1
|
Hosano N, Moosavi-Nejad Z, Hide T, Hosano H. Focused shock waves and inertial cavitation release tumor-associated antigens from renal cell carcinoma. ULTRASONICS SONOCHEMISTRY 2024; 111:107078. [PMID: 39327122 PMCID: PMC11600062 DOI: 10.1016/j.ultsonch.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Tumor biomarkers play an essential role in immunotherapeutic strategies in cancer treatment, contributing to early diagnosis, patient selection, treatment monitoring, and personalized treatment plans. Despite their importance in cancer care, circulating biomarkers may not always be detectable or sufficiently elevated to provide reliable test results. Due to the pressing need for innovative approaches to enhance biomarker levels, this study explored the potential use of focused shock waves and cavitation for non-invasively releasing tumor-associated antigens. Renal carcinoma cell lines ACHN and TOS-1 were used in an in vitro study to analyze the impact of shock waves on two membrane glycosphingolipid antigens, MSGG and G1, respectively. Focused shock waves were generated using a partial spherical piezoceramic dish. Flow-cytometric analysis of treated cells immediately after 1,000 focused shock waves at 16 MPa overpressure showed a 29.4 % and 17.6 % decrease in MSGG and G1 antigens on the cell surfaces. In the immunostaining of glycosphingolipid fractions on thin-layer chromatography (TLC), both tumor markers were reduced by an average of 49.30 % (MSGG) and 57.08 % (G1). Immunoelectron microscopy images confirmed decrease in the cell membrane intensity immediately after shock waves because of the release of antigens into the extracellular spaces. The released antigens were primarily found on cell debris formed by shock waves and cavitation induced damage to the cell membrane. Theoretical analyses were performed to understand antigen release mechanisms. Moreover, the biophysical events that occurred following the interaction of a shock wave with a suspended cell were modeled and clarified. A novel model was used to calculate the tensile stresses following shock waves and to explain the deformations observed in scanning electron microscopy images. The release of tumor antigens by focused shock waves and inertial cavitation represents exciting prospects for advancing cancer care strategies.
Collapse
Affiliation(s)
- Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan.
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Takuichiro Hide
- Department of Neurosurgery, School of Medicine, Kitasato University, Yokohama, Japan.
| | - Hamid Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Nakamura M, Parkhurst SM. Calcium influx rapidly establishes distinct spatial recruitments of Annexins to cell wounds. Genetics 2024; 227:iyae101. [PMID: 38874345 PMCID: PMC11304956 DOI: 10.1093/genetics/iyae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/04/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
To survive daily damage, the formation of actomyosin ring at the wound edge is required to rapidly close cell wounds. Calcium influx is one of the start signals for these cell wound repair events. Here, we find that the rapid recruitment of all 3 Drosophila calcium-responding and phospholipid-binding Annexin proteins (AnxB9, AnxB10, and AnxB11) to distinct regions around the wound is regulated by the quantity of calcium influx rather than their binding to specific phospholipids. The distinct recruitment patterns of these Annexins regulate the subsequent recruitment of RhoGEF2 and RhoGEF3 through actin stabilization to form a robust actomyosin ring. Surprisingly, while the wound does not close in the absence of calcium influx, we find that reduced calcium influx can still initiate repair processes, albeit leading to severe repair phenotypes. Thus, our results suggest that, in addition to initiating repair events, the quantity of calcium influx is important for precise Annexin spatiotemporal protein recruitment to cell wounds and efficient wound repair.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
3
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
4
|
Nakamura M, Parkhurst SM. Calcium influx rapidly establishes distinct spatial recruitments of Annexins to cell wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569799. [PMID: 38105960 PMCID: PMC10723296 DOI: 10.1101/2023.12.03.569799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
To survive daily damage, the formation of actomyosin ring at the wound periphery is required to rapidly close cell wounds. Calcium influx is one of the start signals for these cell wound repair events. Here, we find that rapid recruitment of all three Drosophila calcium responding and phospholipid binding Annexin proteins (AnxB9, AnxB10, AnxB11) to distinct regions around the wound are regulated by the quantity of calcium influx rather than their binding to specific phospholipids. The distinct recruitment patterns of these Annexins regulate the subsequent recruitment of RhoGEF2 and RhoGEF3 through actin stabilization to form a robust actomyosin ring. Surprisingly, we find that reduced extracellular calcium and depletion of intracellular calcium affect cell wound repair differently, despite these two conditions exhibiting similar GCaMP signals. Thus, our results suggest that, in addition to initiating repair events, both the quantity and sources of calcium influx are important for precise Annexin spatiotemporal protein recruitment to cell wounds and efficient wound repair.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
5
|
Peña N, Amézaga J, Marrugat G, Landaluce A, Viar T, Arce J, Larruskain J, Lekue J, Ferreri C, Ordovás JM, Tueros I. Competitive season effects on polyunsaturated fatty acid content in erythrocyte membranes of female football players. J Int Soc Sports Nutr 2023; 20:2245386. [PMID: 37605439 PMCID: PMC10446798 DOI: 10.1080/15502783.2023.2245386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND An optimal and correctly balanced metabolic status is essential to improve sports performance in athletes. Recent advances in omic tools, such as the lipid profile of the mature erythrocyte membranes (LPMEM), allow to have a comprehensive vision of the nutritional and metabolic status of these individuals to provide personalized recommendations for nutrients, specifically, the essential omega-3 and omega-6 fatty acids, individuating deficiencies/unbalances that can arise from both habitual diet and sportive activity. This work aimed to study the LPMEM in professional female football players during the football season for the first time and compare it with those defined as optimal values for the general population and a control group. METHODS An observational study was carried out on female football players from the Athletic Club (Bilbao) playing in the first division of the Spanish league. Blood samples were collected at three points: at the beginning, mid-season, and end of the season for three consecutive seasons (2019-2020, 2020-2021, and 2021-2022), providing a total of 160 samples from 40 women. The LPMEM analysis was obtained by GC-FID by published method and correlated to other individual data, such as blood biochemical parameters, body composition, and age. RESULTS We observed a significant increase in docosahexaenoic acid (DHA) (p 0.048) and total polyunsaturated fatty acid (PUFA) (p 0.021) in the first season. In the second season, we observed a buildup in the membrane arachidonic acid (AA) (p < .001) and PUFA (p < .001) contents when high training accumulated. In comparison with the benchmark of average population values, 69% of the football players showed lower levels of omega-6 dihomo-γ-linolenic acid (DGLA), whereas 88%, 44%, and 81% of the participants showed increased values of AA, eicosapentaenoic acid (EPA), and the ratio of saturated and monounsaturated fatty acids (SFA/MUFA), respectively. Regarding relationships between blood biochemical parameters, body composition, and age with LPMEM, we observed some mild negative correlations, such as AA and SFA/MUFA ratio with vitamin D levels (coefficient = -0.34 p = .0019 and coefficient = -.25 p = .042); DGLA with urea and cortisol (coefficient = -0.27 p < .006 and coefficient = .28 p < .0028) and AA with age (coefficient = -0.33 p < .001). CONCLUSION In conclusion, relevant variations in several fatty acids of the membrane fatty acid profile of elite female football players were observed during the competitive season and, in comparison with the general population, increased PUFA contents were confirmed, as reported in other sportive activities, together with the new aspect of DGLA diminution, an omega-6 involved in immune and anti-inflammatory responses. Our results highlight membrane lipidomics as a tool to ascertain the molecular profile of elite female football players with a potential application for future personalized nutritional strategies (diet and supplementation) to address unbalances created during the competitive season.
Collapse
Affiliation(s)
- Nere Peña
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Javier Amézaga
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | - Gerard Marrugat
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| | | | | | - Julen Arce
- Athletic Club, Medical Services, Lezama, Spain
| | | | | | - Carla Ferreri
- Consiglio Nazionale Delle Ricerche, Istituto per la Sintesi Organica E la Fotoreattività, Bologna, Italy
| | - José María Ordovás
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, MA, USA
- Instituto de Salud Carlos III (ISCIII), Consortium CIBERObn, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Itziar Tueros
- Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, AZTI, Food Research, Derio, Spain
| |
Collapse
|
6
|
Bittel DC, Jaiswal JK. Early Endosomes Undergo Calcium-Triggered Exocytosis and Enable Repair of Diffuse and Focal Plasma Membrane Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300245. [PMID: 37705135 PMCID: PMC10667805 DOI: 10.1002/advs.202300245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/27/2023] [Indexed: 09/15/2023]
Abstract
Cells are routinely exposed to agents that cause plasma membrane (PM) injury. While pore-forming toxins (PFTs), and chemicals cause nanoscale holes dispersed throughout the PM, mechanical trauma causes focal lesions in the PM. To examine if these distinct injuries share common repair mechanism, membrane trafficking is monitored as the PM repairs from such injuries. During the course of repair, dispersed PM injury by the PFT Streptolysin O activates endocytosis, while focal mechanical injury to the PM inhibits endocytosis. Consequently, acute block of endocytosis prevents repair of diffuse, but not of focal injury. In contrast, a chronic block in endocytosis depletes cells of early endosomes and inhibits repair of focal injury. This study finds that both focal and diffuse PM injury activate Ca2+ -triggered exocytosis of early endosomes. The use of markers including endocytosed cargo, Rab5, Rab11, and VAMP3, all reveal injury-triggered exocytosis of early endosomes. Inhibiting Rab5 prevents injury-triggered early endosome exocytosis and phenocopies the failed PM repair of cells chronically depleted of early endosomes. These results identify early endosomes as a Ca2+ -regulated exocytic compartment, and uncover the requirement of their dual functions - endocytosis and regulated exocytosis, to differentially support PM repair based on the nature of the injury.
Collapse
Affiliation(s)
- Daniel C. Bittel
- Center for Genetic Medicine ResearchChildren's National Research Institute7144 13th Pl NWWashington, DC20012USA
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine ResearchChildren's National Research Institute7144 13th Pl NWWashington, DC20012USA
- Department of Genomics and Precision MedicineGeorge Washington University School of Medicine and Health SciencesWashington, DC20012USA
| |
Collapse
|
7
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
8
|
Yang F, Bettadapura SN, Smeltzer MS, Zhu H, Wang S. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol Sin 2022; 43:2462-2473. [PMID: 35288674 PMCID: PMC9525650 DOI: 10.1038/s41401-022-00887-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, an inflammatory form of lytic cell death, is a type of cell death mediated by the gasdermin (GSDM) protein family. Upon recognizing exogenous or endogenous signals, cells undergo inflammasome assembly, GSDM cleavage, the release of proinflammatory cytokines and other cellular contents, eventually leading to inflammatory cell death. In this review, we discuss the roles of the GSDM family for anti-cancer functions and various antitumor drugs that could activate the pyroptosis pathways.
Collapse
Affiliation(s)
- Fan Yang
- Healthville LLC, Little Rock, AR, 72204, USA
| | - Sahana N Bettadapura
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Shanzhi Wang
- Chemistry Department, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| |
Collapse
|
9
|
Hui J, Stjepić V, Nakamura M, Parkhurst SM. Wrangling Actin Assemblies: Actin Ring Dynamics during Cell Wound Repair. Cells 2022; 11:2777. [PMID: 36139352 PMCID: PMC9497110 DOI: 10.3390/cells11182777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/18/2022] Open
Abstract
To cope with continuous physiological and environmental stresses, cells of all sizes require an effective wound repair process to seal breaches to their cortex. Once a wound is recognized, the cell must rapidly plug the injury site, reorganize the cytoskeleton and the membrane to pull the wound closed, and finally remodel the cortex to return to homeostasis. Complementary studies using various model organisms have demonstrated the importance and complexity behind the formation and translocation of an actin ring at the wound periphery during the repair process. Proteins such as actin nucleators, actin bundling factors, actin-plasma membrane anchors, and disassembly factors are needed to regulate actin ring dynamics spatially and temporally. Notably, Rho family GTPases have been implicated throughout the repair process, whereas other proteins are required during specific phases. Interestingly, although different models share a similar set of recruited proteins, the way in which they use them to pull the wound closed can differ. Here, we describe what is currently known about the formation, translocation, and remodeling of the actin ring during the cell wound repair process in model organisms, as well as the overall impact of cell wound repair on daily events and its importance to our understanding of certain diseases and the development of therapeutic delivery modalities.
Collapse
Affiliation(s)
| | | | | | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Assembly of Tetraspanin-enriched macrodomains contains membrane damage to facilitate repair. Nat Cell Biol 2022; 24:825-832. [PMID: 35654840 DOI: 10.1038/s41556-022-00920-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Various mechanisms contribute to membrane repair1-8 but the machinery that mediates the repair of large wounds on the plasma membrane is less clear. We found that shortly after membrane damage, Tetraspanin-enriched macrodomains are assembled around the damage site. Tetraspanin-enriched macrodomains are in the liquid-ordered phase and form a rigid ring around the damaged site. This restricts the spread of the damage and prevents membrane disintegration, thus facilitating membrane repair by other mechanisms. Functionally, Tetraspanin 4 helps cells mitigate damage caused by laser, detergent, pyroptosis and natural killer cells. We propose that assembly of Tetraspanin-enriched macrodomains creates a physical barrier to contain membrane damage.
Collapse
|
11
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
12
|
Microengineered filters for efficient delivery of nanomaterials into mammalian cells. Sci Rep 2022; 12:4383. [PMID: 35288628 PMCID: PMC8921284 DOI: 10.1038/s41598-022-08300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Intracellular delivery of nanomaterials into the cells of interest has enabled cell manipulation for numerous applications ranging from cell-based therapies to biomedical research. To date, different carriers or membrane poration-based techniques have been developed to load nanomaterials to the cell interior. These biotools have shown promise to surpass the membrane barrier and provide access to the intracellular space followed by passive diffusion of exogenous cargoes. However, most of them suffer from inconsistent delivery, cytotoxicity, and expensive protocols, somewhat limiting their utility in a variety of delivery applications. Here, by leveraging the benefits of microengineered porous membranes with a suitable porosity, we demonstrated an efficient intracellular loading of diverse nanomaterials to different cell types based on inducing mechanical disruption to the cell membrane. In this work, for the first time, we used ultra-thin silicon nitride (SiN) filter membranes with uniform micropores smaller than the cell diameter to load impermeable nanomaterials into adherent and non-adherent cell types. The delivery performance using SiN microsieves has been validated through the loading of functional nanomaterials from a few nanometers to hundreds of nanometers into mammalian cells with minimal undesired impacts. Besides the high delivery efficiency and improved cell viability, this simple and low-cost approach offers less clogging and higher throughput (107 cell min−1). Therefore, it yields to the efficient introduction of exogenous nanomaterials into the large population of cells, illustrating the potential of these microengineered filters to be widely used in the microfiltroporation (MFP) setup.
Collapse
|
13
|
Shock Waves Enhance Expression of Glycosphingolipid Tumor Antigen on Renal Cell Carcinoma: Dynamics of Physically Unmasking Hidden Intracellular Markers Independent of Gene-Signaling Pathways. Biomedicines 2022; 10:biomedicines10030545. [PMID: 35327347 PMCID: PMC8945190 DOI: 10.3390/biomedicines10030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
Antigens associated with tumors have proven valuable in cancer immunotherapy. Their insufficient expression in the majority of tumors, however, limits their potential value as therapeutic markers. Aiming for a noninvasive approach applicable in clinical practice, we investigated the possibility of using focused shock waves to induce membrane expression of hidden intracellular tumor markers. Here, we studied the in vitro effect of a thousand focused shock waves at 16 MPa overpressure on the membrane expression of a cytosolic glycosphingolipid, monosialosyl-galactosyl-globoside (MSGG). Double-staining flow cytometry with propidium-iodide and monoclonal antibody RM1 revealed an immediate increase in MSGG expression on renal carcinoma cells (18% ± 0.5%) that reached its peak value (20.73% ± 0.4%) within one hour after the shock waves. The results of immunoelectron microscopy confirmed the incorporation of MSGG into newly formed cytosolic vesicles and their integration with the cell membrane. Based on the enzymatic nature of MSGG production that is not controlled directly by genes, the immediate upregulation of MSGG membrane expression implies that a chain of mechanochemical events affecting subcellular structures are responsible for the shock-wave-induced antigenic modification. Physically unmasking hidden tumor antigens and enhancing their expression by focused shock waves presents a potential noninvasive method of boosting tumor immunogenicity as a theranostic strategy in cancer immunotherapy.
Collapse
|
14
|
Liu L, Deng CJ, Duan YL, Ye CJ, Gong DH, Guo XL, Lee WH, Zhou J, Li SA, Zhang Y. An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1. THE JOURNAL OF IMMUNOLOGY 2021; 207:888-901. [PMID: 34290105 DOI: 10.4049/jimmunol.2001056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Li Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen-Jun Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dao-Hua Gong
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China;
| | - Sheng-An Li
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China; and
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
15
|
Xu W, Wang J, Jin L, Zhu Y, Yang X. A tumor acidity-driven transformable polymeric nanoassembly with deep tumor penetration and membrane-anchoring capability for targeted photodynamic therapy. Biomaterials 2021; 276:121024. [PMID: 34280825 DOI: 10.1016/j.biomaterials.2021.121024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
In recent years, directly damaging cell membrane therapeutic modalities have attracted great attention in the field of cancer therapy due to their critical role in guaranteeing essential cellular function. In this study, the transformable nanoassembly PEG-Ce6@PAEMA, consisting of the photosensitizer polyethylene glycol-chlorin-e6 (PEG-Ce6) and tumor pH-sensitive polymer poly(2-azepane ethyl methacrylate) (PAEMA), was developed for highly efficient membrane-targeted photodynamic therapy. The PAEMA core is rapidly protonated at the acidic tumor pH, resulting in the disassembly of PEG-Ce6@PAEMA and regeneration of PEG-Ce6. Subsequently, the resultant PEG-Ce6 with a very small size (~2.6 kDa) ensures deep penetration into tumor tissue and direct and rapid anchoring to the cancer cell membrane, eventually achieving superior tumor growth inhibition under light irradiation. Thus, this tumor acidity-driven transformable polymeric nanoassembly provides a simple but efficient strategy for membrane targeting cancer therapy.
Collapse
Affiliation(s)
- Weijia Xu
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China
| | - Junxia Wang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Liangjie Jin
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China
| | - Yueqiang Zhu
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China
| | - Xianzhu Yang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, PR China.
| |
Collapse
|
16
|
Draberova L, Tumova M, Draber P. Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins. Front Immunol 2021; 12:670205. [PMID: 34248949 PMCID: PMC8260682 DOI: 10.3389/fimmu.2021.670205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of activation, they release various preformed biologically active products and initiate the process of de novo synthesis of cytokines, chemokines, and other inflammatory mediators. This process is regulated at multiple levels. Besides the extensively studied IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling pathways, there is a critical activation pathway based on cholesterol-dependent, pore-forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic concentrations, the exotoxins induce mast cell activation, including degranulation, intracellular calcium concentration changes, and transcriptional activation, resulting in production of cytokines and other inflammatory mediators. Higher toxin concentrations lead to cell death. Similar activation events are observed when mast cells are exposed to sublytic concentrations of saponins or some other compounds interfering with the membrane integrity. We review the molecular mechanisms of mast cell activation by pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent plasma membrane perturbations. We discuss the importance of these signaling pathways in innate and acquired immunity.
Collapse
Affiliation(s)
- Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magda Tumova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
17
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
18
|
Nakamura M, Verboon JM, Allen TE, Abreu-Blanco MT, Liu R, Dominguez ANM, Delrow JJ, Parkhurst SM. Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. PLoS Genet 2020; 16:e1009186. [PMID: 33306674 PMCID: PMC7758051 DOI: 10.1371/journal.pgen.1009186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023] Open
Abstract
Cells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey M. Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Tessa E. Allen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Maria Teresa Abreu-Blanco
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Raymond Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Andrew N. M. Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey J. Delrow
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| |
Collapse
|
19
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
20
|
Prado GR, LaPlaca MC. Neuronal Plasma Membrane Integrity is Transiently Disturbed by Traumatic Loading. Neurosci Insights 2020; 15:2633105520946090. [PMID: 32783028 PMCID: PMC7385830 DOI: 10.1177/2633105520946090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 01/27/2023] Open
Abstract
The acute response of neurons subjected to traumatic loading involves plasma membrane disruption, yet the mechanical tolerance for membrane compromise, time course, and mechanisms for resealing are not well understood. We have used an in vitro traumatic neuronal injury model to investigate plasma membrane integrity immediately following a high-rate shear injury. Cell-impermeant fluorescent molecules were added to cortical neuronal cultures prior to insult to assess membrane integrity. The percentage of cells containing the permeability marker was dependent on the molecular size of the marker, as smaller molecules gained access to a higher percentage of cells than larger ones. Permeability increases were positively correlated with insult loading rate. Membrane disruption was transient, evidenced by a membrane resealing within the first minute after the insult. In addition, chelation of either extracellular Ca2+ or intracellular Ca2+ limited membrane resealing. However, injury following chelation of both extracellular and intracellular Ca2+ caused diminished permeability as well as a greater resealing ability compared to chelation of extracellular or intracellular Ca2+ alone. Treatment of neuronal cultures with jasplakinolide, which stabilizes filamentous actin, reduced permeability increases, while latrunculin-B, an actin depolymerizing agent, both reduced the increase in plasma membrane permeability and promoted resealing. This study gives insight into the dynamics of neuronal membrane disruption and subsequent resealing, which was found to be calcium dependent and involve actin in a role that differs from non-neuronal cells. Taken together, these data will lead to a better understanding of the acute neuronal response to traumatic loading.
Collapse
Affiliation(s)
- Gustavo R Prado
- Translational Neurotrauma Laboratory, Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| | - Michelle C LaPlaca
- Translational Neurotrauma Laboratory, Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Lieberman J, Wu H, Kagan JC. Gasdermin D activity in inflammation and host defense. Sci Immunol 2020; 4:4/39/eaav1447. [PMID: 31492708 DOI: 10.1126/sciimmunol.aav1447] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022]
Abstract
The mechanisms underlying the release of interleukin-1 (IL-1) family cytokines from phagocytes have been the subject of intense investigations for more than 30 years. The absence of an amino-terminal secretion signal from members of this family suggests a previously unknown mechanism of protein secretion that transfers cytosolic IL-1 directly across the plasma membrane into the extracellular space. The pore-forming protein gasdermin D (GSDMD) has emerged as the conduit for IL-1 secretion from the cytosol, serving to induce the release of IL-1 from living (hyperactive) or dead (pyroptotic) cells. In this Review, we discuss the mechanism by which GSDMD pore formation is regulated by the activity of inflammatory caspases, which are commonly associated with inflammasomes. We discuss how GSDMD promotes IL-1 release from hyperactive or pyroptotic cells, with a specific focus on defining how these distinct cell fates associated with GSDMD activity can be regulated. Last, the physiological consequences of GSDMD activity and therapeutic potential of targeting this pore-forming protein are discussed, which highlight the abundance of questions that remain to be answered by the community.
Collapse
Affiliation(s)
- Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
22
|
Koerdt SN, Ashraf APK, Gerke V. Annexins and plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:43-65. [PMID: 31610865 DOI: 10.1016/bs.ctm.2019.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma membrane wound repair is a cell-autonomous process that is triggered by Ca2+ entering through the site of injury and involves membrane resealing, i.e., re-establishment of a continuous plasma membrane, as well as remodeling of the cortical actin cytoskeleton. Among other things, the injury-induced Ca2+ elevation initiates the wound site recruitment of Ca2+-regulated proteins that function in the course of repair. Annexins are a class of such Ca2+-regulated proteins. They associate with acidic phospholipids of cellular membranes in their Ca2+ bound conformation with Ca2+ sensitivities ranging from the low to high micromolar range depending on the respective annexin protein. Annexins accumulate at sites of plasma membrane injury in a temporally controlled manner and are thought to function by controlling membrane rearrangements at the wound site, most likely in conjunction with other repair proteins such as dysferlin. Their role in membrane repair, which has been evidenced in several model systems, will be discussed in this chapter.
Collapse
Affiliation(s)
- Sophia N Koerdt
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Arsila P K Ashraf
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany.
| |
Collapse
|
23
|
Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:67-98. [PMID: 31610866 PMCID: PMC7182362 DOI: 10.1016/bs.ctm.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The plasma membrane forms the physical barrier between the cytoplasm and extracellular space, allowing for biochemical reactions necessary for life to occur. Plasma membrane damage needs to be rapidly repaired to avoid cell death. This relies upon the coordinated action of the machinery that polarizes the repair response to the site of injury, resulting in resealing of the damaged membrane and subsequent remodeling to return the injured plasma membrane to its pre-injury state. As lipids comprise the bulk of the plasma membrane, the acts of injury, resealing, and remodeling all directly impinge upon the plasma membrane lipids. In addition to their structural role in shaping the physical properties of the plasma membrane, lipids also play an important signaling role in maintaining plasma membrane integrity. While much attention has been paid to the involvement of proteins in the membrane repair pathway, the role of lipids in facilitating plasma membrane repair remains poorly studied. Here we will discuss the current knowledge of how lipids facilitate plasma membrane repair by regulating membrane structure and signaling to coordinate the repair response, and will briefly note how lipid involvement extends beyond plasma membrane repair to the tissue repair response.
Collapse
Affiliation(s)
- Adam Horn
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| |
Collapse
|
24
|
Quintá HR, Barrantes FJ. Damage and repair of the axolemmal membrane: From neural development to axonal trauma and restoration. CURRENT TOPICS IN MEMBRANES 2019; 84:169-185. [DOI: 10.1016/bs.ctm.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Park MH, Shin KA, Kim CH, Lee YH, Park Y, Ahn J, Kim YJ. Effects of Long-Distance Running on Cardiac Markers and Biomarkers in Exercise-Induced Hypertension Runners: An Observational Study. Ann Rehabil Med 2018; 42:575-583. [PMID: 30180527 PMCID: PMC6129715 DOI: 10.5535/arm.2018.42.4.575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To investigate changes of cardiac and muscle damage markers in exercise-induced hypertension (EIH) runners before running (pre-race), immediately after completing a 100-km ultramarathon race, and during the recovery period (24, 72, and 120 hours post-race). METHODS In this observational study, volunteers were divided into EIH group (n=11) whose maximum systolic blood pressure was ≥210 mmHg in graded exercise testing and normal exercise blood pressure response (NEBPR) group (n=11). Their blood samples were collected at pre-race, immediately after race, and at 24, 72, and 120 hours post-race. RESULTS Creatine kinase (CK) and cardiac troponin I (cTnI) levels were significantly higher in EIH group than those in the NEBPR group immediately after race and at 24 hours post-race (all p<0.05). However, lactate dehydrogenase (LDH), creatine kinase-myocardial band (CKMB), or CKMB/CK levels did not show any significant differences between the two groups in each period. N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were significantly higher in EIH group than those in NEBPR group immediately after race and at 24 and 72 hours postrace (all p<0.05). A high sensitivity C-reactive protein (hs-CRP) level was significantly higher in EIH group than that in NEBPR group at 24 hours post-race (p<0.05). CONCLUSION The phenomenon of higher inflammatory and cardiac marker levels in EIH group may exaggerate cardiac volume pressure and blood flow restrictions which in turn can result in cardiac muscle damage. Further prospective studies are needed to investigate the chronic effect of such phenomenon on the cardiovascular system in EIH runners.
Collapse
Affiliation(s)
- Min-Ho Park
- Department of Rehabilitation Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Kyung-A Shin
- Department of Clinical Laboratory Science, Shinsung University, Dangjin, Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan, Korea
| | - Yoon-Hee Lee
- Department of Exercise Physiology, Korea National Sport University, Seoul, Korea
| | - Yongbum Park
- Department of Rehabilitation Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jaeki Ahn
- Department of Rehabilitation Medicine, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Young-Joo Kim
- Department of Exercise Rehabilitation Welfare, Sungshin University - Soojung Campus, Seoul, Korea
| |
Collapse
|
26
|
Barthélémy F, Defour A, Lévy N, Krahn M, Bartoli M. Muscle Cells Fix Breaches by Orchestrating a Membrane Repair Ballet. J Neuromuscul Dis 2018; 5:21-28. [PMID: 29480214 PMCID: PMC5836414 DOI: 10.3233/jnd-170251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Skeletal muscle undergoes many micro-membrane lesions at physiological state. Based on their sizes and magnitude these lesions are repaired via different complexes on a specific spatio-temporal manner. One of the major repair complex is a dysferlin-dependent mechanism. Accordingly, mutations in the DYSF gene encoding dysferlin results in the development of several muscle pathologies called dysferlinopathies, where abnormalities of the membrane repair process have been characterized in patients and animal models. Recent efforts have been deployed to decipher the function of dysferlin, they shed light on its direct implication in sarcolemma resealing after injuries. These discoveries served as a strong ground to design therapeutic approaches for dysferlin-deficient patients. This review detailed the different partners and function of dysferlin and positions the sarcolemma repair in normal and pathological conditions.
Collapse
Affiliation(s)
- Florian Barthélémy
- Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
| | - Aurélia Defour
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Nicolas Lévy
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Martin Krahn
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Marc Bartoli
- Aix Marseille University, MMG, INSERM, Marseille, France
| |
Collapse
|
27
|
Tang SKY, Marshall WF. Self-repairing cells: How single cells heal membrane ruptures and restore lost structures. Science 2018; 356:1022-1025. [PMID: 28596334 DOI: 10.1126/science.aam6496] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many organisms and tissues display the ability to heal and regenerate as needed for normal physiology and as a result of pathogenesis. However, these repair activities can also be observed at the single-cell level. The physical and molecular mechanisms by which a cell can heal membrane ruptures and rebuild damaged or missing cellular structures remain poorly understood. This Review presents current understanding in wound healing and regeneration as two distinct aspects of cellular self-repair by examining a few model organisms that have displayed robust repair capacity, including Xenopus oocytes, Chlamydomonas, and Stentor coeruleus Although many open questions remain, elucidating how cells repair themselves is important for our mechanistic understanding of cell biology. It also holds the potential for new applications and therapeutic approaches for treating human disease.
Collapse
Affiliation(s)
- Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
A portable system for processing donated whole blood into high quality components without centrifugation. PLoS One 2018; 13:e0190827. [PMID: 29346441 PMCID: PMC5773086 DOI: 10.1371/journal.pone.0190827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 02/04/2023] Open
Abstract
Background The use of centrifugation-based approaches for processing donated blood into components is routine in the industrialized world, as disparate storage conditions require the rapid separation of ‘whole blood’ into distinct red blood cell (RBC), platelet, and plasma products. However, the logistical complications and potential cellular damage associated with centrifugation/apheresis manufacturing of blood products are well documented. The objective of this study was to evaluate a proof-of-concept system for whole blood processing, which does not employ electromechanical parts, is easily portable, and can be operated immediately after donation with minimal human labor. Methods and findings In a split-unit study (n = 6), full (~500mL) units of freshly-donated whole blood were divided, with one half processed by conventional centrifugation techniques and the other with the new blood separation system. Each of these processes took 2–3 hours to complete and were performed in parallel. Blood products generated by the two approaches were compared using an extensive panel of cellular and plasma quality metrics. Comparison of nearly all RBC parameters showed no significant differences between the two approaches, although the portable system generated RBC units with a slight but statistically significant improvement in 2,3-diphosphoglyceric acid concentration (p < 0.05). More notably, several markers of platelet damage were significantly and meaningfully higher in products generated with conventional centrifugation: the increase in platelet activation (assessed via P-selectin expression in platelets before and after blood processing) was nearly 4-fold higher for platelet units produced via centrifugation, and the release of pro-inflammatory mediators (soluble CD40-ligand, thromboxane B2) was significantly higher for centrifuged platelets as well (p < 0.01). Conclusion This study demonstrated that a simple, passive system for separating donated blood into components may be a viable alternative to centrifugation—particularly for applications in remote or resource-limited settings, or for patients requiring highly functional platelet product.
Collapse
|
29
|
McElhanon KE, Bhattacharya S. Altered membrane integrity in the progression of muscle diseases. Life Sci 2017; 192:166-172. [PMID: 29183798 DOI: 10.1016/j.lfs.2017.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/12/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
Abstract
Sarcolemmal integrity is orchestrated through the interplay of preserving membrane strength and fast tracking the membrane repair process during an event of compromised membrane fragility. Several molecular players have been identified that act in a concerted fashion to maintain the barrier function of the muscle membrane. Substantial research findings in the field of muscle biology point out the importance of maintaining membrane integrity as a key contributory factor to cellular homeostasis. Innumerable data on the progression of membrane pathology associated with compromised muscle membrane integrity support targeting sarcolemmal integrity in skeletal and cardiac muscle as a model therapeutic strategy to alleviate some of the pathologic conditions. This review will discuss strategies that researchers have undertaken to compensate for an imbalance in sarcolemma membrane fragility and membrane repair to maintain muscle membrane integrity.
Collapse
Affiliation(s)
- Kevin E McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave, Columbus, OH 43210-1252, United States
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave, Columbus, OH 43210-1252, United States.
| |
Collapse
|
30
|
Saklayen N, Kalies S, Madrid M, Nuzzo V, Huber M, Shen W, Sinanan-Singh J, Heinemann D, Heisterkamp A, Mazur E. Analysis of poration-induced changes in cells from laser-activated plasmonic substrates. BIOMEDICAL OPTICS EXPRESS 2017; 8:4756-4771. [PMID: 29082100 PMCID: PMC5654815 DOI: 10.1364/boe.8.004756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Laser-exposed plasmonic substrates permeabilize the plasma membrane of cells when in close contact to deliver cell-impermeable cargo. While studies have determined the cargo delivery efficiency and viability of laser-exposed plasmonic substrates, morphological changes in a cell have not been quantified. We porated myoblast C2C12 cells on a plasmonic pyramid array using a 532-nm laser with 850-ps pulse length and time-lapse fluorescence imaging to quantify cellular changes. We obtain a poration efficiency of 80%, viability of 90%, and a pore radius of 20 nm. We quantified area changes in the plasma membrane attached to the substrate (10% decrease), nucleus (5 - 10% decrease), and cytoplasm (5 - 10% decrease) over 1 h after laser treatment. Cytoskeleton fibers show a change of 50% in the alignment, or coherency, of fibers, which stabilizes after 10 mins. We investigate structural and morphological changes due to the poration process to enable the safe development of this technique for therapeutic applications.
Collapse
Affiliation(s)
- Nabiha Saklayen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Co-first authors
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- Co-first authors
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jasmine Sinanan-Singh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Dag Heinemann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Alexander Heisterkamp
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- Co-last authors
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Co-last authors
| |
Collapse
|
31
|
Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017; 46:4218-4244. [PMID: 28585944 PMCID: PMC5593313 DOI: 10.1039/c6cs00636a] [Citation(s) in RCA: 1568] [Impact Index Per Article: 196.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
Collapse
Affiliation(s)
- Shahed Behzadi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Clarke DJ. Cell surface damage activates a cell cycle checkpoint (comment on DOI: 10.1002/bies.201600210). Bioessays 2017; 39. [PMID: 28266055 DOI: 10.1002/bies.201700022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Duncan J Clarke
- Department of Genetics Cell Biology & Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
33
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
34
|
Chaudhary H, Iyer A, Subramaniam V, Claessens MMAE. α-Synuclein Oligomers Stabilize Pre-Existing Defects in Supported Bilayers and Propagate Membrane Damage in a Fractal-Like Pattern. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11827-11836. [PMID: 27766878 DOI: 10.1021/acs.langmuir.6b02572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phospholipid vesicles are commonly used to get insights into the mechanism by which oligomers of amyloidogenic proteins damage membranes. Oligomers of the protein α-synuclein (αS) are thought to create pores in phospholipid vesicles containing a high amount of anionic phospholipids but fail to damage vesicle membranes at low surface charge densities. The current understanding of how αS oligomers damage the membranes is thus incomplete. This incomplete understanding may, in part, result from the choice of model membrane systems. The use of free-standing membranes such as vesicles may interfere with the unraveling of some damage mechanisms because the line tension at the edge of a membrane defect or pore ensures defect closure. Here, we have used supported lipid bilayers (SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPC/POPS) to study the membrane damage caused by αS oligomers. Although αS oligomers were not able to initiate the disruption of POPC/POPS vesicles or intact SLBs, oligomers did stabilize and enlarge pre-existing SLB defects. The increased exposure of lipid acyl chains at the edges of defects very likely facilitates membrane-oligomer interactions, resulting in the growth of fractal domains devoid of lipids. Concomitant with the appearance of the fractal membrane damage patterns, lipids appear in solution, directly implicating αS oligomers in the observed lipid extraction. The growth of the membrane damage patterns is not limited by the binding of lipids to the oligomer. The analysis of the shape and growth of the lipid-free domains suggests the involvement of an oligomer-dependent diffusion-limited extraction mechanism. The observed αS oligomer-induced propagation of membrane defects offers new insights into the mechanisms by which αS oligomers can contribute to the loss in membrane integrity.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
| | - Aditya Iyer
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
- Nanoscale Biophysics Group, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
- Nanoscale Biophysics Group, FOM Institute AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam , De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, Department of Science and Technology, University of Twente , 7500 AE Enschede, The Netherlands
| |
Collapse
|
35
|
Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve 2016; 54:821-835. [DOI: 10.1002/mus.25367] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Fanin
- Department of Neurosciences; University of Padova; Biomedical Campus “Pietro d'Abano”, via Giuseppe Orus 2B 35129 Padova Italy
| | | |
Collapse
|
36
|
Bouakaz A, Zeghimi A, Doinikov AA. Sonoporation: Concept and Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:175-89. [PMID: 26486338 DOI: 10.1007/978-3-319-22536-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Contrast agents for ultrasound are now routinely used for diagnosis and imaging. In recent years, new promising possibilities for targeted drug delivery have been proposed that can be realized by using the microbubble composing ultrasound contrast agents (UCAs). The microbubbles can carry drugs and selectively adhere to specific sites in the human body. This capability, in combination with the effect known as sonoporation, provides great possibilities for localized drug delivery. Sonoporation is a process in which ultrasonically activated UCAs, pulsating nearby biological barriers (cell membrane or endothelial layer), increase their permeability and thereby enhance the extravasation of external substances. In this way drugs and genes can be delivered inside individual cells without serious consequences for the cell viability. Sonoporation has been validated both in-vitro using cell cultures and in-vivo in preclinical studies. However, today, the mechanisms by which molecules cross the biological barriers remain unrevealed despite a number of proposed theories. This chapter will provide a survey of the current studies on various hypotheses regarding the routes by which drugs are incorporated into cells or across the endothelial layer and possible associated microbubble acoustic phenomena.
Collapse
Affiliation(s)
- Ayache Bouakaz
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France.
| | - Aya Zeghimi
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Alexander A Doinikov
- Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
37
|
Nagre N, Wang S, Kellett T, Kanagasabai R, Deng J, Nishi M, Shilo K, Oeckler RA, Yalowich JC, Takeshima H, Christman J, Hubmayr RD, Zhao X. TRIM72 modulates caveolar endocytosis in repair of lung cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L452-64. [PMID: 26637632 DOI: 10.1152/ajplung.00089.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/01/2015] [Indexed: 01/11/2023] Open
Abstract
Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.
Collapse
Affiliation(s)
- Nagaraja Nagre
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia; Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shaohua Wang
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Thomas Kellett
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jing Deng
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Miyuki Nishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and
| | - Konstantin Shilo
- Division of Pulmonary Pathology, Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and
| | - John Christman
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Rolf D Hubmayr
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia; Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
38
|
Abstract
Repair of wounds to single cells involves dynamic membrane and cytoskeletal rearrangements necessary to seal the wound and repair the underlying cytoskeleton cortex. One group of proteins essential to the cortical remodeling is the Rho family of small GTPases. Recently we showed that the founding members of this GTPases family, Rho, Rac, and Cdc42, are all essential for normal single cell wound repair and accumulate at the wound periphery in distinct temporal/spatial patterns in the Drosophila cell wound model. In addition, these proteins communicate with one another and with the cytoskeleton to regulate their distribution in response to wounds. Unexpectedly, we found evidence for context specific Rho GTPase binding to downstream targets or “effectors” which cannot be explained solely by means of local GTPase activation. Here we discuss these observations in relation to similar studies in single cell wound repair in the Xenopus oocyte, and highlight how these cell wound models serve as powerful tools to understand both cell wound repair and Rho GTPase biology.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- a Division of Basic Sciences; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| | | |
Collapse
|
39
|
Nande R, Howard CM, Claudio PP. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virother 2015; 4:193-205. [PMID: 27512682 PMCID: PMC4918399 DOI: 10.2147/ov.s66097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The field of ultrasound (US) has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB) are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.
Collapse
Affiliation(s)
- Rounak Nande
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
40
|
Kim Y, Ahn JK, Shin K, Kim C, Lee Y, Park K. Correlation of Cardiac Markers and Biomarkers With Blood Pressure of Middle-Aged Marathon Runners. J Clin Hypertens (Greenwich) 2015; 17:868-73. [PMID: 26073606 PMCID: PMC8031621 DOI: 10.1111/jch.12591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 12/16/2022]
Abstract
Runners with exercise-induced high blood pressure have recently been reported to exhibit higher levels of cardiac markers, vasoconstrictors, and inflammation. The authors attempted to identify correlations between exercise-related personal characteristics and the levels of biochemical/cardiac markers in marathon runners in this study. Forty healthy runners were enrolled. Blood samples were taken both before and after finishing a full marathon. The change in each cardiac/biochemical marker over the course of the marathon was determined. All markers were significantly (P<.001) increased immediately after the marathon (creatine kinase-MB [CK-MB]: 7.9 ± 2.7 ng/mL, cardiac troponin I (cTnI): 0.06 ± 0.10 ng/mL, N-terminal pro-B-type natriuretic peptide (NT-proBNP): 95.7 ± 76.4, endothelin-1: 2.7 ± 1.16, high-sensitivity C-reactive protein [hs-CRP]: 0.1 ± 0.09, creatine kinase [CK]: 315.7 ± 94.0, lactate dehydrogenase [LDH]: 552.8 ± 130.3) compared with their premarathon values (CK-MB: 4.3 ± 1.3, cTnI: 0.01 ± 0.003, NT-proBNP: 27.6 ± 31.1, endothelin-1: 1.11 ± 0.5, hs-CRP: 0.06 ± 0.07, CK: 149.2 ± 66.0, LDH: 399 ± 75.1). In middle-aged marathon runners, factors related to increased blood pressure were correlated with marathon-induced increases in cTnI, NT-proBNP, endothelin-1, and hs-CRP. These correlations were observed independent of running history, records of finishing, and peak oxygen uptake.
Collapse
Affiliation(s)
- Young‐Joo Kim
- Department of Rehabilitation MedicineSanggye‐Paik HospitalInje University College of MedicineSeoulKorea
| | - Jae Ki Ahn
- Department of Rehabilitation MedicineSanggye‐Paik HospitalInje University College of MedicineSeoulKorea
| | - Kyung‐A Shin
- Department of Clinical Laboratory ScienceShinsung UniversityChungnamKorea
| | - Chul‐Hyun Kim
- Department of Sports MedicineSoonchunhyang UniversityChungnamKorea
| | - Yoon‐Hee Lee
- Department of Exercise PhysiologyKorea National Sport UniversitySeoulKorea
| | - Kyoung‐Min Park
- Division of CardiologyDepartment of MedicineSamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|
41
|
Rad I, Khodayari K, Hadi Alijanvand S, Mobasheri H. Interaction of polyethylene glycol (PEG) with the membrane-binding domains following spinal cord injury (SCI): introduction of a mechanism for SCI repair. J Drug Target 2014; 23:79-88. [PMID: 25222499 DOI: 10.3109/1061186x.2014.956668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid-binding domains regulate positioning of the membrane proteins via specific interactions with phospholipid's head groups. Spinal cord injury (SCI) diminishes the integrity of neural fiber membranes at nanoscopic level. In cases that the ruptured zone size is beyond the natural resealing ability, there is a need for reinforcing factors such as polymers (e.g. Polyethylene glycol) to patch the dismantled axoplasm. Certain conserved sequential and structural patterns of interacting residues specifically bind to PEGs. It is also found that PEG600, PEG400 and PEG200 share the strongest interaction with the lipid-binding domains even more successful than phospholipid head groups. The alpha helix structure composed of hydrophobic, neutral and acidic residues prepares an opportunity for PEG400 to play an amphipathic role in the interaction with injured membrane. This in-silico study introduces a mechanism for PEG restorative ability at the molecular level. It is believed that PEG400 interrelates the injured membrane to their underneath axoplasm while retaining the integrity of ruptured membrane via interaction with ENTH domains of membrane proteins. This privilege of PEG400 in treating injured membrane must be considered in designing of polymeric biomaterials that are introduced for SCI repair.
Collapse
Affiliation(s)
- Iman Rad
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | | | | |
Collapse
|
42
|
Lee IC, Lo TL, Young TH, Li YC, Chen NG, Chen CH, Chang YC. Differentiation of neural stem/progenitor cells using low-intensity ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2195-2206. [PMID: 25023110 DOI: 10.1016/j.ultrasmedbio.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
Herein, we report the evaluation of apoptosis, cell differentiation, neurite outgrowth and differentiation of neural stem/progenitor cells (NSPCs) in response to low-intensity ultrasound (LIUS) exposure. NSPCs were cultured under different conditions, with and without LIUS exposure, to evaluate the single and complex effects of LIUS. A lactic dehydrogenase assay revealed that the cell viability of NSPCs was maintained with LIUS exposure at an intensity range from 100 to 500 mW/cm(2). Additionally, in comparison with no LIUS exposure, the cell survival rate was improved with the combination of medium supplemented with nerve growth factor and LIUS exposure. Our results indicate that LIUS exposure promoted NSPC attachment and differentiation on a glass substrate. Neurite outgrowth assays revealed the generation of longer, thicker neurites after LIUS exposure. Furthermore, LIUS stimulation substantially increased the percentage of differentiating neural cells in NSPCs treated with nerve growth factor in comparison with the unstimulated group. The high percentage of differentiated neural cells indicated that LIUS induced neuronal networks denser than those observed in the unstimulated groups. Furthermore, the release of nitric oxide, an important small-molecule neurotransmitter, was significantly upregulated after LIUS exposure. It is therefore reasonable to suggest that LIUS promotes the differentiation of NSPCs into neural cells, induces neurite outgrowth and regulates nitric oxide production; thus, LIUS may be a potential candidate for NSPC induction and neural cell therapy.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Tao-yuan, Taiwan, ROC.
| | - Tsu-Lin Lo
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Tao-yuan, Taiwan, ROC
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yi-Chen Li
- Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Nelson G Chen
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| | | | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
43
|
Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. TRIM72 is required for effective repair of alveolar epithelial cell wounding. Am J Physiol Lung Cell Mol Physiol 2014; 307:L449-59. [PMID: 25106429 DOI: 10.1152/ajplung.00172.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.
Collapse
Affiliation(s)
- Seong Chul Kim
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Kellett
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shaohua Wang
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Miyuki Nishi
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Nagaraja Nagre
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California
| | - Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California
| | - Konstantin Shilo
- Thoracic Pathology Division, Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Biomedical Engineering Department, College of Engineering, The Ohio State University, Columbus, Ohio; and
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Rolf D Hubmayr
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Xiaoli Zhao
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
44
|
Hendricks BK, Shi R. Mechanisms of neuronal membrane sealing following mechanical trauma. Neurosci Bull 2014; 30:627-44. [PMID: 24993771 DOI: 10.1007/s12264-013-1446-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/20/2013] [Indexed: 12/11/2022] Open
Abstract
Membrane integrity is crucial for maintaining the intricate signaling and chemically-isolated intracellular environment of neurons; disruption risks deleterious effects, such as unregulated ionic flux, neuronal apoptosis, and oxidative radical damage as observed in spinal cord injury and traumatic brain injury. This paper, in addition to a discussion of the current understanding of cellular tactics to seal membranes, describes two major factors involved in membrane repair. These are line tension, the hydrophobic attractive force between two lipid free-edges, and membrane tension, the rigidity of the lipid bilayer with respect to the tethered cortical cytoskeleton. Ca(2+), a major mechanistic trigger for repair processes, increases following flux through a membrane injury site, and activates phospholipase enzymes, calpain-mediated cortical cytoskeletal proteolysis, protein kinase cascades, and lipid bilayer microdomain modification. The membrane tension appears to be largely modulated through vesicle dynamics, cytoskeletal organization, membrane curvature, and phospholipase manipulation. Dehydration of the phospholipid gap edge and modification of membrane packaging, as in temperature variation, experimentally impact line tension. Due to the time-sensitive nature of axonal sealing, increasing the efficacy of axolemmal sealing through therapeutic modification would be of great clinical value, to deter secondary neurodegenerative effects. Better therapeutic enhancement of membrane sealing requires a complete understanding of its intricate underlying neuronal mechanism.
Collapse
Affiliation(s)
- Benjamin K Hendricks
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | |
Collapse
|
45
|
Defour A, Van der Meulen JH, Bhat R, Bigot A, Bashir R, Nagaraju K, Jaiswal JK. Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis 2014; 5:e1306. [PMID: 24967968 PMCID: PMC4079937 DOI: 10.1038/cddis.2014.272] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/08/2014] [Accepted: 05/20/2014] [Indexed: 01/17/2023]
Abstract
Dysferlin deficiency compromises the repair of injured muscle, but the underlying cellular mechanism remains elusive. To study this phenomenon, we have developed mouse and human myoblast models for dysferlinopathy. These dysferlinopathic myoblasts undergo normal differentiation but have a deficit in their ability to repair focal injury to their cell membrane. Imaging cells undergoing repair showed that dysferlin-deficit decreased the number of lysosomes present at the cell membrane, resulting in a delay and reduction in injury-triggered lysosomal exocytosis. We find repair of injured cells does not involve formation of intracellular membrane patch through lysosome-lysosome fusion; instead, individual lysosomes fuse with the injured cell membrane, releasing acid sphingomyelinase (ASM). ASM secretion was reduced in injured dysferlinopathic cells, and acute treatment with sphingomyelinase restored the repair ability of dysferlinopathic myoblasts and myofibers. Our results provide the mechanism for dysferlin-mediated repair of skeletal muscle sarcolemma and identify ASM as a potential therapy for dysferlinopathy.
Collapse
Affiliation(s)
- A Defour
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
| | - J H Van der Meulen
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
| | - R Bhat
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
| | - A Bigot
- Institut de Myologie, UM76 Université Pierre et Marie Curie, U974 INSERM, UMR7215 CNRS, GH Pitié-Salpétrière, 47 bd de l'Hôpital, Paris, France
| | - R Bashir
- School of Biological and Biochemical Sciences, University of Durham, Durham, UK
| | - K Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - J K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
46
|
Abstract
In the process of calcified tissue formation, cells secrete a protein-rich matrix into which they add a metal ion that nucleates in the presence of phosphorus to form an inorganic salt (usually calcium hydroxyapatite). Cellular and tissue responses to metal ions—released from implants, for example—can therefore be considered from the perspective of how cells handle calcium ions. A critical factor in determining cellular toxicity will be free ion concentrations and the competitive interactions that occur in a physicochemical manner. Three of the parameters used to assess the biocompatibility of implant materials are (1) the ability to influence mitotic activity, (2) intercellular adhesion, and (3) promotion of cell death. A spectrum of responses to free intracellular calcium ions can be identified, ranging from presence of the ion being essential for cell division through to an excess of the free ion that results in cell death (apoptosis). In between these extremes, cells may become postmitotic and express phenotypic variations as they adapt to their environment and establish equilibrium to maintain intracellular calcium homeostasis. The response of cells to implants can be linked to ions released and interactions between these and other ions and/or molecules present in the tissues, similar to the manner in which cells handle calcium ions.
Collapse
Affiliation(s)
- Thomas B. Kardos
- Department of Oral Rehabilitation, University of Otago, Faculty of Dentistry, P.O. Box 647, Dunedin, New Zealand
| |
Collapse
|
47
|
Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CTW. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014; 72:49-64. [PMID: 24270006 DOI: 10.1016/j.addr.2013.11.008] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
In the past two decades, research has underlined the potential of ultrasound and microbubbles to enhance drug delivery. However, there is less consensus on the biophysical and biological mechanisms leading to this enhanced delivery. Sonoporation, i.e. the formation of temporary pores in the cell membrane, as well as enhanced endocytosis is reported. Because of the variety of ultrasound settings used and corresponding microbubble behavior, a clear overview is missing. Therefore, in this review, the mechanisms contributing to sonoporation are categorized according to three ultrasound settings: i) low intensity ultrasound leading to stable cavitation of microbubbles, ii) high intensity ultrasound leading to inertial cavitation with microbubble collapse, and iii) ultrasound application in the absence of microbubbles. Using low intensity ultrasound, the endocytotic uptake of several drugs could be stimulated, while short but intense ultrasound pulses can be applied to induce pore formation and the direct cytoplasmic uptake of drugs. Ultrasound intensities may be adapted to create pore sizes correlating with drug size. Small molecules are able to diffuse passively through small pores created by low intensity ultrasound treatment. However, delivery of larger drugs such as nanoparticles and gene complexes, will require higher ultrasound intensities in order to allow direct cytoplasmic entry.
Collapse
Affiliation(s)
- I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - I De Cock
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - R Deckers
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | - C T W Moonen
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
48
|
Li Y, Wang P, Wang X, Su X, Liu Q. Involvement of mitochondrial and reactive oxygen species in the sonodynamic toxicity of chlorin e6 in human leukemia K562 cells. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:990-1000. [PMID: 24462156 DOI: 10.1016/j.ultrasmedbio.2013.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/06/2013] [Accepted: 11/16/2013] [Indexed: 06/03/2023]
Abstract
It is well accepted that sonodynamic therapy (SDT) exerts cytotoxicity and anti-tumor activity in many human tumors through the induction of cell apoptosis. The aim of the work described here was to study the effect of chlorin e6 (Ce6)-mediated SDT on human chronic myelogenous leukemia K562 cells. Our results indicate that Ce6-mediated SDT can suppress the viability of K562 cells. SDT caused apoptosis as analyzed by annexin V-phycoerythrin/7-amino-actinomycin D staining as well as cleavage of caspase 3 and the polypeptide poly(ADP-ribose) polymerase. After SDT exposure, loss of mitochondrial membrane potential, translocation of Bax from cytoplasm to mitochondria and activation of caspase 9 indicated that the mitochondrial-related apoptotic pathway might be activated. This process was accompanied by rapid generation of reactive oxygen species (ROS). Scavenging of ROS significantly blocked caspase-3 expression and the killing effect of SDT on K562 cells. Stress-activated protein kinases c-jun NH2-terminal kinase (JNK) and the p38 mitogen-activated protein kinase were activated after SDT treatment. Together, these findings indicate that Ce6-mediated SDT triggers mitochondria- and caspase-dependent apoptosis; oxidative injury may play a vital role in apoptotic signaling cascades.
Collapse
Affiliation(s)
- Yixiang Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China.
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China.
| |
Collapse
|
49
|
Trunk cleavage is essential for Drosophila terminal patterning and can occur independently of Torso-like. Nat Commun 2014; 5:3419. [DOI: 10.1038/ncomms4419] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/10/2014] [Indexed: 02/07/2023] Open
|
50
|
Tzeng HP, Evans S, Gao F, Chambers K, Topkara VK, Sivasubramanian N, Barger PM, Mann DL. Dysferlin mediates the cytoprotective effects of TRAF2 following myocardial ischemia reperfusion injury. J Am Heart Assoc 2014; 3:e000662. [PMID: 24572254 PMCID: PMC3959693 DOI: 10.1161/jaha.113.000662] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background We have demonstrated that tumor necrosis factor (TNF) receptor‐associated factor 2 (TRAF2), a scaffolding protein common to TNF receptors 1 and 2, confers cytoprotection in the heart. However, the mechanisms for the cytoprotective effects of TRAF2 are not known. Methods/Results Mice with cardiac‐restricted overexpression of low levels of TRAF2 (MHC‐TRAF2LC) and a dominant negative TRAF2 (MHC‐TRAF2DN) were subjected to ischemia (30‐minute) reperfusion (60‐minute) injury (I/R), using a Langendorff apparatus. MHC‐TRAF2LC mice were protected against I/R injury as shown by a significant ≈27% greater left ventricular (LV) developed pressure after I/R, whereas mice with impaired TRAF2 signaling had a significantly ≈38% lower LV developed pressure, a ≈41% greater creatine kinase (CK) release, and ≈52% greater Evans blue dye uptake after I/R, compared to LM. Transcriptional profiling of MHC‐TRAF2LC and MHC‐TRAF2DN mice identified a calcium‐triggered exocytotic membrane repair protein, dysferlin, as a potential cytoprotective gene responsible for the cytoprotective effects of TRAF2. Mice lacking dysferlin had a significant ≈39% lower LV developed pressure, a ≈20% greater CK release, and ≈29% greater Evans blue dye uptake after I/R, compared to wild‐type mice, thus phenocopying the response to tissue injury in the MHC‐TRAF2DN mice. Moreover, breeding MHC‐TRAF2LC onto a dysferlin‐null background significantly attenuated the cytoprotective effects of TRAF2 after I/R injury. Conclusion The study shows that dysferlin, a calcium‐triggered exocytotic membrane repair protein, is required for the cytoprotective effects of TRAF2‐mediated signaling after I/R injury.
Collapse
Affiliation(s)
- Huei-Ping Tzeng
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | |
Collapse
|