1
|
Beckröge T, Jux B, Seifert H, Theobald H, De Domenico E, Paulusch S, Beyer M, Schlitzer A, Mass E, Kolanus W. Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos. Life Sci Alliance 2025; 8:e202402956. [PMID: 39909558 PMCID: PMC11799773 DOI: 10.26508/lsa.202402956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The transition of an embryo from gastrulation to organogenesis requires precisely coordinated changes in gene expression, but the underlying mechanisms remain unclear. The RNA-binding protein Trim71 is essential for development and serves as a potent regulator of post-transcriptional gene expression. Here, we show that global deficiency of Trim71 induces severe defects in mesoderm-derived cells at the onset of organogenesis. Murine Trim71-KO embryos displayed impaired primitive erythropoiesis, yolk sac vasculature, heart function, and circulation, explaining the embryonic lethality of these mice. Tie2 Cre Trim71 conditional knockout did not induce strong defects, showing that Trim71 expression in endothelial cells and their immediate progenitors is dispensable for embryonic survival. scRNA-seq of E7.5 global Trim71-KO embryos revealed that transcriptomic changes arise already at gastrulation, showing a strong up-regulation of the mesodermal pioneer transcription factor Eomes. We identify Eomes as a direct target of Trim71-mediated mRNA repression via the NHL domain, demonstrating a functional link between these important regulatory genes. Taken together, our data suggest that Trim71-dependent control of gene expression at gastrulation establishes a framework for proper development during organogenesis.
Collapse
Affiliation(s)
- Tobias Beckröge
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Seifert
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Theobald
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Stefan Paulusch
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Hou Y, Nie Z, Jiang Q, Velychko S, Heising S, Bedzhov I, Wu G, Adachi K, Scholer HR. Emerging cooperativity between Oct4 and Sox2 governs the pluripotency network in early mouse embryos. eLife 2025; 13:RP100735. [PMID: 40014376 DOI: 10.7554/elife.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Yanlin Hou
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhengwen Nie
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Qi Jiang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Sergiy Velychko
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Sandra Heising
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Kenjiro Adachi
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Scholer
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
3
|
Cai S, Xue B, Li S, Wang X, Zeng X, Zhu Z, Fan X, Zou Y, Yu H, Qiao S, Zeng X. Methionine regulates maternal-fetal immune tolerance and endometrial receptivity by enhancing embryonic IL-5 secretion. Cell Rep 2025; 44:115291. [PMID: 39937648 DOI: 10.1016/j.celrep.2025.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/25/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
Endometrial receptivity and maternal-fetal immune tolerance are two crucial processes for a successful pregnancy. However, the molecular mechanisms of nutrition involved are largely unexplored. Here, we showed that maternal methionine supply significantly improved pregnancy outcomes, which was closely related to interleukin-5 (IL-5) concentration. Mechanistically, methionine induced embryonic IL-5 secretion, which enhanced the conversion of CD4+ T cells to IL-5+ Th2 cells in the uterus, thereby improving maternal-fetal immune tolerance. Meanwhile, methionine-mediated IL-5 secretion activated the nuclear factor κB (NF-κB) pathway and enhanced integrin αvβ3 expression in endometrial cells, which improved endometrial receptivity. Further, methionine strongly influenced the DNA methylation and transcription levels of the transcription factor eomesodermin (Eomes), which bound directly to the IL-5 promoter region and inhibited IL-5 transcription. Methionine modulated IL-5 transcription, maternal-fetal immune tolerance, and endometrial receptivity via its effects on Eomes. This study reveals the crucial functions of methionine and IL-5 and offers a potential nutritional strategy for successful pregnancy.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyin Fan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Yijin Zou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China.
| |
Collapse
|
4
|
Xypolita ME, Goolam M, Bikoff EK, Robertson EJ, Mould AW. The zinc-finger transcription factor Blimp1/Prdm1 is required for uterine remodelling and repair in the mouse. Nat Commun 2025; 16:1220. [PMID: 39890816 PMCID: PMC11785775 DOI: 10.1038/s41467-025-56511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/17/2025] [Indexed: 02/03/2025] Open
Abstract
The zinc finger transcription factor Blimp1/PRDM1 regulates gene expression in diverse cell types. Its activity controls the maternal decidual response at early post-implantation stages of development. The present experiments demonstrate surprisingly that Blimp1 activity in the uterus is required for tissue remodelling at sites of embryonic failure. Moreover Blimp1 mutant females are refractory to RU486 induced decidual shedding. RNA-seq together with immunostaining experiments strongly suggest that the failure to up-regulate expression of the matrix metalloprotease Mmp10 in combination with insufficient suppression of BMP signalling, likely explain Blimp1-dependent phenotypic changes. In the post-partum uterus Blimp1 together with Mmp10 are highly upregulated at sites of tissue repair following placental detachment. Conditional Blimp1 removal significantly impairs the re-epithelization process and severely impacts involution of the endometrium and luminal epithelium. Overall these results identify Blimp1 as a master regulator of uterine tissue remodelling and repair.
Collapse
Affiliation(s)
- Maria-Eleni Xypolita
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Mubeen Goolam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Department of Human Biology and Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Elizabeth J Robertson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
5
|
Angelova DM, Tsolova A, Prater M, Ballasy N, Bacon W, Hamilton RS, Blackwell D, Yu Z, Li X, Liu X, Hemberger M, Charnock-Jones DS. Single-cell RNA sequencing identifies CXADR as a fate determinant of the placental exchange surface. Nat Commun 2025; 16:142. [PMID: 39747179 PMCID: PMC11695997 DOI: 10.1038/s41467-024-55597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points. We show that junctional zone precursors and precursors of one of the two syncytial layers of the mouse placental labyrinth, the Syncytiotrophoblast-I lineage, initially share similar trajectories. Importantly, our functional analysis of one such lineage precursor marker, CXADR, demonstrates that this cell surface protein regulates the differentiation dynamics between the two syncytial layers of the mouse labyrinth, ensuring the correct establishment of the placental exchange surface. Deciphering the mechanisms underlying trophoblast lineage specification will inform our understanding of human pregnancy in health and disease.
Collapse
Affiliation(s)
- Dafina M Angelova
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandra Tsolova
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Malwina Prater
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Functional Genomics Centre, Cancer Research Horizons, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Noura Ballasy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Wendi Bacon
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Russell S Hamilton
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Danielle Blackwell
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Ziyi Yu
- College of Chemical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xin Li
- Sphere Fluidics Ltd., Building One, Granta Centre, Granta Park, Great Abington, Cambridge, England, United Kingdom
| | - Xin Liu
- Sphere Fluidics Ltd., Building One, Granta Centre, Granta Park, Great Abington, Cambridge, England, United Kingdom
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
6
|
Liao Y, Zheng Y, Zhang R, Chen X, Huang J, Liu J, Zhao Y, Zheng Y, Zhang X, Gao Z, Gao X, Bu J, Peng T, Li X, Shen E. Regulatory roles of transcription factors T-bet and Eomes in group 1 ILCs. Int Immunopharmacol 2024; 143:113229. [PMID: 39357208 DOI: 10.1016/j.intimp.2024.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruizhi Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xueyan Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhiyan Gao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Gao
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Tieli Peng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Pepin AS, Jazwiec PA, Dumeaux V, Sloboda DM, Kimmins S. Determining the effects of paternal obesity on sperm chromatin at histone H3 lysine 4 tri-methylation in relation to the placental transcriptome and cellular composition. eLife 2024; 13:e83288. [PMID: 39612469 PMCID: PMC11717366 DOI: 10.7554/elife.83288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2024] [Indexed: 12/01/2024] Open
Abstract
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Vanessa Dumeaux
- Departments of Anatomy & Cell Biology and Oncology, Western UniversityLondonCanada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research Institute, McMaster University HamiltonHamiltonCanada
- Departments of Obstetrics and Gynecology, and Pediatrics, McMaster UniversityHamiltonCanada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
- Department of Pathology and Molecular Biology, University of Montreal, University of Montreal Hospital Research CenterMontrealCanada
| |
Collapse
|
8
|
Dong JP, Xu YC, Jiang YN, Jiang RZ, Ma L, Li XZ, Zeng WH, Lin Y. Identification of transcriptional signature change and critical transcription factors involved during the differentiation of mouse trophoblast stem cell into maternal blood vessel associated trophoblast giant cell. Cell Signal 2024; 123:111359. [PMID: 39179089 DOI: 10.1016/j.cellsig.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The placenta is essential organ for oxygen and nutrient exchange between the mother and the developing fetus. Trophoblast lineage differentiation is closely related to the normal function of the placenta. Trophoblast stem cells (TSCs) can differentiate into all placental trophoblast subtypes and are widely used as in vitro stem cell models to study placental development and trophoblast lineage differentiation. Although extensive research has been conducted on the differentiation of TSCs, the possible parallels between trophoblast giant cells (TGCs) that are differentiated from TSCs in vitro and the various subtypes of TGC lineages in vivo are still poorly understood. In this study, mouse TSCs (mTSCs) were induced to differentiate into TGCs, and our mRNA sequencing (RNA-seq) data revealed that mTSCs and TGCs have distinct transcriptional signatures. We conducted a comparison of mTSCs and TGCs transcriptomes with the published transcriptomes of TGC lineages in murine placenta detected by single-cell RNA-seq and found that mTSCs tend to differentiate into maternal blood vessel-associated TGCs in vitro. Moreover, we identified the transcription factor (TF) ZMAT1, which may be responsible for the differentiation of mTSCs into sinusoid TGCs, and the TFs EGR1 and MITF, which are likely involved in the differentiation of mTSCs into spiral artery-associated TGCs. Thus, our findings provide a valuable resource for the mechanisms of trophoblast lineage differentiation and placental deficiency-associated diseases development.
Collapse
Affiliation(s)
- Jun-Peng Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Chi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yi-Nan Jiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rong-Zhen Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Ma
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xin-Zhu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wei-Hong Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yi Lin
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
9
|
Bury LAD, Fu S, Wynshaw-Boris A. Neuronal lineage tracing from progenitors in human cortical organoids reveals mechanisms of neuronal production, diversity, and disease. Cell Rep 2024; 43:114862. [PMID: 39395167 DOI: 10.1016/j.celrep.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Pérez-Gómez A, González-Brusi L, Flores-Borobia I, Galiano-Cogolludo B, Lamas-Toranzo I, Hamze JG, Toledano-Díaz A, Santiago-Moreno J, Ramos-Ibeas P, Bermejo-Álvarez P. The role of TEAD4 in trophectoderm commitment and development is not conserved in non-rodent mammals. Development 2024; 151:dev202993. [PMID: 39171364 PMCID: PMC11463960 DOI: 10.1242/dev.202993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
The first lineage differentiation in mammals gives rise to the inner cell mass and the trophectoderm (TE). In mice, TEAD4 is a master regulator of TE commitment, as it regulates the expression of other TE-specific genes and its ablation prevents blastocyst formation, but its role in other mammals remains unclear. Herein, we have observed that TEAD4 ablation in two phylogenetically distant species (bovine and rabbit) does not impede TE differentiation, blastocyst formation and the expression of TE markers, such as GATA3 and CDX2, although a reduced number of cells in the inner cell mass was observed in bovine TEAD4 knockout (KO) blastocysts. Transcriptional analysis in bovine blastocysts revealed no major transcriptional effect of the ablation, although the expression of hypoblast and Hippo signalling-related genes tended to be decreased in KO embryos. Experiments were conducted in the bovine model to determine whether TEAD4 was required for post-hatching development. TEAD4 KO spherical conceptuses showed normal development of the embryonic disc and TE, but hypoblast migration rate was reduced. At later stages of development (tubular conceptuses), no differences were observed between KO and wild-type conceptuses.
Collapse
|
11
|
Plöger R, Tsikolia N, Viebahn C. A network of transient domains for breaking symmetry during anterior-posterior axis formation in the porcine embryo. Dev Dyn 2024. [PMID: 39377464 DOI: 10.1002/dvdy.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
Breaking radial symmetry for anterior-posterior axis formation is one of the key developmental steps of vertebrate gastrulation and is established through a succession of transient domains defined by morphology or gene expression. Three such domains were interpreted recently in the rabbit to be part of a "three-anchor-point model" for axis formation. To answer the question as to whether the model is generally applicable to mammals, the dynamic expression patterns of four marker genes were analyzed in the pig, where gastrulating epiblast forms from half the inner cell mass: EOMES and PKDCC transcripts display decreasing expression intensities in the anterior hypoblast and-together with WNT3-increasing intensity in the anterior streak domain and the node; TBX6 expression changes from an initial central expression to exclusive expression in the posterior extremity of the primitive streak. The anterior streak domain has thus a molecular footprint similar to the one in the rabbit, the end node shares TBX6 between the species, while the anterior hypoblast-mirroring specific porcine epiblast derivation and fate-is marked by PKDCC instead of WNT3. The molecular similarities in transient domains point to conserved mechanisms for establishing the mammalian anterior-posterior axis and, possibly, breaking radial symmetry.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Petzold T, Gerhardt H. In preprints: keeping endothelial cell specification and vascular development in check. Development 2024; 151:dev204338. [PMID: 39287130 DOI: 10.1242/dev.204338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Affiliation(s)
- Tim Petzold
- Integrative Vascular Biology Laboratory, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), 10785 Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), 10785 Berlin, Germany
- Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
13
|
Balestrini PA, Abdelbaki A, McCarthy A, Devito L, Senner CE, Chen AE, Munusamy P, Blakeley P, Elder K, Snell P, Christie L, Serhal P, Odia RA, Sangrithi M, Niakan KK, Fogarty NME. Transcription factor-based transdifferentiation of human embryonic to trophoblast stem cells. Development 2024; 151:dev202778. [PMID: 39250534 PMCID: PMC11556314 DOI: 10.1242/dev.202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Ahmed Abdelbaki
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Liani Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Claire E. Senner
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Alice E. Chen
- Trestle Biotherapeutics, Centre for Novel Therapeutics, 9310 Athena Circle, La Jolla, CA 92037, USA
| | - Prabhakaran Munusamy
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Paul Serhal
- The Centre for Reproductive & Genetic Health, 230–232 Great Portland Street, London W1W 5QS, UK
| | - Rabi A. Odia
- The Centre for Reproductive & Genetic Health, 230–232 Great Portland Street, London W1W 5QS, UK
| | - Mahesh Sangrithi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
- Duke-NUS Graduate Medical School, Cancer Stem Cell Biology/OBGYN ACP, 8 College Road, Singapore 169857, Singapore
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Norah M. E. Fogarty
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
14
|
Skory RM. Revisiting trophectoderm-inner cell mass lineage segregation in the mammalian preimplantation embryo. Hum Reprod 2024; 39:1889-1898. [PMID: 38926157 DOI: 10.1093/humrep/deae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.
Collapse
Affiliation(s)
- Robin M Skory
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, Zhang H. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod 2024; 111:292-311. [PMID: 38678504 DOI: 10.1093/biolre/ioae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.
Collapse
Affiliation(s)
- Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
16
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
17
|
Chen D, Fan X, Wang K, Gong L, Melero-Martin JM, Pu WT. Pioneer factor ETV2 safeguards endothelial cell specification by recruiting the repressor REST to restrict alternative lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595971. [PMID: 38853821 PMCID: PMC11160620 DOI: 10.1101/2024.05.28.595971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.
Collapse
|
18
|
Dai P, Ma C, Chen C, Liang M, Dong S, Chen H, Zhang X. Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines. Biomolecules 2024; 14:529. [PMID: 38785936 PMCID: PMC11117649 DOI: 10.3390/biom14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China; (P.D.); (C.M.); (C.C.); (M.L.); (S.D.); (H.C.)
| |
Collapse
|
19
|
Li S, Yan RG, Gao X, He Z, Wu SX, Wang YJ, Zhang YW, Tao HP, Zhang XN, Jia GX, Yang QE. Single-cell transcriptome analyses reveal critical regulators of spermatogonial stem cell fate transitions. BMC Genomics 2024; 25:138. [PMID: 38310206 PMCID: PMC10837949 DOI: 10.1186/s12864-024-10072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the foundation cells for continual spermatogenesis and germline regeneration in mammals. SSC activities reside in the undifferentiated spermatogonial population, and currently, the molecular identities of SSCs and their committed progenitors remain unclear. RESULTS We performed single-cell transcriptome analysis on isolated undifferentiated spermatogonia from mice to decipher the molecular signatures of SSC fate transitions. Through comprehensive analysis, we delineated the developmental trajectory and identified candidate transcription factors (TFs) involved in the fate transitions of SSCs and their progenitors in distinct states. Specifically, we characterized the Asingle spermatogonial subtype marked by the expression of Eomes. Eomes+ cells contained enriched transplantable SSCs, and more than 90% of the cells remained in the quiescent state. Conditional deletion of Eomes in the germline did not impact steady-state spermatogenesis but enhanced SSC regeneration. Forced expression of Eomes in spermatogenic cells disrupted spermatogenesis mainly by affecting the cell cycle progression of undifferentiated spermatogonia. After injury, Eomes+ cells re-enter the cell cycle and divide to expand the SSC pool. Eomes+ cells consisted of 7 different subsets of cells at single-cell resolution, and genes enriched in glycolysis/gluconeogenesis and the PI3/Akt signaling pathway participated in the SSC regeneration process. CONCLUSIONS In this study, we explored the molecular characteristics and critical regulators of subpopulations of undifferentiated spermatogonia. The findings of the present study described a quiescent SSC subpopulation, Eomes+ spermatogonia, and provided a dynamic transcriptional map of SSC fate determination.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Medical Technology, Luoyang Polytechnic, Luoyang, Henan, 471000, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Jun Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810001, China.
| |
Collapse
|
20
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Gao Y, Han W, Dong R, Wei S, Chen L, Gu Z, Liu Y, Guo W, Yan F. Efficient Reprogramming of Mouse Embryonic Stem Cells into Trophoblast Stem-like Cells via Lats Kinase Inhibition. BIOLOGY 2024; 13:71. [PMID: 38392290 PMCID: PMC10886645 DOI: 10.3390/biology13020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Mouse zygotes undergo multiple rounds of cell division, resulting in the formation of preimplantation blastocysts comprising three lineages: trophectoderm (TE), epiblast (EPI), and primitive endoderm (PrE). Cell fate determination plays a crucial role in establishing a healthy pregnancy. The initial separation of lineages gives rise to TE and inner cell mass (ICM), from which trophoblast stem cells (TSC) and embryonic stem cells (ESC) can be derived in vitro. Studying lineage differentiation is greatly facilitated by the clear functional distinction between TSC and ESC. However, transitioning between these two types of cells naturally poses challenges. In this study, we demonstrate that inhibiting LATS kinase promotes the conversion of ICM to TE and also effectively reprograms ESC into stable, self-renewing TS-like cells (TSLC). Compared to TSC, TSLC exhibits similar molecular properties, including the high expression of marker genes such as Cdx2, Eomes, and Tfap2c, as well as hypomethylation of their promoters. Importantly, TSLC not only displays the ability to differentiate into mature trophoblast cells in vitro but also participates in placenta formation in vivo. These findings highlight the efficient reprogramming of ESCs into TSLCs using a small molecular inducer, which provides a new reference for understanding the regulatory network between ESCs and TSCs.
Collapse
Affiliation(s)
- Yake Gao
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
- Reproductive Medicine Center, Wuhan Women's and Children's Medical Care Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenrui Han
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Rui Dong
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Shu Wei
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Lu Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhaolei Gu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiming Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fang Yan
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| |
Collapse
|
22
|
Wang F, Chander A, Yoon Y, Welton JM, Wallingford MC, Espejo-Serrano C, Bustos F, Findlay GM, Mager J, Bach I. Roles of the Rlim-Rex1 axis during X chromosome inactivation in mice. Proc Natl Acad Sci U S A 2023; 120:e2313200120. [PMID: 38113263 PMCID: PMC10756295 DOI: 10.1073/pnas.2313200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2- to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Ashmita Chander
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Yeonsoo Yoon
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Janelle M. Welton
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Mary C. Wallingford
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Carmen Espejo-Serrano
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Francisco Bustos
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Greg M. Findlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| |
Collapse
|
23
|
Mao Q, Ye Q, Xu Y, Jiang J, Fan Y, Zhuang L, Liu G, Wang T, Zhang Z, Feng T, Kong S, Lu J, Zhang H, Wang H, Lin CP. Murine trophoblast organoids as a model for trophoblast development and CRISPR-Cas9 screening. Dev Cell 2023; 58:2992-3008.e7. [PMID: 38056451 DOI: 10.1016/j.devcel.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The placenta becomes one of the most diversified organs during placental mammal radiation. The main in vitro model for studying mouse trophoblast development is the 2D differentiation model of trophoblast stem cells, which is highly skewed to certain lineages and thus hampers systematic screens. Here, we established culture conditions for the establishment, maintenance, and differentiation of murine trophoblast organoids. Murine trophoblast organoids under the maintenance condition contain stem cell-like populations, whereas differentiated organoids possess various trophoblasts resembling placental ones in vivo. Ablation of Nubpl or Gcm1 in trophoblast organoids recapitulated their deficiency phenotypes in vivo, suggesting that those organoids are valid in vitro models for trophoblast development. Importantly, we performed an efficient CRISPR-Cas9 screening in mouse trophoblast organoids using a focused sgRNA (single guide RNA) library targeting G protein-coupled receptors. Together, our results establish an organoid model to investigate mouse trophoblast development and a practicable approach to performing forward screening in trophoblast lineages.
Collapse
Affiliation(s)
- Qian Mao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunhao Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Zhuang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Guohui Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
24
|
Bisia AM, Costello I, Xypolita ME, Harland LTG, Kurbel PJ, Bikoff EK, Robertson EJ. A degron-based approach to manipulate Eomes functions in the context of the developing mouse embryo. Proc Natl Acad Sci U S A 2023; 120:e2311946120. [PMID: 37871215 PMCID: PMC10622880 DOI: 10.1073/pnas.2311946120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
The T-box transcription factor Eomesodermin (Eomes), also known as Tbr2, plays essential roles in the early mouse embryo. Loss-of-function mutant embryos arrest at implantation due to Eomes requirements in the trophectoderm cell lineage. Slightly later, expression in the visceral endoderm promotes anterior visceral endoderm formation and anterior-posterior axis specification. Early induction in the epiblast beginning at day 6 is necessary for nascent mesoderm to undergo epithelial to mesenchymal transition (EMT). Eomes acts in a temporally and spatially restricted manner to sequentially specify the yolk sac haemogenic endothelium, cardiac mesoderm, definitive endoderm, and axial mesoderm progenitors during gastrulation. Little is known about the underlying molecular mechanisms governing Eomes actions during the formation of these distinct progenitor cell populations. Here, we introduced a degron-tag and mCherry reporter sequence into the Eomes locus. Our experiments analyzing homozygously tagged embryonic stem cells and embryos demonstrate that the degron-tagged Eomes protein is fully functional. dTAG (degradation fusion tag) treatment in vitro results in rapid protein degradation and recapitulates the Eomes-null phenotype. However in utero administration of dTAG resulted in variable and lineage-specific degradation, likely reflecting diverse cell type-specific Eomes expression dynamics. Finally, we demonstrate that Eomes protein rapidly recovers following dTAG wash-out in vitro. The ability to temporally manipulate Eomes protein expression in combination with cell marking by the mCherry-reporter offers a powerful tool for dissecting Eomes-dependent functional roles in these diverse cell types in the early embryo.
Collapse
Affiliation(s)
- Alexandra M. Bisia
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Maria-Eleni Xypolita
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Luke T. G. Harland
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Philipp J. Kurbel
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| |
Collapse
|
25
|
Gil N, Perry RBT, Mukamel Z, Tuck A, Bühler M, Ulitsky I. Complex regulation of Eomes levels mediated through distinct functional features of the Meteor long non-coding RNA locus. Cell Rep 2023; 42:112569. [PMID: 37256750 PMCID: PMC10320833 DOI: 10.1016/j.celrep.2023.112569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are implicated in a plethora of cellular processes, but an in-depth understanding of their functional features or their mechanisms of action is currently lacking. Here we study Meteor, a lncRNA transcribed near the gene encoding EOMES, a pleiotropic transcription factor implicated in various processes throughout development and in adult tissues. Using a wide array of perturbation techniques, we show that transcription elongation through the Meteor locus is required for Eomes activation in mouse embryonic stem cells, with Meteor repression linked to a change in the subpopulation primed to differentiate to the mesoderm lineage. We further demonstrate that a distinct functional feature of the locus-namely, the underlying DNA element-is required for suppressing Eomes expression following neuronal differentiation. Our results demonstrate the complex regulation that can be conferred by a single locus and emphasize the importance of careful selection of perturbation techniques when studying lncRNA loci.
Collapse
Affiliation(s)
- Noa Gil
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Mukamel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alex Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Speckhart SL, Oliver MA, Ealy AD. Developmental Hurdles That Can Compromise Pregnancy during the First Month of Gestation in Cattle. Animals (Basel) 2023; 13:1760. [PMID: 37889637 PMCID: PMC10251927 DOI: 10.3390/ani13111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Several key developmental events are associated with early embryonic pregnancy losses in beef and dairy cows. These developmental problems are observed at a greater frequency in pregnancies generated from in-vitro-produced bovine embryos. This review describes critical problems that arise during oocyte maturation, fertilization, early embryonic development, compaction and blastulation, embryonic cell lineage specification, elongation, gastrulation, and placentation. Additionally, discussed are potential remediation strategies, but unfortunately, corrective actions are not available for several of the problems being discussed. Further research is needed to produce bovine embryos that have a greater likelihood of surviving to term.
Collapse
Affiliation(s)
| | | | - Alan D. Ealy
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.S.); (M.A.O.)
| |
Collapse
|
27
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
28
|
A differentiation roadmap of murine placentation at single-cell resolution. Cell Discov 2023; 9:30. [PMID: 36928215 PMCID: PMC10020559 DOI: 10.1038/s41421-022-00513-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/25/2022] [Indexed: 03/18/2023] Open
Abstract
The placenta is one of the most important yet least understood organs. Due to the limitations of conventional research approaches, we are still far from a comprehensive understanding of mouse placentation, especially regarding the differentiation of trophoblast lineages at the early developmental stage. To decipher cell compositions and developmental processes, we systematically profile the single-cell transcriptomes of trophoblast cells from extraembryonic tissues (embryonic day 7.5 (E7.5) and E8.5) and placentae (E9.5-E14.5) at one-day intervals. We identify distinct trophoblast cell types during mouse placentation, including unreported progenitor cells and intermediate precursor cells. An updated differentiation roadmap of mouse trophoblast lineages is presented following systematic transcriptome analyses. Based on transcriptomic regulatory network inference, we specify transcription factors responsible for the regulation of dynamic developmental processes during lineage diversification. We map lineage differentiation trajectories and find that sinusoid trophoblast giant cells arise from the subpopulation of ectoplacental cone cells. We provide a comprehensive single-cell data resource to shed light on future mechanistic studies of the gene regulatory networks governing hemochorial placentation.
Collapse
|
29
|
Song S, Du B, Chung-Davidson YW, Cui W, Li Y, Chen H, Huang R, Li W, Li F, Wang C, Ren J. Disruption of T-box transcription factor eomesa results in abnormal development of median fins in Oujiang color common carp Cyprinus carpio. PLoS One 2023; 18:e0281297. [PMID: 36862620 PMCID: PMC9980737 DOI: 10.1371/journal.pone.0281297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
Median fins are thought to be ancestors of paired fins which in turn give rise to limbs in tetrapods. However, the developmental mechanisms of median fins remain largely unknown. Nonsense mutation of the T-box transcription factor eomesa in zebrafish results in a phenotype without dorsal fin. Compared to zebrafish, the common carp undergo an additional round of whole genome duplication, acquiring an extra copy of protein-coding genes. To verify the function of eomesa genes in common carp, we established a biallelic gene editing technology in this tetraploidy fish through simultaneous disruption of two homologous genes, eomesa1 and eomesa2. We targeted four sites located upstream or within the sequences encoding the T-box domain. Sanger sequencing data indicated the average knockout efficiency was around 40% at T1-T3 sites and 10% at T4 site in embryos at 24 hours post fertilization. The individual editing efficiency was high to about 80% at T1-T3 sites and low to 13.3% at T4 site in larvae at 7 days post fertilization. Among 145 mosaic F0 examined at four months old, three individuals (Mutant 1-3) showed varying degrees of maldevelopment in the dorsal fin and loss of anal fin. Genotyping showed the genomes of all three mutants were disrupted at T3 sites. The null mutation rates on the eomesa1 and eomesa2 loci were 0% and 60% in Mutant 1, 66.7% and 100% in Mutant 2, and 90% and 77.8% in Mutant 3, respectively. In conclusion, we demonstrated a role of eomesa in the formation and development of median fins in Oujiang color common carp and established an method that simultaneously disrupt two homologous genes with one gRNA, which would be useful in genome editing in other polyploidy fishes.
Collapse
Affiliation(s)
- Shiying Song
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Bobo Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States of America
| | - Wenyao Cui
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yaru Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Honglin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Rong Huang
- Guangdong Aquarium Association, Guangzhou, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States of America
| | - Fei Li
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jianfeng Ren
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
30
|
Dupont C, Schäffers OJ, Tan BF, Merzouk S, Bindels EM, Zwijsen A, Huylebroeck D, Gribnau J. Efficient generation of ETX embryoids that recapitulate the entire window of murine egg cylinder development. SCIENCE ADVANCES 2023; 9:eadd2913. [PMID: 36652512 PMCID: PMC9848479 DOI: 10.1126/sciadv.add2913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olivier J. M. Schäffers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Beatrice F. Tan
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
31
|
Saha S, Bose R, Chakraborty S, Ain R. Tipping the balance toward stemness in trophoblast: Metabolic programming by Cox6B2. FASEB J 2022; 36:e22600. [PMID: 36250984 DOI: 10.1096/fj.202200703rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Metabolic effector(s) driving cell fate is an emerging concept in stem cell biology. Here we showed that Cytochrome C Oxidase Subunit 6B2 (Cox6B2) is essential to maintain the stemness of trophoblast stem (TS) cells. RNA interference of Cox6b2 resulted in decreased mitochondrial Complex IV activity, ATP production, and oxygen consumption rate in TS cells. Furthermore, depletion of Cox6b2 in TS cells led to decreased self-renewal capacity indicated by compromised BrdU incorporation, Ki67 staining, and decreased expression of TS cell genetic markers. As expected, the consequence of Cox6b2 knockdown was the induction of differentiation. TS cell stemness factor CDX2 transactivates Cox6b2 promoter in TS cells. In differentiated cells, Cox6b2 is post-transcriptionally regulated by two microRNAs, miR-322-5p and miR-503-5p, leading to its downregulation as demonstrated by the gain-in or loss of function of these miRNAs. Cox6b2 transcripts gradually rise in placental trophoblast gestation progresses in both mice and rats with predominant expression in labyrinthine trophoblast. Cox6b2 expression is compromised in the growth-restricted placenta of rats with reciprocal up-regulation of miR-322-5p and miR-503-5p. These data highlight the importance of Cox6B2 in the regulation of TS cell state and uncompromised placental growth.
Collapse
Affiliation(s)
- Sarbani Saha
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rumela Bose
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
32
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
33
|
Martens GA, Geßner C, Osterhof C, Hankeln T, Burmester T. Transcriptomes of Clusterin- and S100B-transfected neuronal cells elucidate protective mechanisms against hypoxia and oxidative stress in the hooded seal (Cystophora cristata) brain. BMC Neurosci 2022; 23:59. [PMID: 36243678 PMCID: PMC9571494 DOI: 10.1186/s12868-022-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.
Collapse
Affiliation(s)
- Gerrit A Martens
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany.
| | - Cornelia Geßner
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| | - Carina Osterhof
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thorsten Burmester
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
34
|
Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet 2022; 18:e1009967. [PMID: 36197846 PMCID: PMC9534413 DOI: 10.1371/journal.pgen.1009967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily conserved RNA helicase DDX6 is a central player in post-transcriptional regulation, but its role during embryogenesis remains elusive. We here show that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 knockout (KO) mouse embryos and employing an in vitro epiblast-like cell (EpiLC) induction system. Our study unveils that DDX6 is an important BMP signaling regulator. Deletion of Ddx6 causes the aberrant upregulation of the negative regulators of BMP signaling, which is accompanied by enhanced expression of Nodal and related genes. Ddx6 KO pluripotent cells acquire higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal and Eomes expression in the primitive streak likely promotes endoderm cell fate specification while inhibiting mesoderm differentiation. We also genetically dissected major DDX6 pathways by generating Dgcr8, Dcp2, and Eif4enif1 KO models in addition to Ddx6 KO. We found that the miRNA pathway mutant Dgcr8 KO phenocopies Ddx6 KO, indicating that DDX6 mostly works along with the miRNA pathway during early development, whereas its P-body-related functions are dispensable. Therefore, we conclude that DDX6 prevents aberrant upregulation of BMP signaling inhibitors by participating in miRNA-mediated gene silencing processes. Overall, this study delineates how DDX6 affects the development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.
Collapse
Affiliation(s)
- Jessica Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Hajime Okada
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Rieko Ajima
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
35
|
Liu W, Li S, Zhou Q, Fu Z, Liu P, Cao X, Xi S. 2, 2', 4, 4'-tetrabromodiphenyl ether induces placental toxicity via activation of p38 MAPK signaling pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114034. [PMID: 36063615 DOI: 10.1016/j.ecoenv.2022.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is one of the most important polybrominated diphenyl ethers (PBDEs) congeners, and epidemiological studies have shown that it can cause adverse pregnancy outcomes. The aim of our study was to investigate the role of placental injury in BDE-47-induced adverse pregnancy outcomes through in vivo and in vitro models. From day 0.5 to day 16.5 of pregnancy of ICR mice, BDE-47 oral doses of 0, 25, 50 and 100 mg/kg/day were administered. Immunohistochemical staining found that BDE-47 inhibited the expression of CD34 in mouse placenta, and ELISA results showed that BDE-47 reduced the levels of VEGF and PlGF in the serum of pregnant mice. Western blot assays found that the expression levels of VEGF-A and invasion-related factors were decreased in the placentas of BDE-47-treated group, which indicated that BDE-47 could impair placental angiogenesis. Furthermore, BDE-47 inhibited proliferation, increased apoptosis and autophagy, and activated p38 MAPK signaling pathway in mouse placental tissue. In vitro, HTR-8/SVneo cells were treated with 0, 5, 10, 20 μM BDE-47 for 24 h. Wound healing assays and Transwell assays showed that BDE-47 inhibited the migration and invasion ability of HTR-8/SVneo cells. We also found that BDE-47 inhibited the proliferation of HTR-8/SVneo cells and increased apoptosis and autophagy. BDE-47 activated p38 MAPK signaling pathway in HTR-8/SVneo cells, and inhibition of p38 MAPK signaling pathway in HTR-8/SVneo cells restored the effects caused by BDE-47. In conclusion, BDE-47 impairs placental angiogenesis by inhibiting cell migration and invasion, and induces placental toxicity by inhibiting proliferation, increasing apoptosis and autophagy. In vitro, activation of p38 MAPK signaling pathway is involved in the processes of placental injury by BDE-47.
Collapse
Affiliation(s)
- Weijue Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Sihao Li
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Qing Zhou
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Zhushan Fu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Pinya Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Xiyue Cao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Rood, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| |
Collapse
|
36
|
Capatina N, Burton GJ, Yung HW. Elevated homocysteine activates unfolded protein responses and causes aberrant trophoblast differentiation and mouse blastocyst development. Physiol Rep 2022; 10:e15467. [PMID: 36117391 PMCID: PMC9483615 DOI: 10.14814/phy2.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Hyperhomocysteinemia may arise from folate/vitamin B12 deficiency, genetic polymorphisms, kidney disease, or hypothyroidism. It is associated with an increased risk of early pregnancy loss and placenta-related complications of pregnancy, including pre-eclampsia and fetal growth restriction. While the majority of studies of hyperhomocysteinemia focus on epigenetic changes secondary to metabolic disruption, the effects of homocysteine toxicity on placental development remain unexplored. Here, we investigated the influence of hyperhomocysteinemia on early blastocyst development and trophoblast differentiation. Exposure of cultured blastocysts to high homocysteine levels reduces cell number in the trophectoderm layer, most likely through increased apoptosis. Homocysteine also promotes differentiation of a trophoblast stem cell line. Both effects diminish the stem cell pool, and are mediated in an endoplasmic reticulum (ER) unfolded protein response (UPRER )-dependent manner. Targeted alleviation of UPRER may therefore provide a new therapeutic intervention to improve pregnancy outcome in women with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Nadejda Capatina
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
37
|
Analysis of trophectoderm markers in domestic cat blastocysts cultured without zona pellucida. ZYGOTE 2022; 30:841-848. [PMID: 36043362 DOI: 10.1017/s096719942200034x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Domestic cat embryos generated by in vitro fertilization (IVF) and cultured without the zona pellucida have a reduced implantation capacity after embryo transfer at the blastocyst stage. The objective of this study was to evaluate the expression of trophectoderm markers in domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were selected: (1) domestic cat embryos generated by IVF and cultured in vitro normally (zona intact group, ZI); and (2) domestic cat embryos generated by IVF and cultured in vitro without a zona pellucida (zona-free group, ZF). In the ZF group, the zona pellucida of the presumptive zygote was removed and these were cultured using the well of the well (WOW) system. In vitro culture was carried out for 7 days. The cleavage, morula and blastocyst rates were estimated. Finally, the relative expression levels of the trophectoderm markers TEAD4, YAP1, CDX2 and EOMES, the cell adhesion marker E-cadherin and the apoptosis marker CASP3 were evaluated by RT-qPCR in the blastocysts. The Wilcoxon test was used to evaluate differences (P < 0.05). No differences were observed in the cleavage, morula and blastocyst rates between the ZF and ZI groups. No differences were found in the expression of TEAD4, CDX2, E-cadherin and CASP3 between groups. The expression of YAP1 and EOMES was higher in ZF blastocysts than in ZI blastocysts. In conclusion, the in vitro culture without the zona pellucida generates an overexpression of YAP1 and EOMES in the domestic cat blastocysts. More studies are needed to confirm if this overexpression might affect in vivo development.
Collapse
|
38
|
Talbot CD, Walsh MD, Cutty SJ, Elsayed R, Vlachaki E, Bruce AEE, Wardle FC, Nelson AC. Eomes function is conserved between zebrafish and mouse and controls left-right organiser progenitor gene expression via interlocking feedforward loops. Front Cell Dev Biol 2022; 10:982477. [PMID: 36133924 PMCID: PMC9483813 DOI: 10.3389/fcell.2022.982477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained. This suggests fundamental differences in either the molecular function of Eomes orthologues or the molecular configuration of processes in which they participate. To explore these hypotheses we initially analysed the expression of distinct Eomes isoforms in various mouse cell types. Next we compared the functional capabilities of these murine isoforms to zebrafish Eomesa. These experiments provided no evidence for functional divergence. Next we examined the functions of zebrafish Eomesa and other T-box family members expressed in early development, as well as its paralogue Eomesb. Though Eomes is a member of the Tbr1 subfamily we found evidence for functional redundancy with the Tbx6 subfamily member Tbx16, known to be absent from eutherians. However, Tbx16 does not appear to synergise with Eomesa cofactors Mixl1 and Gata5. Finally, we analysed the ability of Eomesa and other T-box factors to induce zebrafish left-right organiser progenitors (known as dorsal forerunner cells) known to be positively regulated by vgll4l, a gene we had previously shown to be repressed by Eomesa. Here we demonstrate that Eomesa indirectly upregulates vgll4l expression via interlocking feedforward loops, suggesting a role in establishment of left-right asymmetry. Conversely, other T-box factors could not similarly induce left-right organiser progenitors. Overall these findings demonstrate conservation of Eomes molecular function and participation in similar processes, but differential requirements across evolution due to additional co-expressed T-box factors in teleosts, albeit with markedly different molecular capabilities. Our analyses also provide insights into the role of Eomesa in left-right organiser formation in zebrafish.
Collapse
Affiliation(s)
- Conor D. Talbot
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mark D. Walsh
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Stephen J. Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Randa Elsayed
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Eirini Vlachaki
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Ashley E. E. Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Andrew C. Nelson
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
39
|
Liu D, Chen Y, Ren Y, Yuan P, Wang N, Liu Q, Yang C, Yan Z, Yang M, Wang J, Lian Y, Yan J, Zhai F, Nie Y, Zhu X, Chen Y, Li R, Chang HM, Leung PCK, Qiao J, Yan L. Primary specification of blastocyst trophectoderm by scRNA-seq: New insights into embryo implantation. SCIENCE ADVANCES 2022; 8:eabj3725. [PMID: 35947672 PMCID: PMC9365277 DOI: 10.1126/sciadv.abj3725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/27/2022] [Indexed: 06/03/2023]
Abstract
Mechanisms of implantation such as determination of the attachment pole, fetal-maternal communication, and underlying causes of implantation failure are largely unexplored. Here, we performed single-cell RNA sequencing on peri-implantation embryos from both humans and mice to explore trophectoderm (TE) development and embryo-endometrium cross-talk. We found that the transcriptomes of polar and mural TE diverged after embryos hatched from the zona pellucida in both species, with polar TE being more mature than mural TE. The implantation poles show similarities in cell cycle activities, as well as in expression of genes critical for implantation and placentation. Embryos that either fail to attach in vitro or fail to implant in vivo show abnormalities in pathways related to energy production, protein metabolism, and 18S ribosomal RNA m6A methylation. These findings uncover the gene expression characteristics of humans and mice TE differentiation during the peri-implantation period and provide new insights into embryo implantation.
Collapse
Affiliation(s)
- Dandan Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Yidong Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Cen Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Ming Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Fan Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yuan Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Hsun-Ming Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Peter C. K. Leung
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| |
Collapse
|
40
|
Liu G, Yang G, Zhao G, Guo C, Zeng Y, Xue Y, Zeng F. Spatial transcriptomic profiling to identify mesoderm progenitors with precision genomic screening and functional confirmation. Cell Prolif 2022; 55:e13298. [PMID: 35906841 PMCID: PMC9528766 DOI: 10.1111/cpr.13298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Mesoderm, derived from a new layer between epiblast and hypoblast during gastrulation, can differentiate into various tissues, including muscles, bones, kidneys, blood, and the urogenital system. However, systematic elucidation of mesoderm characteristics and specific markers remains a challenge. This study aims to screen and identify candidate genes important for mesoderm development. Materials and Methods Cells originating from the three germ layers were obtained by laser capture microdissection, followed by microcellular RNA sequencing. Mesoderm‐specific differentially expressed genes (DEGs) were identified by using a combination of three bioinformatics pipelines. Candidate mesoderm‐specific genes expression were verified by real‐time quantitative polymerase chain reaction analysis and immunohistochemistry. Functional analyses were verified by ESCs‐EBs differentiation and colony‐forming units (CFUs) assay. Results A total of 1962 differentially expressed mesoderm genes were found, out of which 50 were candidate mesoderm‐specific DEGs which mainly participate in somite development, formation of the primary germ layer, segmentation, mesoderm development, and pattern specification process by GO analysis. Representative genes Cdh2, Cdh11, Jag1, T, Fn‐1, and Pcdh7 were specifically expressed in mesoderm among the three germ layers. Pcdh7 as membrane‐associated gene has hematopoietic‐relevant functions identified by ESCs‐EBs differentiation and CFUs assay. Conclusions Spatial transcriptomic profiling with multi‐method analysis and confirmation revealed candidate mesoderm progenitors. This approach appears to be efficient and reliable and can be extended to screen and validate candidate genes in various cellular systems.
Collapse
Affiliation(s)
- Guanghui Liu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guijun Zhao
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yitao Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xue
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
41
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
42
|
Mice lacking DCAF2 in placenta die at the gastrulation stage. Cell Tissue Res 2022; 389:559-572. [PMID: 35711069 DOI: 10.1007/s00441-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
UV-damaged DNA-binding protein 1 (DDB1) and cullin 4-associated factor 2 (DCAF2, also known as DTL or CDT2) is an evolutionarily highly conserved substrate recognition factor in the cullin 4 RING E3 ubiquitin ligase (CRL4) complex. This complex degrades multiple DNA replication and cell cycle-associated proteins to maintain genome stability. To clarify the function of DCAF2 in vivo, we used Cre recombinase driven by the Elf5 promoter to generate knockout mouse model that was specifically deleted Dcaf2 in the trophoblast lineage (Elf5-Cre; Dcaf2fl/fl, Dcaf2 cKO). Here, we show that mice with the genotype Elf5-Cre; Dcaf2fl/+ are normal and fertile. However, after mating of Elf5-Cre; Dcaf2fl/+ mice with Dcaf2fl/fl, no Dcaf2 cKO pups were born. Timed pregnancy studies have shown that Dcaf2 cKO mice developed abnormally on embryonic day 5.5 and died at gastrulation stage. It is worth noting that the extraembryonic ectoderm of Dcaf2 cKO mice is severely reduced or missing and leading to embryonic death. We also proved that stronger DNA damage accumulated in the trophoblastic cells of Dcaf2 cKO mice at E8.5. In addition, higher expression of Caspase-3 was found in the embryonic and trophoblastic cells of these cKO mice. In general, our research shows that the placental DCAF2 is crucial to the formation of gastrula.
Collapse
|
43
|
Soncin F, Morey R, Bui T, Requena DF, Cheung VC, Kallol S, Kittle R, Jackson MG, Farah O, Chousal J, Meads M, Pizzo D, Horii M, Fisch KM, Parast MM. Derivation of functional trophoblast stem cells from primed human pluripotent stem cells. Stem Cell Reports 2022; 17:1303-1317. [PMID: 35594858 PMCID: PMC9214048 DOI: 10.1016/j.stemcr.2022.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022] Open
Abstract
Trophoblast stem cells (TSCs) have recently been derived from human embryos and early-first-trimester placenta; however, aside from ethical challenges, the unknown disease potential of these cells limits their scientific utility. We have previously established a bone morphogetic protein 4 (BMP4)-based two-step protocol for differentiation of primed human pluripotent stem cells (hPSCs) into functional trophoblasts; however, those trophoblasts could not be maintained in a self-renewing TSC-like state. Here, we use the first step from this protocol, followed by a switch to newly developed TSC medium, to derive bona fide TSCs. We show that these cells resemble placenta- and naive hPSC-derived TSCs, based on their transcriptome as well as their in vitro and in vivo differentiation potential. We conclude that primed hPSCs can be used to generate functional TSCs through a simple protocol, which can be applied to a widely available set of existing hPSCs, including induced pluripotent stem cells, derived from patients with known birth outcomes.
Collapse
Affiliation(s)
- Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniela F Requena
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Virginia Chu Cheung
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sampada Kallol
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ryan Kittle
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline G Jackson
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Omar Farah
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Chousal
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Transcription factor networks in trophoblast development. Cell Mol Life Sci 2022; 79:337. [PMID: 35657505 PMCID: PMC9166831 DOI: 10.1007/s00018-022-04363-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022]
Abstract
The placenta sustains embryonic development and is critical for a successful pregnancy outcome. It provides the site of exchange between the mother and the embryo, has immunological functions and is a vital endocrine organ. To perform these diverse roles, the placenta comprises highly specialized trophoblast cell types, including syncytiotrophoblast and extravillous trophoblast. The coordinated actions of transcription factors (TFs) regulate their emergence during development, subsequent specialization, and identity. These TFs integrate diverse signaling cues, form TF networks, associate with chromatin remodeling and modifying factors, and collectively determine the cell type-specific characteristics. Here, we summarize the general properties of TFs, provide an overview of TFs involved in the development and function of the human trophoblast, and address similarities and differences to their murine orthologs. In addition, we discuss how the recent establishment of human in vitro models combined with -omics approaches propel our knowledge and transform the human trophoblast field.
Collapse
|
45
|
Tao S, Zhang X, Tian F, Pan B, Peng R, Wang Y, Xia M, Yang M, Hu J, Kan H, Xu Y, Li W. Maternal exposure to ambient PM 2.5 causes fetal growth restriction via the inhibition of spiral artery remodeling in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113512. [PMID: 35429798 DOI: 10.1016/j.ecoenv.2022.113512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Maternal exposure to ambient fine particulate matters (PM2.5) is associated with low birth weight (LBW) in offspring, but the underlying biological mechanisms are not yet fully understood. As the bridge that connects mother and fetus, the placenta plays a crucial role in fetal development by providing the fetus with nutrients and oxygen. However, whether PM2.5 exposure would impact the placental development and the related mechanisms are unclear. RESULTS In the present study, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) during pregestational and gestational periods, and the fetal development and placental structure were investigated. Our results showed that maternal exposure to CAP induced fetal growth restriction (FGR) and LBW. The placenta from CAP-exposed mice exhibited abnormal development including significant decrease of surface area, smaller junctional zone and impaired spiral artery remodeling. Meanwhile, CAP exposure altered trophoblast lineage differentiation and disrupted the balance between angiogenic and angiostatic factors in placenta. In addition, the inflammatory cytokines levels in lung, placenta and serum were significantly increased after ambient PM2.5 exposure. CONCLUSION Our findings indicate that maternal exposure to PM2.5 disrupts normal structure and spiral artery remodeling of placenta and further induces FGR and LBW. This effect may be caused by the placental inflammation response subsequent to the pulmonary and systemic inflammation induced by ambient PM2.5 exposure.
Collapse
Affiliation(s)
- Shimin Tao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Xuan Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yuzhu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Minjie Xia
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Jingying Hu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai 200032, China.
| |
Collapse
|
46
|
Li J, Chen S, Pan X, Yuan Y, Shen HB. Cell clustering for spatial transcriptomics data with graph neural networks. NATURE COMPUTATIONAL SCIENCE 2022; 2:399-408. [PMID: 38177586 DOI: 10.1038/s43588-022-00266-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/19/2022] [Indexed: 01/06/2024]
Abstract
Spatial transcriptomics data can provide high-throughput gene expression profiling and the spatial structure of tissues simultaneously. Most studies have relied on only the gene expression information but cannot utilize the spatial information efficiently. Taking advantage of spatial transcriptomics and graph neural networks, we introduce cell clustering for spatial transcriptomics data with graph neural networks, an unsupervised cell clustering method based on graph convolutional networks to improve ab initio cell clustering and discovery of cell subtypes based on curated cell category annotation. On the basis of its application to five in vitro and in vivo spatial datasets, we show that cell clustering for spatial transcriptomics outperforms other spatial clustering approaches on spatial transcriptomics datasets and can clearly identify all four cell cycle phases from multiplexed error-robust fluorescence in situ hybridization data of cultured cells. From enhanced sequential fluorescence in situ hybridization data of brain, cell clustering for spatial transcriptomics finds functional cell subtypes with different micro-environments, which are all validated experimentally, inspiring biological hypotheses about the underlying interactions among the cell state, cell type and micro-environment.
Collapse
Affiliation(s)
- Jiachen Li
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Siheng Chen
- Cooperative Medianet Innovation Center (CMIC), Shanghai Jiao Tong University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
| |
Collapse
|
47
|
Marikawa Y, Alarcon VB. Remdesivir impairs mouse preimplantation embryo development at therapeutic concentrations. Reprod Toxicol 2022; 111:135-147. [PMID: 35605700 PMCID: PMC9122741 DOI: 10.1016/j.reprotox.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023]
Abstract
Remdesivir (RDV) is the first antiviral drug to be approved by the US Food and Drug Administration for the treatment of COVID-19. While the general safety of RDV has been studied, its reproductive risk, including embryotoxicity, is largely unknown. Here, to gain insights into its embryotoxic potential, we investigated the effects of RDV on mouse preimplantation embryos cultured in vitro at the concentrations comparable to the therapeutic plasma levels. Exposure to RDV (2–8 µM) did not affect the initiation of blastocyst formation, although the maintenance of the cavity failed at 8 µM due to increased cell death. While exposure to 2–4 µM permitted the cavity maintenance, expressions of developmental regulator genes associated with the inner cell mass (ICM) lineage were significantly diminished. Adverse effects of RDV depended on the duration and timing of exposure, as treatment between the 8-cell to early blastocyst stage most sensitively affected cavity expansion, gene expressions, and cell proliferation, particularly of the ICM than the trophectoderm lineage. GS-441524, a major metabolite of RDV, did not impair blastocyst formation or cavity expansion, although it altered gene expressions in a manner differently from RDV. Additionally, RDV reduced the viability of human embryonic stem cells, which were used as a model for the human ICM lineage, more potently than GS-441524. These findings suggest that RDV is potentially embryotoxic to impair the pluripotent lineage, and will be useful for designing and interpreting further in vitro and in vivo studies on the reproductive toxicity of RDV.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Vernadeth B Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| |
Collapse
|
48
|
The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biol 2022; 20:e3001615. [PMID: 35476669 PMCID: PMC9084524 DOI: 10.1371/journal.pbio.3001615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/09/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.
Collapse
|
49
|
Govindasamy N, Long H, Jeong HW, Raman R, Özcifci B, Probst S, Arnold SJ, Riehemann K, Ranga A, Adams RH, Trappmann B, Bedzhov I. 3D biomimetic platform reveals the first interactions of the embryo and the maternal blood vessels. Dev Cell 2021; 56:3276-3287.e8. [PMID: 34741805 DOI: 10.1016/j.devcel.2021.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
The process of implantation and the cellular interactions at the embryo-maternal interface are intrinsically difficult to analyze, as the implanting embryo is concealed by the uterine tissues. Therefore, the mechanisms mediating the interconnection of the embryo and the mother are poorly understood. Here, we established a 3D biomimetic culture environment that harbors the key features of the murine implantation niche. This culture system enabled direct analysis of trophoblast invasion and revealed the first embryonic interactions with the maternal vasculature. We found that implantation is mediated by the collective migration of penetrating strands of trophoblast giant cells, which acquire the expression of vascular receptors, ligands, and adhesion molecules, assembling a network for communication with the maternal blood vessels. In particular, Pdgf signaling cues promote the establishment of the heterologous contacts. Together, the biomimetic platform and our findings thereof elucidate the hidden dynamics of the early interactions at the implantation site.
Collapse
Affiliation(s)
- Niraimathi Govindasamy
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ratish Raman
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Burak Özcifci
- Center for Nanotechnology (CeNTech) und Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Kristina Riehemann
- Center for Nanotechnology (CeNTech) und Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
50
|
Ajima R, Sakakibara Y, Sakurai-Yamatani N, Muraoka M, Saga Y. Formal proof of the requirement of MESP1 and MESP2 in mesoderm specification and their transcriptional control via specific enhancers in mice. Development 2021; 148:272544. [PMID: 34679163 DOI: 10.1242/dev.194613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
MESP1 and MESP2 are transcriptional factors involved in mesoderm specification, somite boundary formation and somite polarity regulation. However, Mesp quadruple mutant zebrafish displayed only abnormal somite polarity without mesoderm specification defects. In order to re-evaluate Mesp1/Mesp2 mutants in mice, Mesp1 and Mesp2 single knockouts (KOs), and a Mesp1/Mesp2 double KO were established using genome-editing techniques without introducing selection markers commonly used before. The Mesp1/Mesp2 double KO embryos exhibited markedly severe mesoderm formation defects that were similar to the previously reported Mesp1/Mesp2 double KO embryos, indicating species differences in the function of MESP family proteins. However, the Mesp1 KO did not display any phenotype, including heart formation defects, which have been reported previously. We noted upregulation of Mesp2 in the Mesp1 KO embryos, suggesting that MESP2 rescues the loss of MESP1 in mesoderm specification. We also found that Mesp1 and Mesp2 expression in the early mesoderm is regulated by the cooperation of two independent enhancers containing T-box- and TCF/Lef-binding sites. Deletion of both enhancers caused the downregulation of both genes, resulting in heart formation defects. This study suggests dose-dependent roles of MESP1 and MESP2 in early mesoderm formation.
Collapse
Affiliation(s)
- Rieko Ajima
- Mammalian Development Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yuko Sakakibara
- Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Noriko Sakurai-Yamatani
- Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|