1
|
Wang W, Li T, Wu K. Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches. Cell Death Discov 2025; 11:93. [PMID: 40064873 PMCID: PMC11894105 DOI: 10.1038/s41420-025-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell death is critical in tumor biology. The common cancer therapies can cause cell death and alleviate tumor, while the cancer cells can develop a resistance to cell death and survive from the therapies. Thus, not only observing the alternative mechanisms of tumor cells resistant to cell death, but also understanding the intricate dynamics of cell death processes within the tumor microenvironment (TME), are essential for tailoring effective therapeutic strategies. High-throughput sequencing technologies have revolutionized cancer research by enabling comprehensive molecular profiling. Recent advances in single cell sequencing have unraveled the heterogeneity of TME components, shedding light on their complex interactions. In this review, we explored the interplay between cell death signaling and the TME, summarised the potential drugs inducing cell death in pre-clinical stage, reviewed some studies applying next-generation sequencing technologies in cancer death research, and discussed the future utilization of updated sequencing platforms in screening novel treatment methods targeted cell death. In conclusion, leveraging multi-omics technologies to dissect cell death signaling in the context of the TME holds great promise for advancing cancer research and therapy development.
Collapse
Affiliation(s)
- Wenxin Wang
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Tong Li
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Kui Wu
- BGI Genomics, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China.
| |
Collapse
|
2
|
Kochen Rossi J, Nuevo-Tapioles C, O'Keefe RA, Hunkeler M, Schmoker AM, Fissore-O'Leary M, Su W, Ahearn IM, Branco C, Cheong H, Esposito D, Clotea I, Ueberheide B, Fischer ES, Philips MR. The differential interactomes of the KRAS splice variants identify BIRC6 as a ubiquitin ligase for KRAS4A. Cell Rep 2025; 44:115087. [PMID: 39705142 DOI: 10.1016/j.celrep.2024.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024] Open
Abstract
Transcripts of the KRAS locus are alternatively spliced to generate two proteins, KRAS4A and KRAS4B, which differ in their membrane-targeting sequences. These splice variants have been conserved for more than 450 million years, suggesting non-overlapping functions driven by differential membrane association. Here, we use proximity labeling to map the differential interactomes of the KRAS splice variants. We find 24 and 10 proteins that interact specifically with KRAS4A or KRAS4B, respectively. The KRAS interacting protein most specific to KRAS4A is BIRC6, a large member of the inhibitor of apoptosis protein family unique in possessing E2/E3 ubiquitin ligase activity. We find that this interaction takes place on the Golgi apparatus and results in the mono- and di-ubiquitination of KRAS4A at lysines 128 and 147. Silencing BIRC6 diminishes GTP loading of and growth stimulation by KRAS4A but not KRAS4B. Thus, BIRC6 is a ubiquitin ligase that inhibits apoptosis and also modifies KRAS4A.
Collapse
Affiliation(s)
- Juan Kochen Rossi
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Rachel A O'Keefe
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenjuan Su
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ian M Ahearn
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cristina Branco
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hakyung Cheong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dominic Esposito
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioana Clotea
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Dai Y, Lu S, Wei L, Liu L. Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05129-5. [PMID: 39862369 DOI: 10.1007/s12010-024-05129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/27/2025]
Abstract
Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach. Therefore, we constructed CCTP-SmacN7, a delivery system capable of releasing active molecules in the tumor microenvironment. CCTP-SmacN7 can not only inhibit tumor proliferation and migration, but also induce tumors to produce large amounts of reactive oxygen species. The production of reactive oxygen species can activate tumors to release or expose damage-associated molecular patterns, promote DC cell maturation, and ultimately activate T cells. Here, we present an innovative targeted treatment approach for cervical cancer. While inducing tumor immunogenic cell death, this program can also improve the tumor microenvironment and initiate the tumor immune cycle.
Collapse
Affiliation(s)
- Yan Dai
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shentao Lu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linna Wei
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Rodríguez-Gimeno A, Galdeano C. Drug Discovery Approaches to Target E3 Ligases. Chembiochem 2025; 26:e202400656. [PMID: 39686906 DOI: 10.1002/cbic.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Targeting E3 ligases is a challenging area in drug discovery. Despite the human genome encoding for more than 600 E3 ubiquitin ligases, only a handful of E3 ligases have been pharmacologically modulated or exploited for targeted protein degradation (TPD) strategies. The main obstacle for hijacking these E3 ligases is the lack of small-molecule ligands. As research into this field advances, the identification of new small molecules capable of binding to E3 ligases has become an essential pursuit. These ligases not only expand the repertoire of druggable targets but also offer the potential for increased specificity and selectivity in protein degradation. The synergy between academia and industry is key, as it combines academic expertise in fundamental research with the industrial capabilities of translating these findings into novel therapeutics. In this review, we provide an overview of the different strategies employed in academia and industry to the discovery of new E3 ligases ligands, showing them with illustrative cases.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Gimeno
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Carles Galdeano
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| |
Collapse
|
5
|
Li H, Zhang Y, Rao G, Zhang C, Guan Z, Huang Z, Li S, Lozach PY, Cao S, Peng K. Rift Valley fever virus coordinates the assembly of a programmable E3 ligase to promote viral replication. Cell 2024; 187:6896-6913.e15. [PMID: 39366381 DOI: 10.1016/j.cell.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Viruses encode strategies to degrade cellular proteins to promote infection and pathogenesis. Here, we revealed that the non-structural protein NSs of Rift Valley fever virus forms a filamentous E3 ligase to trigger efficient degradation of targeted proteins. Reconstitution in vitro and cryoelectron microscopy analysis with the 2.9-Å resolution revealed that NSs forms right-handed helical fibrils. The NSs filamentous oligomers associate with the cellular FBXO3 to form a remodeled E3 ligase. The NSs-FBXO3 E3 ligase targets the cellular TFIIH complex through the NSs-P62 interaction, leading to ubiquitination and proteasome-dependent degradation of the TFIIH complex. NSs-FBXO3-triggered TFIIH complex degradation resulted in robust inhibition of antiviral immunity and promoted viral pathogenesis in vivo. Furthermore, it is demonstrated that NSs can be programmed to target additional proteins for proteasome-dependent degradation, serving as a versatile targeted protein degrader. These results showed that a virulence factor forms a filamentous and programmable degradation machinery to induce organized degradation of cellular proteins to promote viral infection.
Collapse
Affiliation(s)
- Huiling Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Guibo Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziyan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, UMR754, Team iWays, Lyon, France
| | - Sheng Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
6
|
Meng Q, Wei K, Shan Y. E3 ubiquitin ligase gene BIRC3 modulates TNF-induced cell death pathways and promotes aberrant proliferation in rheumatoid arthritis fibroblast-like synoviocytes. Front Immunol 2024; 15:1433898. [PMID: 39301019 PMCID: PMC11410595 DOI: 10.3389/fimmu.2024.1433898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovitis, degradation of articular cartilage, and bone destruction. Fibroblast-like synoviocytes (FLS) play a central role in RA, producing a significant amount of inflammatory mediators such as tumor necrosis factor(TNF)-α and IL-6, which promote inflammatory responses within the joints. Moreover, FLS exhibit tumor-like behavior, including aggressive proliferation and enhanced anti-apoptotic capabilities, which collectively drive chronic inflammation and joint damage in RA. TNF is a major pro-inflammatory cytokine that mediates a series of signaling pathways through its receptor TNFR1, including NF-κB and MAPK pathways, which are crucial for inflammation and cell survival in RA. The abnormal proliferation and anti-apoptotic characteristics of FLS in RA may result from dysregulation in TNF-mediated cell death pathways such as apoptosis and necroptosis. Ubiquitination is a critical post-translational modification regulating these signaling pathways. E3 ubiquitin ligases, such as cIAP1/2, promote the ubiquitination and degradation of target proteins within the TNF receptor complex, modulating the signaling proteins. The high expression of the BIRC3 gene and its encoded protein, cIAP2, in RA regulates various cellular processes, including apoptosis, inflammatory signaling, immune response, MAPK signaling, and cell proliferation, thereby promoting FLS survival and inflammatory responses. Inhibiting BIRC3 expression can reduce the secretion of inflammatory cytokines by RA-FLS under both basal and inflammatory conditions and inhibit their proliferation. Although BIRC3 inhibitors show potential in RA treatment, their possible side effects must be carefully considered. Further research into the specific mechanisms of BIRC3, including its roles in cell signaling, apoptosis regulation, and immune evasion, is crucial for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine (TCM), Zhengzhou, Henan, China
| | - Kai Wei
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Santhanam M, Kumar Pandey S, Shteinfer-Kuzmine A, Paul A, Abusiam N, Zalk R, Shoshan-Barmatz V. Interaction of SMAC with a survivin-derived peptide alters essential cancer hallmarks: Tumor growth, inflammation, and immunosuppression. Mol Ther 2024; 32:1934-1955. [PMID: 38582961 PMCID: PMC11184343 DOI: 10.1016/j.ymthe.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.
Collapse
Affiliation(s)
- Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Nur Abusiam
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel.
| |
Collapse
|
8
|
Sun C, Bai J, Sun J, Sun Y, Zhang F, Li H, Liu Y, Meng L, Wang X. OTU deubiquitinase 7B facilitates the hyperthermia-induced inhibition of lung cancer progression through enhancing Smac-mediated mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2024; 39:1989-2005. [PMID: 38088504 DOI: 10.1002/tox.24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Hyperthermia, as an adjuvant therapy, has shown promising anti-tumor effects. Ovarian tumor domain-containing 7B (OTUD7B) is a deubiquitinating enzyme that is frequently found in a variety of cancers. The aim of this study is to investigate the role of OTUD7B in lung cancer hyperthermia and the underlying mechanism. A549 and CALU-3 cells were respectively exposed to 42 or 44°C for the indicated times (0, 1, 3, or 6 h) followed by incubation at 37°C for 24 h. We found a temperature- and time-dependent decrease in cell viability and an increase in apoptosis levels. Compared with 0 h, heat treatment for 3 h inhibited the proliferation and invasion of A549 cells, reduced the expression levels of mitochondrial membrane potential, IAP family members (cIAP-1 and XIAP) proteins and ubiquitination of Smac, and increased Smac protein expression. Treatment with 10 μM Smac mimic BV6 further enhanced the anti-tumor effect of hyperthermia. Next, co-IP validation showed that OTUD7B interacted with Smac and stabilized Smac through deubiquitination. OTUD7B overexpression induced damage in A549 and CALU-3 cells, while silencing OTUD7B caused opposite effects. Overexpressing OTUD7B enhanced the anti-cancer effect of hyperthermia, while si-OTUD7B reversed the anti-cancer effect of hyperthermia, which was verified in the xenograft tumor model in nude mice. Taken together, OTUD7B may serve as a potential anticancer factor with potential clinical efficacy in the thermotherapeutic treatment of lung cancer.
Collapse
Affiliation(s)
- Chao Sun
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jun Bai
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yang Sun
- Data Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fan Zhang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - He Li
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ying Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lian Meng
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Xifang Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
9
|
Hagi T, Vangveravong S, Takchi R, Gong Q, Goedegebuure SP, Tiriac H, Van Tine BA, Powell MA, Hawkins WG, Spitzer D. The novel drug candidate S2/IAPinh improves survival in models of pancreatic and ovarian cancer. Sci Rep 2024; 14:6373. [PMID: 38493257 PMCID: PMC10944456 DOI: 10.1038/s41598-024-56928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Cancer selective apoptosis remains a therapeutic challenge and off-target toxicity has limited enthusiasm for this target clinically. Sigma-2 ligands (S2) have been shown to enhance the cancer selectivity of small molecule drug candidates by improving internalization. Here, we report the synthesis of a novel drug conjugate, which was created by linking a clinically underperforming SMAC mimetic (second mitochondria-derived activator of caspases; LCL161), an inhibitor (antagonist) of inhibitor of apoptosis proteins (IAPinh) with the sigma-2 ligand SW43, resulting in the new chemical entity S2/IAPinh. Drug potency was assessed via cell viability assays across several pancreatic and ovarian cancer cell lines in comparison with the individual components (S2 and IAPinh) as well as their equimolar mixtures (S2 + IAPinh) both in vitro and in preclinical models of pancreatic and ovarian cancer. Mechanistic studies of S2/IAPinh-mediated cell death were investigated in vitro and in vivo using syngeneic and xenograft mouse models of murine pancreatic and human ovarian cancer, respectively. S2/IAPinh demonstrated markedly improved pharmacological activity in cancer cell lines and primary organoid cultures when compared to the controls. In vivo testing demonstrated a marked reduction in tumor growth rates and increased survival rates when compared to the respective control groups. The predicted mechanism of action of S2/IAPinh was confirmed through assessment of apoptosis pathways and demonstrated strong target degradation (cellular inhibitor of apoptosis proteins-1 [cIAP-1]) and activation of caspases 3 and 8. Taken together, S2/IAPinh demonstrated efficacy in models of pancreatic and ovarian cancer, two challenging malignancies in need of novel treatment concepts. Our data support an in-depth investigation into utilizing S2/IAPinh for the treatment of cancer.
Collapse
Affiliation(s)
- Takaomi Hagi
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suwanna Vangveravong
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rony Takchi
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Qingqing Gong
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
| | - Herve Tiriac
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, San Diego, CA, USA, San Diego, USA
| | - Brian A Van Tine
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Powell
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA.
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Kim J, Shim MK, Moon Y, Kim J, Cho H, Yun WS, Shim N, Seong JK, Lee Y, Lim DK, Kim K. Cancer cell-specific and pro-apoptotic SMAC peptide-doxorubicin conjugated prodrug encapsulated aposomes for synergistic cancer immunotherapy. J Nanobiotechnology 2024; 22:109. [PMID: 38481326 PMCID: PMC10938764 DOI: 10.1186/s12951-024-02314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) is a crucial approach to turn immunosuppressive tumor microenvironment (ITM) into immune-responsive milieu and improve the response rate of immune checkpoint blockade (ICB) therapy. However, cancer cells show resistance to ICD-inducing chemotherapeutic drugs, and non-specific toxicity of those drugs against immune cells reduce the immunotherapy efficiency. METHODS Herein, we propose cancer cell-specific and pro-apoptotic liposomes (Aposomes) encapsulating second mitochondria-derived activator of caspases mimetic peptide (SMAC-P)-doxorubicin (DOX) conjugated prodrug to potentiate combinational ICB therapy with ICD. The SMAC-P (AVPIAQ) with cathepsin B-cleavable peptide (FRRG) was directly conjugated to DOX, and the resulting SMAC-P-FRRG-DOX prodrug was encapsulated into PEGylated liposomes. RESULTS The SMAC-P-FRRG-DOX encapsulated PEGylated liposomes (Aposomes) form a stable nanostructure with an average diameter of 109.1 ± 5.14 nm and promote the apoptotic cell death mainly in cathepsin B-overexpressed cancer cells. Therefore, Aposomes induce a potent ICD in targeted cancer cells in synergy of SMAC-P with DOX in cultured cells. In colon tumor models, Aposomes efficiently accumulate in targeted tumor tissues via enhanced permeability and retention (EPR) effect and release the encapsulated prodrug of SMAC-P-FRRG-DOX, which is subsequently cleaved to SMAC-P and DOX in cancer cells. Importantly, the synergistic activity of inhibitors of apoptosis proteins (IAPs)-inhibitory SMAC-P sensitizing the effects of DOX induces a potent ICD in the cancer cells to promote dendritic cell (DC) maturation and stimulate T cell proliferation and activation, turning ITM into immune-responsive milieu. CONCLUSIONS Eventually, the combination of Aposomes with anti-PD-L1 antibody results in a high rate of complete tumor regression (CR: 80%) and also prevent the tumor recurrence by immunological memory established during treatments.
Collapse
Affiliation(s)
- Jinseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yujeong Moon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Bioengineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongrae Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hanhee Cho
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Wan Su Yun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Shim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Joon-Kyung Seong
- Department of Bioengineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yonghyun Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
11
|
Bourhis J, Sun XS, Tao Y. Letter to the Editor: SMAC mimetics inhibit human T cell proliferation and fail to augment type 1 cytokine responses. Cell Immunol 2024; 395-396:104772. [PMID: 37996259 DOI: 10.1016/j.cellimm.2023.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Jean Bourhis
- CHUV, Radiation Oncology Department, Bâtiment Hospitalier, Lausanne, Switzerland.
| | - Xu-Shan Sun
- Department of Radiation Oncology, Nord Franche-Comté de Montbéliard and CHRU de Besançon, Besançon, France
| | - Yungan Tao
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
12
|
Kudo G, Yanagisawa K, Yoshino R, Hirokawa T. AAp-MSMD: Amino Acid Preference Mapping on Protein-Protein Interaction Surfaces Using Mixed-Solvent Molecular Dynamics. J Chem Inf Model 2023; 63:7768-7777. [PMID: 38085669 PMCID: PMC10751795 DOI: 10.1021/acs.jcim.3c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Peptides have attracted much attention recently owing to their well-balanced properties as drugs against protein-protein interaction (PPI) surfaces. Molecular simulation-based predictions of binding sites and amino acid residues with high affinity to PPI surfaces are expected to accelerate the design of peptide drugs. Mixed-solvent molecular dynamics (MSMD), which adds probe molecules or fragments of functional groups as solutes to the hydration model, detects the binding hotspots and cryptic sites induced by small molecules. The detection results vary depending on the type of probe molecule; thus, they provide important information for drug design. For rational peptide drug design using MSMD, we proposed MSMD with amino acid residue probes, named amino acid probe-based MSMD (AAp-MSMD), to detect hotspots and identify favorable amino acid types on protein surfaces to which peptide drugs bind. We assessed our method in terms of hotspot detection at the amino acid probe level and binding free energy prediction with amino acid probes at the PPI site for the complex structure that formed the PPI. In hotspot detection, the max-spatial probability distribution map (max-PMAP) obtained from AAp-MSMD detected the PPI site, to which each type of amino acid can bind favorably. In the binding free energy prediction using amino acid probes, ΔGFE obtained from AAp-MSMD roughly estimated the experimental binding affinities from the structure-activity relationship. AAp-MSMD, with amino acid probes, provides estimated binding sites and favorable amino acid types at the PPI site of a target protein.
Collapse
Affiliation(s)
- Genki Kudo
- Physics
Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki Japan
| | - Keisuke Yanagisawa
- Department
of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro 152-8550, Tokyo Japan
- Middle
Molecule IT-based Drug Discovery Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro 152-8550, Tokyo Japan
| | - Ryunosuke Yoshino
- Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki Japan
| | - Takatsugu Hirokawa
- Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki Japan
| |
Collapse
|
13
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
14
|
Roterman I, Stapor K, Konieczny L. Engagement of intrinsic disordered proteins in protein-protein interaction. Front Mol Biosci 2023; 10:1230922. [PMID: 37583961 PMCID: PMC10423874 DOI: 10.3389/fmolb.2023.1230922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Proteins from the intrinsically disordered group (IDP) focus the attention of many researchers engaged in protein structure analysis. The main criteria used in their identification are lack of secondary structure and significant structural variability. This variability takes forms that cannot be identified in the X-ray technique. In the present study, different criteria were used to assess the status of IDP proteins and their fragments recognized as intrinsically disordered regions (IDRs). The status of the hydrophobic core in proteins identified as IDPs and in their complexes was assessed. The status of IDRs as components of the ordering structure resulting from the construction of the hydrophobic core was also assessed. The hydrophobic core is understood as a structure encompassing the entire molecule in the form of a centrally located high concentration of hydrophobicity and a shell with a gradually decreasing level of hydrophobicity until it reaches a level close to zero on the protein surface. It is a model assuming that the protein folding process follows a micellization pattern aiming at exposing polar residues on the surface, with the simultaneous isolation of hydrophobic amino acids from the polar aquatic environment. The use of the model of hydrophobicity distribution in proteins in the form of the 3D Gaussian distribution described on the protein particle introduces the possibility of assessing the degree of similarity to the assumed micelle-like distribution and also enables the identification of deviations and mismatch between the actual distribution and the idealized distribution. The FOD (fuzzy oil drop) model and its modified FOD-M version allow for the quantitative assessment of these differences and the assessment of the relationship of these areas to the protein function. In the present work, the sections of IDRs in protein complexes classified as IDPs are analyzed. The classification "disordered" in the structural sense (lack of secondary structure or high flexibility) does not always entail a mismatch with the structure of the hydrophobic core. Particularly, the interface area, often consisting of IDRs, in many analyzed complexes shows the compliance of the hydrophobicity distribution with the idealized distribution, which proves that matching to the structure of the hydrophobic core does not require secondary structure ordering.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Farag M, Kieffer C, Guedeney N, Voisin-Chiret AS, Sopkova-de Oliveira Santos J. Computational Tool to Design Small Synthetic Inhibitors Selective for XIAP-BIR3 Domain. Molecules 2023; 28:5155. [PMID: 37446817 DOI: 10.3390/molecules28135155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) exercises its biological function by locking up and inhibiting essential caspase-3, -7 and -9 toward apoptosis execution. It is overexpressed in multiple human cancers, and it plays an important role in cancer cells' death skipping. Inhibition of XIAP-BIR3 domain and caspase-9 interaction was raised as a promising strategy to restore apoptosis in malignancy treatment. However, XIAP-BIR3 antagonists also inhibit cIAP1-2 BIR3 domains, leading to serious side effects. In this study, we worked on a theoretical model that allowed us to design and optimize selective synthetic XIAP-BIR3 antagonists. Firstly, we assessed various MM-PBSA strategies to predict the XIAP-BIR3 binding affinities of synthetic ligands. Molecular dynamics simulations using hydrogen mass repartition as an additional parametrization with and without entropic term computed by the interaction entropy approach produced the best correlations. These simulations were then exploited to generate 3D pharmacophores. Following an optimization with a training dataset, five features were enough to model XIAP-BIR3 synthetic ligands binding to two hydrogen bond donors, one hydrogen bond acceptor and two hydrophobic groups. The correlation between pharmacophoric features and computed MM-PBSA free energy revealed nine residues as crucial for synthetic ligand binding: Thr308, Glu314, Trp323, Leu307, Asp309, Trp310, Gly306, Gln319 and Lys297. Ultimately, and three of them seemed interesting to use to improve XIAP-BR3 versus cIAP-BIR3 selectivity: Lys297, Thr308 and Asp309.
Collapse
Affiliation(s)
- Marc Farag
- Normandie Univ., UNICAEN, CERMN, 14000 Caen, France
| | | | | | | | | |
Collapse
|
16
|
Udompholkul P, Garza-Granados A, Alboreggia G, Baggio C, McGuire J, Pegan SD, Pellecchia M. Characterization of a Potent and Orally Bioavailable Lys-Covalent Inhibitor of Apoptosis Protein (IAP) Antagonist. J Med Chem 2023. [PMID: 37262387 DOI: 10.1021/acs.jmedchem.3c00467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have recently reported on the use of aryl-fluorosulfates in designing water- and plasma-stable agents that covalently target Lys, Tyr, or His residues in the BIR3 domain of the inhibitor of the apoptosis protein (IAP) family. Here, we report further structural, cellular, and pharmacological characterizations of this agent, including the high-resolution structure of the complex between the Lys-covalent agent and its target, the BIR3 domain of X-linked IAP (XIAP). We also compared the cellular efficacy of the agent in two-dimensional (2D) and three-dimensional (3D) cell cultures, side by side with the clinical candidate reversible IAP inhibitor LCL161. Finally, in vivo pharmacokinetic studies indicated that the agent was long-lived and orally bioavailable. Collectively our data further corroborate that aryl-fluorosulfates, when incorporated correctly in a ligand, can result in Lys-covalent agents with pharmacodynamic and pharmacokinetic properties that warrant their use in the design of pharmacological probes or even therapeutics.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ana Garza-Granados
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jack McGuire
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Scott D Pegan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
17
|
Ng YL, Bricelj A, Jansen JA, Murgai A, Peter K, Donovan KA, Gütschow M, Krönke J, Steinebach C, Sosič I. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. J Med Chem 2023; 66:4703-4733. [PMID: 36996313 PMCID: PMC10108347 DOI: 10.1021/acs.jmedchem.2c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/01/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
Collapse
Affiliation(s)
- Yuen Lam
Dora Ng
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Jacqueline A. Jansen
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Arunima Murgai
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Kirsten Peter
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Katherine A. Donovan
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael Gütschow
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christian Steinebach
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Hunkeler M, Jin CY, Fischer ES. Structures of BIRC6-client complexes provide a mechanism of SMAC-mediated release of caspases. Science 2023; 379:1105-1111. [PMID: 36758104 DOI: 10.1126/science.ade5750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Tight regulation of apoptosis is essential for metazoan development and prevents diseases such as cancer and neurodegeneration. Caspase activation is central to apoptosis, and inhibitor of apoptosis proteins (IAPs) are the principal actors that restrain caspase activity and are therefore attractive therapeutic targets. IAPs, in turn, are regulated by mitochondria-derived proapoptotic factors such as SMAC and HTRA2. Through a series of cryo-electron microscopy structures of full-length human baculoviral IAP repeat-containing protein 6 (BIRC6) bound to SMAC, caspases, and HTRA2, we provide a molecular understanding for BIRC6-mediated caspase inhibition and its release by SMAC. The architecture of BIRC6, together with near-irreversible binding of SMAC, elucidates how the IAP inhibitor SMAC can effectively control a processive ubiquitin ligase to respond to apoptotic stimuli.
Collapse
Affiliation(s)
- Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Ehrmann JF, Grabarczyk DB, Heinke M, Deszcz L, Kurzbauer R, Hudecz O, Shulkina A, Gogova R, Meinhart A, Versteeg GA, Clausen T. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 2023; 379:1117-1123. [PMID: 36758105 DOI: 10.1126/science.ade8873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Inhibitor of apoptosis proteins (IAPs) bind to pro-apoptotic proteases, keeping them inactive and preventing cell death. The atypical ubiquitin ligase BIRC6 is the only essential IAP, additionally functioning as a suppressor of autophagy. We performed a structure-function analysis of BIRC6 in complex with caspase-9, HTRA2, SMAC, and LC3B, which are critical apoptosis and autophagy proteins. Cryo-electron microscopy structures showed that BIRC6 forms a megadalton crescent shape that arcs around a spacious cavity containing receptor sites for client proteins. Multivalent binding of SMAC obstructs client binding, impeding ubiquitination of both autophagy and apoptotic substrates. On the basis of these data, we discuss how the BIRC6/SMAC complex can act as a stress-induced hub to regulate apoptosis and autophagy drivers.
Collapse
Affiliation(s)
- Julian F Ehrmann
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Daniel B Grabarczyk
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Maria Heinke
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Robert Kurzbauer
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Otto Hudecz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Alexandra Shulkina
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Rebeca Gogova
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Ferris RL, Harrington K, Schoenfeld JD, Tahara M, Esdar C, Salmio S, Schroeder A, Bourhis J. Inhibiting the inhibitors: Development of the IAP inhibitor xevinapant for the treatment of locally advanced squamous cell carcinoma of the head and neck. Cancer Treat Rev 2023; 113:102492. [PMID: 36640618 PMCID: PMC11227656 DOI: 10.1016/j.ctrv.2022.102492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Standard of care for patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN) is surgery followed by chemoradiotherapy (CRT) or definitive CRT. However, approximately 50 % of patients with LA SCCHN develop disease recurrence or metastasis within 2 years of completing treatment, and the outcome for these patients is poor. Despite this, the current treatment landscape for LA SCCHN has remained relatively unchanged for more than 2 decades, and novel treatment options are urgently required. One of the key causes of disease recurrence is treatment resistance, which commonly occurs due to cancer cells' ability to evade apoptosis. Evasion of apoptosis has been in part attributed to the overexpression of inhibitor of apoptosis proteins (IAPs). IAPs, including X-linked IAP (XIAP) and cellular IAP 1 and 2 (cIAP1/2), are a class of proteins that regulate apoptosis induced by intrinsic and extrinsic apoptotic pathways. IAPs have been shown to be overexpressed in SCCHN, are associated with poor clinical outcomes, and are, therefore, a rational therapeutic target. To date, several IAP inhibitors have been investigated; however, only xevinapant, a potent, oral, small-molecule IAP inhibitor, has shown clinical proof of concept when combined with CRT. Specifically, xevinapant demonstrated superior efficacy in combination with CRT vs placebo + CRT in a randomized, double-blind, phase 2 trial in patients with unresected LA SCCHN. Here, we describe the current treatment landscape in LA SCCHN and provide the rationale for targeting IAPs and the clinical data reported for xevinapant.
Collapse
Affiliation(s)
- Robert L Ferris
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | - Makoto Tahara
- National Cancer Center Hospital East, Kashiwa, Chiba Prefecture, Japan.
| | | | | | | | - Jean Bourhis
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
21
|
Altrichter Y, Bou-Dib P, Kuznia C, Seitz O. Towards a templated reaction that translates RNA in cells into a proaptotic peptide-PNA conjugate. J Pept Sci 2023:e3477. [PMID: 36606596 DOI: 10.1002/psc.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nucleic acid-templated chemistry opens the intriguing prospect of triggering the synthesis of drugs only in diseased cells. Herein, we explore the feasibility of using RNA-templated chemical reactions for the activation of a known Smac peptidomimetic compound (SMC), which has proapoptotic activity. Two peptide nucleic acid (PNA) conjugates were used to enable conditional activation of a masked SMC by reduction of an azide either by Staudinger reduction or catalytic photoreduction using a ruthenium complex. The latter provided ~135 nM SMC-PNA on as little as 10 nM (0.01 eq.) template. For the evaluation of the templated azido-SMC reduction system in cellulo, a stable HEK 293 cell line was generated, which overexpressed a truncated, non-functional form of the XIAP mRNA target. We furthermore describe the development of electroporation protocols that enable a robust delivery of PNA conjugates into HEK 293 cells. The action of the reactive PNA conjugates was evaluated by viability and flow cytometric apoptosis assays. In addition, electroporated probes were re-isolated and analyzed by ultra-high performance liquid chromatography (UPLC). Unfortunately, the ruthenium-PNA conjugate proved phototoxic, and treatment of cells with PNA-linked reducing agent and the azido-masked SMC conjugate did not result in a greater viability loss than treatment with scrambled sequence controls. Intracellular product formation was not detectable. A control experiment in total cellular RNA isolate indicated that the templated reaction can in principle proceed in a complex system. The results of this first-of-its-kind study reveal the numerous hurdles that must be overcome if RNA molecules are to trigger the synthesis of pro-apoptotic drugs inside cells.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Peter Bou-Dib
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Christina Kuznia
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
22
|
Mostafavi M, Ataei F, Hamidieh AA, Hosseinkhani S. Development of a bioluminescence assay for BIR2- caspase3 interaction through split luciferase complementary assay. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Cascone A, Lalowski M, Lindholm D, Eriksson O. Unveiling the Function of the Mitochondrial Filament-Forming Protein LACTB in Lipid Metabolism and Cancer. Cells 2022; 11:cells11101703. [PMID: 35626737 PMCID: PMC9139886 DOI: 10.3390/cells11101703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
LACTB is a relatively unknown mitochondrial protein structurally related to the bacterial penicillin-binding and beta-lactamase superfamily of serine proteases. LACTB has recently gained an increased interest due to its potential role in lipid metabolism and tumorigenesis. To date, around ninety studies pertaining to LACTB have been published, but the exact biochemical and cell biological function of LACTB still remain elusive. In this review, we summarise the current knowledge about LACTB with particular attention to the implications of the recently published study on the cryo-electron microscopy structure of the filamentous form of LACTB. From this and other studies, several specific properties of LACTB emerge, suggesting that the protein has distinct functions in different physiological settings. Resolving these issues by further research may ultimately lead to a unified model of LACTB’s function in cell and organismal physiology. LACTB is the only member of its protein family in higher animals and LACTB may, therefore, be of particular interest for future drug targeting initiatives.
Collapse
Affiliation(s)
- Annunziata Cascone
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.C.); (D.L.)
| | - Maciej Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.C.); (D.L.)
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2, Tukholmankatu 8, FIN-00290 Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland; (A.C.); (D.L.)
- Correspondence:
| |
Collapse
|
24
|
Bourhis J, Burtness B, Licitra LF, Nutting C, Schoenfeld JD, Omar M, Bouisset F, Nauwelaerts H, Urfer Y, Zanna C, Cohen EE. Xevinapant or placebo plus chemoradiotherapy in locally advanced squamous cell carcinoma of the head and neck: TrilynX phase III study design. Future Oncol 2022; 18:1669-1678. [PMID: 35172587 DOI: 10.2217/fon-2021-1634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Xevinapant is a first-in-class antagonist of inhibitor of apoptosis proteins, which enhances cancer cell sensitivity to chemotherapy and radiotherapy. In a phase II randomized study in patients with unresected locally advanced squamous cell carcinoma of the head and neck (LA SCCHN), xevinapant plus standard-of-care cisplatin-based chemoradiotherapy (CRT) showed superior efficacy versus placebo plus CRT. Here, we describe the design of TrilynX (NCT04459715), a randomized, double-blind, phase III study. In total, 700 patients with unresected LA SCCHN will be randomized 1:1 to receive xevinapant or placebo plus standard-of-care CRT followed by xevinapant monotherapy or placebo. The primary end point is event-free survival by blinded independent review committee. Secondary end points include progression-free survival, locoregional control, overall survival and safety.
Collapse
Affiliation(s)
- Jean Bourhis
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Barbara Burtness
- Yale School of Medicine & Yale Cancer Center, New Haven, CT 06510, USA
| | - Lisa F Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori & University of Milan, Milan, Italy
| | | | | | - Mokhtar Omar
- Debiopharm International SA, Lausanne, Switzerland
| | | | | | - Yulia Urfer
- Debiopharm International SA, Lausanne, Switzerland
| | | | - Ezra Ew Cohen
- University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
26
|
Shanmugam MK, Sethi G. Molecular mechanisms of cell death. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:65-92. [DOI: 10.1016/b978-0-12-814208-0.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
27
|
Molyer B, Kumar A, Angel JB. SMAC Mimetics as Therapeutic Agents in HIV Infection. Front Immunol 2021; 12:780400. [PMID: 34899741 PMCID: PMC8660680 DOI: 10.3389/fimmu.2021.780400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although combination antiretroviral therapy is extremely effective in lowering HIV RNA to undetectable levels in the blood, HIV persists in latently infected CD4+ T-cells and persistently infected macrophages. In latently/persistently infected cells, HIV proteins have shown to affect the expression of proteins involved in the apoptosis pathway, notably the inhibitors of apoptosis proteins (IAPs), and thereby influence cell survival. IAPs, which are inhibited by endogenous second mitochondrial-derived activators of caspases (SMAC), can serve as targets for SMAC mimetics, synthetic compounds capable of inducing apoptosis. There is increasing evidence that SMAC mimetics can be used to reverse HIV latency and/or kill cells that are latently/persistently infected with HIV. Here, we review the current state of knowledge of SMAC mimetics as an approach to eliminate HIV infected cells and discuss the potential future use of SMAC mimetics as part of an HIV cure strategy.
Collapse
Affiliation(s)
- Bengisu Molyer
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Apoptosis Research Center of Children's Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
28
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
29
|
Abstract
Post-translational modifications (PTMs) direct the assembly of protein complexes. In this context, proteolysis is a unique PTM because it is irreversible; the hydrolysis of the peptide backbone generates separate fragments bearing a new N and C terminus. Proteolysis can "re-wire" protein-protein interactions (PPIs) via the recruitment of end-binding proteins to new termini. In this review, we focus on the role of proteolysis in specifically creating complexes by recruiting E3 ubiquitin ligases to new N and C termini. These complexes potentiate proteolytic signaling by "erasing" proteolytic modifications. This activity tunes the duration and magnitude of protease signaling events. Recent work has shown that the stepwise process of proteolysis, end-binding by E3 ubiquitin ligases, and fragment turnover is associated with both the nascent N terminus (i.e., N-degron pathways) and the nascent C terminus (i.e., the C-degron pathways). Here, we discuss how these pathways might harmonize protease signaling with protein homeostasis (i.e., proteostasis).
Collapse
Affiliation(s)
- Matthew Ravalin
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Koli Basu
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
31
|
Altrichter Y, Schöller J, Seitz O. Toward conditional control of Smac mimetic activity by RNA-templated reduction of azidopeptides on PNA or 2'-OMe-RNA. Biopolymers 2021; 112:e23466. [PMID: 34287823 DOI: 10.1002/bip.23466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Oligonucleotide templated reactions can be used to control the activity of functional molecules based on the presence of a specific trigger sequence. We report an RNA-controlled reaction system to conditionally restore the N-terminal amino group and thus binding affinity of azide-modified Smac mimetic compounds (SMCs) for their target protein X-linked Inhibitor of Apoptosis Protein (XIAP). Two templated reactions were compared: Staudinger reduction with phosphines and a photocatalytic reaction with Ru(bpy)2 (mcbpy). The latter proved faster and more efficient, especially for the activation of a bivalent SMC, which requires two consecutive reduction steps. The templated reaction proceeds with turnover when 2'-OMe-RNA probes are used, but is significantly more efficient with PNA, catalyzing a reaction in the presence of low, substoichiometric amounts (1%-3%, 10 nM) of target RNA.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Justus Schöller
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
32
|
Zhang J, Jiang M, Li S, Zhang Z, Sun H, Yang F, Liang H. Developing a Novel Anticancer Gold(III) Agent to Integrate Chemotherapy and Immunotherapy. J Med Chem 2021; 64:6777-6791. [PMID: 34000198 DOI: 10.1021/acs.jmedchem.1c00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To effectively treat gastric cancer, we innovatively attempted to develop a metal agent to integrate immunotherapy and chemotherapy by dual targeting the cellular components in the tumor microenvironment (TME) based on the specific residue of human serum albumin (HSA) nanoparticles (NPs). We synthesized a series of Au(III) α-N-heterocyclic thiosemicarbazone compounds and obtained a Au agent (5b) with remarkable cytotoxicity to gastric cancer cells; moreover, we successfully constructed a novel HSA-5b complex NP delivery system. Importantly, the in vivo results showed that 5b/HSA-5b NPs effectively inhibited gastric tumor growth and HSA-5b NPs enhanced the therapeutic efficiency, bioavailability, and targeting ability compared with those of 5b alone. Furthermore, the in vitro/in vivo results revealed that 5b/HSA-5b NPs could integrate chemotherapy and immunotherapy by synergistically attacking two different cellular components in TME at the same time, namely, polarizing the tumor-associated macrophages and inducing apoptosis of gastric cancer cells.
Collapse
Affiliation(s)
- Juzheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Ming Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shanhe Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
33
|
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 2021; 18:1106-1121. [PMID: 33785842 PMCID: PMC8008022 DOI: 10.1038/s41423-020-00630-3] [Citation(s) in RCA: 1075] [Impact Index Per Article: 268.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023] Open
Abstract
Cell death is a fundamental physiological process in all living organisms. Its roles extend from embryonic development, organ maintenance, and aging to the coordination of immune responses and autoimmunity. In recent years, our understanding of the mechanisms orchestrating cellular death and its consequences on immunity and homeostasis has increased substantially. Different modalities of what has become known as 'programmed cell death' have been described, and some key players in these processes have been identified. We have learned more about the intricacies that fine tune the activity of common players and ultimately shape the different types of cell death. These studies have highlighted the complex mechanisms tipping the balance between different cell fates. Here, we summarize the latest discoveries in the three most well understood modalities of cell death, namely, apoptosis, necroptosis, and pyroptosis, highlighting common and unique pathways and their effect on the surrounding cells and the organism as a whole.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
- German Center for Neurodegenerative Diseases, Bonn, NRW, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| |
Collapse
|
34
|
McKenna S, García-Gutiérrez L, Matallanas D, Fey D. BAX and SMAC regulate bistable properties of the apoptotic caspase system. Sci Rep 2021; 11:3272. [PMID: 33558564 PMCID: PMC7870884 DOI: 10.1038/s41598-021-82215-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/07/2020] [Indexed: 01/30/2023] Open
Abstract
The initiation of apoptosis is a core mechanism in cellular biology by which organisms control the removal of damaged or unnecessary cells. The irreversible activation of caspases is essential for apoptosis, and mathematical models have demonstrated that the process is tightly regulated by positive feedback and a bistable switch. BAX and SMAC are often dysregulated in diseases such as cancer or neurodegeneration and are two key regulators that interact with the caspase system generating the apoptotic switch. Here we present a mathematical model of how BAX and SMAC control the apoptotic switch. Formulated as a system of ordinary differential equations, the model summarises experimental and computational evidence from the literature and incorporates the biochemical mechanisms of how BAX and SMAC interact with the components of the caspase system. Using simulations and bifurcation analysis, we find that both BAX and SMAC regulate the time-delay and activation threshold of the apoptotic switch. Interestingly, the model predicted that BAX (not SMAC) controls the amplitude of the apoptotic switch. Cell culture experiments using siRNA mediated BAX and SMAC knockdowns validated this model prediction. We further validated the model using data of the NCI-60 cell line panel using BAX protein expression as a cell-line specific parameter and show that model simulations correlated with the cellular response to DNA damaging drugs and established a defined threshold for caspase activation that could distinguish between sensitive and resistant melanoma cells. In summary, we present an experimentally validated dynamic model that summarises our current knowledge of how BAX and SMAC regulate the bistable properties of irreversible caspase activation during apoptosis.
Collapse
Affiliation(s)
- Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
35
|
Mueller F, Friese A, Pathe C, da Silva RC, Rodriguez KB, Musacchio A, Bange T. Overlap of NatA and IAP substrates implicates N-terminal acetylation in protein stabilization. SCIENCE ADVANCES 2021; 7:7/3/eabc8590. [PMID: 33523899 PMCID: PMC7810383 DOI: 10.1126/sciadv.abc8590] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
SMAC/DIABLO and HTRA2 are mitochondrial proteins whose amino-terminal sequences, known as inhibitor of apoptosis binding motifs (IBMs), bind and activate ubiquitin ligases known as inhibitor of apoptosis proteins (IAPs), unleashing a cell's apoptotic potential. IBMs comprise a four-residue, loose consensus sequence, and binding to IAPs requires an unmodified amino terminus. Closely related, IBM-like N termini are present in approximately 5% of human proteins. We show that suppression of the N-alpha-acetyltransferase NatA turns these cryptic IBM-like sequences into very efficient IAP binders in cell lysates and in vitro and ultimately triggers cellular apoptosis. Thus, amino-terminal acetylation of IBM-like motifs in NatA substrates shields them from IAPs. This previously unrecognized relationship suggests that amino-terminal acetylation is generally protective against protein degradation in human cells. It also identifies IAPs as agents of a general quality control mechanism targeting unacetylated rogues in metazoans.
Collapse
Affiliation(s)
- Franziska Mueller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alexandra Friese
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Claudio Pathe
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Kenny Bravo Rodriguez
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitaetsstrasse, 45141 Essen, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich
| |
Collapse
|
36
|
Gambini L, Udompholkul P, Salem AF, Baggio C, Pellecchia M. Stability and Cell Permeability of Sulfonyl Fluorides in the Design of Lys-Covalent Antagonists of Protein-Protein Interactions. ChemMedChem 2020; 15:2176-2184. [PMID: 32790900 PMCID: PMC7722097 DOI: 10.1002/cmdc.202000355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Recently we reported on aryl-fluorosulfates as possible stable and effective electrophiles for the design of lysine covalent, cell permeable antagonists of protein-protein interactions (PPIs). Here we revisit the use of aryl-sulfonyl fluorides as Lys-targeting moieties, incorporating these electrophiles in XIAP (X-linked inhibitor of apoptosis protein) targeting agents. We evaluated stability in buffer and reactivity with Lys311 of XIAP of various aryl-sulfonyl fluorides using biochemical and biophysical approaches, including displacement assays, mass spectrometry, SDS gel electrophoresis, and denaturation thermal shift measurements. To assess whether these modified electrophilic "warheads" can also react with Tyr, we repeated these evaluations with a Lys311Tyr XIAP mutant. Using a direct cellular assay, we could demonstrate that selected agents are cell permeable and interact covalently with their intended target in cell. These results suggest that certain substituted aryl-sulfonyl fluorides can be useful Lys- or Tyr-targeting electrophiles for the design of covalent pharmacological tools or even future therapeutics targeting protein-protein interactions.
Collapse
Affiliation(s)
- Luca Gambini
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Parima Udompholkul
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Ahmed F. Salem
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Carlo Baggio
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Maurizio Pellecchia
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| |
Collapse
|
37
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
38
|
Altrichter Y, Seitz O. Simultaneous Targeting of Two Master Regulators of Apoptosis with Dual-Action PNA- and DNA-Peptide Conjugates. Bioconjug Chem 2020; 31:1928-1937. [PMID: 32567853 PMCID: PMC7583637 DOI: 10.1021/acs.bioconjchem.0c00284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Indexed: 01/31/2023]
Abstract
Conjugation of peptides with oligonucleotides offers opportunities for combining the strengths of both biopolymer classes. Herein, we show that the combination of a peptide-based module with an antisense oligonucleotide module provides for enhancements of potency and a widened scope of cell delivery options. The peptide unit comprises a Smac mimetic compound (SMCs) which antagonizes the action of inhibitor of apoptosis proteins (IAPs) frequently overexpressed in cancer cells. To counteract SMC resistance, the antisense module downregulates the cellular FLICE-like protein (c-FLIP), a master regulator of the extrinsic apoptosis pathway. We compared c-FLIP antisense units based on oligophosphorothioate (PSO) and peptide nucleic acid (PNA) architectures. Owing to the ease of synthesis, PNA conjugates combined with a cell penetrating peptide (CPP) offer a seemingly ideal solution for cell delivery of dual activity agents. However, our investigations revealed that such congeners have to be handled with care to avoid off-target effects. By contrast, PSO conjugates provided a more robust and specific activity for inducing death of SMC-resistant A549 cells due to a simultaneous activation of caspases and c-FLIP knockdown. We show that lipofection is a convenient approach for delivery of peptide-PSO conjugates into cells. The results highlight that the combination of the peptide and the DNA world confers properties inaccessible by the unconjugated components.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
39
|
Jost PJ, Vucic D. Regulation of Cell Death and Immunity by XIAP. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036426. [PMID: 31843992 DOI: 10.1101/cshperspect.a036426] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
X-chromosome-linked inhibitor of apoptosis protein (XIAP) controls cell survival in several regulated cell death pathways and coordinates a range of inflammatory signaling events. Initially identified as a caspase-binding protein, it was considered to be primarily involved in blocking apoptosis from both intrinsic as well as extrinsic triggers. However, XIAP also prevents TNF-mediated, receptor-interacting protein 3 (RIPK3)-dependent cell death, by controlling RIPK1 ubiquitylation and preventing inflammatory cell death. The identification of patients with germline mutations in XIAP (termed XLP-2 syndrome) pointed toward its role in inflammatory signaling. Indeed, XIAP also mediates nucleotide-binding oligomerization domain-containing 2 (NOD2) proinflammatory signaling by promoting RIPK2 ubiquitination within the NOD2 signaling complex leading to NF-κB and MAPK activation and production of inflammatory cytokines and chemokines. Overall, XIAP is a critical regulator of multiple cell death and inflammatory pathways making it an attractive drug target in tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Philipp J Jost
- Medical Department III, School of Medicine, Technical University of Munich, 81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany.,German Cancer Consortium (DKTK) partner site TUM, DKFZ, 69120 Heidelberg, Germany
| | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
40
|
Mamriev D, Abbas R, Klingler FM, Kagan J, Kfir N, Donald A, Weidenfeld K, Sheppard DW, Barkan D, Larisch S. A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2. Cell Death Dis 2020; 11:483. [PMID: 32587235 PMCID: PMC7316745 DOI: 10.1038/s41419-020-2670-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Many human cancers over-express B cell lymphoma 2 (Bcl-2) or X-linked inhibitor of apoptosis (IAP) proteins to evade cell death. The pro-apoptotic ARTS (Sept4_i2) protein binds directly to both Bcl-2 and XIAP and promotes apoptosis by stimulating their degradation via the ubiquitin-proteasome system (UPS). Here we describe a small molecule, A4, that mimics the function of ARTS. Microscale thermophoresis assays showed that A4 binds XIAP, but not cellular inhibitor of apoptosis protein 1 (cIAP1). A4 binds to a distinct ARTS binding pocket in the XIAP-BIR3 (baculoviral IAP repeat 3) domain. Like ARTS, A4 stimulated poly-ubiquitylation and UPS-mediated degradation of XIAP and Bcl-2, but not cIAP1, resulting in caspase-9 and -3 activation and apoptosis. In addition, over-expression of XIAP rescued HeLa cells from A4-induced apoptosis, consistent with the idea that A4 kills by antagonizing XIAP. On the other hand, treatment with the SMAC-mimetic Birinapant induced secretion of tumour necrosis factor-α (TNFα) and killed ~50% of SKOV-3 cells, and addition of A4 to Birinapant-treated cells significantly reduced secretion of TNFα and blocked Birinapant-induced apoptosis. This suggests that A4 acts by specifically targeting XIAP. The effect of A4 was selective as peripheral blood mononuclear cells and normal human breast epithelial cells were unaffected. Furthermore, proteome analysis revealed that cancer cell lines with high levels of XIAP were particularly sensitive to the killing effect of A4. These results provide proof of concept that the ARTS binding site in XIAP is "druggable". A4 represents a novel class of dual-targeting compounds stimulating apoptosis by UPS-mediated degradation of important anti-apoptotic oncogenes.
Collapse
Affiliation(s)
- Dana Mamriev
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel.,The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Ruqaia Abbas
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Juliana Kagan
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Nir Kfir
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Keren Weidenfeld
- The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Dalit Barkan
- The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Sarit Larisch
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
41
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
42
|
Zhou M, Li W, Li J, Xie L, Wu R, Wang L, Fu S, Su W, Hu J, Wang J, Li P. Phase-separated condensate-aided enrichment of biomolecular interactions for high-throughput drug screening in test tubes. J Biol Chem 2020; 295:11420-11434. [PMID: 32461254 DOI: 10.1074/jbc.ra120.012981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Modification-dependent and -independent biomolecular interactions, including protein-protein, protein-DNA/RNA, protein-sugar, and protein-lipid interactions, play crucial roles in all cellular processes. Dysregulation of these biomolecular interactions or malfunction of the associated enzymes results in various diseases; therefore, these interactions and enzymes are attractive targets for therapies. High-throughput screening can greatly facilitate the discovery of drugs for these targets. Here, we describe a biomolecular interaction detection method, called phase-separated condensate-aided enrichment of biomolecular interactions in test tubes (CEBIT). The readout of CEBIT is the selective recruitment of biomolecules into phase-separated condensates harboring their cognate binding partners. We tailored CEBIT to detect various biomolecular interactions and activities of biomolecule-modifying enzymes. Using CEBIT-based high-throughput screening assays, we identified known inhibitors of the p53/MDM2 (MDM2) interaction and of the histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1), from a compound library. CEBIT is simple and versatile, and is likely to become a powerful tool for drug discovery and basic biomedical research.
Collapse
Affiliation(s)
- Min Zhou
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weiping Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Leiming Xie
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rongbo Wu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Fu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Su
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianyang Hu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
44
|
Fullstone G, Bauer TL, Guttà C, Salvucci M, Prehn JHM, Rehm M. The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death Differ 2020; 27:2828-2842. [PMID: 32341447 PMCID: PMC7493894 DOI: 10.1038/s41418-020-0545-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
The execution phase of apoptosis is a critical process in programmed cell death in response to a multitude of cellular stresses. A crucial component of this pathway is the apoptosome, a platform for the activation of pro-caspase 9 (PC9). Recent findings have shown that autocleavage of PC9 to Caspase 9 (C9) p35/p12 not only permits XIAP-mediated C9 inhibition but also temporally shuts down apoptosome activity, forming a molecular timer. In order to delineate the combined contributions of XIAP and the apoptosome molecular timer to apoptosis execution we utilised a systems modelling approach. We demonstrate that cooperative recruitment of PC9 to the apoptosome, based on existing PC9-apoptosome interaction data, is important for efficient formation of PC9 homodimers, autocatalytic cleavage and dual regulation by XIAP and the molecular timer across biologically relevant PC9 and APAF1 concentrations. Screening physiologically relevant concentration ranges of apoptotic proteins, we discovered that the molecular timer can prevent apoptosis execution in specific scenarios after complete or partial mitochondrial outer membrane permeabilisation (MOMP). Furthermore, its ability to prevent apoptosis is intricately tied to a synergistic combination with XIAP. Finally, we demonstrate that simulations of these processes are prognostic of survival in stage III colorectal cancer and that the molecular timer may promote apoptosis resistance in a subset of patients. Based on our findings, we postulate that the physiological function of the molecular timer is to aid XIAP in the shutdown of caspase-mediated apoptosis execution. This shutdown potentially facilitates switching to pro-inflammatory caspase-independent responses subsequent to Bax/Bak pore formation.
Collapse
Affiliation(s)
- Gavin Fullstone
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany.,Stuttgart Research Centre Systems Biology, Nobelstraße 15, 70569, Stuttgart, Germany
| | - Tabea L Bauer
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiano Guttà
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany.,SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Manuela Salvucci
- SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Markus Rehm
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany. .,Stuttgart Research Centre Systems Biology, Nobelstraße 15, 70569, Stuttgart, Germany. .,SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany. .,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
45
|
Structure-based design, synthesis, and evaluation of the biological activity of novel phosphoroorganic small molecule IAP antagonists. Invest New Drugs 2020; 38:1350-1364. [PMID: 32270379 PMCID: PMC7497679 DOI: 10.1007/s10637-020-00923-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
One of the strategies employed by novel anticancer therapies is to put the process of apoptosis back on track by blocking the interaction between inhibitor of apoptosis proteins (IAPs) and caspases. The activity of caspases is modulated by the caspases themselves in a caspase/procaspase proteolytic cascade and by their interaction with IAPs. Caspases can be released from the inhibitory influence of IAPs by proapoptotic proteins such as secondary mitochondrial activator of caspases (Smac) that share an IAP binding motif (IBM). The main purpose of the present study was the design and synthesis of phosphorus-based peptidyl antagonists of IAPs that mimic the endogenous Smac protein, which blocks the interaction between IAPs and caspases. Based on the structure of the IAP antagonist and recently reported thiadiazole derivatives, we designed and evaluated the biochemical properties of a series of phosphonic peptides bearing the N-Me-Ala-Val/Chg-Pro-OH motif (Chg: cyclohexylglycine). The ability of the obtained compounds to interact with the binding groove of the X-linked inhibitor of apoptosis protein baculovirus inhibitor of apoptosis protein repeat (XIAP BIR3) domain was examined by a fluorescence polarization assay, while their potential to induce autoubiquitination followed by proteasomal degradation of cellular IAP1 was examined using the MDA-MB-231 breast cancer cell line. The highest potency against BIR3 was observed among peptides containing C-terminal phosphonic phenylalanine analogs, which displayed nanomolar Ki values. Their antiproliferative potential as well as their proapoptotic action, manifested by an increase in caspase-3 activity, was examined using various cell lines.
Collapse
|
46
|
BCL-2 Proteins in Pathogenesis and Therapy of B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2020; 12:cancers12040938. [PMID: 32290241 PMCID: PMC7226356 DOI: 10.3390/cancers12040938] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to inhibit mitochondrial apoptosis is a hallmark of B-cell non-Hodgkin lymphomas (B-NHL). Activation of mitochondrial apoptosis is tightly controlled by members of B-cell leukemia/lymphoma-2 (BCL-2) family proteins via protein-protein interactions. Altering the balance between anti-apoptotic and pro-apoptotic BCL-2 proteins leads to apoptosis evasion and extended survival of malignant cells. The pro-survival BCL-2 proteins: B-cell leukemia/lymphoma-2 (BCL-2/BCL2), myeloid cell leukemia-1 (MCL-1/MCL1) and B-cell lymphoma-extra large (BCL-XL/BCL2L1) are frequently (over)expressed in B-NHL, which plays a crucial role in lymphoma pathogenesis, disease progression, and drug resistance. The efforts to develop inhibitors of anti-apoptotic BCL-2 proteins have been underway for several decades and molecules targeting anti-apoptotic BCL-2 proteins are in various stages of clinical testing. Venetoclax is a highly specific BCL-2 inhibitor, which has been approved by the US Food and Drug Agency (FDA) for the treatment of patients with chronic lymphocytic leukemia (CLL) and is in advanced clinical testing in other types of B-NHL. In this review, we summarize the biology of BCL-2 proteins and the mechanisms of how these proteins are deregulated in distinct B-NHL subtypes. We describe the mechanism of action of BH3-mimetics and the status of their clinical development in B-NHL. Finally, we summarize the mechanisms of sensitivity/resistance to venetoclax.
Collapse
|
47
|
Blaquiere N, Villemure E, Staben ST. Medicinal Chemistry of Inhibiting RING-Type E3 Ubiquitin Ligases. J Med Chem 2020; 63:7957-7985. [PMID: 32142281 DOI: 10.1021/acs.jmedchem.9b01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin proteasome system (UPS) presents many opportunities for pharmacological intervention. Key players in the UPS are E3 ubiquitin ligases, responsible for conjugation of ubiquitin to specific cognate substrates. Numbering more than 600 members, these ligases represent the most selective way to intervene within this physiologically important system. This Perspective highlights some of the dedicated medicinal chemistry efforts directed at inhibiting the function of specific single-protein and multicomponent RING-type E3 ubiquitin ligases. We present opportunities and challenges associated with targeting this important class of enzymes.
Collapse
Affiliation(s)
- Nicole Blaquiere
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
48
|
Cheng SS, Yang GJ, Wang W, Leung CH, Ma DL. The design and development of covalent protein-protein interaction inhibitors for cancer treatment. J Hematol Oncol 2020; 13:26. [PMID: 32228680 PMCID: PMC7106679 DOI: 10.1186/s13045-020-00850-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to a variety of biological processes, and their dysfunction is implicated in the pathogenesis of a range of human diseases, including cancer. Hence, the inhibition of PPIs has attracted significant attention in drug discovery. Covalent inhibitors have been reported to achieve high efficiency through forming covalent bonds with cysteine or other nucleophilic residues in the target protein. Evidence suggests that there is a reduced risk for the development of drug resistance against covalent drugs, which is a major challenge in areas such as oncology and infectious diseases. Recent improvements in structural biology and chemical reactivity have enabled the design and development of potent and selective covalent PPI inhibitors. In this review, we will highlight the design and development of therapeutic agents targeting PPIs for cancer therapy.
Collapse
Affiliation(s)
- Sha-Sha Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Guan-Jun Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
49
|
Abbas R, Larisch S. Targeting XIAP for Promoting Cancer Cell Death-The Story of ARTS and SMAC. Cells 2020; 9:E663. [PMID: 32182843 PMCID: PMC7140716 DOI: 10.3390/cells9030663] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that regulate cell death and inflammation. XIAP (X-linked IAP) is the only family member that suppresses apoptosis by directly binding to and inhibiting caspases. On the other hand, cIAPs suppress the activation of the extrinsic apoptotic pathway by preventing the formation of pro-apoptotic signaling complexes. IAPs are negatively regulated by IAP-antagonist proteins such as Smac/Diablo and ARTS. ARTS can promote apoptosis by binding and degrading XIAP via the ubiquitin proteasome-system (UPS). Smac can induce the degradation of cIAPs but not XIAP. Many types of cancer overexpress IAPs, thus enabling tumor cells to evade apoptosis. Therefore, IAPs, and in particular XIAP, have become attractive targets for cancer therapy. In this review, we describe the differences in the mechanisms of action between Smac and ARTS, and we summarize efforts to develop cancer therapies based on mimicking Smac and ARTS. Several Smac-mimetic small molecules are currently under evaluation in clinical trials. Initial efforts to develop ARTS-mimetics resulted in a novel class of compounds, which bind and degrade XIAP but not cIAPs. Smac-mimetics can target tumors with high levels of cIAPs, whereas ARTS-mimetics are expected to be effective for cancers with high levels of XIAP.
Collapse
Affiliation(s)
| | - Sarit Larisch
- Laboratory of Cell Death and Cancer Research, Biology& Human Biology Departments, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
50
|
Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118688. [PMID: 32087180 DOI: 10.1016/j.bbamcr.2020.118688] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/20/2020] [Accepted: 02/15/2020] [Indexed: 12/30/2022]
Abstract
Members of the caspase family of proteases play essential roles in the initiation and execution of apoptosis. These caspases are divided into two groups: the initiator caspases (caspase-2, -8, -9 and -10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, -6, and -7) that carry out the demolition phase of apoptosis. Many conventional cancer therapies induce apoptosis to remove the cancer cell by engaging these caspases indirectly. Newer therapeutic applications have been designed, including those that specifically activate individual caspases using gene therapy approaches and small molecules that repress natural inhibitors of caspases already present in the cell. For such approaches to have maximal clinical efficacy, emerging insights into non-apoptotic roles of these caspases need to be considered. This review will discuss the roles of caspases as safeguards against cancer in the context of the advantages and potential limitations of targeting apoptotic caspases for the treatment of cancer.
Collapse
Affiliation(s)
- Ashley Boice
- Department of Pediatrics, Division of Hematology-Oncology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|