1
|
Li B, Zhang X, Zhang Q, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. Nutritional strategies to reduce intestinal cell apoptosis by alleviating oxidative stress. Nutr Rev 2025; 83:e518-e532. [PMID: 38626282 DOI: 10.1093/nutrit/nuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The gut barrier is the first line of defense against harmful substances and pathogens in the intestinal tract. The balance of proliferation and apoptosis of intestinal epithelial cells (IECs) is crucial for maintaining the integrity of the intestinal mucosa and its function. However, oxidative stress and inflammation can cause DNA damage and abnormal apoptosis of the IECs, leading to the disruption of the intestinal epithelial barrier. This, in turn, can directly or indirectly cause various acute and chronic intestinal diseases. In recent years, there has been a growing understanding of the vital role of dietary ingredients in gut health. Studies have shown that certain amino acids, fibers, vitamins, and polyphenols in the diet can protect IECs from excessive apoptosis caused by oxidative stress, and limit intestinal inflammation. This review aims to describe the molecular mechanism of apoptosis and its relationship with intestinal function, and to discuss the modulation of IECs' physiological function, the intestinal epithelial barrier, and gut health by various nutrients. The findings of this review may provide a theoretical basis for the use of nutritional interventions in clinical intestinal disease research and animal production, ultimately leading to improved human and animal intestinal health.
Collapse
Affiliation(s)
- Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Arefnezhad R, Jahandideh A, Rezaei M, Khatouni MS, Zarei H, Jahani S, Molavi A, Hefzosseheh M, Ghasempour P, Movahedi HM, Jahandideh R, Rezaei-Tazangi F. Synergistic effects of curcumin and stem cells on spinal cord injury: a comprehensive review. Mol Biol Rep 2024; 51:1113. [PMID: 39485550 DOI: 10.1007/s11033-024-10057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Spinal cord injury (SCI) is damage to the spinal cord that permanently or temporarily disrupts its function, causing considerable autonomic, sensory, and motor disorders, and involves between 10 and 83 cases per million yearly. Traumatic SCI happens following primary acute mechanical damage, leading to injury to the spinal cord tissue and worsening clinical outcomes. The present therapeutic strategies for this complex disease fundamentally rely on surgical approaches and conservative remedies. However, these modalities are not effective enough for neurological recovery. Therefore, it is necessary to discover more efficient methods to treat patients with SCI. Today, considerable attention has been drawn to bioactive compounds-based remedies and stem cell therapy for curing various ailments and disorders, such as neurological diseases. Some researchers have recommended that harnessing curcumin, a polyphenol obtained from turmeric, in combination with stem cells, like mesenchymal stem cells, neural stem cells, and ependymal stem cells, can remarkably improve neurological recovery-related parameters more effective than the treatment with these two methods separately in experimental models. Hereby, this literature review delves into the functionality of curcumin combined with stem cells in treating SCI with a focus on cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Coenzyme R Research Institute, Tehran, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Arian Jahandideh
- Faculty of medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleheh Jahani
- Department of pathology, University of California, San Diego, USA
| | - Ali Molavi
- Student Research Committee, Faculty of medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Parisa Ghasempour
- Department of Medical Science and Health Services, Islamic Azad University, Yazd, Iran
| | - Hadis Moazen Movahedi
- Department of Biotechnology Sciences, Cellular and Molecular Biology Branch, Islamic Azad University, Khuzestan, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
3
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
4
|
Khoder ZM, Mohamed MS, Awad SM, Gharib AF, Aly O, Khodair MAEF, Fatahala SS, El-Hameed RHA. Synthesis, Anti-Cancer Activity, Cell Cycle Arrest, Apoptosis Induction, and Docking Study of Fused Benzo[ h]chromeno[2,3- d]pyrimidine on Human Breast Cancer Cell Line MCF-7. Molecules 2024; 29:4697. [PMID: 39407625 PMCID: PMC11478142 DOI: 10.3390/molecules29194697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer is the predominant form of cancer among women and ranks as the second most prevalent cancer globally, affecting both developed and less developed countries. Presently, accessible cancer treatment methods either employ recently created, secure, and efficient chemotherapeutic medications or directly target innovative pathways that cause apoptosis. One of the indirect strategies for treating this fatal illness has mostly depended on its essential role in cell cycle arrest and apoptosis induction, as well as the antagonistic interaction between the Bcl-2 and Mcl-1 proteins, in order to avert major health repercussions. We reported that newly synthesized fused chromenopyrimidines (3a and 4a) showed potential cell cycle arrest and dual Bcl-2 and Mcl-1 inhibitory characteristics. Bcl-2 and Mcl-1 were the targets of a molecular docking procedure. The previous docking results are in line with the biological data and suggest that 3a may have promising anti-cancer activity.
Collapse
Affiliation(s)
- Zainab M. Khoder
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt; (Z.M.K.); (M.S.M.); (S.M.A.); (R.H.A.E.-H.)
- Department of Chemistry, The State University of New York at Buffalo, New York, NY 14260, USA
| | - Mosaad S. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt; (Z.M.K.); (M.S.M.); (S.M.A.); (R.H.A.E.-H.)
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt; (Z.M.K.); (M.S.M.); (S.M.A.); (R.H.A.E.-H.)
- Pharmacy Department, Al-zahrawi University College, Carbala 56001, Iraq
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Omnia Aly
- Medical Biochemistry Department, National Research Centre, Doki, P.O. Box 12622 Cairo, Egypt;
| | - Marwa Abd El-Fattah Khodair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt; (Z.M.K.); (M.S.M.); (S.M.A.); (R.H.A.E.-H.)
| | - Samar S. Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt; (Z.M.K.); (M.S.M.); (S.M.A.); (R.H.A.E.-H.)
| | - Rania H. Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt; (Z.M.K.); (M.S.M.); (S.M.A.); (R.H.A.E.-H.)
| |
Collapse
|
5
|
Guo H, Zhang Y, Xiang X, Tang N, Gao W, Cui X. Single-cell RNA sequencing analysis provides novel insights into the role of apoptosis-related genes in muscle aging. Arch Gerontol Geriatr 2024; 125:105499. [PMID: 38852373 DOI: 10.1016/j.archger.2024.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE This study employed a comprehensive single-cell analysis approach to explore the role of cell apoptosis-related genes in muscle aging. METHODS The single-cell RNA sequencing data from the GSE143704 dataset were used to identify distinct cell clusters and assess gene expression patterns related to apoptosis activation. The "limma" package was used to identify hub genes, after which we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify relevant pathways. Additionally, Gene Set Enrichment Analysis(GSEA) and Gene Set Variation Analysis (GSVA) were used to uncover relevant biological pathways. The Receiver Operating Characteristic Curve (ROC) was used to evaluate the diagnostic value of the hub genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the immune cell infiltration levels. RESULTS Single-cell sequencing data from muscle aging patients allowed the identification of various cell types, including epithelial cells, adipocytes, and tissue-resident macrophages. By conducting a differential expression analysis that intersected active and nonactive apoptosis, as well as comparing elderly and young samples, a total of 22 hub genes were identified (p < 0.05). The 22 hub genes have discriminative ability as potential biomarkers for diagnosing muscle aging. The enrichment analysis indicated that these genes were closely associated with diverse pathways, including "response to UV-B" and "extracellular matrix organization" (p < 0.05). Furthermore, GSEA and GSVA indicated that multiple pathways emerged-for example, the "complement and coagulation cascades", "proteasome", "insulin signaling pathway", and "MAPK signaling pathway". Additionally, the analysis of immune cell infiltration revealed positive correlations between most of the hub genes and immune cells. CONCLUSION Our study identified 22 apoptosis-related genes involved in muscle aging and indicated their potential diagnostic value. These findings offer a novel perspective on the pathogenesis of muscle aging and present potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Hua Guo
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Yunyun Zhang
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China
| | - Xin Xiang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Tang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Xiaochuan Cui
- Department of General Medicine and Sleep Medicine Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University; Wuxi Medical Center, Nanjing Medical University Wuxi People's Hospital, Wuxi, Jiangsu Province, China.
| |
Collapse
|
6
|
Lee H, An G, Lim W, Song G. Flusilazole induced developmental toxicity, neurotoxicity, and cardiovascular toxicity via apoptosis and oxidative stress in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109993. [PMID: 39106914 DOI: 10.1016/j.cbpc.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Flusilazole is a well-known triazole fungicide applied to various crops and fruits worldwide. Flusilazole residues are frequently detected in the environment, and many researchers have reported the hazardous effects of flusilazole on non-target organisms; however, the developmental toxicity of flusilazole has not been fully elucidated. In this study, we investigated flusilazole-induced developmental defects in zebrafish, which are used in toxicology studies to assess the toxic effects of chemicals on aquatic species or vertebrates. We confirmed that flusilazole exposure affected the viability and hatching rate of zebrafish larvae, and resulted in morphological defects, reduced body length, diminished eye and head sizes, and inflated pericardial edema. Apoptosis, oxidative stress, and inflammation were also observed. These factors interrupted the normal organ formation during early developmental stages, and transgenic models were used to identify organ defects. We confirmed the effects of flusilazole on the nervous system using olig2:dsRed transgenic zebrafish, and on the cardiovascular system using cmlc2:dsRed and fli1:eGFP transgenic zebrafish. Our results demonstrate the developmental toxicity of flusilazole and its mechanisms in zebrafish as well as the detrimental effects of flusilazole.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Xia W, Ye M, Jiang B, Xu G, Xiao G, Zeng Q, Huang R. Anoikis in prostate cancer bone metastasis gene signatures and therapeutic implications. Front Oncol 2024; 14:1446894. [PMID: 39391236 PMCID: PMC11464922 DOI: 10.3389/fonc.2024.1446894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background Bone metastasis from prostate cancer severely impacts patient outcomes and quality of life. Anoikis, a form of programmed cell death triggered by the loss of cell-matrix interactions, plays a critical role in cancer progression. However, its precise relationship with prostate cancer-induced bone metastasis remains unclear. This study aims to elucidate this relationship, focusing on anoikis-related gene signatures, molecular pathways, and therapeutic implications. Methods We used the TCGA-PRAD dataset for training, with MSKCC and GSE70769 as validation cohorts. To evaluate immunotherapy efficacy, we examined IMvigor 210 and GSE91016 datasets, and GSE137829 provided single-cell insights into prostate cancer. Specific anoikis-related genes (ARGs) were identified, and Random Survival Forest analysis and multivariate Cox regression were employed to develop anoikis-linked features. The 'clustanoikisProfilanoikis' and 'GSEA' packages were used to explore potential ARG-related pathways. Results Analyzing 553 samples from TCGA, 231 from MSKCC, 94 from GSE70769, and single-cell data from 6 prostate cancer patients (GSE137829), we constructed a prognostic model based on 9 ARGs. GSVA revealed upregulation of carcinogenic pathways, including epithelial-mesenchymal transition, E2F targets, and angiogenesis, with downregulation of metabolic pathways. Significant differences in somatic mutations were observed between cohorts, with a positive correlation between anoikis scores and tumor mutational burden (TMB). Immune landscape analysis suggested high-risk patients might benefit more from chemotherapy than immunotherapy based on their risk score. Single-cell analysis indicated overactivation of carcinogenic pathways in the high anoikis score group. Conclusion This study elucidates the complex interplay between anoikis and bone metastasis in prostate cancer. Our findings highlight the critical role of anoikis in metastatic progression, enhancing the understanding of key biomarkers and molecular dynamics. The identified anoikis-related gene signatures and disrupted pathways offer promising avenues for predictive and therapeutic strategies in prostate cancer management.
Collapse
Affiliation(s)
- Wei Xia
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Miao Ye
- Breast Diagnosis and Treatment Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bo Jiang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gang Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guancheng Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qingming Zeng
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ruohui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
9
|
de Melo Silva AJ, de Melo Gama JE, de Oliveira SA. The Role of Bcl-2 Family Proteins and Sorafenib Resistance in Hepatocellular Carcinoma. Int J Cell Biol 2024; 2024:4972523. [PMID: 39188653 PMCID: PMC11347034 DOI: 10.1155/2024/4972523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Liver cancer has been reported to be one of the most malignant diseases in the world. It is late diagnosis consequently leads to a difficult treatment, as the cancer reached an advanced stage. Hepatocellular carcinoma (HCC) is the primary type of cancer diagnosed in the liver, with deadly characteristics and a poor prognosis. The first-in-line treatment for advanced HCC is sorafenib. Sorafenib acts by inhibiting cell proliferation and by inducing apoptosis as well as blocks receptors associated with these mechanisms. Due to its constant use, sorafenib resistance has been described, especially to proteins of the Bcl-2 family, and their overexpression of Bcl-XL and Mcl-1. This review focuses on the role of the Bcl-2 proteins in relation to sorafenib resistance as a consequence of first-in-line treatment in HCC.
Collapse
|
10
|
Kumar U, Fang CY, Roan HY, Hsu SC, Wang CH, Chen CH. Whole-body replacement of larval myofibers generates permanent adult myofibers in zebrafish. EMBO J 2024; 43:3090-3115. [PMID: 38839992 PMCID: PMC11294464 DOI: 10.1038/s44318-024-00136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Drastic increases in myofiber number and size are essential to support vertebrate post-embryonic growth. However, the collective cellular behaviors that enable these increases have remained elusive. Here, we created the palmuscle myofiber tagging and tracking system for in toto monitoring of the growth and fates of ~5000 fast myofibers in developing zebrafish larvae. Through live tracking of individual myofibers within the same individuals over extended periods, we found that many larval myofibers readily dissolved during development, enabling the on-site addition of new and more myofibers. Remarkably, whole-body surveillance of multicolor-barcoded myofibers further unveiled a gradual yet extensive elimination of larval myofiber populations, resulting in near-total replacement by late juvenile stages. The subsequently emerging adult myofibers are not only long-lasting, but also morphologically and functionally distinct from the larval populations. Furthermore, we determined that the elimination-replacement process is dependent on and driven by the autophagy pathway. Altogether, we propose that the whole-body replacement of larval myofibers is an inherent yet previously unnoticed process driving organismic muscle growth during vertebrate post-embryonic development.
Collapse
Affiliation(s)
- Uday Kumar
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Yi Fang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Han Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
11
|
Yue X, Lin F, Gui S, Zhang S, Wu Z, Xiang Y, Xiao T, Xiao J, Cao H, Shi Y. Emamectin benzoate-induced toxicity affects intestinal epithelial integrity involving apoptosis. Food Chem Toxicol 2024; 190:114827. [PMID: 38901726 DOI: 10.1016/j.fct.2024.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The frequency presence of emamectin benzoate in agricultural production highlights the need for studying their toxicity against human intestinal epithelial barrier (IEB). Herein, we combined a Caco-2 cell model with transcriptome analysis to assess the intestinal toxicity of emamectin benzoate and its disease-causing potential. Results showed that the half maximal inhibitory concentration (IC50) of emamectin benzoate on Caco-2 cell viability after 24, 48, and 72 h of exposure were 18.1, 9.9, and 8.3 μM, respectively. Emamectin benzoate exposure enhanced the Caco-2 monolayer paracellular permeability, damaged the IEB, and increased cellular apoptosis. Key driver gene analysis of 42 apoptosis - related DEGs, identified 10 genes (XIAP, KRAS, MCL1, NRAS, PIK3CA, CYCS, MAPK8, CASP3, FADD, and TNFRSF10B) with the strongest correlation with emamectin benzoate - induced apoptosis. Transcriptomics identified 326 differentially expressed genes (DEGs, 204 upregulated and 122 downregulated). The functional terms of neurodegeneration - multiple diseases was enriched with the most number of DEGs, and the Parkinson disease pathway had the highest enrichment degree. Our findings provided support for environmental toxicology studies and the health risk assessment of emamectin benzoate.
Collapse
Affiliation(s)
- Xingyu Yue
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Shuyan Gui
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Sai Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Zongbin Wu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Yuxin Xiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Tianxiang Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province, 230036, China.
| |
Collapse
|
12
|
Abbas R, Hartmann O, Asiss DT, Abbas R, Kagan J, Kim HT, Oren M, Diefenbacher M, Orian A, Larisch S. ARTS and small-molecule ARTS mimetics upregulate p53 levels by promoting the degradation of XIAP. Apoptosis 2024; 29:1145-1160. [PMID: 38684550 PMCID: PMC11263447 DOI: 10.1007/s10495-024-01957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
Mutations resulting in decreased activity of p53 tumor suppressor protein promote tumorigenesis. P53 protein levels are tightly regulated through the Ubiquitin Proteasome System (UPS). Several E3 ligases were shown to regulate p53 stability, including MDM2. Here we report that the ubiquitin E3 ligase XIAP (X-linked Inhibitors of Apoptosis) is a direct ligase for p53 and describe a novel approach for modulating the levels of p53 by targeting the XIAP pathway. Using in vivo (live-cell) and in vitro (cell-free reconstituted system) ubiquitylation assays, we show that the XIAP-antagonist ARTS regulates the levels of p53 by promoting the degradation of XIAP. XIAP directly binds and ubiquitylates p53. In apoptotic cells, ARTS inhibits the ubiquitylation of p53 by antagonizing XIAP. XIAP knockout MEFs express higher p53 protein levels compared to wild-type MEFs. Computational screen for small molecules with high affinity to the ARTS-binding site within XIAP identified a small-molecule ARTS-mimetic, B3. This compound stimulates apoptosis in a wide range of cancer cells but not normal PBMC (Peripheral Blood Mononuclear Cells). Like ARTS, the B3 compound binds to XIAP and promotes its degradation via the UPS. B3 binding to XIAP stabilizes p53 by disrupting its interaction with XIAP. These results reveal a novel mechanism by which ARTS and p53 regulate each other through an amplification loop to promote apoptosis. Finally, these data suggest that targeting the ARTS binding pocket in XIAP can be used to increase p53 levels as a new strategy for developing anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ruqaia Abbas
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | - Oliver Hartmann
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Dorin Theodora Asiss
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | - Rabab Abbas
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | - Julia Kagan
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel
| | | | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Markus Diefenbacher
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
- Ludwig-Maximilian-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), LMU, Munich, Germany
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, 3109610, Haifa, Israel
| | - Sarit Larisch
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, 31905, Haifa, Israel.
| |
Collapse
|
13
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
14
|
Ge W, Wang H, Wu X, Dong B, Lu Q, Tian M. Unique fluorescent probe for the recognition of late apoptosis via translocation from plasma membrane to nucleus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124095. [PMID: 38490121 DOI: 10.1016/j.saa.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Cell apoptosis is a crucial physiological process playing central roles in key biological and pathological activities. However, the current fluorescent probes for the detection of late apoptosis were "off-on" probes, which were facilely interfered by false positive signals caused by inhomogeneous staining and other factors. Herein, a unique fluorescent probe (NPn) discriminating late apoptosis from early apoptosis and heathy status with two different sets of fluorescent signals have been prepared, to overcome the possible false positive signals. NPn was designed impermeable to biomembranes and simultaneously with high affinity to DNA/RNA, which localized on the plasma membranes of living and early apoptotic cells, while relocated to the nucleus in late apoptotic cells. The hydrophilic amine unit and small ion radius were responsive for its membrane impermeability, which was confirmed with two control molecules without amine group. Using the probe, we have successfully evaluated the cell apoptosis induced by ultraviolet irradiation, rotenone, colchicine, and paclitaxel, demonstrating its potential application in biological researches.
Collapse
Affiliation(s)
- Wei Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Huina Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaofen Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
15
|
Zhang C, Hou H, Shen C, Ran Q, Cheng F, Yao Z, Zhang R, Peng C. Protective effect of ginsenoside Rb1 against aconitine cardiotoxicity studied by myocardial injury, action potential, and calcium signaling. Toxicon 2024; 242:107693. [PMID: 38519012 DOI: 10.1016/j.toxicon.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Aconitine is the main active component of Aconitum plants. Although aconitine has effects that include strengthening the heart, analgesia, anti-tumor, and immune-regulating effects, aconitine has both efficacy and toxicity, especially cardiotoxicity. Severe effects can include arrhythmia and cardiac arrest, which limits the clinical application of aconitine-containing traditional Chinese medicine. Ginsenoside Rb1(Rb1) is mainly found in plants, such as ginseng and Panax notoginseng, and has cardiovascular-protective and anti-arrhythmia effects. This study aimed to investigate the detoxifying effects of Rb1 on aconitine cardiotoxicity and the electrophysiological effect of Rb1 on aconitine-induced arrhythmia in rats. Pathological analysis, myocardial enzymatic indexes, and Western blotting were used to investigate the ameliorating effect of Rb1 on aconitine cardiotoxicity. Optical mapping was used to evaluate the effect of Rb1 on action potential and calcium signaling after aconitine-induced arrhythmia. Rb1 inhibited pathological damage caused by aconitine, decreased myocardial enzyme levels, and restored the balance of apoptotic protein expression by reducing the expression of Bax and cleaved caspase 3 and increasing the expression of Bcl-2, thereby reducing myocardial damage caused by aconitine. Rb1 also reduced the increase in heart rate caused by aconitine, accelerated action potential conduction and calcium signaling, and reduced the dispersion of action potential and calcium signal conduction. Rb1 reduced the cardiotoxicity of aconitine by attenuating aconitine-induced myocardial injury and inhibiting the aconitine-induced retardation of ventricular action potential and calcium signaling in rats.
Collapse
Affiliation(s)
- Cuihan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Changhong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziqing Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Lee H, Park W, An G, Park J, Lim W, Song G. Hexaconazole induces developmental toxicities via apoptosis, inflammation, and alterations of Akt and MAPK signaling cascades. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109872. [PMID: 38423198 DOI: 10.1016/j.cbpc.2024.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Hexaconazole is a highly effective triazole fungicide that is frequently applied in various countries to elevate crop productivity. Given its long half-life and high water solubility, this fungicide is frequently detected in the environment, including water sources. Moreover, hexaconazole exerts hazardous effects on nontarget organisms. However, little is known about the toxic effects of hexaconazole on animal development. Thus, this study aimed to investigate the developmental toxicity of hexaconazole to zebrafish, a valuable animal model for toxicological studies, and elucidate the underlying mechanisms. Results showed that hexaconazole affected the viability and hatching rate of zebrafish at 96 h postfertilization. Hexaconazole-treated zebrafish showed phenotypic defects, such as reduced size of head and eyes and enlarged pericardiac edema. Moreover, hexaconazole induced apoptosis, DNA fragmentation, and inflammation in developing zebrafish. Various organ defects, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity, were observed in transgenic zebrafish models olig2:dsRed, fli1:eGFP, and l-fabp:dsRed. Furthermore, hexaconazole treatment altered the Akt and MAPK signaling pathways, which possibly triggered the organ defects and other toxic mechanisms. This study demonstrated the developmental toxicity of hexaconazole to zebrafish and elucidated the underlying mechanisms.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Herrick J. DNA Damage, Genome Stability, and Adaptation: A Question of Chance or Necessity? Genes (Basel) 2024; 15:520. [PMID: 38674454 PMCID: PMC11049855 DOI: 10.3390/genes15040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNA damage causes the mutations that are the principal source of genetic variation. DNA damage detection and repair mechanisms therefore play a determining role in generating the genetic diversity on which natural selection acts. Speciation, it is commonly assumed, occurs at a rate set by the level of standing allelic diversity in a population. The process of speciation is driven by a combination of two evolutionary forces: genetic drift and ecological selection. Genetic drift takes place under the conditions of relaxed selection, and results in a balance between the rates of mutation and the rates of genetic substitution. These two processes, drift and selection, are necessarily mediated by a variety of mechanisms guaranteeing genome stability in any given species. One of the outstanding questions in evolutionary biology concerns the origin of the widely varying phylogenetic distribution of biodiversity across the Tree of Life and how the forces of drift and selection contribute to shaping that distribution. The following examines some of the molecular mechanisms underlying genome stability and the adaptive radiations that are associated with biodiversity and the widely varying species richness and evenness in the different eukaryotic lineages.
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher at 3, Rue des Jeûneurs, 75002 Paris, France
| |
Collapse
|
18
|
Eum DY, Jeong M, Park SY, Kim J, Jin Y, Jo J, Shim JW, Lee SR, Park SJ, Heo K, Yun H, Choi YJ. AM-18002, a derivative of natural anmindenol A, enhances radiosensitivity in mouse breast cancer cells. PLoS One 2024; 19:e0296989. [PMID: 38625901 PMCID: PMC11020960 DOI: 10.1371/journal.pone.0296989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/25/2023] [Indexed: 04/18/2024] Open
Abstract
Natural anmindenol A isolated from the marine-derived bacteria Streptomyces sp. caused potent inhibition of inducible nitric oxide synthase without any significant cytotoxicity. This compound consists of a structurally unique 3,10-dialkylbenzofulvene skeleton. We previously synthesized and screened the novel derivatives of anmindenol A and identified AM-18002, an anmindenol A derivative, as a promising anticancer agent. The combination of AM-18002 and ionizing radiation (IR) improved anticancer effects, which were exerted by promoting apoptosis and inhibiting the proliferation of FM3A mouse breast cancer cells. AM-18002 increased the production of reactive oxygen species (ROS) and was more effective in inducing DNA damage. AM-18002 treatment was found to inhibit the expansion of myeloid-derived suppressor cells (MDSC), cancer cell migration and invasion, and STAT3 phosphorylation. The AM-18002 and IR combination synergistically induced cancer cell death, and AM-18002 acted as a potent anticancer agent by increasing ROS generation and blocking MDSC-mediated STAT3 activation in breast cancer cells.
Collapse
Affiliation(s)
- Da-Young Eum
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Myeonggyo Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Soon-Yong Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunho Jin
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jae-Woong Shim
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Seoung Rak Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seong-Joon Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yoo-Jin Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| |
Collapse
|
19
|
Coene J, Wilms S, Verhelst SHL. Photopharmacology of Protease Inhibitors: Current Status and Perspectives. Chemistry 2024; 30:e202303999. [PMID: 38224181 DOI: 10.1002/chem.202303999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Proteases are involved in many essential biological processes. Dysregulation of their activity underlies a wide variety of human diseases. Photopharmacology, as applied on various classes of proteins, has the potential to assist protease research by enabling spatiotemporal control of protease activity. Moreover, it may be used to decrease side-effects of protease-targeting drugs. In this review, we discuss the current status of the chemical design of photoactivatable proteases inhibitors and their biological application. Additionally, we give insight into future possibilities for further development of this field of research.
Collapse
Affiliation(s)
- Jonathan Coene
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Simon Wilms
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| |
Collapse
|
20
|
Tyagi R, Rosa BA, Swain A, Artyomov MN, Jasmer DP, Mitreva M. Intestinal cell diversity and treatment responses in a parasitic nematode at single cell resolution. BMC Genomics 2024; 25:341. [PMID: 38575858 PMCID: PMC10996262 DOI: 10.1186/s12864-024-10203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems. RESULTS Here, using novel single-cell transcriptomics datasets, we delineate cellular diversity within the intestine of adult female Ascaris suum, a parasitic nematode species that infects animals and people. Gene transcripts expressed in individual nuclei of untreated intestinal cells resolved three phenotypic clusters, while lower stringency resolved additional subclusters and more potential diversity. Clusters 1 and 3 phenotypes displayed variable congruence with scRNA phenotypes of C. elegans intestinal cells, whereas the A. suum cluster 2 phenotype was markedly unique. Distinct functional pathway enrichment characterized each A. suum intestinal cell cluster. Cluster 2 was distinctly enriched for Clade III-associated genes, suggesting it evolved within clade III nematodes. Clusters also demonstrated differential transcriptional responsiveness to nematode intestinal toxic treatments, with Cluster 2 displaying the least responses to short-term intra-pseudocoelomic nematode intestinal toxin treatments. CONCLUSIONS This investigation presents advances in knowledge related to biological differences among major cell populations of adult A. suum intestinal cells. For the first time, diverse nematode intestinal cell populations were characterized, and associated biological markers of these cells were identified to support tracking of constituent cells under experimental conditions. These advances will promote better understanding of this and other parasitic nematodes of global importance, and will help to guide future anthelmintic treatments.
Collapse
Affiliation(s)
- Rahul Tyagi
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, 63110, St. Louis, MO, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, 63110, St. Louis, MO, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, 63110, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, 63110, Saint Louis, MO, USA
| | - Douglas P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, 99164, Pullman, WA, USA.
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, 63110, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, 63110, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, 63110, St Louis, MO, USA.
| |
Collapse
|
21
|
Kamboj P, Mahore A, Husain A, Amir M. Benzothiazole-based apoptosis inducers: A comprehensive overview and future prospective. Arch Pharm (Weinheim) 2024; 357:e2300493. [PMID: 38212254 DOI: 10.1002/ardp.202300493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Cancer has become a major concern in healthcare globally, and over time, incidences and prevalence of cancer are increasing. To counter this, a lot of anticancer drugs are approved and are in clinical use, playing a pivotal role in its treatment. Due to drug resistance and adverse effects, a continuous demand for novel, potent, and safe candidates to treat cancer is always there. Over the last few decades, various heterocyclic ring-based derivatives have been explored and reported in the literature. In this regard, benzothiazole scaffold-based compound emerged as the versatile ring for developing novel and safe anticancer candidates. In this article, we have reported various benzothiazole heterocyclic ring-based derivatives demonstrating potent antiproliferative activity by induction of apoptosis via an intrinsic pathway in a dose-dependent manner. These compounds also displayed inhibition of different enzymes, for example, Aurora kinase, epidermal growth factor receptor, vascular endothelial growth factor receptor, phosphoinositide kinases, DNA topoisomerase, and tubulin polymerases. This study focused on a comprehensive overview of antiproliferative activity, structure-activity relationship, apoptosis induction activity, and enzyme inhibition by benzothiazole-based compounds.
Collapse
Affiliation(s)
- Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, India
| | - Anjali Mahore
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, India
| |
Collapse
|
22
|
Krasovec G, Renaud C, Quéinnec É, Sasakura Y, Chambon JP. Extrinsic apoptosis participates to tail regression during the metamorphosis of the chordate Ciona. Sci Rep 2024; 14:5729. [PMID: 38459045 PMCID: PMC10923776 DOI: 10.1038/s41598-023-48411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/26/2023] [Indexed: 03/10/2024] Open
Abstract
Apoptosis is a regulated cell death ubiquitous in animals defined by morphological features depending on caspases. Two regulation pathways are described, currently named the intrinsic and the extrinsic apoptosis. While intrinsic apoptosis is well studied and considered ancestral among metazoans, extrinsic apoptosis is poorly studied outside mammals. Here, we address extrinsic apoptosis in the urochordates Ciona, belonging to the sister group of vertebrates. During metamorphosis, Ciona larvae undergo a tail regression depending on tissue contraction, migration and apoptosis. Apoptosis begin at the tail tip and propagates towards the trunk as a polarized wave. We identified Ci-caspase 8/10 by phylogenetic analysis as homolog to vertebrate caspases 8 and 10 that are the specific initiator of extrinsic apoptosis. We detected Ci-caspase 8/10 expression in Ciona larvae, especially at the tail tip. We showed that chemical inhibition of Ci-caspase 8/10 leads to a delay of tail regression, and Ci-caspase 8/10 loss of function induced an incomplete tail regression. The specificity between apoptotic pathways and initiator caspase suggests that extrinsic apoptosis regulates cell death during the tail regression. Our study presents rare in vivo work on extrinsic apoptosis outside mammals, and contribute to the discussion on its evolutionary history in animals.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France.
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| | - Cécile Renaud
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, F-75252, Paris Cedex 05, France
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
23
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
24
|
Viana Silva M, Valente RS, Annes K, Marsico TV, Oliveira AM, Maiollo BAP, Lopes NJ, Tannura JH, Sudano MJ. Effect of IL-10 and TNF-α on the competence and cryosurvival of in vitro produced Bos indicus embryos. Theriogenology 2024; 215:170-176. [PMID: 38071763 DOI: 10.1016/j.theriogenology.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
In vitro-produced embryos are constantly exposed to stressful conditions that can lead to the activation of the apoptotic pathway. The nuclear Kappa B factor (NF-κB) is an inflammatory mediator that induces the expression of tumor necrosis factor (TNF-α), a pro-inflammatory cytokine, while interleukin-10 (IL-10), an anti-inflammatory cytokine, inhibits NF-κB activity. This study aimed to investigate the effects of IL-10 and TNF-α on the competence and cryosurvival of in vitro-produced bovine embryos. Embryos were produced in vitro using standard protocols, and Grade I blastocysts were vitrified using the Cryotop method. Non-vitrified and vitrified blastocysts were subjected to the TUNEL assay. In Experiment I, on day 6.5 (156 h post-insemination), the embryos were treated with PBS (control), 50 ng/mL of IL-10, or a combination of 25 ng/mL of TNF-α and 50 ng/mL of IL-10. Embryonic development and apoptotic rates were monitored. In Experiment II, the same groups were set up, with the addition of a group treated with 25 ng/mL of TNF-α alone. Grade I blastocysts were vitrified 5 h after treatment, and cryosurvival was monitored at until 48 h post-warming. The apoptosis rate and total cell number were investigated in the vitrified-hatched blastocysts. IL-10 alone did not affect developmental competence or cryosurvival (P > 0.05). The IL-10-treated embryos, when exposed in combination with TNF-α, presented a detrimental effect (P < 0.05) in the embryonic development of non-vitrified embryos. However, vitrified blastocysts had no negative effect (P > 0.05). The TNF-α treatment reduced (P < 0.05) the re-expansion rate at 6 h post-warming and increased (P < 0.05) the apoptosis rate in vitrified hatched blastocysts, whereas no effect (P > 0.05) of the treatments was detected in the hatching rate and total cell number post-warming. In conclusion, TNF-α has a detrimental effect on embryonic developmental competence and cryosurvival by compromising the development of non-vitrified embryos and apoptotic-related events of vitrified blastocysts, whereas IL-10, when in combination with TNF-α, appears to attenuate the detrimental effects of TNF-α.
Collapse
Affiliation(s)
- Mara Viana Silva
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Roniele Santana Valente
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Thamiris Vieira Marsico
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Andressa Minozzo Oliveira
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | | | | | | | - Mateus José Sudano
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
25
|
Turrin G, Lo Cascio E, Giacon N, Fantinati A, Cristofori V, Illuminati D, Preti D, Morciano G, Pinton P, Agyapong ED, Trapella C, Arcovito A. Spiropiperidine-Based Oligomycin-Analog Ligands To Counteract the Ischemia-Reperfusion Injury in a Renal Cell Model. J Med Chem 2024; 67:586-602. [PMID: 37991993 PMCID: PMC10789258 DOI: 10.1021/acs.jmedchem.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Finding a therapy for ischemia-reperfusion injury, which consists of cell death following restoration of blood flowing into the artery affected by ischemia, is a strong medical need. Nowadays, only the use of broad-spectrum molecular therapies has demonstrated a partial efficacy in protecting the organs following reperfusion, while randomized clinical trials focused on more specific drug targets have failed. In order to overcome this problem, we applied a combination of molecular modeling and chemical synthesis to identify novel spiropiperidine-based structures active in mitochondrial permeability transition pore opening inhibition as a key process to enhance cell survival after blood flow restoration. Our results were confirmed by biological assay on an in vitro cell model on HeLa and human renal proximal tubular epithelial cells and pave the way to further investigation on an in vivo model system.
Collapse
Affiliation(s)
- Giulia Turrin
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Ettore Lo Cascio
- Dipartimento
di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Noah Giacon
- Dipartimento
di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Anna Fantinati
- Department
of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Virginia Cristofori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Davide Illuminati
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Delia Preti
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
| | - Giampaolo Morciano
- Department
of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
- Laboratory
for Technologies of Advanced Therapies (LTTA), Via Fossato di Mortara,70, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department
of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
- Laboratory
for Technologies of Advanced Therapies (LTTA), Via Fossato di Mortara,70, 44121 Ferrara, Italy
| | - Esther Densu Agyapong
- Department
of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari,46, 44121 Ferrara, Italy
- Laboratory
for Technologies of Advanced Therapies (LTTA), Via Fossato di Mortara,70, 44121 Ferrara, Italy
| | - Alessandro Arcovito
- Dipartimento
di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
- Fondazione
Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
26
|
Kondapuram SK, Ramachandran HK, Arya H, Coumar MS. Targeting survivin for cancer therapy: Strategies, small molecule inhibitors and vaccine based therapeutics in development. Life Sci 2023; 335:122260. [PMID: 37963509 DOI: 10.1016/j.lfs.2023.122260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hema Kasthuri Ramachandran
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hemant Arya
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| |
Collapse
|
27
|
Schwermann N, Haller R, Koch S, Grassl GA, Winstel V. Pathogen-driven nucleotide overload triggers mitochondria-centered cell death in phagocytes. PLoS Pathog 2023; 19:e1011892. [PMID: 38157331 PMCID: PMC10756532 DOI: 10.1371/journal.ppat.1011892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Staphylococcus aureus is a dangerous pathogen that evolved refined immuno-evasive strategies to antagonize host immune responses. This involves the biogenesis of death-effector deoxyribonucleosides, which kill infectious foci-penetrating macrophages. However, the exact mechanisms whereby staphylococcal death-effector deoxyribonucleosides and coupled imbalances of intracellular deoxyribonucleotide species provoke immune cell death remain elusive. Here, we report that S. aureus systematically promotes an overload of deoxyribonucleotides to trigger mitochondrial rupture in macrophages, a fatal event that induces assembly of the caspase-9-processing apoptosome and subsequent activation of the intrinsic pathway of apoptosis. Remarkably, genetic disruption of this cascade not only helps macrophages coping with death-effector deoxyribonucleoside-mediated cytotoxicity but also enhances their infiltration into abscesses thereby ameliorating pathogen control and infectious disease outcomes in laboratory animals. Combined with the discovery of protective alleles in human CASP9, these data highlight the role of mitochondria-centered apoptosis during S. aureus infection and suggest that gene polymorphisms may shape human susceptibility toward a predominant pathogen.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Rita Haller
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sebastian Koch
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
29
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
30
|
Sullivan JT. Hemocyte-like cells in larvae of the freshwater snail Biomphalaria glabrata (Mollusca: Panpulmonata). J Invertebr Pathol 2023; 201:107994. [PMID: 37741506 DOI: 10.1016/j.jip.2023.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Despite undergoing development within a germfree egg capsule, embryos and larvae of the freshwater snail Biomphalaria glabrata possess passive immune protection in the form of parentally-derived antimicrobial proteins in the perivitelline fluid. However, the point at which larvae begin to form their own internal defense system (IDS), which consists of both plasma proteins and hemocytes, is not known. In this study, hemocyte-like cells were observed in mechanically-disrupted late trochophores and veligers of the BS-90 strain of B. glabrata. These cells showed the properties of glass adherence, spreading, motility, and binding and phagocytosing polystyrene microspheres. No hemocyte-like cells were recovered from the early trochophore stage, and therefore their formation first occurs during subsequent maturation. Numbers of hemocyte-like cells increased during larval development. Although the functional significance of these cells is not known, they may represent the initial cellular component of the IDS.
Collapse
Affiliation(s)
- John T Sullivan
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117 USA.
| |
Collapse
|
31
|
Bogdanov AV, Neganova M, Voloshina A, Lyubina A, Amerhanova S, Litvinov IA, Tsivileva O, Akylbekov N, Zhapparbergenov R, Valiullina Z, Samorodov AV, Alabugin I. Anticancer and Antiphytopathogenic Activity of Fluorinated Isatins and Their Water-Soluble Hydrazone Derivatives. Int J Mol Sci 2023; 24:15119. [PMID: 37894799 PMCID: PMC10607100 DOI: 10.3390/ijms242015119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (3a), chloro (3b), or bis-fluoro (3d) substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard's reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells. In addition, compounds 3a and 3b exhibit platelet antiaggregation activity at the level of acetylsalicylic acid, and the whole series of fluorine-containing isatins does not adversely affect the hemostasis system as a whole. Among the new water-soluble pyridinium isatin-3-acylhydrazones, compounds 7c and 5c,e exhibit the highest antagonistic effect against phytopathogens of bacterial and fungal origin and can be considered useful leads for combating plant diseases.
Collapse
Affiliation(s)
- Andrei V. Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, Chernogolovka 142432, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
| | - Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Entuziastov Ave. 13, Saratov 410049, Russia;
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan;
| | - Zulfiia Valiullina
- Department of Pharmacology, Bashkir State Medical University, Lenin St. 8, Ufa 450008, Russia; (Z.V.); (A.V.S.)
| | - Alexandr V. Samorodov
- Department of Pharmacology, Bashkir State Medical University, Lenin St. 8, Ufa 450008, Russia; (Z.V.); (A.V.S.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (M.N.); (A.V.); (A.L.); (S.A.); (I.A.L.); (I.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
32
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W, Rong H. Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2023; 339:139769. [PMID: 37562506 DOI: 10.1016/j.chemosphere.2023.139769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Cyhexatin (CYT), an organotin acaricide, is extensively utilized in developing countries to mitigate plant diseases caused by mites and minimize agricultural crop losses. However, the comprehensive mechanisms underlying the developmental stage of non-target organisms remain largely unexplored. In this study, zebrafish embryos were firstly exposed to CYT (0.06, 0.12, and 0.20 ng/mL, referred to as CYTL, CYTM, and CYTH, respectively) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization). No developmental toxicity was observed in the CYTL and CYTM groups, except for induced deformed phenotypes in the CYTM group at 120 hpf. However, exposure to CYTH resulted in significant reductions in spontaneous movement (24 hpf), heart rate (48 hpf), hatching rate (48 and 72 hpf), body weight (30 dpf), whole body length (30 dpf), and locomotion (30 dpf). Additionally, CYTH exposure induced morphological malformations, including spinal curvature, pericardial edema, and tail curvature in zebrafish larvae. Moreover, CYTH treatment induced apoptosis, increased reactive oxygen species (ROS) production, and resulted in significant reductions in free T3, cholesterol, estradiol, and testosterone levels in zebrafish larvae, while free T4 levels were increased. RNA-Seq analysis indicated that CYTH exposure led to significant alterations in the genome-wide gene expression profiles of zebrafish, particularly in the thyroid hormone and steroid biosynthesis signaling pathways, indicating endocrine disruption. Furthermore, CYTH exposure induced global DNA hypomethylation, reduced S-adenosylmethionine (SAM) levels and the SAM/S-adenosylhomocysteine (SAH) ratio, elevated SAH levels, and suppressed the mRNA expression of DNA methyltransferases (DNMTs) while also downregulating DNMT1 at both the gene and protein levels in zebrafish larvae. Overall, this study partially elucidated the developmental toxicity and endocrine disruption caused by CYT in zebrafish, providing evidence of the environmental hazards associated with this acaricide.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Daitao Zhang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Xianghe Liu
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Sha Yang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China; Xiangyang Polytechnic, Xiangyang, 441050, PR China.
| |
Collapse
|
33
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Katabuchi M, Motooka Y. Three-Dimensional Regulation of Ferroptosis at the Intersection of Iron, Sulfur, and Oxygen Executing Scrap and Build Toward Evolution. Antioxid Redox Signal 2023; 39:807-815. [PMID: 36401504 DOI: 10.1089/ars.2022.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significance: Iron is an essential element for every life on earth as a primary media for electron flow. Sulfur compounds as sulfhydryls counteract catalytic activity of iron whereas sulfur overdose is also toxic. In aerobic organisms, oxygen is the major media for electron transfer with higher intracellular mobility, which cooperates with the iron system. Based on the importance of iron, there is no active pathway to excrete iron outside the body in higher species. Whereas bacterial infection causes a scramble for iron in situ, cancer can be the outcome of the side effects of long use of iron and oxygen. Recent Advances: Ferroptosis is a recently coined cell death, defined as catalytic Fe(II)-dependent regulated necrosis accompanied by lipid peroxidation. Researchers recently recognized that ferroptosis is involved in a variety of physiological and pathological contexts, including embryonic erythropoiesis, aging, neurodegeneration and cancer cell death. Alternatively, carcinogenesis is a process to obtain iron addiction with ferroptosis-resistance, based on rodent animal studies. Critical Issues: Here we propose that ferroptosis is three-dimensionally regulated by iron, sulfur and oxygen, which correspond to oxidants, antioxidants and membrane fluidity with susceptibility to lipid peroxidation, respectively. Future Directions: Whereas life attempts to prevent ferroptosis, ferroptotic cells eventually emit iron-loaded ferritin as extracellular vesicles to maintain monopoly of iron. Antioxid. Redox Signal. 39, 807-815.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Misako Katabuchi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
34
|
Liu Y, Cao Z, Wei G. Effects of photodynamic therapy using Red LED-light combined with hypocrellin B on apoptotic signaling in cutaneous squamous cell carcinoma A431 cells. Photodiagnosis Photodyn Ther 2023; 43:103683. [PMID: 37390854 DOI: 10.1016/j.pdpdt.2023.103683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The incidence of cutaneous squamous cell carcinoma (cSCC) has been demonstrating yearly increases. cSCC is a malignant cancer and exerts a major impact on patients' health and quality of life. Thus, the development and use of novel therapies in the treatment of cSCC are needed. It has been reported that LED photodynamic therapy (LED PDT) mediated by Hypocrellin B and its derivatives, a second-generation photosensitizer, can induce apoptosis in a variety of tumor cells, However, its potential pro-apoptotic effects on cSCC have yet to be investigated. OBJECTIVE This study aims to investigate the pro-apoptotic effects and molecular mechanisms of HB-LED PDT in cutaneous squamous cell carcinoma A431 cells (Subsequent abbreviation A431 cells). Such information can provide an important theoretical foundation for the clinical translation of HB-LED PDT in the treatment of cSCC. METHODS 1. Effects of HB on A431 cells were determined using a Cell Counting Kit-8 assay, which method can indirectly reflect the number of living cells. In this way, this assay can then provide a means to identify the optimal concentrations of HB required for the induction of apoptosis in A431 cells. 2. The effects of HB-LED PDT on the morphology of A431 cells and changes in the nuclei after Hoechst33342 staining as determined using inverted fluorescent microscopy. 3. Use of the Annexin V-FITC test kit to detect levels of apoptosis in A431 cells in response to treatment with HB. Changes in reactive oxygen species and mitochondrial membrane potential following HB-LED PDT treatment in A431 cells were determined using fluorescence activated cell sorting (FACS). 4. Real-time quantitative PCR and Western Blot were applied to assess changes in several key factors involved in apoptosis including Bax, Bcl-2, and Caspase-3, at both transcription and translation levels. With these assays, it was possible to investigate the apoptotic signaling pathway in A431 cells in response to HB-LED PDT. RESULTS HB-LED PDT inhibited proliferation activity and promoted nuclear fragmentation within these A431 cells. HB-LED PDT inhibited mitochondrial activity, increased reactive oxygen species production, and promoted apoptosis of A431 cells. In addition, several key factors in the apoptotic signaling pathway were increased at both the transcriptional and translational levels in A431 cells in response to the HB-LED PDT, indicating that the apoptotic signaling pathway was activated by HB-LED PDT. CONCLUSION HB-LED PDT induces apoptosis in A431 cells through a mitochondria-mediated apoptotic pathway. Such findings serve as an important foundation for the development of new approaches in the treatment of cSCC.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Dermatology, The Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan 250033, China
| | - Zhiqiang Cao
- Department of Dermatology, The Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan 250033, China
| | - Guo Wei
- Department of Dermatology, The Second Hospital of Shandong University, 247 Beiyuan Dajie Street, Jinan 250033, China.
| |
Collapse
|
35
|
Oliveira RC, Gama J, Casanova J. B-cell lymphoma 2 family members and sarcomas: a promising target in a heterogeneous disease. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:583-599. [PMID: 37720343 PMCID: PMC10501895 DOI: 10.37349/etat.2023.00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/14/2023] [Indexed: 09/19/2023] Open
Abstract
Targeting the B-cell lymphoma 2 (Bcl-2) family proteins has been the backbone for hematological malignancies with overall survival improvements. The Bcl-2 family is a major player in apoptosis regulation and, has captured the researcher's interest in the treatment of solid tumors. Sarcomas are a heterogeneous group of diseases, comprising several entities, with high morbidity and mortality and with few specific therapies available. The treatment for sarcomas is based on platinum regimens, with variable results and poor outcomes, especially in advanced lesions. The high number of different sarcoma entities makes treatment standardization as well as the performance of clinical trials difficult. The use of Bcl-2 family members modifiers has revealed promising results in in vitro and in vivo models and may be a valid option, especially when used in combination with chemotherapy. In this article, a revision of these results and possibilities for the use of Bcl-2 family members inhibitors in sarcomas was performed.
Collapse
Affiliation(s)
- Rui Caetano Oliveira
- Centro de Anatomia Patológica Germano de Sousa, 3000 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
| | - José Casanova
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
- Orthopedic Oncology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
36
|
Meng H, Zhao Y, Li Y, Fan H, Yi X, Meng X, Wang P, Fu F, Wu S, Wang Y. Evidence for developmental vascular-associated necroptosis and its contribution to venous-lymphatic endothelial differentiation. Front Cell Dev Biol 2023; 11:1229788. [PMID: 37576598 PMCID: PMC10416103 DOI: 10.3389/fcell.2023.1229788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
During development, apoptosis removes redundant cells and ensures proper organ morphogenesis. Necrosis is long known as an adult-bound inflammatory and pathologic cell death. Whether there exists physiological necrosis during early development has been speculated but yet clearly demonstrated. Here, we report evidence of necroptosis, a type of programmed necrosis, specifically in perivascular cells of cerebral cortex and skin at the early stage of development. Phosphorylated Mixed Lineage Kinase Domain-Like protein (MLKL), a key molecule in executing necroptosis, co-expressed with blood endothelial marker CD31 and venous-lymphatic progenitor marker Sox18. Depletion of Mlkl did not affect the formation of blood vessel network but increased the differentiation of venous-lymphatic lineage cells in postnatal cerebral cortex and skin. Consistently, significant enhancement of cerebrospinal fluid diffusion and lymphatic drainage was found in brain and skin of Mlkl-deficient mice. Under hypobaric hypoxia induced cerebral edema and inflammation induced skin edema, Mlkl mutation significantly attenuated brain-blood-barrier damage and edema formation. Our data, for the first time, demonstrated the presence of physiological vascular-associated necroptosis and its potential involvement in the development of venous-lymphatic vessels.
Collapse
Affiliation(s)
- Han Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuqian Li
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xuyang Yi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinyu Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Pengfei Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fanfan Fu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
37
|
Kong R, Sun G. Targeting copper metabolism: a promising strategy for cancer treatment. Front Pharmacol 2023; 14:1203447. [PMID: 37564178 PMCID: PMC10411510 DOI: 10.3389/fphar.2023.1203447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Copper is an essential micronutrient that plays a critical role in many physiological processes. However, excessive copper accumulation in cancer cells has been linked to tumor growth and metastasis. This review article explores the potential of targeting copper metabolism as a promising strategy for cancer treatment. Excessive copper accumulation in cancer cells has been associated with tumor growth and metastasis. By disrupting copper homeostasis in cancer cells and inducing cell death through copper-dependent mechanisms (cuproplasia and cuprotosis, respectively), therapies can be developed with improved efficacy and reduced side effects. The article discusses the role of copper in biological processes, such as angiogenesis, immune response, and redox homeostasis. Various approaches for targeting copper metabolism in cancer treatment are examined, including the use of copper-dependent enzymes, copper-based compounds, and cuprotosis-related genes or proteins. The review also explores strategies like copper chelation therapy and nanotechnology for targeted delivery of copper-targeting agents. By understanding the intricate network of cuprotosis and its interactions with the tumor microenvironment and immune system, new targets for therapy can be identified, leading to improved cancer treatment outcomes. Overall, this comprehensive review highlights the significant potential of targeting copper metabolism as a promising and effective approach in cancer treatment, while providing valuable insights into the current state of research in this field.
Collapse
Affiliation(s)
- Ruimin Kong
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Guojuan Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
38
|
Hu P, Li K, Peng XX, Kan Y, Yao TJ, Wang ZY, Li Z, Liu HY, Cai D. Curcumin derived from medicinal homologous foods: its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis. Front Immunol 2023; 14:1233652. [PMID: 37497225 PMCID: PMC10368479 DOI: 10.3389/fimmu.2023.1233652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
It has been for thousands of years in China known medicinal homologous foods that can be employed both as foods and medicines to benefit human and animal health. These edible herbal materials perform divert roles in the regulation of metabolic disorders, cancers, and immune-related diseases. Curcumin, the primary component derived from medicinal homologous foods like curcuma longa rhizome, is reported to play vital actions in organic activities, such as the numerous pharmacological functions including anti-oxidative stress, anti-inflammation and anti/pro-apoptosis in treating various diseases. However, the potential mechanisms of curcumin-derived modulation still need to be developed and attract more attention worldwide. Given that these signal pathways are enrolled in important bioactive reactions, we collected curcumin's last achievements predominantly on the immune-regulation signals with the underlying targetable strategies in the last 10 years. This mini-review will be helpful to accelerate curcumin and other extracts from medicinal homologous foods use in future human clinical applications.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
39
|
Panteli N, Feidantsis K, Demertzioglou M, Paralika V, Karapanagiotis S, Mylonas CC, Kormas KA, Mente E, Makridis P, Antonopoulou E. The Probiotic Phaeobacter inhibens Provokes Hypertrophic Growth via Activation of the IGF-1/Akt Pathway during the Process of Metamorphosis of Greater Amberjack ( Seriola dumerili, Risso 1810). Animals (Basel) 2023; 13:2154. [PMID: 37443952 DOI: 10.3390/ani13132154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Metamorphosis entails hormonally regulated morphological and physiological changes requiring high energy levels. Probiotics as feed supplements generate ameliorative effects on host nutrient digestion and absorption. Thereby, the aim of the present research was to investigate the impact of the probiotic Phaeobacter inhibens as a water additive on cellular signaling pathways in the metamorphosis of greater amberjack (Seriola dumerili). Activation of insulin-like growth factor type 1 receptor (IGF-1R), protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and AMP-activated protein kinase (AMPK), induction of heat shock proteins (Hsps), and programmed cell death were assessed through SDS-Page/immunoblot analysis, while energy metabolism was determined through enzymatic activities. According to the results, greater amberjack reared in P. inhibens-enriched water entered the metamorphic phase with greater body length, while protein synthesis was triggered to facilitate the hypertrophic growth as indicated by IGF-1/Akt activation and AMPK inhibition. Contrarily, MAPKs levels were reduced, whereas variations in Hsps response were evident in the probiotic treatment. Apoptosis and autophagy were mobilized potentially for the structural remodeling processes. Furthermore, the elevated enzymatic activities of intermediary metabolism highlighted the excess energy demands of metamorphosis. Collectively, the present findings demonstrate that P. inhibens may reinforce nutrient utilization, thus leading greater amberjack to an advanced growth and developmental state.
Collapse
Affiliation(s)
- Nikolas Panteli
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Fisheries & Aquaculture, University of Patras, 26504 Mesolonghi, Greece
| | - Maria Demertzioglou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Paralika
- Department of Biology, University of Patras, 26504 Rio Achaias, Greece
| | | | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003 Heraklion, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
- Agricultural Development Institute, University Research and Innovation Centre "IASON", Argonafton & Filellinon, 38221 Volos, Greece
| | - Eleni Mente
- Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Rio Achaias, Greece
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
40
|
Xu HD, Cheng X, Sun X, Chen P, Zhan W, Liu X, Wang X, Hu B, Liang G. Caspase-3-Triggered Intracellular Gadolinium Nanoparticle Formation for T 1-Weighted Magnetic Resonance Imaging of Apoptosis In Vivo. NANO LETTERS 2023. [PMID: 37363812 DOI: 10.1021/acs.nanolett.3c01787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Apoptosis, with a hallmark of upregulated protease Caspase-3, has been frequently imaged with various probes to reveal the therapeutic efficiencies of different drugs. However, activatable molecular probes with programmable self-assembling behaviors that enable enhanced T1-weighted magnetic resonance imaging (MRI) of apoptosis remain scarce. Herein, taking advantage of a CBT-Cys click reaction, we rationally designed a Caspase-3-activatable self-assembling probe Ac-Asp-Glu-Val-Asp-Cys(StBu)-Lys(DOTA(Gd))-CBT (DEVDCS-Gd-CBT) for apoptosis imaging in vivo. After Caspase-3 cleavage in apoptotic cells, DEVDCS-Gd-CBT underwent CBT-Cys click reaction to form a cyclic dimer, which self-assembled into Gd nanoparticles. With this probe, enhanced T1-weighted MR images of apoptosis were achieved at low magnetic fields in vitro, in cis-dichlorodiamineplatinum-induced apoptotic cells and in tail-amputation-simulated apoptotic zebrafish. We anticipate that the smart probe DEVDCS-Gd-CBT could be applied for T1-weighted MRI of apoptosis-related diseases in the clinic in the future.
Collapse
Affiliation(s)
- Hai-Dong Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xiaotong Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xinliang Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
41
|
Li H, Feng X, Li H, Ma S, Song W, Yang B, Jiang T, Yang C. The Supplement of Magnesium Element to Inhibit Colorectal Tumor Cells. Biol Trace Elem Res 2023; 201:2895-2903. [PMID: 36006540 PMCID: PMC10073067 DOI: 10.1007/s12011-022-03393-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/12/2022] [Indexed: 12/20/2022]
Abstract
Magnesium ions are essential elements to the human body, with a daily intake of about 350 mg for an adult. Recently, a meta-analysis reported that magnesium ion intake is related to a reduced risk of colorectal tumors. In addition, implantation of biodegradable magnesium pins after colorectal tumor resection could potentially inhibit the residual tumor cells. These impressive results implied that magnesium ions possess inhibitory properties against colorectal carcinoma. However, this hypothesis has yet to be confirmed by experimental results. In this work, different concentrations of magnesium ions were modulated to investigate their inhibitory effects on cell viability through cell cycle arrest, subsequently inducing apoptosis by activating the caspase-3 pathway. The animal experiments revealed that magnesium injection restricted tumor growth after 3 weeks of treatment compared to the control group. According to the immunohistochemistry and transmission electron microscopy results, the remarkable effect may be attributed to promoting the apoptotic rate of tumor cells. The evidence highlights the potential for the clinical use of magnesium implants to inhibit the growth of residual cells after colorectal tumor surgery.
Collapse
Affiliation(s)
- Heng Li
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaonan Feng
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Hai Li
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Shuo Ma
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Song
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Bao Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Jiang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Chun Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
42
|
Bandyopadhyay A, Ghosh SK. Apoptosis-inducing factor-like protein-mediated stress and metronidazole-responsive programmed cell death pathway in Entamoeba histolytica. Mol Microbiol 2023; 119:640-658. [PMID: 37037799 DOI: 10.1111/mmi.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Apoptosis-inducing factor (AIF) is the major component of the caspase-independent cell death pathway that is considered to be evolutionarily ancient. Apoptosis is generally evolved with multicellularity as a prerequisite for the elimination of aged, stressed, or infected cells promoting the survival of the organism. Our study reports the presence of a putative AIF-like protein in Entamoeba histolytica, a caspase-deficient primitive protozoan, strengthening the concept of occurrence of apoptosis in unicellular organisms as well. The putative cytoplasmic EhAIF migrates to the nucleus on receiving stresses that precede its binding with DNA, following chromatin degradation and chromatin condensation as evident from both in vitro and in vivo experiments. Down-regulating the EhAIF expression attenuates the apoptotic features of insulted cells and increases the survival potency in terms of cell viability and vitality of the trophozoites, whereas over-expression of the EhAIF effectively enhances the phenomena. Interestingly, metronidazole, the most widely used drug for amoebiasis treatment, is also potent to elicit similar AIF-mediated cell death responses like other stresses indicating the AIF-mediated cell death could be the probable mechanism of trophozoite-death by metronidazole treatment. The occurrence of apoptosis in a unicellular organism is an interesting phenomenon that might signify the altruistic death that overall improves the population health.
Collapse
Affiliation(s)
| | - Sudip Kumar Ghosh
- Department of Biotechnology, IIT Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
43
|
Wei X, Zeng Y, Meng F, Wang T, Wang H, Yuan Y, Li D, Zhao Y. Calycosin-7-glucoside promotes mitochondria-mediated apoptosis in hepatocellular carcinoma by targeting thioredoxin 1 to regulate oxidative stress. Chem Biol Interact 2023; 374:110411. [PMID: 36812960 DOI: 10.1016/j.cbi.2023.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Thioredoxin1 (TRX1) is a key protein that regulates redox and is considered to be a key target for cancer therapy. Flavonoids have been proven to have good antioxidant and anticancer activities. This study aimed to investigate whether the flavonoid calycosin-7-glucoside (CG) exerts an anti-hepatocellular carcinoma (HCC) role by targeting TRX1. Different doses of CG were used to treat HCC cell lines Huh-7 and HepG2 to calculate the IC50. On this basis, the effects of low, medium and high doses of CG on cell viability, apoptosis, oxidative stress and TRX1 expression of HCC cells were investigated in vitro. Also, HepG2 xenograft mice were used to evaluate the role of CG on HCC growth in vivo. The binding mode of CG and TRX1 was explored by molecular docking. Then si-TRX1 was used to further discover the effects of TRX1 on CG inhibition of HCC. Results found that CG dose-dependent decreased the proliferation activity of Huh-7 and HepG2 cells, induced apoptosis, significantly activated oxidative stress and inhibited TRX1 expression. In vivo experiments also showed that CG dose-dependent regulated oxidative stress and TRX1 expression, and promoted the expression of apoptotic proteins to inhibit HCC growth. Molecular docking confirmed that CG had a good binding effect with TRX1. Intervention with TRX1 significantly inhibited the proliferation of HCC cells, promoted apoptosis, and further promoted the effect of CG on the activity of HCC cells. In addition, CG significantly increased ROS production, reduced mitochondrial membrane potential, regulated the expression of Bax, Bcl-2 and cleaved-caspase-3, and activated mitochondria-mediated apoptosis. And si-TRX1 enhanced the effects of CG on mitochondrial function and apoptosis of HCC, suggesting that TRX1 participated in the inhibitory effect of CG on mitochondria-mediated apoptosis of HCC. In conclusion, CG exerts anti-HCC activity by targeting TRX1 to regulate oxidative stress and promote mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaodong Wei
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China.
| | - Yanping Zeng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, China
| | - Yijun Yuan
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Dongmei Li
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Yue Zhao
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| |
Collapse
|
44
|
Liang ZW, Li SY, Zhang XL, Chen CY, Sun WJ, Gu ZQ, Huang J, He JY, Qi PZ, Guo BY, Liao Z, Yan XJ. Morphological change and differential proteomics analysis of gill in Mytilus coruscus under starvation. Front Physiol 2023; 14:1150521. [PMID: 37064882 PMCID: PMC10097965 DOI: 10.3389/fphys.2023.1150521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
Mytilus coruscus is a dominant shellfish in the Yangtze estuary and its adjacent sea area. Food deprivation often occurs during their growth due to fluctuations in algal abundance caused by seasonal freshwater flushing and high-density aquaculture mode. To investigate the coping strategies of M. coruscus to starvation stress, electron microscopy and differential proteomic analysis were performed on the critical feeding organ gill of the mussels after 9 days of starvation. The electron microscopy results showed that the cilia of the mussel gills were dissolved, and the gaps between gill filaments widened under starvation. Differential proteomic analysis revealed that phagocytosis-related proteins such as ATPeV1E, ATPeV1C, LAMP1_2 and CTSL were significantly upregulated, and the phagocytosis pathway was significantly enriched (p < 0.05). In addition, the corin content in gill and myeloperoxidase level as well as the number of dead cells in blood were both significantly increased (p < 0.05). What’s more, proteomic data suggested that immune maintenance, cellular transport and metabolism related pathways were significantly enriched, which illustrated an immune and metabolism responses under starvation. This study reveals for the first time that phagocytosis functions as an essential strategy for M. coruscus to cope with starvation, which provides new scientific knowledge and a theoretical basis for understanding the adaptation mechanisms of mussel to starvation and for rational optimization of mussel culture patterns.
Collapse
Affiliation(s)
- Ze-Wei Liang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Si-Yuan Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiao-Lin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- *Correspondence: Xiao-Lin Zhang, ; Xiao-Jun Yan,
| | - Chuan-Yue Chen
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wen-Jing Sun
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zhong-Qi Gu
- China Bureau of Science and Technology Shengsi, Zhoushan, Zhejiang, China
| | - Ji Huang
- China Bureau of Science and Technology Shengsi, Zhoushan, Zhejiang, China
| | - Jian-Yu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- Donghai Laboratory, Zhoushan, Zhejiang, China
| | - Peng-Zhi Qi
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Bao-Ying Guo
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiao-Jun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- *Correspondence: Xiao-Lin Zhang, ; Xiao-Jun Yan,
| |
Collapse
|
45
|
Wang Y, Ni J, Kong X, Du C, Xue H, Gao H, Liu K, Zhang Y, Yin Y, Wu T, Cui T, Sun L. Low-energy electron microdosimetry assessment based on the two-dimensional monolayer human normal mesh-type cell population model. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
46
|
Wolf P. Inhibitor of apoptosis proteins as therapeutic targets in bladder cancer. Front Oncol 2023; 13:1124600. [PMID: 36845731 PMCID: PMC9950391 DOI: 10.3389/fonc.2023.1124600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Evasion from apoptosis is a hallmark of cancer. Inhibitor of apoptosis proteins (IAPs) contribute to this hallmark by suppressing the induction of cell death. IAPs were found to be overexpressed in cancerous tissues and to contribute to therapeutic resistance. The present review focuses on the IAP members cIAP1, cIAP2, XIAP, Survivin and Livin and their importance as potential therapeutic targets in bladder cancer.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany,Faculty of Medicine, University of Freiburg, Freiburg, Germany,*Correspondence: Philipp Wolf,
| |
Collapse
|
47
|
Sulukan E, Baran A, Kankaynar M, Kızıltan T, Bolat İ, Yıldırım S, Ceyhun HA, Ceyhun SB. Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158903. [PMID: 36419276 DOI: 10.1016/j.scitotenv.2022.158903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The increase in temperature due to global warming greatly affects the toxicity produced by pesticides in the aquatic ecosystem. Studies investigating the effects of such environmental stress factors on next generations are important in terms of the sustainability of ecosystems. In this study, the effects of parental synergistic exposure to glyphosate and temperature increase on the next generation were investigated in a zebrafish model. For this purpose, adult zebrafish were exposed to 1 ppm and 5 ppm glyphosate for 96 h at four different temperatures (28.5, 29.0, 29.5, 30.0 °C). At the end of this period, some of the fish were subjected to the recovery process for 10 days. At the end of both treatments, a new generation was taken from the fish and morphological, physiological, molecular and behavioral analysis were performed on the offspring. According to the results, in parallel with the 0.5-degree temperature increase applied to the parents with glyphosate exposure, lower survival rate, delay in hatching, increased body malformations and lower blood flow and heart rate were detected in the offspring. In addition, according to the results of whole mouth larva staining, increased apoptosis, free oxygen radical formation and lipid accumulation were detected in the offspring. Moreover, it has been observed that the temperature increases to which the parents are exposed affects the light signal transmission and serotonin pathways in the offspring, resulting in more dark/light locomotor activity and increased thigmotaxis.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Tuğba Kızıltan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
48
|
Bcl-2 pathway inhibition in solid tumors: a review of clinical trials. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1554-1578. [PMID: 36639602 DOI: 10.1007/s12094-022-03070-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Due to their key role in the pathogenesis of cancer through the regulation of apoptosis, the B-cell leukemia/lymphoma-2 (BCL-2) family proteins have been an attractive target for cancer therapy for the past decades. Throughout the years, many Bcl-2 family inhibitors have been developed, with Venetoclax being now successfully used in treating hematological malignancies. Although their effectiveness in the treatment of solid tumors is yet to be established, some preclinical evidence indicates their possible clinical application. This review aims to summarize current data from completed clinical trials that used Bcl-2 protein family inhibitors as monotherapy or in combination with other agents for the treatment of solid malignancies. We managed to include clinical trials of various phases which analyze the pharmacokinetics and pharmacodynamics of the drugs, as well as the effectiveness and adverse effects. Active and recruiting clinical trials are also briefly presented and future prospects and challenges are discussed.
Collapse
|
49
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
50
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|