1
|
Xu L, Shen W, Chen J, Lv H, He W, He TS, Guo T, Liu Z. Dock2 deficiency reveals abnormal activation and differentiation of T cells under the physiological condition. Mol Immunol 2025; 181:75-83. [PMID: 40101338 DOI: 10.1016/j.molimm.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Previous research has demonstrated that Dock2 deficiency results in a reduction in both the quantity and proliferation rate of T cells, thereby heightening the host's vulnerability to various infections. Nevertheless, the impact of DOCK2 on T cell activation remains unexplored. In this study, we employed flow cytometry to assess the activation phenotype of T cells in the peripheral lymphoid tissues of wild-type (Dock2+/+), DOCK2 heterozygous (Dock2+/-) and DOCK2 knockout (Dock2-/-) mice. Our findings revealed that, in comparison to Dock2+/+ mice, Dock2-/- mice exhibited increased expression levels of CD44 and CD69 on CD4+ and/or CD8+ T cells within spleen and mesenteric lymph nodes (MLN). Additionally, there was a significant elevation in the proportions of IFN-γ+/CD4+, IFN-γ+/CD8+ and IL-4+/CD8+ T cells. Furthermore, the percentage of IL-17a+/CD4+ and IL-17a+/CD8+ T cells in the MLN of Dock2-/- mice was higher than that observed in Dock2+/+ mice. These results suggest that Dock2 deficiency induces aberrant T cell activation in peripheral lymphoid tissues. To further investigate the underlying mechanisms of this phenomenon, we conducted transcriptome sequencing on CD8+ T cells collected from all groups of mice. The results indicate that Ccr2 and Ifng are potentially pivotal genes involved in the aberrant activation of T cells in Dock2-/- mice. These findings contribute to elucidating the host defense mechanisms against foreign pathogens and advance our comprehension of the role of cytoskeleton-related proteins in the regulation of cellular immunity.
Collapse
Affiliation(s)
- Li Xu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijie Shen
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Chen
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiru Lv
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenji He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tian-Sheng He
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
2
|
Al-Kharashi LA, Al-Mohanna FH, Aboussekhra A, Abousekhra A. E2F1 activates breast stromal fibroblasts and promotes their paracrine pro-carcinogenic effects. Sci Rep 2025; 15:4210. [PMID: 39905189 PMCID: PMC11794577 DOI: 10.1038/s41598-025-87808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Breast cancers (BC) are complex neo-organs composed of neoplastic as well as non-carcinogenic cells, in addition to a dynamic extracellular matrix. Active cancer-associated fibroblasts (CAFs) play major roles in the development and spread of breast cancers, through paracrine signaling, which are under the control of several transcription regulators. In the present study, we investigated the role of the transcription factor E2F1 in the active status of CAFs. We have shown that CAFs express higher levels of E2F1 compared to their adjacent tumor counterpart fibroblasts (TCFs). Importantly, E2F1 upregulation by ectopic expression transactivated quiescent breast stromal fibroblasts and promoted their paracrine pro-carcinogenic effects. Indeed, E2F1-expressing fibroblasts were more efficient than their corresponding controls in enhancing the epithelial-to-mesenchymal transition and stemness processes in breast cancer cells both in vitro and in vivo. However, E2F1 knock-down normalized breast CAFs and suppressed their paracrine pro-carcinogenic effects. Interestingly, while fibroblasts expressing high level of E2F1 enhanced the resistance of BC cells to chemotherapeutic drugs, E2F1-deficient fibroblasts enhanced their sensitivity to cisplatin. Together, these findings indicate that the transciption factor E2F1 plays a critical role in the transactivation of breast stromal fibroblasts, and therefore could be a great therapeutic target for precision therapeutics of BC patients.
Collapse
Affiliation(s)
- Layla A Al-Kharashi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia.
| | - Abdelilah Abousekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Han L, Wu T, Zhang Q, Qi A, Zhou X. Immune Tolerance Regulation Is Critical to Immune Homeostasis. J Immunol Res 2025; 2025:5006201. [PMID: 39950084 PMCID: PMC11824399 DOI: 10.1155/jimr/5006201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/07/2024] [Indexed: 02/16/2025] Open
Abstract
The body's immune response plays a critical role in defending against external or foreign antigens while also preserving tolerance to self-antigens. This equilibrium, referred to as immune homeostasis, is paramount for overall health. The regulatory mechanisms governing the maintenance of this delicate immune balance are notably complex. It is currently accepted that immune tolerance is a dynamic outcome regulated by multiple factors, including central and peripheral mechanisms. Its induction or elimination plays a significant role in autoimmune diseases, organ transplantation, and cancer therapy, markedly impacting various major diseases in modern clinical practice. Overall, our current understanding of immune tolerance is still very limited. In this review article, we summarized the main mechanisms that have been known to mediate immune tolerance so far, including endogenous immune tolerance, adaptive immune tolerance, other immune tolerance mechanisms, and the homeostasis of immune tolerance, identified the key factors that regulate immune tolerance, and provided new clues for immune system recovery in many autoimmune diseases, organ transplantation, and tumor therapy.
Collapse
Affiliation(s)
- Lei Han
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu, China
| | - Tianxiang Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Qin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing, Jiangsu 211500, China
| | - Xiaohui Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
4
|
Nakajima R, Zhou Y, Shirasawa M, Nishimura N, Zhao L, Fikriyanti M, Kamiya Y, Iwanaga R, Bradford AP, Shinmyozu K, Nishibuchi G, Nakayama JI, Kurayoshi K, Araki K, Ohtani K. DEAD/H Box 5 (DDX5) Augments E2F1-Induced Cell Death Independent of the Tumor Suppressor p53. Int J Mol Sci 2024; 25:13251. [PMID: 39769018 PMCID: PMC11675670 DOI: 10.3390/ijms252413251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
In almost all cancers, the p53 pathway is disabled and cancer cells survive. Hence, it is crucially important to induce cell death independent of p53 in the treatment of cancers. The transcription factor E2F1 is controlled by binding of the tumor suppressor pRB, and induces apoptosis by activating the ARF gene, an upstream activator of p53, when deregulated from pRB by loss of pRB function. Deregulated E2F1 can also induce apoptosis, independent of p53, via other targets such as TAp73 and BIM. We searched for novel E2F1-interacting proteins and identified the RNA helicase DEAD/H box 5 (DDX5), which also functions as a transcriptional coactivator. In contrast to the reported growth-promoting roles of DDX5, we show that DDX5 suppresses cell growth and survival by augmentation of deregulated E2F1 activity. Over-expression of DDX5 enhanced E2F1 induction of tumor suppressor gene expression and cell death. Conversely, shRNA-mediated knockdown of DDX5 compromised both. Moreover, DDX5 modulated E2F1-mediated cell death independent of p53, for which DDX5 also functions as a coactivator. Since p53 function is disabled in almost all cancers, these results underscore the roles of DDX5 in E2F1-mediated induction of cell death, independent of p53, and represent novel aspects for the treatment of p53-disabled cancer cells.
Collapse
Affiliation(s)
- Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Naoyasu Nishimura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Yuki Kamiya
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Hyogo, Japan;
| | - Gohei Nishibuchi
- Laboratory of Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Kyoto, Japan;
| | - Jun-ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan;
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Aichi, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| |
Collapse
|
5
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
6
|
Singh S, Gleason CE, Fang M, Laimon YN, Khivansara V, Xie S, Durmaz YT, Sarkar A, Ngo K, Savla V, Li Y, Abu-Remaileh M, Li X, Tuladhar B, Odeh R, Hamkins-Indik F, He D, Membreno MW, Nosrati M, Gushwa NN, Leung SSF, Fraga-Walton B, Hernandez L, Baldomero MP, Lent BM, Spellmeyer D, Luna JF, Hoang D, Gritsenko Y, Chand M, DeMart MK, Metobo S, Bhatt C, Shapiro JA, Yang K, Dupper NJ, Bockus AT, Doench JG, Aggen JB, Liu LF, Levin B, Wang EW, Vendrell I, Fischer R, Kessler B, Gokhale PC, Signoretti S, Spektor A, Kreatsoulas C, Singh R, Earp DJ, Garcia PD, Nijhawan D, Oser MG. Cyclin A/B RxL Macrocyclic Inhibitors to Treat Cancers with High E2F Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605889. [PMID: 39211113 PMCID: PMC11360997 DOI: 10.1101/2024.08.01.605889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.
Collapse
|
7
|
Identification of the Potential Correlation between Tumor Protein 73 and Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:6410113. [PMID: 35756491 PMCID: PMC9217540 DOI: 10.1155/2022/6410113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Background Head and neck squamous cell carcinomas (HNSC) are common malignant tumors with a high occurrence and poor prognosis. Tumor protein P73 (TP73) plays an integral role in a wide range of human malignancies, but its gene expression profile, prognostic value, and potential mechanisms in HNSC remain to be comprehensively explored. Objective This research aimed to elucidate the potential relationship between TP73 and HNSC through bioinformatics analysis. Methods The Cancer Genome Atlas (TCGA) database was queried to investigate the regulatory role of TP73 in HNSC. The survival probabilities linked to TP73 mRNA were determined via the Kaplan-Meier analysis using R packages. Subsequently, the association of TP73 with several clinical subgroups and immunological subtypes was studied using a cohort from the TCGA-HNSC. Functional analyses were used to identify the potential signaling pathways enriched by the correlated genes of TP73. The relationship between TP73 and immunological aspects, including immune cells, immune inhibitor genes, immune stimulator genes, and tumor immune microenvironment, were investigated. Results This study showed that the protein and mRNA levels of TP73 in HNSC patients were significantly higher than those in normal tissues. Elevated TP73 expression was related to a better survival outcome in HNSC patients. The TP73 gene was an independent prognostic factor for overall survival in HNSC samples. TP73 was mainly involved in DNA replication, ribosome, apoptosis, mismatch repair, and folate biosynthesis. TP73 was found to be positively correlated with the majority of tumor infiltrating immune cells and immunoinhibitory genes in HNSC. Conclusions Integrative bioinformatics and statistical analyses displayed that TP73 might serve as a novel marker for the diagnosis and prognosis of HNSC. TP73 modulates immune cells in the tumor microenvironment of HNSC patients, thereby bearing significance for HNSC immunotherapy.
Collapse
|
8
|
Dual Role of p73 in Cancer Microenvironment and DNA Damage Response. Cells 2021; 10:cells10123516. [PMID: 34944027 PMCID: PMC8700694 DOI: 10.3390/cells10123516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate cancer progression is pivotal for the development of new therapies. Although p53 is mutated in half of human cancers, its family member p73 is not. At the same time, isoforms of p73 are often overexpressed in cancers and p73 can overtake many p53 functions to kill abnormal cells. According to the latest studies, while p73 represses epithelial–mesenchymal transition and metastasis, it can also promote tumour growth by modulating crosstalk between cancer and immune cells in the tumor microenvironment, M2 macrophage polarisation, Th2 T-cell differentiation, and angiogenesis. Thus, p73 likely plays a dual role as a tumor suppressor by regulating apoptosis in response to genotoxic stress or as an oncoprotein by promoting the immunosuppressive environment and immune cell differentiation.
Collapse
|
9
|
Lai P, Wang Y. Epigenetics of cutaneous T-cell lymphoma: biomarkers and therapeutic potentials. Cancer Biol Med 2021; 18:34-51. [PMID: 33628583 PMCID: PMC7877166 DOI: 10.20892/j.issn.2095-3941.2020.0216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of skin-homing non-Hodgkin lymphomas. There are limited options for effective treatment of patients with advanced-stage CTCL, leading to a poor survival rate. Epigenetics plays a pivotal role in regulating gene expression without altering the DNA sequence. Epigenetic alterations are involved in virtually all key cancer-associated pathways and are fundamental to the genesis of cancer. In recent years, the epigenetic hallmarks of CTCL have been gradually elucidated and their potential values in the diagnosis, prognosis, and therapeutic intervention have been clarified. In this review, we summarize the current knowledge of the best-studied epigenetic modifications in CTCL, including DNA methylation, histone modifications, microRNAs, and chromatin remodelers. These epigenetic regulators are essential in the development of CTCL and provide new insights into the clinical treatments of this refractory disease.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
10
|
Wen Z, Wang Y, Qi S, Ma M, Li J, Yu FX. Regulation of TP73 transcription by Hippo-YAP signaling. Biochem Biophys Res Commun 2020; 531:96-104. [PMID: 32773110 DOI: 10.1016/j.bbrc.2020.07.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
Abstract
Yes-associated protein (YAP) is a key downstream effector of the highly conserved Hippo signaling pathway, which regulates organ size, regeneration and tumorigenesis. Known classically to function as a transcriptional co-activator, YAP interacts with TEA domain transcription factors (TEAD1-4) to induce expression of target genes. However, a number of genes are repressed upon YAP activation, suggesting a transcriptional repressor role of YAP. Here, we report that TP73 is a direct target gene of YAP, and its transcription is repressed by YAP in a TEAD-independent manner. On the other hand, WW domains of YAP are indispensable for the regulation of TP73 expression, which may recruit YAP to TP73 gene though interaction with ZEB1 and/or RUNX2, two transcriptional repressors. Moreover, YAP-mediated repression of TP73 promotes cancer cell survival in the presence of chemotherapeutic agents, suggesting YAP-TP73 signaling as a mechanism for cancer cell resistance to chemotherapies.
Collapse
Affiliation(s)
- Zichao Wen
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyue Ma
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Li
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Saadat KA, Bozgeyik E, Arman K, Bozgeyik I, Ikeda MA. ARID3A-mediated modulation of TP73 and TP73-AS1 in osteosarcoma cells. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
El Dika M. Redirecting E2F1 to TA-p73 improves cancer therapy through apoptotic induction. DNA Repair (Amst) 2020; 90:102858. [PMID: 32388489 DOI: 10.1016/j.dnarep.2020.102858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Mohammed El Dika
- Institut Curie, PSL Research University, CNRS, UMR3348, Orsay, France; Paris Sud University, Paris-Saclay University, CNRS, UMR3348, Orsay, France; London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada.
| |
Collapse
|
13
|
Yang J, Gong Y, Cai J, Zheng Y, Zhang Z. Chlorpyrifos induces apoptosis and autophagy in common carp lymphocytes by influencing the TCR γ-dependent PI3K/AKT/JNK pathway. FISH & SHELLFISH IMMUNOLOGY 2020; 99:587-593. [PMID: 32112891 DOI: 10.1016/j.fsi.2020.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos is an insecticide that is widely used in agricultural production. However, little is known about how chlorpyrifos disrupts lymphocyte homeostasis in common carp. Herein, we identified TCRγ through the results of transcriptome analysis. Subsequently, we established TCR γ knockdown and overexpression models in carp head kidney lymphocyte respectively using RNA interference and the pcDNA3.1 plasmid, respectively. Real-time PCR, fluorescent staining, ultrastructure observation and flow cytometry were used to detect the levels of the PI3K/AKT pathway, autophagy and apoptosis. Our results demonstrated that chlorpyrifos significantly decreased the expression of TCR γ, TCR γ suppression thereby induced increased mRNA expression of TNF-α, Bax, caspase-3, caspase-8, caspase-9 and significantly inhibited the expression of Bcl-2, which indicated that apoptosis was triggered. This conclusion was supported by our flow cytometry and ultrastructure observation results. In addition, the control and TCR γ overexpression groups had normal cell morphology. Moreover, TCR γ suppression activated the expression of Becline-1, ATG5, ATG10, ATG12, ATG16 and reduced the expression of mTOR, with the opposite results observed in the TCR γ overexpression group. Together, these results suggested that TCR γ imbalance triggers apoptosis and autophagy in lymphocyte. Moreover, we found that TCR γ knockdown significantly increased the mRNA expression of JNK and decreased the expression of PI3K and AKT, which indicated that the PI3K/AKT/JNK pathway was activated. Our results reported here indicated that chlorpyrifos induces apoptosis and autophagy in head kidney lymphocyte through the inhibition of TCR γ.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
14
|
Hua B, Li Y, Yang X, Niu X, Zhao Y, Zhu X. MicroRNA-361-3p promotes human breast cancer cell viability by inhibiting the E2F1/P73 signalling pathway. Biomed Pharmacother 2020; 125:109994. [PMID: 32092817 DOI: 10.1016/j.biopha.2020.109994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023] Open
Abstract
Analysis of the microRNA (miRNA) expression signature of breast cancer based on RNA sequencing demonstrated that miR-361-3p was significantly upregulated in breast cancer tissues. miR-361-3p is a novel miRNA, and its role in breast cancer is currently unclear. The aim of the present study was to investigate the functions of miR-361-3p in breast carcinoma. In this study, it was observed that the expression of miR-361-3p in cancer tissues was significantly higher compared with that in para-cancerous tissues and was correlated with advanced TNM stage, Ki-67 overexpression and shorter disease-free survival. Overexpression of miR-361-3p promoted proliferation and inhibited apoptosis of breast cancer cells. Through RNA sequencing, multi-library retrieval, luciferase reporter assays, quantitative polymerase chain reaction analysis, western blotting and other methods, it was verified that E2F1 was directly downregulated by miR-361-3p. The knockdown of E2F1 by siRNA promoted breast cancer cell proliferation and inhibited apoptosis, similar to miR-361-3p. In addition, miR-361-3p was able to decrease the expression of P73 by targeting E2F1, whereas overexpression of P73 reversed the effect of miR-361-3p on the viability of breast cancer cell lines. Thus, the present study demonstrated that miR-361-3p acts as an oncomiR in breast cancer to promote proliferation and inhibit apoptosis through inhibiting the P73 pathway by downregulating E2F1 expression, which may uncover valuable prognostic factors or treatment targets.
Collapse
Affiliation(s)
- Bin Hua
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yao Li
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xin Yang
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xiaojuan Niu
- Breast Center, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics National Health Commission, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
15
|
Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, Weathington NM, Ma H, Zhao Y. Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol 2019; 10:60-73. [PMID: 28992046 DOI: 10.1093/jmcb/mjx034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation affects ubiquitination, stability, and activity of transcriptional factors, thus regulating various cellular functions. E2F transcriptional factor 1 (E2F1) regulates paternally expressed imprinted gene 10 (Peg10) expression, thereby promoting cell proliferation. However, the effect of E2F1 stability on Peg10 expression and the molecular regulation of E2F1 stability by its phosphorylation have not been well demonstrated. Here, we describe a new pathway in which phosphorylation of E2F1 by GSK3β increases E2F1 association with the deubiquitinating enzyme, ubiquitin-specific protease 11 (USP11), which removes K63-linked ubiquitin chains thereby preventing E2F1 degradation in the nuclei. Downregulation of USP11 increases E2F1 ubiquitination and reduces E2F1 stability and protein levels, thereby decreasing Peg10 mRNA levels. Physiologically, USP11 depletion suppresses cell proliferation and wound healing in lung epithelial cells, and these effects are reversed by E2F1 and PEG10 overexpression. Thus, our study reveals a new molecular model that phosphorylation promotes substrate stability through increasing its association with a deubiquitinating enzyme. The data suggest that GSK3β and USP11 act in concert to modulate E2F1 abundance and PEG10 expression in lung epithelial cells to affect cell wound healing. This study provides new therapeutic targets to lessen lung injury by improving lung epithelial cell repair and remodeling after injury.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Shuang Li
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianxin Wei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Ling Nan
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Rama K Mallampalli
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| | - Nathaniel M Weathington
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| | - Haichun Ma
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Yutong Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
16
|
Regulation of autoimmune disease by the E3 ubiquitin ligase Itch. Cell Immunol 2019; 340:103916. [PMID: 31126634 DOI: 10.1016/j.cellimm.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Itch is a HECT type E3 ubiquitin ligase that is required to prevent the development of autoimmune disease in both mice and humans. Itch is expressed in most mammalian cell types, and, based on published data, it regulates many cellular pathways ranging from T cell differentiation to liver tumorigenesis. Since 1998, when Itch was first discovered, hundreds of publications have described mechanisms through which Itch controls various biologic activities in both immune and non-immune cells. Other studies have provided insight into how Itch catalytic activity is regulated. However, while autoimmunity is the primary clinical feature that occurs in both mice and humans lacking Itch, and Itch control of immune cell function has been well-studied, it remains unclear how Itch prevents the emergence of autoimmune disease. In this review, we explore recent discoveries that advance our understanding of how Itch regulates immune cell biology, and the extent to which these clarify how Itch prevents autoimmune disease. Additionally, we discuss how molecular regulators of Itch impact its ability to control these processes, as this may provide clues on how to therapeutically target Itch to treat patients with autoimmune disease.
Collapse
|
17
|
Abstract
Abstract
Background: WT1 was originally identified in Wilms tumor, a childhood kidney cancer. This gene was expressed in wide variety of solid cancers. Alternative splicing of WT1 transcript generates four major protein isoforms and thirty-six minor protein isoforms, each having different functional properties. WT1 gene has been considered as a tumor suppressor gene and anti-apoptotic protein. However, the mechanism of WT1 in breast cancer remains unclear. Objective: Evaluate the role of truncated WT1 isoforms (T-KTS+ and T-KTS-) and two major WT1 isoforms (+/+ and +/-) in apoptosis in breast cancer cell line, MCF-7. Materials and methods: RNA interference (RNAi) was employed in an attempt to define the role of WT1 in a breast cancer cell line (MCF-7). Furthermore, MCF-7 overe-xpressing cells that stably expressed two truncated WT1 isoforms (T-KTS+ and T-KTS-) or two major WT1 isoforms (+/+ and +/-) were generated and exposed to Doxorubicin. The mortality of cells was determined as a percentage of trypan blue-stained cells in total cells. The apoptotic molecules in apoptosis pathway were detected using RT-PCR, caspase-7 activity assay and Western blot analysis techniques. Results: Transfection of siRNAWT1 into MCF-7 cells resulted in decreasing of WT1 protein and related to the increasing in number of cell death and caspase-7 activity. Over-expression of T-KTS+, T-KTS-, WT1+/+ and WT1+/- isoforms protected cells from cell death induced by apoptosis-inducing agent, doxorubicin. Moreover, the expression of apoptotic p53, Bak and caspase-7 were decreased by the expression of all four WT1 isoforms, especially T-KTS- and T-KTS+ isoforms. Conclusion: T-KTS+ and T-KTS- isoforms as well as WT1+/+ and WT1+/- isoforms could function as an antiapoptotic protein in breast cancer cell line, MCF-7.
Collapse
|
18
|
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 2018; 18:309. [PMID: 29558908 PMCID: PMC5861661 DOI: 10.1186/s12885-018-4217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Conclusions Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.
| | - Meng Yu
- Department of Laboratory Animal of China Medical University, Shenyang, 110001, People's Republic of China
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Dan Sun
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| |
Collapse
|
19
|
Gao L, Uzun Y, Gao P, He B, Ma X, Wang J, Han S, Tan K. Identifying noncoding risk variants using disease-relevant gene regulatory networks. Nat Commun 2018; 9:702. [PMID: 29453388 PMCID: PMC5816022 DOI: 10.1038/s41467-018-03133-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/22/2018] [Indexed: 02/01/2023] Open
Abstract
Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.
Collapse
Affiliation(s)
- Long Gao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yasin Uzun
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China
| | - Jiahui Wang
- The Jackson Laboratory, Farmington, CT, 06032, USA
| | - Shizhong Han
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kai Tan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release 2017; 269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
| |
Collapse
|
21
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
22
|
Waugh KA, Leach SM, Moore BL, Bruno TC, Buhrman JD, Slansky JE. Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model. THE JOURNAL OF IMMUNOLOGY 2016; 197:1477-88. [PMID: 27371726 DOI: 10.4049/jimmunol.1600589] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Mechanisms of self-tolerance often result in CD8(+) tumor-infiltrating lymphocytes (TIL) with a hypofunctional phenotype incapable of tumor clearance. Using a transplantable colon carcinoma model, we found that CD8(+) T cells became tolerized in <24 h in an established tumor environment. To define the collective impact of pathways suppressing TIL function, we compared genome-wide mRNA expression of tumor-specific CD8(+) T cells from the tumor and periphery. Notably, gene expression induced during TIL hypofunction more closely resembled self-tolerance than viral exhaustion. Differential gene expression was refined to identify a core set of genes that defined hypofunctional TIL; these data comprise the first molecular profile of tumor-specific TIL that are naturally responding and represent a polyclonal repertoire. The molecular profile of TIL was further dissected to determine the extent of overlap and distinction between pathways that collectively restrict T cell functions. As suggested by the molecular profile of TIL, protein expression of inhibitory receptor LAG-3 was differentially regulated throughout prolonged late-G1/early-S phase of the cell cycle. Our data may accelerate efficient identification of combination therapies to boost anti-tumor function of TIL specifically against tumor cells.
Collapse
Affiliation(s)
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206
| | - Brandon L Moore
- University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Tullia C Bruno
- University of Colorado School of Medicine, Aurora, CO 80045; and
| | | | - Jill E Slansky
- University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
23
|
Nakamura M, Sugimoto H, Ogata T, Hiraoka K, Yoda H, Sang M, Sang M, Zhu Y, Yu M, Shimozato O, Ozaki T. Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death. Oncogenesis 2016; 5:e233. [PMID: 27294865 PMCID: PMC4945741 DOI: 10.1038/oncsis.2016.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer exhibits the worst prognostic outcome among human cancers. Recently, we have described that depletion of RUNX2 enhances gemcitabine (GEM) sensitivity of p53-deficient pancreatic cancer AsPC-1 cells through the activation of TAp63-mediated cell death pathway. These findings raised a question whether RUNX2 silencing could also improve GEM efficacy on pancreatic cancer cells bearing p53 mutation. In the present study, we have extended our study to p53-mutated pancreatic cancer MiaPaCa-2 cells. Based on our current results, MiaPaCa-2 cells were much more resistant to GEM as compared with p53-proficient pancreatic cancer SW1990 cells, and there existed a clear inverse relationship between the expression levels of TAp73 and RUNX2 in response to GEM. Forced expression of TAp73α in MiaPaCa-2 cells significantly promoted cell cycle arrest and/or cell death, indicating that a large amount of TAp73 might induce cell death even in the presence of mutant p53. Consistent with this notion, overexpression of TAp73α stimulated luciferase activity driven by p53/TAp73-target gene promoters in MiaPaCa-2 cells. Similar to AsPC-1 cells, small interfering RNA-mediated knockdown of RUNX2 remarkably enhanced GEM sensitivity of MiPaCa-2 cells. Under our experimental conditions, TAp73 further accumulated in RUNX2-depleted MiaPaCa-2 cells exposed to GEM relative to GEM-treated non-silencing control cells. As expected, silencing of p73 reduced GEM sensitivity of MiPaCa-2 cells. Moreover, GEM-mediated Tyr phosphorylation level of TAp73 was much more elevated in RUNX2-depleted MiaPaCa-2 cells. Collectively, our present findings strongly suggest that knockdown of RUNX2 contributes to a prominent enhancement of GEM sensitivity of p53-mutated pancreatic cancer cells through the activation of TAp73-mediated cell death pathway, and also provides a promising strategy for the treatment of patients with pancreatic cancer bearing p53 mutation.
Collapse
Affiliation(s)
- M Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - H Sugimoto
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - T Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - K Hiraoka
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - H Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - M Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Regenerative Medicine, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - M Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei province, P.R. China
| | - Y Zhu
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning Sheng province, P.R. China
| | - M Yu
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Laboratory Animal of China Medical University, Shenyang, Liaoning Sheng province, P.R. China
| | - O Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - T Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
24
|
Ganesan S, Keating AF. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion. Toxicol Appl Pharmacol 2015; 292:65-74. [PMID: 26708502 DOI: 10.1016/j.taap.2015.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022]
Abstract
Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fisher 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96h in medium containing DMSO ±60μM PM or KU 55933 (48h; 10nM). PM-induced activation of DNA damage repair genes was observed as early as 12h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
25
|
Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules 2015; 5:2854-76. [PMID: 26512706 PMCID: PMC4693260 DOI: 10.3390/biom5042854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
During the lifespan of cells, their genomic DNA is continuously exposed to the endogenous and exogenous DNA insults. Thus, the appropriate cellular response to DNA damage plays a pivotal role in maintaining genomic integrity and also acts as a molecular barrier towards DNA legion-mediated carcinogenesis. The tumor suppressor p53 participates in an integral part of proper regulation of DNA damage response (DDR). p53 is frequently mutated in a variety of human cancers. Since mutant p53 displays a dominant-negative behavior against wild-type p53, cancers expressing mutant p53 sometimes acquire drug-resistant phenotype, suggesting that mutant p53 prohibits the p53-dependent cell death pathway following DNA damage, and thereby contributing to the acquisition and/or maintenance of drug resistance of malignant cancers. Intriguingly, we have recently found that silencing of pro-oncogenic RUNX2 enhances drug sensitivity of aggressive cancer cells regardless of p53 status. Meanwhile, cancer stem cells (CSCs) have stem cell properties such as drug resistance. Therefore, the precise understanding of the biology of CSCs is quite important to overcome their drug resistance. In this review, we focus on molecular mechanisms behind DDR as well as the serious drug resistance of malignant cancers and discuss some attractive approaches to improving the outcomes of patients bearing drug-resistant cancers.
Collapse
|
26
|
Waugh KA, Leach SM, Slansky JE. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines (Basel) 2015; 3:771-802. [PMID: 26393659 PMCID: PMC4586477 DOI: 10.3390/vaccines3030771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.
Collapse
Affiliation(s)
- Katherine A Waugh
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | - Jill E Slansky
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Ozaki T, Sugimoto H, Nakamura M, Hiraoka K, Yoda H, Sang M, Fujiwara K, Nagase H. Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity. FEBS J 2014; 282:114-28. [PMID: 25331851 PMCID: PMC4368372 DOI: 10.1111/febs.13108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022]
Abstract
Although runt-related transcription factor 2 (RUNX2) is known to be an essential key transcription factor for osteoblast differentiation and bone formation, RUNX2 also plays a pivotal role in the regulation of p53-dependent DNA damage response. In the present study, we report that, in addition to p53, RUNX2 downregulates pro-apoptotic TAp73 during DNA damage-dependent cell death. Upon adriamycin (ADR) exposure, human osteosarcoma-derived U2OS cells underwent cell death in association with an upregulation of TAp73 and various p53/TAp73-target gene products together with RUNX2. Small interfering RNA-mediated silencing of p73 resulted in a marked reduction in ADR-induced p53/TAp73-target gene expression, suggesting that TAp73 is responsible for the ADR-dependent DNA damage response. Immunoprecipitation and transient transfection experiments demonstrated that RUNX2 forms a complex with TAp73 and impairs its transcriptional activity. Notably, knockdown of RUNX2 stimulated ADR-induced cell death accompanied by a massive induction of TAp73 expression, indicating that RUNX2 downregulates TAp73 expression. Consistent with this notion, the overexpression of RUNX2 suppressed ADR-dependent cell death, which was associated with a remarkable downregulation of TAp73 and p53/TAp73-target gene expression. Collectively, our present findings strongly suggest that RUNX2 attenuates the transcriptional activity and ADR-mediated induction of TAp73, and may provide novel insights into understanding the molecular basis behind the development and/or maintenance of chemoresistance. Thus, we propose that the silencing of RUNX2 might be an attractive strategy for improving the chemosensitivity of malignant cancers.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rowell EA, Wang L, Chunder N, Hancock WW, Wells AD. Regulation of T cell differentiation and alloimmunity by the cyclin-dependent kinase inhibitor p18ink4c. PLoS One 2014; 9:e91587. [PMID: 24614758 PMCID: PMC3948896 DOI: 10.1371/journal.pone.0091587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Cellular proliferation in response to mitogenic stimuli is negatively regulated by the Cip/Kip and the Ink4 families of cyclin-dependent kinase (CDK) inhibitors. Several of these proteins are elevated in anergic T cells, suggesting a potential role in the induction or maintenance of tolerance. Our previous studies showed that p27kip1 is required for the induction of T cell anergy and transplantation tolerance by costimulatory blockade, but a role for Ink4 proteins in these processes has not been established. Here we show that CD4+ T cells from mice genetically deficient for p18ink4c divide more rapidly than wild-type cells in response to antigenic, costimulatory and growth factor signals. However, this gain of proliferative function was accompanied by a moderate increase in the rate of cell death, and was accompanied by an overall defect in the generation of alloreactive IFNγ-producing effector cells. Consistent with this, p18ink4c-deficient T cells were unable to induce graft-vs-host disease in vivo, and p18ink4c deficiency cooperated with costimulatory blockade to significantly increase the survival of fully mismatched allografts in a cardiac transplantation model. While both p18ink4c and p27kip1 act to restrict T cell proliferation, p18ink4c exerts an opposite effect from p27kip1 on alloimmunity and organ transplant rejection, most likely by sustaining T cell survival and the development of effector function. Our studies point to additional important links between the cell cycle machinery and the processes of T cell differentiation, survival and tolerance.
Collapse
Affiliation(s)
- Emily A. Rowell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Neelanjana Chunder
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Andrew D. Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zain J, Kaminetzky D, O’Connor OA. Emerging role of epigenetic therapies in cutaneous T-cell lymphomas. Expert Rev Hematol 2014; 3:187-203. [DOI: 10.1586/ehm.10.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Lu H, Hallstrom TC. The nuclear protein UHRF2 is a direct target of the transcription factor E2F1 in the induction of apoptosis. J Biol Chem 2013; 288:23833-43. [PMID: 23833190 DOI: 10.1074/jbc.m112.447276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The E2F1 transcription factor is active in many types of solid tumors and can function as either an oncogene or tumor suppressor in vivo. E2F1 activity is connected with a variety of cell fates including proliferation, apoptosis, senescence, differentiation, and autophagy, and these effects are mediated through differential target gene expression. E2F1-induced cell death is an innate anti-cancer mechanism to kill cells with a spontaneous oncogenic mutation that might otherwise form a cancer. Relatively little is known about the molecular circuitry that tips E2F1 balance toward proliferation during normal growth versus apoptosis during oncogenic stress, and which pathways mediate this decision. To further explore these mechanisms, we utilized an unbiased shRNA screen to identify candidate genes that mediate E2F1-induced cell death. We identified the ubiquitin-like with PHD and ring finger domains 2 (UHRF2) gene as an important mediator of E2F1-induced cell death. UHRF2 encodes a nuclear protein involved in cell-cycle regulation. Several of these domains have been shown to be essential for the regulation of cell proliferation, and UHRF2 has been implicated as an oncogene in some settings. Other reports have suggested that UHRF2 causes growth arrest, functions as a tumor suppressor, and is deleted in a variety of tumors. We show that UHRF2 is a transcriptional target of E2F, that it directly interacts with E2F1, and is required for E2F1 induction of apoptosis and transcription of a number of important apoptotic regulators.
Collapse
Affiliation(s)
- Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
31
|
Sadeghi A, Ullenhag G, Wagenius G, Tötterman TH, Eriksson F. Rapid expansion of T cells: Effects of culture and cryopreservation and importance of short-term cell recovery. Acta Oncol 2013; 52:978-86. [PMID: 23126547 DOI: 10.3109/0284186x.2012.737020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Successful cell therapy relies on the identification and mass expansion of functional cells for infusion. Cryopreservation of cells is an inevitable step in most cell therapies which also entails consequences for the frozen cells. MATERIAL AND METHODS This study assessed the impact of cryopreservation and the widely used protocol for rapid expansion of T lymphocytes. The effects on cell viability, immunocompetence and the impact on apoptotic and immunosuppressive marker expression were analyzed using validated assays. RESULTS AND CONCLUSION Cryopreservation of lymphocytes during the rapid expansion protocol did not affect cell viability. Lymphocytes that underwent mass expansion or culture in high dose IL-2 were unable to respond to PHA stimulation by intracellular ATP production immediately after thawing (ATP = 16 ± 11 ng/ml). However, their reactivity to PHA was regained within 48 hours of recovery (ATP = 356 ± 61 ng/ml). Analysis of mRNA levels revealed downregulation of TGF-β and IL-10 at all time points. Culture in high dose IL-2 led to upregulation of p73 and BCL-2 mRNA levels while FoxP3 expression was elevated after culture in IL-2 and artificial TCR stimuli. FoxP3 levels decreased after short-term recovery without IL-2 or stimulation. Antigen specificity, as determined by IFNγ secretion, was unaffected by cryopreservation but was completely lost after addition of high dose IL-2 and artificial TCR stimuli. In conclusion, allowing short-time recovery of mass expanded and cryopreserved cells before reinfusion could enhance the outcome of adoptive cell therapy as the cells regain immune competence and specificity.
Collapse
Affiliation(s)
- Arian Sadeghi
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
The influence of R substituents in triphenylphosphinegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh] (R=Me, Et and iPr), upon in vitro cytotoxicity against the HT-29 colon cancer cell line and upon apoptotic pathways. J Inorg Biochem 2013; 127:24-38. [PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022]
Abstract
The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
Collapse
|
33
|
Abstract
p53, a guardian of the genome, exerts its tumor suppression activity by regulating a large number of downstream targets involved in cell cycle arrest, DNA repair, apoptosis, and cellular senescence. Although p53-mediated apoptosis is able to kill cancer cells, a role for cellular senescence in p53-dependent tumor suppression is becoming clear. Mouse studies showed that activation of p53-induced premature senescence promotes tumor regression in vivo. However, p53-mediated cellular senescence also leads to aging-related phenotypes, such as tissue atrophy, stem cell depletion, and impaired wound healing. In addition, several p53 isoforms and two p53 homologs, p63 and p73, have been shown to play a role in cellular senescence and/or aging. Importantly, p53, p63, and p73 are necessary for the maintenance of adult stem cells. Therefore, understanding the dual role the p53 protein family in cancer and aging is critical to solve cancer and longevity in the future. In this chapter, we provide an overview on how p53, p63, p73, and their isoforms regulate cellular senescence and aging.
Collapse
|
34
|
Sasanquasaponin from Camellia oleifera Abel. induces cell cycle arrest and apoptosis in human breast cancer MCF-7 cells. Fitoterapia 2013; 84:123-9. [DOI: 10.1016/j.fitote.2012.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/09/2012] [Accepted: 11/10/2012] [Indexed: 12/31/2022]
|
35
|
Maier K, Martin I, Wagner E. Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery. Mol Pharm 2012; 9:3560-8. [DOI: 10.1021/mp300404d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kevin Maier
- Pharmaceutical Biotechnology, Center for System-Based Drug
Research, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Irene Martin
- Pharmaceutical Biotechnology, Center for System-Based Drug
Research, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug
Research, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
36
|
NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene 2012; 32:3954-64. [PMID: 23001041 DOI: 10.1038/onc.2012.428] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
The transcription factor E2F1 has pivotal roles in both cell proliferation and cell death, and is an important molecular target in cancer. Under proliferative conditions E2F1 induces the expression of genes that promote cell cycle progression, such as E2F2, whereas under proapoptotic conditions E2F1 induces expression of genes such as p73 that lead to apoptosis. The mechanism by which the apoptotic function of E2F1 is activated remains unclear, however. We now show that members of the E2F family are covalently conjugated with the ubiquitin-like modifier NEDD8. Overexpression of SENP8, a NEDD8-specific cysteine protease, resulted in deNEDDylation of E2F1 and promoted its transactivation activity at the p73 gene but not at the E2F2 gene. Knockdown of SENP8, on the other hand, attenuated p73 expression and apoptosis induced by E2F1 or by DNA damage. SENP8 also promoted the interaction between E2F1 and its cofactor Microcephalin 1, which is required for p73 induction. These results suggest that NEDDylation is a molecular trigger that modifies the target specificity of E2F1, and could have important implications for E2F1 regulation of apoptosis.
Collapse
|
37
|
Tophkhane C, Yang SH, Jiang Y, Ma Z, Subramaniam D, Anant S, Yogosawa S, Sakai T, Liu WG, Edgerton S, Thor A, Yang X. p53 inactivation upregulates p73 expression through E2F-1 mediated transcription. PLoS One 2012; 7:e43564. [PMID: 22952705 PMCID: PMC3431388 DOI: 10.1371/journal.pone.0043564] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 07/26/2012] [Indexed: 01/30/2023] Open
Abstract
While p73 overexpression has been associated with increased apoptosis in cancer tissues, p73 overexpressing tumors appear to be of high grade malignancy. Why this putative tumor suppressor is overexpressed in cancer cells and what the function of overexpressed p73 is in breast cancers are critical questions to be addressed. By investigating the effect of p53 inactivation on p73 expression, we found that both protein and mRNA levels of TAp73 were increased in MCF-7/p53siRNA cells, MCF-7/p53mt135 cells and HCT-116/p53−/− cells, as compared to wild type control, suggesting that p53 inactivation by various forms upregulates p73. We showed that p53 knockdown induced p73 was mainly regulated at the transcriptional level. However, although p53 has a putative binding site in the TAp73 promoter, deletion of this binding site did not affect p53 knockdown mediated activation of TAp73 promoter. Chromatin immuno-precipitation (ChIP) data demonstrated that loss of p53 results in enhanced occupancy of E2F-1 in the TAp73 promoter. The responsive sequence of p53 inactivation mediated p73 upregulation was mapped to the proximal promoter region of the TAp73 gene. To test the role of E2F-1 in p53 inactivation mediated regulation of p73 transcription, we found that p53 knockdown enhanced E2F-1 dependent p73 transcription, and mutations in E2F-1 binding sites in the TAp73 promoter abrogated p53 knockdown mediated activation of TAp73 promoter. Moreover, we demonstrated that p21 is a mediator of p53-E2F crosstalk in the regulation of p73 transcription. We concluded that p53 knockdown/inactivation may upregulate TAp73 expression through E2F-1 mediated transcriptional regulation. p53 inactivation mediated upregulation of p73 suggests an intrinsic rescuing mechanism in response to p53 mutation/inactivation. These findings support further analysis of the correlation between p53 status and p73 expression and its prognostic/predictive significance in human cancers.
Collapse
Affiliation(s)
- Chaitali Tophkhane
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shi-He Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Dharmalingam Subramaniam
- Department of Molecular & Integrative Physiology, KU Medical Center, The University of Kansas, Kansas City, Kansas, United States of America
| | - Shrikant Anant
- Department of Molecular & Integrative Physiology, KU Medical Center, The University of Kansas, Kansas City, Kansas, United States of America
| | - Shingo Yogosawa
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wan-Guo Liu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Susan Edgerton
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Ann Thor
- Department of Pathology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Xiaohe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zhang H, Ma Y, Gu J, Liao B, Li J, Wong J, Jin Y. Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors. Biomaterials 2012; 33:5047-55. [DOI: 10.1016/j.biomaterials.2012.03.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/17/2012] [Indexed: 12/31/2022]
|
39
|
Ozono E, Komori H, Iwanaga R, Tanaka T, Sakae T, Kitamura H, Yamaoka S, Ohtani K. Tumor suppressor TAp73 gene specifically responds to deregulated E2F activity in human normal fibroblasts. Genes Cells 2012; 17:660-72. [DOI: 10.1111/j.1365-2443.2012.01617.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 04/19/2012] [Indexed: 01/15/2023]
Affiliation(s)
| | - Hideyuki Komori
- Center for Stem Cell Biology; Life Science Institute; University of Michigan Medical School; 210 Washtenaw Avenue; Ann Arbor; MI; 48109-2216; USA
| | - Ritsuko Iwanaga
- Department of Pharmacology; University of Colorado Anschutz Medical Center; 12700 East 19th Avenue; Aurora; CO; 80045; USA
| | - Tatsuya Tanaka
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; 2-1 Gakuen, Sanda; Hyogo; 669-1337; Japan
| | - Takahiro Sakae
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; 2-1 Gakuen, Sanda; Hyogo; 669-1337; Japan
| | - Hodaka Kitamura
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; 2-1 Gakuen, Sanda; Hyogo; 669-1337; Japan
| | - Shoji Yamaoka
- Department of Molecular Virology; Tokyo Medical and Dental University; 1-5-45 Yushima, Bunkyo-ku; Tokyo; 113-8510; Japan
| | - Kiyoshi Ohtani
- Department of Bioscience; School of Science and Technology; Kwansei Gakuin University; 2-1 Gakuen, Sanda; Hyogo; 669-1337; Japan
| |
Collapse
|
40
|
Yoshihara Y, Wu D, Kubo N, Sang M, Nakagawara A, Ozaki T. Inhibitory role of E2F-1 in the regulation of tumor suppressor p53 during DNA damage response. Biochem Biophys Res Commun 2012; 421:57-63. [DOI: 10.1016/j.bbrc.2012.03.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
41
|
Jung YS, Qian Y, Chen X. The p73 tumor suppressor is targeted by Pirh2 RING finger E3 ubiquitin ligase for the proteasome-dependent degradation. J Biol Chem 2011; 286:35388-35395. [PMID: 21852228 DOI: 10.1074/jbc.m111.261537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The p73 gene, a homologue of the p53 tumor suppressor, is expressed as TA and ΔN isoforms. TAp73 has similar activity as p53 and functions as a tumor suppressor whereas ΔNp73 has both pro- and anti-survival functions. While p73 is rarely mutated in spontaneous tumors, the expression status of p73 is linked to the sensitivity of tumor cells to chemotherapy and prognosis for many types of human cancer. Thus, uncovering its regulators in tumors is of great interest. Here, we found that Pirh2, a RING finger E3 ubiquitin ligase, promotes the proteasome-dependent degradation of p73. Specifically, we showed that knockdown of Pirh2 up-regulates, whereas ectopic expression of Pirh2 down-regulates, expression of endogenous and exogenous p73. In addition, Pirh2 physically associates with and promotes TAp73 polyubiquitination both in vivo and in vitro. Moreover, we found that p73 can be degraded by both 20 S and 26 S proteasomes. Finally, we showed that Pirh2 knockdown leads to growth suppression in a TAp73-dependent manner. Taken together, our findings indicate that Pirh2 promotes the proteasomal turnover of TAp73, and thus targeting Pirh2 to restore TAp73-mediated growth suppression in p53-deficient tumors may be developed as a novel anti-cancer strategy.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Comparative Oncology Laboratory, University of California, Davis, California 95616
| | - Yingjuan Qian
- Comparative Oncology Laboratory, University of California, Davis, California 95616
| | - Xinbin Chen
- Comparative Oncology Laboratory, University of California, Davis, California 95616.
| |
Collapse
|
42
|
Taneja P, Zhu S, Maglic D, Fry EA, Kendig RD, Inoue K. Transgenic and knockout mice models to reveal the functions of tumor suppressor genes. Clin Med Insights Oncol 2011; 5:235-57. [PMID: 21836819 PMCID: PMC3153120 DOI: 10.4137/cmo.s7516] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer is caused by multiple genetic alterations leading to uncontrolled cell proliferation through multiple pathways. Malignant cells arise from a variety of genetic factors, such as mutations in tumor suppressor genes (TSGs) that are involved in regulating the cell cycle, apoptosis, or cell differentiation, or maintenance of genomic integrity. Tumor suppressor mouse models are the most frequently used animal models in cancer research. The anti-tumorigenic functions of TSGs, and their role in development and differentiation, and inhibition of oncogenes are discussed. In this review, we summarize some of the important transgenic and knockout mouse models for TSGs, including Rb, p53, Ink4a/Arf, Brca1/2, and their related genes.
Collapse
Affiliation(s)
| | - Sinan Zhu
- The Departments of Pathology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Dejan Maglic
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | - Kazushi Inoue
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
43
|
TNF-α response of vascular endothelial and vascular smooth muscle cells involve differential utilization of ASK1 kinase and p73. Cell Death Differ 2011; 19:274-83. [PMID: 21738216 DOI: 10.1038/cdd.2011.93] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis involves a specialized inflammatory process regulated by an intricate network of cytokine and chemokine signaling. Atherosclerotic lesions lead to the release of cytokines that can have multiple affects on various vascular cell functions either promoting lesion expansion or alternatively retard progression. Tumor necrosis factor-α (TNF-α) is one such cytokine that can activate both cell survival and cell death mechanisms simultaneously. Here we show that TNF-α induces apoptosis in human aortic endothelial cells (HAECs), while it promotes the proliferation of vascular smooth muscle cells (VSMCs). Both events involved the activation of the Rb-E2F1 transcriptional regulatory pathway. Stimulation of HAECs with TNF-α led to an increased expression of p73 protein and a reduction in the levels of p53. This involved apoptosis signal-regulating kinase 1 (ASK1)- mediated inactivation of Rb and its dissociation from the p73 promoter. In contrast, TNF-α stimulation of VSMCs enhanced the association of E2F1 with proliferative promoters like thymidylate synthase and cdc25A, while Rb was dissociated. ASK1 kinase has a critical role in the apoptotic process, as its depletion or dissociation from Rb reduced TNF-α-induced apoptosis. These results show that the cytokine TNF-α can elicit diametrically opposite responses in vascular endothelial cells and VSMCs, utilizing the Rb-E2F pathway.
Collapse
|
44
|
Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease. J Neurosci 2011; 31:2313-20. [PMID: 21307267 DOI: 10.1523/jneurosci.4717-10.2011] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Amyloid-β (Aβ) peptide-binding alcohol dehydrogenase (ABAD), an enzyme present in neuronal mitochondria, exacerbates Aβ-induced cell stress. The interaction of ABAD with Aβ exacerbates Aβ-induced mitochondrial and neuronal dysfunction. Here, we show that inhibition of the ABAD-Aβ interaction, using a decoy peptide (DP) in vitro and in vivo, protects against aberrant mitochondrial and neuronal function and improves spatial learning/memory. Intraperitoneal administration of ABAD-DP [fused to the transduction of human immunodeficiency virus 1-transactivator (Tat) protein and linked to the mitochondrial targeting sequence (Mito) (TAT-mito-DP) to transgenic APP mice (Tg mAPP)] blocked formation of ABAD-Aβ complex in mitochondria, increased oxygen consumption and enzyme activity associated with the mitochondrial respiratory chain, attenuated mitochondrial oxidative stress, and improved spatial memory. Similar protective effects were observed in Tg mAPP mice overexpressing neuronal ABAD decoy peptide (Tg mAPP/mito-ABAD). Notably, inhibition of the ABAD-Aβ interaction significantly reduced mitochondrial Aβ accumulation. In parallel, the activity of mitochondrial Aβ-degrading enzyme PreP (presequence peptidase) was enhanced in Tg mAPP mitochondria expressing the ABAD decoy peptide. These data indicate that segregating ABAD from Aβ protects mitochondria/neurons from Aβ toxicity; thus, ABAD-Aβ interaction is an important mechanism underlying Aβ-mediated mitochondrial and neuronal perturbation. Inhibitors of ABAD-Aβ interaction may hold promise as targets for the prevention and treatment of Alzheimer's disease.
Collapse
|
45
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
46
|
Ramenzoni LL, Saito CPB, McCormick JJ, Line SRP. Transcriptional activity analysis of promoter region of human PAX9 gene under dexamethasone, retinoic acid, and ergocalciferol treatment in MCF-7 and MDPC23. Cell Biochem Funct 2011; 28:555-64. [PMID: 20941745 DOI: 10.1002/cbf.1688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PAX9 gene is a member of the family homeobox of transcription factors and performs important function in development and organogenesis. Mutations in PAX9 coding sequences have been implicated in autosomal dominant oligodontia affecting predominantly permanent molars and second premolars. Previous studies have shown that PAX9 is required for secondary palate development and teratogens have been identified as inducers of a tooth and craniofacial malformations. This work focused on the analysis on the 5'-flanking region of the PAX9 gene studying the influence of retinoic acid, dexamethasone, and vitamin D on the expression of PAX9 by expression constructs that carry the reporter gene luciferase. As results, retinoic acid and dexamethasone showed progressive decrease of PAX9 expression. PAX9-pGL3B1 and PAX9-pGL3B2 promoter was inhibited under the treatment of dexamethasone and ergocalciferol. Retinoic acid and dexamethasone did not alter PAX9-pGL3B3 behavior indicating that sequences present between -1106 and +92 were important for the transcriptional activity of PAX9 promoter. In this study, we characterized the transcriptional activity of specific regions of the PAX9 promoter gene and we demonstrated that retinoic acid and ergocalciferol can modulate the transcriptional activity of PAX9 gene.
Collapse
Affiliation(s)
- Liza L Ramenzoni
- Department of Morphology, Piracicaba Dental School, University of Campinas-Unicamp, Piracicaba, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
47
|
Ozaki T, Kubo N, Nakagawara A. p73-Binding Partners and Their Functional Significance. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2010:283863. [PMID: 22084676 PMCID: PMC3195385 DOI: 10.1155/2010/283863] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/26/2010] [Indexed: 12/21/2022]
Abstract
p73 is one of the tumor-suppressor p53 family of nuclear transcription factor. As expected from the structural similarity between p53 and p73, p73 has a tumor-suppressive function. However, p73 was rarely mutated in human primary tumors. Under normal physiological conditions, p73 is kept at an extremely low level to allow cells normal growth. In response to a certain subset of DNA damages, p73 is induced dramatically and transactivates an overlapping set of p53-target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death. Cells undergo cell cycle arrest and/or apoptotic cell death depending on the type and strength of DNA damages. p73 is regulated largely through the posttranslational modifications such as phosphorylation and acetylation. These chemical modifications are tightly linked to direct protein-protein interactions. In the present paper, the authors describe the functional significance of the protein-protein interactions in the regulation of proapoptotic p73.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of Anti-tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | |
Collapse
|
48
|
Brigati C, Banelli B, Casciano I, Di Vinci A, Matis S, Cutrona G, Forlani A, Allemanni G, Romani M. Epigenetic mechanisms regulate ΔNP73 promoter function in human tonsil B cells. Mol Immunol 2011; 48:408-14. [DOI: 10.1016/j.molimm.2010.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/23/2010] [Accepted: 09/01/2010] [Indexed: 11/16/2022]
|
49
|
Johansson HJ, Andaloussi SEL, Langel U. Mimicry of protein function with cell-penetrating peptides. Methods Mol Biol 2011; 683:233-247. [PMID: 21053134 DOI: 10.1007/978-1-60761-919-2_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteins are essential components of cellular processes inside cells, and their interactions between each other and with genes are important for the normal physiological functioning of cells as well as for disease states. Modulating protein interactions by different means can potentially control these interactions and restore normal function to diseased cells. The ways to do so are multiple, and such efforts often begin with knowledge of potential target proteins in order to devise mediators that retain the function of the original protein, i.e., mimic the protein functions. An alternative strategy is to utilize protein mimics to inhibit target proteins rather than restoring the activity of a protein. The vast majority of protein -mimics exploited to date have been designed to inhibit the activity of oncogenes or activate tumor suppressors for the purpose of tumor therapy. These protein mimics are usually based on small organic compounds or peptides, derived from interaction surfaces of the proteins, and in some cases, full proteins have been exploited. Although peptides and proteins are naturally highly specific and efficient inside cells, they suffer from low bioavailability resulting from their inability to enter cells. One strategy increasingly employed to facilitate the internalization of peptides and proteins has been to chemically conjugate them to cell-penetrating peptides (CPP) or to recombinantly express protein-CPP fusion constructs.This chapter provides an overview of some of the aspects of perturbing and mimicking protein interactions using peptides and proteins and CPP as transport vectors.
Collapse
Affiliation(s)
- Henrik J Johansson
- Department of Oncology-Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
50
|
Ozaki T, Nakagawara A. p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2010; 2011:603925. [PMID: 21188172 PMCID: PMC3004423 DOI: 10.1155/2011/603925] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/07/2010] [Indexed: 01/16/2023] Open
Abstract
p53 is one of the most studied tumor suppressors in the cancer research field. Of note, over 50% of human tumors carry loss of function mutations, and thus p53 has been considered to be a classical Knudson-type tumor suppressor. From the functional point of view, p53 is a nuclear transcription factor to transactivate a variety of its target genes implicated in the induction of cell cycle arrest, DNA repair, and apoptotic cell death. In response to cellular stresses such as DNA damage, p53 is activated and promotes cell cycle arrest followed by the replacement of DNA lesions and/or apoptotic cell death. Therefore, p53 is able to maintain the genomic integrity to prevent the accumulation of genetic alterations, and thus stands at a crossroad between cell survival and cell death. In this paper, we describe a variety of molecular mechanisms behind the regulation of p53.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of Anti-Tumor Research, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | - Akira Nakagawara
- Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan
| |
Collapse
|