites in several genes in E. coli after encountering starvation conditions for six days. This discovery is groundbreaking since bacteria are not known to undergo site-specific mutagenesis during prolonged starvation when most physiological activities are down-regulated. The genes in which mutations were consistently detected in the tolerant population were ybfD and rhsC within the ybf gene cluster, which are predicted to encode components of a transporter. To assess the impact of these mutations on bacterial survival, mutants with single or double mutations in these genes were generated and tested. The results demonstrated that these mutations caused significant increase in tolerance to antibiotics, heat, and oxidative stresses. Functional analysis indicated that the E. coli BW25113::ybfDrhsC double mutant exhibited elevated efflux activity, and that expression of the rhsC gene was suppressed in the E. coli BW25113:: ybfD mutant, suggesting that mutations in these two genes act synergistically to strengthen the stress tolerance phenotype. Consistently, deletion of the ybfD and rhsC genes resulted in significantly reduced tolerance under prolonged starvation conditions. Understanding the mechanisms of bacterial site-specific mutagenesis that enable bacteria to withstand multiple stresses over extended periods could aid development of innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Yingkun Wan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lianwei Ye
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jiaqi Zheng
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yang Tang
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Lab of Food Microbial Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Husain K, Sachdeva V, Ravasio R, Peruzzo M, Liu W, Good BH, Murugan A. Direct and indirect selection in a proofreading polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618309. [PMID: 39464107 PMCID: PMC11507774 DOI: 10.1101/2024.10.14.618309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The traits that affect evolvability are subject to indirect selection, as these traits affect the course of evolution over many generations rather than the direct replicative fitness of an individual. However, the evolution of evolvability-determining traits is often difficult to study because putative evolvability alleles often have confounding direct fitness effects of unknown origin and size. Here, we study theoretically and experimentally the evolution of mutation rates in proofreading polymerases with orthogonal control of direct and indirect selection. Mutagenic DNA polymerases enjoy a long-time fitness advantage by enhancing the rate of acquiring beneficial mutations. However, this is offset by a short-time fitness penalty, which we trace to a counterintuitive trade-off between mutation rates and activity in proofreading polymerases. Since these fitness effects act on different timescales, no one number characterizes the fitness of a mutator allele. We find unusual dynamic features in the resulting evolutionary dynamics, such as kinetic exclusion, selection by dynamic environments, and Rock-Paper-Scissors dynamics in the absence of ecology. Our work has implications for the evolution of mutation rates and more broadly, evolution in the context of an anti-correlation between mutation rates and short term fitness.
Collapse
Affiliation(s)
- Kabir Husain
- Department of Physics and Astronomy, University College London, United Kingdom
- Department of Physics, University of Chicago, Chicago, IL
| | | | | | | | - Wanqiang Liu
- Department of Physics, University of Chicago, Chicago, IL
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA
- Department of Biology, Stanford University, Stanford, CA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL
| |
Collapse
|
3
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation in S. pombe during heterochromatin misregulation. Dev Cell 2024; 59:2222-2238.e4. [PMID: 39094565 PMCID: PMC11338711 DOI: 10.1016/j.devcel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.
Collapse
Affiliation(s)
- Ajay Larkin
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Colin Kunze
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Justin Curran
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Sophia Lemieux
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | |
Collapse
|
4
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
5
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation during heterochromatin misregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548368. [PMID: 37503217 PMCID: PMC10369875 DOI: 10.1101/2023.07.10.548368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A classical and well-established mechanism that enables cells to adapt to new and adverse conditions is the acquisition of beneficial genetic mutations. Much less is known about epigenetic mechanisms that allow cells to develop novel and adaptive phenotypes without altering their genetic blueprint. It has been recently proposed that histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), normally reserved to maintain genome integrity, can be redistributed across the genome to establish new and potentially adaptive phenotypes. To uncover the dynamics of this process, we developed a precision engineered genetic approach to trigger H3K9me redistribution on-demand in fission yeast. This enabled us to trace genome-scale RNA and chromatin changes over time prior to and during adaptation in long-term continuous cultures. Establishing adaptive H3K9me occurs over remarkably slow time-scales relative to the initiating stress. During this time, we captured dynamic H3K9me redistribution events ultimately leading to cells converging on an optimal adaptive solution. Upon removal of stress, cells relax to new transcriptional and chromatin states rather than revert to their initial (ground) state, establishing a tunable memory for a future adaptive epigenetic response. Collectively, our tools uncover the slow kinetics of epigenetic adaptation that allow cells to search for and heritably encode adaptive solutions, with implications for drug resistance and response to infection.
Collapse
|
7
|
Livnat A, Love AC. Mutation and evolution: Conceptual possibilities. Bioessays 2024; 46:e2300025. [PMID: 38254311 DOI: 10.1002/bies.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024]
Abstract
Although random mutation is central to models of evolutionary change, a lack of clarity remains regarding the conceptual possibilities for thinking about the nature and role of mutation in evolution. We distinguish several claims at the intersection of mutation, evolution, and directionality and then characterize a previously unrecognized category: complex conditioned mutation. Empirical evidence in support of this category suggests that the historically famous fluctuation test should be revisited, and new experiments should be undertaken with emerging experimental techniques to facilitate detecting mutation rates within specific loci at an ultra-high, individual base pair resolution.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Alan C Love
- Department of Philosophy and Minnesota Center for Philosophy of Science, University of Minnesota (Twin Cities), Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, Nielsen FC. Whole genome sequencing in clinical practice. BMC Med Genomics 2024; 17:39. [PMID: 38287327 PMCID: PMC10823711 DOI: 10.1186/s12920-024-01795-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
Whole genome sequencing (WGS) is becoming the preferred method for molecular genetic diagnosis of rare and unknown diseases and for identification of actionable cancer drivers. Compared to other molecular genetic methods, WGS captures most genomic variation and eliminates the need for sequential genetic testing. Whereas, the laboratory requirements are similar to conventional molecular genetics, the amount of data is large and WGS requires a comprehensive computational and storage infrastructure in order to facilitate data processing within a clinically relevant timeframe. The output of a single WGS analyses is roughly 5 MIO variants and data interpretation involves specialized staff collaborating with the clinical specialists in order to provide standard of care reports. Although the field is continuously refining the standards for variant classification, there are still unresolved issues associated with the clinical application. The review provides an overview of WGS in clinical practice - describing the technology and current applications as well as challenges connected with data processing, interpretation and clinical reporting.
Collapse
Affiliation(s)
- Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Sand Jespersen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Reimer Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Mandrioli M. From Environmental Epigenetics to the Inheritance of Acquired Traits: A Historian and Molecular Perspective on an Unnecessary Lamarckian Explanation. Biomolecules 2023; 13:1077. [PMID: 37509113 PMCID: PMC10377537 DOI: 10.3390/biom13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, it has been suggested that epigenetics may enhance the adaptive possibilities of animals and plants to novel environments and/or habitats and that such epigenetic changes may be inherited from parents to offspring, favoring their adaptation. As a consequence, several Authors called for a shift in the Darwinian paradigm, asking for a neo-Lamarckian view of evolution. Regardless of what will be discovered about the mechanisms of rapid adaptation to environmental changes, the description of epigenetic inheritance as a Lamarckian process is incorrect from a historical point of view and useless at a scientific level. At the same time, even if some examples support the presence of adaptation without the involvement of changes in DNA sequences, in the current scenario no revolution is actually occurring, so we are simply working on a stimulating research program that needs to be developed but that is, at present, completely Darwinian.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
10
|
Del Duca S, Vassallo A, Semenzato G, Fani R. Mimicking the last step of gene elongation: hints from the bacterial hisF gene. Gene 2023:147533. [PMID: 37279865 DOI: 10.1016/j.gene.2023.147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Gene elongation consists in an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. Many present-day proteins show internal repeats of amino acid sequences, generated by gene elongation events; however, gene elongation is still a poorly studied evolutionary molecular mechanism. The most documented case is that of the histidine biosynthetic genes hisA and hisF, which derive from the gene elongation of an ancestral gene half the size of the extant ones. The aim of this work was to experimentally simulate the possible last step of the gene elongation event occurred during hisF gene evolution under selective pressure conditions. Azospirillum brasilense hisF gene, carrying a single nucleotide mutation that generates a stop codon between the two halves of the gene, was used to transform the histidine-auxotrophic Escherichia coli strain FB182 (hisF892). The transformed strain was subjected to selective pressure (i.e., low concentration/absence of histidine in the growth medium) and the obtained mutants were characterized. The restoration of prototrophy was strongly dependent on the time of incubation and on the strength of the selective pressure. The mutations involved the introduced stop codon with a single base substitution and none of the mutants restored the wild-type codon. Possible correlations between the different mutations and i) E. coli codon usage, ii) three-dimensional structures of the mutated HisF proteins, and iii) growth ability of the mutants were investigated. On the contrary, when the experiment was repeated by mutating a more conserved codon, only a synonymous substitution was obtained. Thus, experiments performed in this study allowed to mimic a possible gene elongation event occurred during the evolution of hisF gene, evidencing the ability of bacterial cells to modify their genome in short times under selective conditions.
Collapse
Affiliation(s)
- Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy; Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics (CREA-AA), Via di Lanciola 12/A, 50125, Cascine del Riccio (FI), Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano 1, 62032, Camerino (MC) Italy
| | - Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| |
Collapse
|
11
|
Spealman P, De T, Chuong JN, Gresham D. Best Practices in Microbial Experimental Evolution: Using Reporters and Long-Read Sequencing to Identify Copy Number Variation in Experimental Evolution. J Mol Evol 2023; 91:356-368. [PMID: 37012421 PMCID: PMC10275804 DOI: 10.1007/s00239-023-10102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Copy number variants (CNVs), comprising gene amplifications and deletions, are a pervasive class of heritable variation. CNVs play a key role in rapid adaptation in both natural, and experimental, evolution. However, despite the advent of new DNA sequencing technologies, detection and quantification of CNVs in heterogeneous populations has remained challenging. Here, we summarize recent advances in the use of CNV reporters that provide a facile means of quantifying de novo CNVs at a specific locus in the genome, and nanopore sequencing, for resolving the often complex structures of CNVs. We provide guidance for the engineering and analysis of CNV reporters and practical guidelines for single-cell analysis of CNVs using flow cytometry. We summarize recent advances in nanopore sequencing, discuss the utility of this technology, and provide guidance for the bioinformatic analysis of these data to define the molecular structure of CNVs. The combination of reporter systems for tracking and isolating CNV lineages and long-read DNA sequencing for characterizing CNV structures enables unprecedented resolution of the mechanisms by which CNVs are generated and their evolutionary dynamics.
Collapse
Affiliation(s)
- Pieter Spealman
- Department of Biology, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Titir De
- Department of Biology, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Julie N Chuong
- Department of Biology, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - David Gresham
- Department of Biology, New York University, New York, NY, 10003, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
12
|
Kumar S, Gahramanov V, Patel S, Yaglom J, Kaczmarczyk L, Alexandrov IA, Gerlitz G, Salmon-Divon M, Sherman MY. Evolution of Resistance to Irinotecan in Cancer Cells Involves Generation of Topoisomerase-Guided Mutations in Non-Coding Genome That Reduce the Chances of DNA Breaks. Int J Mol Sci 2023; 24:ijms24108717. [PMID: 37240063 DOI: 10.3390/ijms24108717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Resistance to chemotherapy is a leading cause of treatment failure. Drug resistance mechanisms involve mutations in specific proteins or changes in their expression levels. It is commonly understood that resistance mutations happen randomly prior to treatment and are selected during the treatment. However, the selection of drug-resistant mutants in culture could be achieved by multiple drug exposures of cloned genetically identical cells and thus cannot result from the selection of pre-existent mutations. Accordingly, adaptation must involve the generation of mutations de novo upon drug treatment. Here we explored the origin of resistance mutations to a widely used Top1 inhibitor, irinotecan, which triggers DNA breaks, causing cytotoxicity. The resistance mechanism involved the gradual accumulation of recurrent mutations in non-coding regions of DNA at Top1-cleavage sites. Surprisingly, cancer cells had a higher number of such sites than the reference genome, which may define their increased sensitivity to irinotecan. Homologous recombination repairs of DNA double-strand breaks at these sites following initial drug exposures gradually reverted cleavage-sensitive "cancer" sequences back to cleavage-resistant "normal" sequences. These mutations reduced the generation of DNA breaks upon subsequent exposures, thus gradually increasing drug resistance. Together, large target sizes for mutations and their Top1-guided generation lead to their gradual and rapid accumulation, synergistically accelerating the development of resistance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Valid Gahramanov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Shivani Patel
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Julia Yaglom
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Lukasz Kaczmarczyk
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Ivan A Alexandrov
- Department of Anatomy and Anthropology & Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | | | - Michael Y Sherman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
13
|
Łazowski K. Efficient, robust, and versatile fluctuation data analysis using MLE MUtation Rate calculator (mlemur). Mutat Res 2023; 826:111816. [PMID: 37104996 DOI: 10.1016/j.mrfmmm.2023.111816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
The fluctuation assay remains an important tool for analyzing the levels of mutagenesis in microbial populations. The mutant counts originating from some average number of mutations are usually assumed to obey the Luria-Delbrück distribution. While several tools for estimating mutation rates are available, they sometimes lack accuracy or versatility under non-standard conditions. In this work, extensions to the Luria-Delbrück protocol to account for phenotypic lag and cellular death with either perfect or partial plating were developed. Hence, the novel MLE MUtation Rate calculator, or mlemur, is the first tool that provides a user-friendly graphical interface allowing the researchers to model their data with consideration for partial plating, differential growth of mutants and non-mutants, phenotypic lag, cellular death, variability of the final number of cells, post-exponential-phase mutations, and the size of the inoculum. Additionally, mlemur allows the users to incorporate most of these special conditions at the same time to obtain highly accurate estimates of mutation rates and P values, confidence intervals for an arbitrary function of data (such as fold), and perform power analysis and sample size determination for the likelihood ratio test. The accuracy of point and interval estimates produced by mlemur against historical and simulated fluctuation experiments are assessed. Both mlemur and the analyses in this work might be of great help when evaluating fluctuation experiments and increase the awareness of the limitations of the widely-used Lea-Coulson formulation of the Luria-Delbrück distribution in the more realistic biological contexts.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Pawińskiego 5a, Warsaw 02-106, Poland.
| |
Collapse
|
14
|
Herrmann JA, Koprowska A, Winters TJ, Villanueva N, Nikityuk VD, Pek F, Reis EM, Dominguez CZ, Davis D, McPherson E, Rocco SR, Recendez C, Difuntorum SM, Faeth K, Lopez MD, Awwad HM, Ghobashy RA, Cappiello L, Neidle EL, Quiñones-Soto S, Reams AB. Gene amplification mutations originate prior to selective stress in Acinetobacter baylyi. G3 (BETHESDA, MD.) 2023; 13:jkac327. [PMID: 36504387 PMCID: PMC9997567 DOI: 10.1093/g3journal/jkac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The controversial theory of adaptive amplification states gene amplification mutations are induced by selective environments where they are enriched due to the stress caused by growth restriction on unadapted cells. We tested this theory with three independent assays using an Acinetobacter baylyi model system that exclusively selects for cat gene amplification mutants. Our results demonstrate all cat gene amplification mutant colonies arise through a multistep process. While the late steps occur during selection exposure, these mutants derive from low-level amplification mutant cells that form before growth-inhibiting selection is imposed. During selection, these partial mutants undergo multiple secondary steps generating higher amplification over several days to multiple weeks to eventually form visible high-copy amplification colonies. Based on these findings, amplification in this Acinetobacter system can be explained by a natural selection process that does not require a stress response. These findings have fundamental implications to understanding the role of growth-limiting selective environments on cancer development. We suggest duplication mutations encompassing growth factor genes may serve as new genomic biomarkers to facilitate early cancer detection and treatment, before high-copy amplification is attained.
Collapse
Affiliation(s)
- Jennifer A Herrmann
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Agata Koprowska
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Tesa J Winters
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Nancy Villanueva
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Victoria D Nikityuk
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Feini Pek
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Elizabeth M Reis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Constancia Z Dominguez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Daniel Davis
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Eric McPherson
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Staci R Rocco
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Cynthia Recendez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Shyla M Difuntorum
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Kelly Faeth
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Mario D Lopez
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Habeeba M Awwad
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Rola A Ghobashy
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Lauren Cappiello
- Department of Mathematics and Statistics, California State University, Sacramento, CA 95819-6051, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | - Semarhy Quiñones-Soto
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| | - Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, CA 95819-6077, USA
| |
Collapse
|
15
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
16
|
Zheng Q. Estimation of Rates of Non-neutral Mutations When Bacteria are Exposed to Subinhibitory Levels of Antibiotics. Bull Math Biol 2022; 84:131. [PMID: 36178523 DOI: 10.1007/s11538-022-01085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022]
Abstract
The increasingly widespread use of antibiotics has raised an urgent public health question: how does nonlethal exposure of antibiotics increase rates of bacterial mutations that confer antibiotic resistance? Quantitative studies of this sort are rare, and interested investigators tend to neglect scenarios where the mutation inducer and the selective agent are the same. One possible reason for this puzzling neglect is that such an investigation may lead to results that are prone to a Lamarckian interpretation, but a more tangible reason is that successful estimation of mutation rates in such scenarios requires new computational methods. This study presents computational methods tailored for a mutation model in which some wide-type cells may be killed by nonlethal exposure to an antibiotic, but in which mutants proliferate unimpeded. Methods for computing maximum likelihood estimates of mutation rates and their corresponding confidence intervals are devised and evaluated by simulations.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Epidemiology and Biostatistics, Texas A &M University School of Public Health, College Station, Texas, 77843, USA.
| |
Collapse
|
17
|
Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations. Sci Rep 2022; 12:13079. [PMID: 35906318 PMCID: PMC9338039 DOI: 10.1038/s41598-022-17456-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Recent evidence suggests that a polyaneuploid cancer cell (PACC) state may play a key role in the adaptation of cancer cells to stressful environments and in promoting therapeutic resistance. The PACC state allows cancer cells to pause cell division and to avoid DNA damage and programmed cell death. Transition to the PACC state may also lead to an increase in the cancer cell’s ability to generate heritable variation (evolvability). One way this can occur is through evolutionary triage. Under this framework, cells gradually gain resistance by scaling hills on a fitness landscape through a process of mutation and selection. Another way this can happen is through self-genetic modification whereby cells in the PACC state find a viable solution to the stressor and then undergo depolyploidization, passing it on to their heritably resistant progeny. Here, we develop a stochastic model to simulate both of these evolutionary frameworks. We examine the impact of treatment dosage and extent of self-genetic modification on eco-evolutionary dynamics of cancer cells with aneuploid and PACC states. We find that under low doses of therapy, evolutionary triage performs better whereas under high doses of therapy, self-genetic modification is favored. This study generates predictions for teasing apart these biological hypotheses, examines the implications of each in the context of cancer, and provides a modeling framework to compare Mendelian and non-traditional forms of inheritance.
Collapse
|
18
|
Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenomenon of a nonrandom distribution of mutations in a genome has been observed for many years. In fact, recent findings have indicated the presence of mutation clusters in different biological systems, including chemically treated yeast, transgenic mice, and human cancer cells. Until now, an asymmetrical distribution of mutations was only described in a single bacterial species. Here, we used ethyl methanesulfonate mutagenesis and a whole-genome sequencing approach to determine if this phenomenon is universal and not confined to Gram-negative bacteria. The Gram-positive bacterium Bacillus subtilis was selected for ethyl methanesulfonate treatment, followed by the next-generation sequencing of several mutagenized B. subtilis genomes. A nonrandom distribution of mutations was observed. This pilot study with a limited number of sequenced clones may indicate not only the universality of the phenomenon of mutation clusters but also the effectiveness of the use of a whole-genome sequencing approach in studying this phenomenon.
Collapse
|
19
|
A Highly Glyphosate-Resistant EPSPS Mutant from Laboratory Evolution. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
EPSP synthase is the target enzyme of glyphosate herbicides. Due to the extensive use of glyphosate, it is very important to obtain EPSPS genes with high glyphosate resistance for the development of transgenic crops. GR79-EPSPS is a class I EPSP synthase with certain glyphosate resistance isolated from glyphosate-contaminated soil. After more than 1000 generations, a Y40I substitution was identified, and the enzyme had a nearly 1.8-fold decrease in Km [PEP] and a 1.7-fold increase in Ki[glyphosate] compared to the wild-type enzyme. Enzyme dynamics and molecular dynamics analysis showed that the substitution was near the hinge region of EPSPS, and the affinity of glyphosate binding to amino acid residues of the active site decreased due to Y40I substitution, resulting in an increase in glyphosate resistance. These results provide more evidence for the combination of directed evolution and rational design of protein engineering.
Collapse
|
20
|
Del Duca S, Puglia AM, Calderone V, Bazzicalupo M, Fani R. Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coli hisF Case. Microorganisms 2022; 10:692. [PMID: 35456744 PMCID: PMC9032791 DOI: 10.3390/microorganisms10040692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/25/2023] Open
Abstract
Microorganisms possess the potential to adapt to fluctuations in environmental parameters, and their evolution is driven by the continuous generation of mutations. The reversion of auxotrophic mutations has been widely studied; however, little is known about the reversion of frameshift mutations resulting in amino acid auxotrophy and on the structure and functioning of the protein encoded by the revertant mutated gene. The aims of this work were to analyze the appearance of reverse mutations over time and under different selective pressures and to investigate revertant enzymes' three-dimensional structures and their correlation with a different growth ability. Escherichia coli FB182 strain, carrying the hisF892 single nucleotide deletion resulting in histidine auxotrophy, was subjected to different selective pressures, and revertant mutants were isolated and characterized. The obtained results allowed us to identify different indels of different lengths located in different positions in the hisF gene, and relations with the incubation time and the selective pressure applied were observed. Moreover, the structure of the different mutant proteins was consistent with the respective revertant ability to grow in absence of histidine, highlighting a correlation between the mutations and the catalytic activity of the mutated HisF enzyme.
Collapse
Affiliation(s)
- Sara Del Duca
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (S.D.D.); (M.B.)
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Vito Calderone
- Magnetic Resonance Center (CERM)/Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy;
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (S.D.D.); (M.B.)
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; (S.D.D.); (M.B.)
| |
Collapse
|
21
|
Lawing AM, McCoy M, Reinke BA, Sarkar SK, Smith FA, Wright D. A Framework for Investigating Rules of Life by Establishing Zones of Influence. Integr Comp Biol 2022; 61:2095-2108. [PMID: 34297089 PMCID: PMC8825771 DOI: 10.1093/icb/icab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.
Collapse
Affiliation(s)
- A Michelle Lawing
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, IL 60625, USA
| | | | - Felisa A Smith
- Department of Biology, University of New Mexico, NM 87131, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, CO 80401, USA
| |
Collapse
|
22
|
Akpobolokemi T, Martinez-Nunez RT, Raimi-Abraham BT. Tackling the global impact of substandard and falsified and unregistered/unlicensed anti-tuberculosis medicines. MEDICINE ACCESS @ POINT OF CARE 2022; 6:23992026211070406. [PMID: 36204519 PMCID: PMC9413333 DOI: 10.1177/23992026211070406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Substandard and falsified (SF) medicines are a global health challenge with the
World Health Organization (WHO) estimating that 1 in 10 of medicines in low- and
middle-income countries (LMICs) are SF. Antimicrobials (i.e. antimalarials,
antibiotics) are the most commonly reported SF medicines. SF medicines
contribute significantly to the global burden of infectious diseases and
antimicrobial resistance (AMR). This article discusses the challenges associated
with the global impact of SF and unregistered/unlicensed antimicrobials with a
focus on anti-TB medicines. Tuberculosis (TB) is the 13th leading cause of death
worldwide, and is currently the second leading cause of death from a single
infectious agent, ranking after COVID-19 and above HIV/AIDS. Specifically in the
case of TB, poor quality of anti-TB medicines is among the drivers of the
emergence of drug-resistant TB pathogens. In this article, we highlight and
discuss challenges including the emergence of SF associated AMR, patient
mistrust and lack of relevant data. We also present study reports to inform
meaningful change. Recommended solutions involve the adaptation of interventions
from high-income countries (HICs) to LMICS, the need for improvement in the
uptake of medication authentication tools in LMICs, increased stewardship, and
the need for global and regional multidisciplinary legal and policy cooperation,
resulting in improved legal sanctions.
Collapse
Affiliation(s)
- Tamara Akpobolokemi
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Rocio Teresa Martinez-Nunez
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Hospital, London, UK
| | - Bahijja Tolulope Raimi-Abraham
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| |
Collapse
|
23
|
Melamed D, Nov Y, Malik A, Yakass MB, Bolotin E, Shemer R, Hiadzi EK, Skorecki KL, Livnat A. De novo mutation rates at the single-mutation resolution in a human HBB gene-region associated with adaptation and genetic disease. Genome Res 2022; 32:488-498. [PMID: 35031571 PMCID: PMC8896469 DOI: 10.1101/gr.276103.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Although it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here, we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa, and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the “HbS mutation” when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible.
Collapse
|
24
|
Tomanek I, Guet CC. Adaptation dynamics between copy-number and point mutations. eLife 2022; 11:82240. [PMID: 36546673 PMCID: PMC9833825 DOI: 10.7554/elife.82240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Together, copy-number and point mutations form the basis for most evolutionary novelty, through the process of gene duplication and divergence. While a plethora of genomic data reveals the long-term fate of diverging coding sequences and their cis-regulatory elements, little is known about the early dynamics around the duplication event itself. In microorganisms, selection for increased gene expression often drives the expansion of gene copy-number mutations, which serves as a crude adaptation, prior to divergence through refining point mutations. Using a simple synthetic genetic reporter system that can distinguish between copy-number and point mutations, we study their early and transient adaptive dynamics in real time in Escherichia coli. We find two qualitatively different routes of adaptation, depending on the level of functional improvement needed. In conditions of high gene expression demand, the two mutation types occur as a combination. However, under low gene expression demand, copy-number and point mutations are mutually exclusive; here, owing to their higher frequency, adaptation is dominated by copy-number mutations, in a process we term amplification hindrance. Ultimately, due to high reversal rates and pleiotropic cost, copy-number mutations may not only serve as a crude and transient adaptation, but also constrain sequence divergence over evolutionary time scales.
Collapse
Affiliation(s)
- Isabella Tomanek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Călin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
25
|
Gutiérrez R, Ram Y, Berman J, Carstens Marques de Sousa K, Nachum-Biala Y, Britzi M, Elad D, Glaser G, Covo S, Harrus S. Adaptive resistance mutations at supra-inhibitory concentrations independent of SOS mutagenesis. Mol Biol Evol 2021; 38:4095-4115. [PMID: 34175952 PMCID: PMC8476149 DOI: 10.1093/molbev/msab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.,The Center for Research in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.,School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer, Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel
| | | | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Britzi
- The National Residue Control Laboratory, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
27
|
Mishima H, Watanabe H, Uchigasaki K, Shimoda S, Seki S, Kumagai T, Nochi T, Ando T, Yoneyama H. L-Alanine Prototrophic Suppressors Emerge from L-Alanine Auxotroph through Stress-Induced Mutagenesis in Escherichia coli. Microorganisms 2021; 9:microorganisms9030472. [PMID: 33668720 PMCID: PMC7996224 DOI: 10.3390/microorganisms9030472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
In Escherichia coli, L-alanine is synthesized by three isozymes: YfbQ, YfdZ, and AvtA. When an E. coli L-alanine auxotrophic isogenic mutant lacking the three isozymes was grown on L-alanine-deficient minimal agar medium, L-alanine prototrophic mutants emerged considerably more frequently than by spontaneous mutation; the emergence frequency increased over time, and, in an L-alanine-supplemented minimal medium, correlated inversely with L-alanine concentration, indicating that the mutants were derived through stress-induced mutagenesis. Whole-genome analysis of 40 independent L-alanine prototrophic mutants identified 16 and 18 clones harboring point mutation(s) in pyruvate dehydrogenase complex and phosphotransacetylase-acetate kinase pathway, which respectively produce acetyl coenzyme A and acetate from pyruvate. When two point mutations identified in L-alanine prototrophic mutants, in pta (D656A) and aceE (G147D), were individually introduced into the original L-alanine auxotroph, the isogenic mutants exhibited almost identical growth recovery as the respective cognate mutants. Each original- and isogenic-clone pair carrying the pta or aceE mutation showed extremely low phosphotransacetylase or pyruvate dehydrogenase activity, respectively. Lastly, extracellularly-added pyruvate, which dose-dependently supported L-alanine auxotroph growth, relieved the L-alanine starvation stress, preventing the emergence of L-alanine prototrophic mutants. Thus, L-alanine starvation-provoked stress-induced mutagenesis in the L-alanine auxotroph could lead to intracellular pyruvate increase, which eventually induces L-alanine prototrophy.
Collapse
Affiliation(s)
- Harutaka Mishima
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Hirokazu Watanabe
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Kei Uchigasaki
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - So Shimoda
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Shota Seki
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | | | - Tomonori Nochi
- Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan;
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.M.); (H.W.); (K.U.); (S.S.); (S.S.); (T.A.)
- Correspondence:
| |
Collapse
|
28
|
A kind of artificial intelligence model based on nature without statistic. COMPLEX INTELL SYST 2021. [DOI: 10.1007/s40747-020-00174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractSimple rules can generate complexity and human can also learn fast with rules. Can machines learn in a similar way? Can artificial intelligence be independent of statistics? Machine learning is growing rapidly but models are poorly interpretable and depend on statistics. We propose a method by iteration based on causality which is the real one exists in the system. It is composed of fixed goals and basic rules called DNA rules. These DNA rules can be obtained from the definition and is not statistical rules. The causality in rules promises the process to be precise, because the potential attractor of the system is deterministic, because it is subjected to the rules although the system is complex especially under uncertain interference. Such a model not only works well in the traditional deterministic systems like the stable point and limited circle but also can work in some seemingly random and systems which are considered to be stochastic systems. The model is taken to play a game and it makes the machine learns fast and adaptively, and it is also interpretable with the causality and independent from the amount of data for it is based on causal iteration. It learns and even predicts the seemingly random interference in the game. We found such a model is adaptable, and it works well even in out-of-sample situations. The model is compared with an LSTM network in prediction a seemingly random sequence, the result shows the causality-based model also works well. We think that it may help to solve some problems hard for the traditional statistical method and become an enrichment for the current models.
Collapse
|
29
|
Neves HI, Machado GT, Ramos TCDS, Yang HM, Yagil E, Spira B. Competition for nutritional resources masks the true frequency of bacterial mutants. BMC Biol 2020; 18:194. [PMID: 33317515 PMCID: PMC7737367 DOI: 10.1186/s12915-020-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates. Supplementary Information The online version contains supplementary material available at (doi:10.1186/s12915-020-00913-1).
Collapse
Affiliation(s)
- Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriella Trombini Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Hyun Mo Yang
- Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, Campinas, SP, Brazil
| | - Ezra Yagil
- Departament of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
31
|
Santiago-Alarcon D, Tapia-McClung H, Lerma-Hernández S, Venegas-Andraca SE. Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks. J R Soc Interface 2020; 17:20200567. [PMID: 33171071 PMCID: PMC7729038 DOI: 10.1098/rsif.2020.0567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as enzyme reaction rates via tunnelling and photosynthesis energy efficiency via coherent superposition of states. However, less effort has been devoted to study the role of quantum mechanisms in biological evolution. In this paper, we used transcription factor networks with two and four different phenotypes, and used classical random walks (CRW) and quantum walks (QW) to compare network search behaviour and efficiency at finding novel phenotypes between CRW and QW. In the network with two phenotypes, at temporal scales comparable to decoherence time TD, QW are as efficient as CRW at finding new phenotypes. In the case of the network with four phenotypes, the QW had a higher probability of mutating to a novel phenotype than the CRW, regardless of the number of mutational steps (i.e. 1, 2 or 3) away from the new phenotype. Before quantum decoherence, the QW probabilities become higher turning the QW effectively more efficient than CRW at finding novel phenotypes under different starting conditions. Thus, our results warrant further exploration of the QW under more realistic network scenarios (i.e. larger genotype networks) in both closed and open systems (e.g. by considering Lindblad terms).
Collapse
Affiliation(s)
- Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. Carr. Antigua a Coatepec 351, Col. El Haya, C.P. 91070, Xalapa, Veracruz, Mexico
| | - Horacio Tapia-McClung
- Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, Xalapa-Enríquez, Veracruz, Mexico
| | - Sergio Lerma-Hernández
- Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz 91000, Mexico
| | - Salvador E. Venegas-Andraca
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Avenue Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
32
|
Rousset L, Alpha-Bazin B, Château A, Armengaud J, Clavel T, Berge O, Duport C. Groundwater promotes emergence of asporogenic mutants of emetic Bacillus cereus. Environ Microbiol 2020; 22:5248-5264. [PMID: 32815215 DOI: 10.1111/1462-2920.15203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.
Collapse
Affiliation(s)
- Ludivine Rousset
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France.,INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | - Béatrice Alpha-Bazin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Thierry Clavel
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Odile Berge
- INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | | |
Collapse
|
33
|
Degeneration of industrial bacteria caused by genetic instability. World J Microbiol Biotechnol 2020; 36:119. [DOI: 10.1007/s11274-020-02901-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
|
34
|
Steele EJ, Gorczynski RM, Lindley RA, Liu Y, Temple R, Tokoro G, Wickramasinghe DT, Wickramasinghe NC. The efficient Lamarckian spread of life in the cosmos. ADVANCES IN GENETICS 2020; 106:21-43. [PMID: 33081924 PMCID: PMC7340397 DOI: 10.1016/bs.adgen.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this Chapter we discuss the various mechanisms that are available for the possible transfer of cosmic microbial living systems from one cosmic habitat to another. With the 100 or so habitable planets that are now known to exist in our galaxy alone transfers of cometary dust carrying life including fragments of icy planetoids/asteroids would be expected to occur on a routine basis. It is thus easy to view the galaxy as a single connected "biosphere" of which our planet Earth is a minor component. The Hoyle-Wickramasinghe Panspermia paradigm provides a cogent biological rationale for the actual widespread existence of Lamarckian modes of inheritance in terrestrial systems (which we review here). Thus the Panspermia paradigm provides the raison d'etre for Lamarckian Inheritance. Under a terrestrially confined neoDarwinian viewpoint such an association may have been thought spurious in the past. Our aim here is to outline the main evidence for rapid terrestrial-based Lamarckian-based evolutionary hypermutation processes dependent on reverse transcription-coupled mechanisms among others. Such rapid adaptation mechanisms would be consistent with the effective cosmic spread of living systems. For example, a viable, or cryo-preserved, living system traveling through space in a protective matrix will of necessity need to adapt rapidly and proliferate on landing in a new cosmic niche. Lamarckian mechanisms thus come to the fore and supersede the slow (blind and random) genetic processes expected under neoDarwinian Earth centred theories.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Melville Analytics Pty Ltd, Melbourne, VIC, Australia.
| | | | - Robyn A Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC, Australia; GMDx Group Ltd, Melbourne, VIC, Australia
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, United Kingdom
| | - Gensuke Tokoro
- Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan
| | - Dayal T Wickramasinghe
- College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT, Australia
| | - N Chandra Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan; University of Buckingham, Buckingham, United Kingdom; National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
35
|
Saini N, Gordenin DA. Hypermutation in single-stranded DNA. DNA Repair (Amst) 2020; 91-92:102868. [PMID: 32438271 PMCID: PMC7234795 DOI: 10.1016/j.dnarep.2020.102868] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Regions of genomic DNA can become single-stranded in the course of normal replication and transcription as well as during DNA repair. Abnormal repair and replication intermediates can contain large stretches of persistent single-stranded DNA, which is extremely vulnerable to DNA damaging agents and hypermutation. Since such single-stranded DNA spans only a fraction of the genome at a given instance, hypermutation in these regions leads to tightly-spaced mutation clusters. This phenomenon of hypermutation in single-stranded DNA has been documented in several experimental models as well as in cancer genomes. Recently, hypermutated single-stranded RNA viral genomes also have been documented. Moreover, indications of hypermutation in single-stranded DNA may also be found in the human germline. This review will summarize key current knowledge and the recent developments in understanding the diverse mechanisms and sources of ssDNA hypermutation.
Collapse
Affiliation(s)
- Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
36
|
Nguyen A, Maisnier-Patin S, Yamayoshi I, Kofoid E, Roth JR. Selective Inbreeding: Genetic Crosses Drive Apparent Adaptive Mutation in the Cairns-Foster System of Escherichia coli. Genetics 2020; 214:333-354. [PMID: 31810989 PMCID: PMC7017022 DOI: 10.1534/genetics.119.302754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
The Escherichia coli system of Cairns and Foster employs a lac frameshift mutation that reverts rarely (10-9/cell/division) during unrestricted growth. However, when 108 cells are plated on lactose medium, the nongrowing lawn produces ∼50 Lac+ revertant colonies that accumulate linearly with time over 5 days. Revertants carry very few associated mutations. This behavior has been attributed to an evolved mechanism ("adaptive mutation" or "stress-induced mutagenesis") that responds to starvation by preferentially creating mutations that improve growth. We describe an alternative model, "selective inbreeding," in which natural selection acts during intercellular transfer of the plasmid that carries the mutant lac allele and the dinB gene for an error-prone polymerase. Revertant genome sequences show that the plasmid is more intensely mutagenized than the chromosome. Revertants vary widely in their number of plasmid and chromosomal mutations. Plasmid mutations are distributed evenly, but chromosomal mutations are focused near the replication origin. Rare, heavily mutagenized, revertants have acquired a plasmid tra mutation that eliminates conjugation ability. These findings support the new model, in which revertants are initiated by rare pre-existing cells (105) with many copies of the F'lac plasmid. These cells divide under selection, producing daughters that mate. Recombination between donor and recipient plasmids initiates rolling-circle plasmid over-replication, causing a mutagenic elevation of DinB level. A lac+ reversion event starts chromosome replication and mutagenesis by accumulated DinB. After reversion, plasmid transfer moves the revertant lac+ allele into an unmutagenized cell, and away from associated mutations. Thus, natural selection explains why mutagenesis appears stress-induced and directed.
Collapse
Affiliation(s)
- Amanda Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Sophie Maisnier-Patin
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Itsugo Yamayoshi
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Eric Kofoid
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
37
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
38
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
39
|
Brittan G, Bandyopadhyay PS. Ecology, Evidence, and Objectivity: In Search of a Bias-Free Methodology. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
The Role of Mutation Bias in Adaptive Evolution. Trends Ecol Evol 2019; 34:422-434. [PMID: 31003616 DOI: 10.1016/j.tree.2019.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
Mutational input is the ultimate source of genetic variation, but mutations are not thought to affect the direction of adaptive evolution. Recently, critics of standard evolutionary theory have questioned the random and non-directional nature of mutations, claiming that the mutational process can be adaptive in its own right. We discuss here mutation bias in adaptive evolution. We find little support for mutation bias as an independent force in adaptive evolution, although it can interact with selection under conditions of small population size and when standing genetic variation is limited, entirely consistent with standard evolutionary theory. We further emphasize that natural selection can shape the phenotypic effects of mutations, giving the false impression that directed mutations are driving adaptive evolution.
Collapse
|
41
|
Abstract
Until now, bacterial cells facing nutrient deprivation were shown to enter dormancy as a strategy to survive prolonged stress, with the most established examples being sporulation, stationary phase, and persistence. Here, we uncovered an opposing strategy for long-term bacterial survival, in which mutant subpopulations cope with a challenging niche by proliferating rather than by stalling division. We show that this feature stems from mutations in genes disturbing the capability of the cells to differentiate into a quiescent state, enabling them to divide under restrictive conditions. Our study challenges the dogma of bacterial aging by highlighting an additional survival strategy resembling that of cancerous cells in animal organs. Bacteria in nature are known to survive for long periods under restricting conditions, mainly by reducing their growth rate and metabolic activity. Here, we uncover a novel strategy utilized by bacterial cells to resist aging by propagating rather than halting division. Bacterial aging was monitored by inspecting colonies of the Gram-positive soil bacterium Bacillus subtilis, which is capable of differentiating into various cell types under nutrient exhaustion. We revealed that after days of incubation, rejuvenating subpopulations, arrayed over the mother colony, emerged. These subpopulations were found to harbor mutations in a variety of genes, restricting the ability of the cells to differentiate. Surprisingly, even mutations that are not classically designated to developmental pathways, concluded in differentiation deficiency, indicating that multiple paths can reach this same outcome. We provide evidence that the evolved mutants continue to divide under conditions that favor entry into quiescence, hence becoming abundant within the aging population. The occurrence of such nondifferentiating mutants could impact bacterial population dynamics in natural niches.
Collapse
|
42
|
The KT Jeang Prize 2019: Reuben S. Harris : Romancing the Mutator. Retrovirology 2019; 16:24. [PMID: 31462326 PMCID: PMC6714304 DOI: 10.1186/s12977-019-0486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Steele EJ, Gorczynski RM, Lindley RA, Liu Y, Temple R, Tokoro G, Wickramasinghe DT, Wickramasinghe NC. Lamarck and Panspermia - On the Efficient Spread of Living Systems Throughout the Cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:10-32. [PMID: 31445944 DOI: 10.1016/j.pbiomolbio.2019.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
We review the main lines of evidence (molecular, cellular and whole organism) published since the 1970s demonstrating Lamarckian Inheritance in animals, plants and microorganisms viz. the transgenerational inheritance of environmentally-induced acquired characteristics. The studies in animals demonstrate the genetic permeability of the soma-germline Weismann Barrier. The widespread nature of environmentally-directed inheritance phenomena reviewed here contradicts a key pillar of neo-Darwinism which affirms the rigidity of the Weismann Barrier. These developments suggest that neo-Darwinian evolutionary theory is in need of significant revision. We argue that Lamarckian inheritance strategies involving environmentally-induced rapid directional genetic adaptations make biological sense in the context of cosmic Panspermia allowing the efficient spread of living systems and genetic innovation throughout the Universe. The Hoyle-Wickramasinghe Panspermia paradigm also developed since the 1970s, unlike strictly geocentric neo-Darwinism provides a cogent biological rationale for the actual widespread existence of Lamarckian modes of inheritance - it provides its raison d'être. Under a terrestrially confined neo-Darwinian viewpoint such an association may have been thought spurious in the past. Our aim is to outline the conceptual links between rapid Lamarckian-based evolutionary hypermutation processes dependent on reverse transcription-coupled mechanisms among others and the effective cosmic spread of living systems. For example, a viable, or cryo-preserved, living system travelling through space in a protective matrix will need of necessity to rapidly adapt and proliferate on landing in a new cosmic niche. Lamarckian mechanisms thus come to the fore and supersede the slow (blind and random) genetic processes expected under a traditional neo-Darwinian evolutionary paradigm.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, 6112, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Melville Analytics Pty Ltd, Melbourne, Vic, Australia.
| | | | - Robyn A Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of MelbourneVic, Australia; GMDx Group Ltd, Melbourne, Vic, Australia
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Dayal T Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | - N Chandra Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan; Buckingham Centre for Astrobiology, University of Buckingham, UK
| |
Collapse
|
44
|
Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer 2019; 1872:188310. [PMID: 31442474 DOI: 10.1016/j.bbcan.2019.188310] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022]
Abstract
Systemic therapy often results in the reduction of tumor size but rarely succeeds in eradicating all cancer cells. Drug efflux, persistence of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT) and down-regulation of apoptosis are the most known general causes of therapy failure. Tumor escape from targeted compounds often involves pathway-specific mechanisms, which result in the restoration of the affected signaling cascade. The acquisition of drug resistance is mediated by mutations, changes in gene expression, alternative splicing, post-translational protein modifications, etc. Development of resistance to therapy may not necessary involve the emergence of new tumor clones: multiple studies demonstrate that even chemonaive neoplasms already have a small population of cells, which are capable of surviving therapeutic pressure and facilitating the disease progression. Use of combinations of cancer drugs, sequential therapy, adaptive therapy and topical ablation of drug-resistant malignant lumps may help to prolong the time to treatment failure. Many studies on mechanisms of drug resistance rely on the use of cell cultures and animal models. The development of approaches that allow efficient monitoring of the evolution of tumor phenotype in clinical setting presents a challenge.
Collapse
Affiliation(s)
- Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Aniruddh Kashyap
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg 195067, Russia.
| |
Collapse
|
45
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
46
|
Liu H, Zhang J. Yeast Spontaneous Mutation Rate and Spectrum Vary with Environment. Curr Biol 2019; 29:1584-1591.e3. [PMID: 31056389 DOI: 10.1016/j.cub.2019.03.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
Mutation is the ultimate genetic source of evolution and biodiversity, but to what extent the environment impacts mutation rate and spectrum is poorly understood. Past studies discovered mutagenesis induced by antibiotic treatment or starvation, but its relevance and importance to long-term evolution is unclear because these severe stressors typically halt cell growth and/or cause substantial cell deaths. Here, we quantify the mutation rate and spectrum in Saccharomyces cerevisiae by whole-genome sequencing following mutation accumulation in each of seven environments with relatively rapid cell growths and minimal cell deaths. We find the point mutation rate per generation to differ by 3.6-fold among the seven environments, generally increasing in environments with slower cell growths. This trend renders the mutation rate per year more constant than that per generation across environments, which has implications for neutral evolution and the molecular clock. Additionally, we find substantial among-environment variations in mutation spectrum, such as the transition to transversion ratio and AT mutational bias. Other main mutation types, including small insertion or deletion, segmental duplication or deletion, and chromosome gain or loss also tend to occur more frequently in environments where yeast grows more slowly. In contrast to these findings from the nuclear genome, the yeast mitochondrial mutation rate rises with the growth rate, consistent with the metabolic rate hypothesis. Together, these observations indicate that environmental changes, which are ubiquitous in nature, influence not only natural selection, but also the amount and type of mutations available to selection, and suggest that ignoring the latter impact, as is currently practiced, may mislead evolutionary inferences.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Danchin É, Pocheville A, Huneman P. Early in life effects and heredity: reconciling neo-Darwinism with neo-Lamarckism under the banner of the inclusive evolutionary synthesis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180113. [PMID: 30966884 PMCID: PMC6460090 DOI: 10.1098/rstb.2018.0113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries show that early in life effects often have long-lasting influences, sometimes even spanning several generations. Such intergenerational effects of early life events appear not easily reconcilable with strict genetic inheritance. However, an integrative evolutionary medicine of early life effects needs a sound view of inheritance in development and evolution. Here, we show how to articulate the gene-centred and non-gene-centred visions of inheritance. We first recall the coexistence of two gene concepts in scientific discussions, a statistical one (focused on patterns of parent-offspring resemblance, and implicitly including non-DNA-sequence-based resemblance), and a molecular one (based on the DNA sequence). We then show how all the different mechanisms of inheritance recently discovered can be integrated into an inclusive theory of evolution where different mechanisms would enable adaptation to changing environments at different timescales. One surprising consequence of this integrative vision of inheritance is that early in life effects start much earlier than fertilization. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Étienne Danchin
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| | - Arnaud Pocheville
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
- Department of Philosophy and Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS/Université Paris I Panthéon-Sorbonne, Paris, France
| |
Collapse
|
48
|
Fitzgerald DM, Rosenberg SM. What is mutation? A chapter in the series: How microbes "jeopardize" the modern synthesis. PLoS Genet 2019; 15:e1007995. [PMID: 30933985 PMCID: PMC6443146 DOI: 10.1371/journal.pgen.1007995] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations drive evolution and were assumed to occur by chance: constantly, gradually, roughly uniformly in genomes, and without regard to environmental inputs, but this view is being revised by discoveries of molecular mechanisms of mutation in bacteria, now translated across the tree of life. These mechanisms reveal a picture of highly regulated mutagenesis, up-regulated temporally by stress responses and activated when cells/organisms are maladapted to their environments-when stressed-potentially accelerating adaptation. Mutation is also nonrandom in genomic space, with multiple simultaneous mutations falling in local clusters, which may allow concerted evolution-the multiple changes needed to adapt protein functions and protein machines encoded by linked genes. Molecular mechanisms of stress-inducible mutation change ideas about evolution and suggest different ways to model and address cancer development, infectious disease, and evolution generally.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
49
|
Quantum biology and human carcinogenesis. Biosystems 2019; 178:16-24. [DOI: 10.1016/j.biosystems.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
|
50
|
Affiliation(s)
- Dave Speijer
- D. Speijer; Academic Medical Center (AMC); University of Amsterdam, Medical Biochemistry; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| |
Collapse
|