1
|
Kliewe F, Siegerist F, Hammer E, Al-Hasani J, Amling TRJ, Hollemann JZE, Schindler M, Drenic V, Simm S, Amann K, Daniel C, Lindenmeyer M, Hecker M, Völker U, Endlich N. Zyxin is important for the stability and function of podocytes, especially during mechanical stretch. Commun Biol 2024; 7:446. [PMID: 38605154 PMCID: PMC11009394 DOI: 10.1038/s42003-024-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | | | | | - Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Vedran Drenic
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| |
Collapse
|
2
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Zhou LY, Jin CX, Wang WX, Song L, Shin JB, Du TT, Wu H. Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB. eLife 2023; 12:e90155. [PMID: 37982489 PMCID: PMC10703445 DOI: 10.7554/elife.90155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023] Open
Abstract
The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Chen-Xi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Wen-Xiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Jung-Bum Shin
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Ting-Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| |
Collapse
|
4
|
Ramos Docampo MA. On Nanomachines and Their Future Perspectives in Biomedicine. Adv Biol (Weinh) 2023; 7:e2200308. [PMID: 36690500 DOI: 10.1002/adbi.202200308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Nano/micromotors are a class of active matter that can self-propel converting different types of input energy into kinetic energy. The huge efforts that are made in this field over the last years result in remarkable advances. Specifically, a high number of publications have dealt with biomedical applications that these motors may offer. From the first attempts in 2D cell cultures, the research has evolved to tissue and in vivo experimentation, where motors show promising results. In this Perspective, an overview over the evolution of motors with focus on bio-relevant environments is provided. Then, a discussion on the advances and challenges is presented, and eventually some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
5
|
Faix J, Rottner K. Ena/VASP proteins in cell edge protrusion, migration and adhesion. J Cell Sci 2022; 135:274697. [DOI: 10.1242/jcs.259226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
The tightly coordinated, spatiotemporal control of actin filament remodeling provides the basis of fundamental cellular processes, such as cell migration and adhesion. Specific protein assemblies, composed of various actin-binding proteins, are thought to operate in these processes to nucleate and elongate new filaments, arrange them into complex three-dimensional (3D) arrays and recycle them to replenish the actin monomer pool. Actin filament assembly is not only necessary to generate pushing forces against the leading edge membrane or to propel pathogens through the cytoplasm, but also coincides with the generation of stress fibers (SFs) and focal adhesions (FAs) that generate, transmit and sense mechanical tension. The only protein families known to date that directly enhance the elongation of actin filaments are formins and the family of Ena/VASP proteins. Their mechanisms of action, however, in enhancing processive filament elongation are distinct. The aim of this Review is to summarize our current knowledge on the molecular mechanisms of Ena/VASP-mediated actin filament assembly, and to discuss recent insights into the cell biological functions of Ena/VASP proteins in cell edge protrusion, migration and adhesion.
Collapse
Affiliation(s)
- Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
7
|
Essential role of zyxin in platelet biogenesis and glycoprotein Ib-IX surface expression. Cell Death Dis 2021; 12:955. [PMID: 34657146 PMCID: PMC8520529 DOI: 10.1038/s41419-021-04246-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Platelets are generated from the cytoplasm of megakaryocytes (MKs) via actin cytoskeleton reorganization. Zyxin is a focal adhesion protein and wildly expressed in eukaryotes to regulate actin remodeling. Zyxin is upregulated during megakaryocytic differentiation; however, the role of zyxin in thrombopoiesis is unknown. Here we show that zyxin ablation results in profound macrothrombocytopenia. Platelet lifespan and thrombopoietin level were comparable between wild-type and zyxin-deficient mice, but MK maturation, demarcation membrane system formation, and proplatelet generation were obviously impaired in the absence of zyxin. Differential proteomic analysis of proteins associated with macrothrombocytopenia revealed that glycoprotein (GP) Ib-IX was significantly reduced in zyxin-deficient platelets. Moreover, GPIb-IX surface level was decreased in zyxin-deficient MKs. Knockdown of zyxin in a human megakaryocytic cell line resulted in GPIbα degradation by lysosomes leading to the reduction of GPIb-IX surface level. We further found that zyxin was colocalized with vasodilator-stimulated phosphoprotein (VASP), and loss of zyxin caused diffuse distribution of VASP and actin cytoskeleton disorganization in both platelets and MKs. Reconstitution of zyxin with VASP binding site in zyxin-deficient hematopoietic progenitor cell-derived MKs restored GPIb-IX surface expression and proplatelet generation. Taken together, our findings identify zyxin as a regulator of platelet biogenesis and GPIb-IX surface expression through VASP-mediated cytoskeleton reorganization, suggesting possible pathogenesis of macrothrombocytopenia.
Collapse
|
8
|
Ramos-Docampo MA, Brodszkij E, Ceccato M, Foss M, Folkjær M, Lock N, Städler B. Surface polymerization induced locomotion. NANOSCALE 2021; 13:10035-10043. [PMID: 34037649 DOI: 10.1039/d1nr01465j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nano- and micromotors are self-navigating particles that gain locomotion using fuel from the environment or external power sources to outperform Brownian motion. Herein, motors that make use of surface polymerization of hydroxyethylmethylacrylate to gain locomotion are reported, synthetically mimicking microorganisms' way of propulsion. These motors have enhanced Brownian motion with effective diffusion coefficients up to ∼0.5 μm2 s-1 when mesoporous Janus particles are used. Finally, indication of swarming is observed when high numbers of motors homogenously coated with atom-transfer radical polymerization initiators are used, while high-density Janus motors lost their ability to exhibit enhanced Brownian motion. This report illustrates an alternative route to self-propelled particles, employing a polymerization process that has the potential to be applied for various purposes benefiting from the tool box of modern polymer chemistry.
Collapse
Affiliation(s)
- Miguel A Ramos-Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
9
|
Legerstee K, Abraham TE, van Cappellen WA, Nigg AL, Slotman JA, Houtsmuller AB. Growth factor dependent changes in nanoscale architecture of focal adhesions. Sci Rep 2021; 11:2315. [PMID: 33504939 PMCID: PMC7841166 DOI: 10.1038/s41598-021-81898-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 01/21/2023] Open
Abstract
Focal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.
Collapse
Affiliation(s)
- Karin Legerstee
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Tsion E Abraham
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Wiggert A van Cappellen
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands. .,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.
| |
Collapse
|
10
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
11
|
Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination. J Neurosci 2020; 40:2993-3007. [PMID: 32139584 DOI: 10.1523/jneurosci.1434-18.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes.SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein.
Collapse
|
12
|
Zhong C, Yu J, Li D, Jiang K, Tang Y, Yang M, Shen H, Fang X, Ding K, Zheng S, Yuan Y. Zyxin as a potential cancer prognostic marker promotes the proliferation and metastasis of colorectal cancer cells. J Cell Physiol 2019; 234:15775-15789. [PMID: 30697742 DOI: 10.1002/jcp.28236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death. This study was conducted to investigate the functions and mechanisms of Zyxin (ZYX) in CRC. Multiomics analysis associated ZYX with CRC metastasis. ZYX expression levels were increased in human CRC tissues and related to shorter recurrence-free survival. Knockdown of ZYX expression resulted in inhibition of cell growth, invasion, and migration in vitro and in vivo. Comprehensive analysis of gene microarray analysis showed that ZYX may activate the pathway of NUPR1 and JNK, inhibit CST5, regulate focal adhesion (FA), and affect epithelial-mesenchymal transition in CRC cells. Results of gene microarray and membrane protein isobaric tags with relative and absolute quantitation labeling mass spectrometry found ten differentially expressed genes, which were associated with ZYX activity. Furthermore, real-time polymerase chain reaction was used to validate the expression patterns of selected genes in the integrative analysis. Taken together, our findings provide the first evidence that decreased expression level of ZYX impairs CRC cell proliferation and metastasis probably via the FA pathway.
Collapse
Affiliation(s)
- Chenhan Zhong
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiekai Yu
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Li
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Jiang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Tang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyuan Yang
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Shen
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuefeng Fang
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Zheng
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education; Key Laboratory of Molecular Biology in Medical Sciences) The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation. Sci Rep 2019; 9:10460. [PMID: 31320676 PMCID: PMC6639384 DOI: 10.1038/s41598-019-46905-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Focal adhesions (FAs) are multiprotein structures that link the intracellular cytoskeleton to the extracellular matrix. They mediate cell adhesion and migration, crucial to many (patho-) physiological processes. We examined in two cell types from different species the binding dynamics of functionally related FA protein pairs: paxillin and vinculin versus zyxin and VASP. In photobleaching experiments ~40% of paxillin and vinculin remained stably associated with a FA for over half an hour. Zyxin and VASP predominantly displayed more transient interactions. We show protein binding dynamics are influenced by FA location and orientation. In FAs located close to the edge of the adherent membrane paxillin, zyxin and VASP were more dynamic and had larger bound fractions. Zyxin and VASP were also more dynamic and had larger bound fractions at FAs perpendicular compared to parallel to this edge. Finally, we developed a photoconversion assay to specifically visualise stably bound proteins within subcellular structures and organelles. This revealed that while paxillin and vinculin are distributed evenly throughout FAs, their stably bound fractions form small clusters within the FA-complex. These clusters are more concentrated for paxillin than for vinculin and are mostly found at the proximal half of the FA where actin also enters.
Collapse
|
14
|
Sala S, Catillon M, Hadzic E, Schaffner-Reckinger E, Van Troys M, Ampe C. The PET and LIM1-2 domains of testin contribute to intramolecular and homodimeric interactions. PLoS One 2017; 12:e0177879. [PMID: 28542564 PMCID: PMC5436826 DOI: 10.1371/journal.pone.0177879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/04/2017] [Indexed: 12/18/2022] Open
Abstract
The focal adhesion protein testin is a modular scaffold and tumour suppressor that consists of an N-terminal cysteine rich (CR) domain, a PET domain of unknown function and three C-terminal LIM domains. Testin has been proposed to have an open and a closed conformation based on the observation that its N-terminal half and C-terminal half directly interact. Here we extend the testin conformational model by demonstrating that testin can also form an antiparallel homodimer. In support of this extended model we determined that the testin region (amino acids 52–233) harbouring the PET domain interacts with the C-terminal LIM1-2 domains in vitro and in cells, and assign a critical role to tyrosine 288 in this interaction.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Marie Catillon
- Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit - FSTC, University of Luxembourg, Luxembourg, Luxembourg
| | - Ermin Hadzic
- Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit - FSTC, University of Luxembourg, Luxembourg, Luxembourg
| | - Elisabeth Schaffner-Reckinger
- Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit - FSTC, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Lemière J, Valentino F, Campillo C, Sykes C. How cellular membrane properties are affected by the actin cytoskeleton. Biochimie 2016; 130:33-40. [PMID: 27693515 DOI: 10.1016/j.biochi.2016.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022]
Abstract
Lipid membranes define the boundaries of living cells and intracellular compartments. The dynamic remodelling of these membranes by the cytoskeleton, a very dynamic structure made of active biopolymers, is crucial in many biological processes such as motility or division. In this review, we present some aspects of cellular membranes and how they are affected by the presence of the actin cytoskeleton. We show that, in parallel with the direct study of membranes and cytoskeleton in vivo, biomimetic in vitro systems allow reconstitution of biological processes in a controlled environment. In particular, we show that liposomes, or giant unilamellar vesicles, encapsulating a reconstituted actin network polymerizing at their membrane are suitable models of living cells and can be used to decipher the relative contributions of membrane and actin on the mechanical properties of the cellular interface.
Collapse
Affiliation(s)
- J Lemière
- Department of Molecular Biophysics and Biochemistry, Nanobiology Institute, Yale University, New Haven, CT, USA.
| | - F Valentino
- Institut Curie, PSL Research University, CNRS, UMR 168, 75005, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, 75005, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas-Mann, 75205, Paris, France
| | - C Campillo
- Université Evry Val d'Essonne, LAMBE, Boulevard F Mitterrand, Evry, 91025, France
| | - C Sykes
- Institut Curie, PSL Research University, CNRS, UMR 168, 75005, Paris, France.
| |
Collapse
|
16
|
Hadzic E, Catillon M, Halavatyi A, Medves S, Van Troys M, Moes M, Baird MA, Davidson MW, Schaffner-Reckinger E, Ampe C, Friederich E. Delineating the Tes Interaction Site in Zyxin and Studying Cellular Effects of Its Disruption. PLoS One 2015; 10:e0140511. [PMID: 26509500 PMCID: PMC4624954 DOI: 10.1371/journal.pone.0140511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/25/2015] [Indexed: 01/21/2023] Open
Abstract
Focal adhesions are integrin-based structures that link the actin cytoskeleton and the extracellular matrix. They play an important role in various cellular functions such as cell signaling, cell motility and cell shape. To ensure and fine tune these different cellular functions, adhesions are regulated by a large number of proteins. The LIM domain protein zyxin localizes to focal adhesions where it participates in the regulation of the actin cytoskeleton. Because of its interactions with a variety of binding partners, zyxin has been proposed to act as a molecular scaffold. Here, we studied the interaction of zyxin with such a partner: Tes. Similar to zyxin, Tes harbors three highly conserved LIM domains of which the LIM1 domain directly interacts with zyxin. Using different zyxin variants in pull-down assays and ectopic recruitment experiments, we identified the Tes binding site in zyxin and showed that four highly conserved amino acids are crucial for its interaction with Tes. Based upon these findings, we used a zyxin mutant defective in Tes-binding to assess the functional consequences of abrogating the zyxin-Tes interaction in focal adhesions. Performing fluorescence recovery after photobleaching, we showed that zyxin recruits Tes to focal adhesions and modulates its turnover in these structures. However, we also provide evidence for zyxin-independent localization of Tes to focal adhesions. Zyxin increases focal adhesion numbers and reduces focal adhesion lifetimes, but does so independent of Tes. Quantitative analysis showed that the loss of interaction between zyxin and Tes affects the process of cell spreading. We conclude that zyxin influences focal adhesion dynamics, that it recruits Tes and that this interaction is functional in regulating cell spreading.
Collapse
Affiliation(s)
- Ermin Hadzic
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Marie Catillon
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Aliaksandr Halavatyi
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Sandrine Medves
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | | | - Michèle Moes
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Michelle A. Baird
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Michael W. Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Elisabeth Schaffner-Reckinger
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium
- * E-mail:
| | - Evelyne Friederich
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Luxemburg, Luxembourg
| |
Collapse
|
17
|
Reconstituting the actin cytoskeleton at or near surfaces in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3006-14. [PMID: 26235437 DOI: 10.1016/j.bbamcr.2015.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
Actin filament dynamics have been studied for decades in pure protein solutions or in cell extracts, but a breakthrough in the field occurred at the turn of the century when it became possible to reconstitute networks of actin filaments, growing in a controlled but physiological manner on surfaces, mimicking the actin assembly that occurs at the plasma membrane during cell protrusion and cell shape changes. The story begins with the bacteria Listeria monocytogenes, the study of which led to the reconstitution of cellular actin polymerization on a variety of supports including plastic beads. These studies made possible the development of liposome-type substrates for filament assembly and micropatterning of actin polymerization nucleation. Based on the accumulated expertise of the last 15 years, many exciting approaches are being developed, including the addition of myosin to biomimetic actin networks to study the interplay between actin structure and contractility. The field is now poised to make artificial cells with a physiological and dynamic actin cytoskeleton, and subsequently to put these cells together to make in vitro tissues. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
|
18
|
Abraham S, Scarcia M, Bagshaw RD, McMahon K, Grant G, Harvey T, Yeo M, Esteves FO, Thygesen HH, Jones PF, Speirs V, Hanby AM, Selby PJ, Lorger M, Dear TN, Pawson T, Marshall CJ, Mavria G. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat Commun 2015; 6:7286. [PMID: 26129894 PMCID: PMC4507007 DOI: 10.1038/ncomms8286] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/26/2015] [Indexed: 12/18/2022] Open
Abstract
During angiogenesis, Rho-GTPases influence endothelial cell migration and cell-cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell-cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis.
Collapse
Affiliation(s)
- Sabu Abraham
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| | - Margherita Scarcia
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Richard D. Bagshaw
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5 Ontario, Canada
| | - Kathryn McMahon
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Gary Grant
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Tracey Harvey
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Maggie Yeo
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| | - Filomena O.G. Esteves
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Helene H. Thygesen
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Pamela F. Jones
- Leeds Institutes of Molecular Medicine, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Andrew M. Hanby
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Peter J. Selby
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Mihaela Lorger
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - T. Neil Dear
- Leeds Institutes of Molecular Medicine, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5 Ontario, Canada
| | - Christopher J. Marshall
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| | - Georgia Mavria
- Leeds Institute of Cancer and Pathology, University of Leeds, St James' University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
19
|
Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH. A guide to mechanobiology: Where biology and physics meet. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3043-52. [PMID: 25997671 DOI: 10.1016/j.bbamcr.2015.05.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 05/02/2015] [Indexed: 02/08/2023]
Abstract
Cells actively sense and process mechanical information that is provided by the extracellular environment to make decisions about growth, motility and differentiation. It is important to understand the underlying mechanisms given that deregulation of the mechanical properties of the extracellular matrix (ECM) is implicated in various diseases, such as cancer and fibrosis. Moreover, matrix mechanics can be exploited to program stem cell differentiation for organ-on-chip and regenerative medicine applications. Mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology, bioengineering and biophysics. Here we provide an introductory overview of the key players important to cellular mechanobiology, taking a biophysical perspective and focusing on a comparison between flat versus three dimensional substrates. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Karin A Jansen
- Systems Biophysics Department, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Dominique M Donato
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Hayri E Balcioglu
- Faculty of Science, Leiden Academic Center for Drug Research, Toxicology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Erik H J Danen
- Faculty of Science, Leiden Academic Center for Drug Research, Toxicology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsje H Koenderink
- Systems Biophysics Department, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
20
|
Gaspar P, Holder MV, Aerne BL, Janody F, Tapon N. Zyxin antagonizes the FERM protein expanded to couple F-actin and Yorkie-dependent organ growth. Curr Biol 2015; 25:679-689. [PMID: 25728696 DOI: 10.1016/j.cub.2015.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Coordinated multicellular growth during development is achieved by the sensing of spatial and nutritional boundaries. The conserved Hippo (Hpo) signaling pathway has been proposed to restrict tissue growth by perceiving mechanical constraints through actin cytoskeleton networks. The actin-associated LIM proteins Zyxin (Zyx) and Ajuba (Jub) have been linked to the control of tissue growth via regulation of Hpo signaling, but the study of Zyx has been hampered by a lack of genetic tools. RESULTS We generated a zyx mutant in Drosophila using TALEN endonucleases and used this to show that Zyx antagonizes the FERM-domain protein Expanded (Ex) to control tissue growth, eye differentiation, and F-actin accumulation. Zyx membrane targeting promotes the interaction between the transcriptional co-activator Yorkie (Yki) and the transcription factor Scalloped (Sd), leading to activation of Yki target gene expression and promoting tissue growth. Finally, we show that Zyx's growth-promoting function is dependent on its interaction with the actin-associated protein Enabled (Ena) via a conserved LPPPP motif and is antagonized by Capping Protein (CP). CONCLUSIONS Our results show that Zyx is a functional antagonist of Ex in growth control and establish a link between actin filament polymerization and Yki activity.
Collapse
Affiliation(s)
- Pedro Gaspar
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Maxine V Holder
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
21
|
|
22
|
Gaspar P, Tapon N. Sensing the local environment: actin architecture and Hippo signalling. Curr Opin Cell Biol 2014; 31:74-83. [PMID: 25259681 DOI: 10.1016/j.ceb.2014.09.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/26/2022]
Abstract
The Hippo network is a major conserved growth suppressor pathway that participates in organ size control during development and prevents tumour formation during adult homeostasis. Recent evidence has implicated the actin cytoskeleton as a link between tissue architecture and Hippo signalling. In this review, we will consider the evidence and models proposed for the regulation of Hippo signalling by actin dynamics and structure. We cover aspects of signalling regulation by mechanotransduction, cytoskeletal tethering and the spatial reorganization of signalling components. We also examine the physiological and pathological contexts in which these mechanisms are relevant.
Collapse
Affiliation(s)
- Pedro Gaspar
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Apartado 14, 2780-156 Oeiras, Portugal
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
23
|
Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex. Nat Commun 2014; 5:3758. [DOI: 10.1038/ncomms4758] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/28/2014] [Indexed: 12/26/2022] Open
|
24
|
Michelot A, Drubin DG. Dissecting Principles Governing Actin Assembly Using Yeast Extracts. Methods Enzymol 2014; 540:381-97. [DOI: 10.1016/b978-0-12-397924-7.00021-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
25
|
Pauling JK, Christensen AG, Batra R, Alcaraz N, Barbosa E, Larsen MR, Beck HC, Leth-Larsen R, Azevedo V, Ditzel HJ, Baumbach J. Elucidation of epithelial–mesenchymal transition-related pathways in a triple-negative breast cancer cell line model by multi-omics interactome analysis. Integr Biol (Camb) 2014; 6:1058-68. [DOI: 10.1039/c4ib00137k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Network features discriminate between epithelial and mesenchymal phenotype in a triple-negative breast cancer cell line model.
Collapse
Affiliation(s)
- Josch K. Pauling
- Department of Biochemistry and Molecular Biology
- Faculty of Science
- University of Southern Denmark
- Odense, Denmark
| | - Anne G. Christensen
- Department of Cancer and Inflammation Research
- Institute of Molecular Medicine
- University of Southern Denmark
- Odense, Denmark
| | - Richa Batra
- Department of Mathematics and Computer Science
- University of Southern Denmark
- Faculty of Science
- Odense, Denmark
| | - Nicolas Alcaraz
- Department of Cancer and Inflammation Research
- Institute of Molecular Medicine
- University of Southern Denmark
- Odense, Denmark
- Department of Mathematics and Computer Science
| | - Eudes Barbosa
- Department of Mathematics and Computer Science
- University of Southern Denmark
- Faculty of Science
- Odense, Denmark
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology
- Faculty of Science
- University of Southern Denmark
- Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology
| | - Hans C. Beck
- Department of Clinical Biochemistry and Pharmacology
- Centre for Clinical Proteomics
- Odense University Hospital
- Odense, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research
- Institute of Molecular Medicine
- University of Southern Denmark
- Odense, Denmark
| | - Vasco Azevedo
- Institute of Biological Sciences
- Laboratory of Molecular and Cellular Genetic
- Federal University of Minas Gerais
- Belo Horizonte, Brazil
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research
- Institute of Molecular Medicine
- University of Southern Denmark
- Odense, Denmark
- Department of Oncology
| | - Jan Baumbach
- Department of Mathematics and Computer Science
- University of Southern Denmark
- Faculty of Science
- Odense, Denmark
| |
Collapse
|
26
|
Cell shape-dependent early responses of fibroblasts to cyclic strain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3415-3425. [DOI: 10.1016/j.bbamcr.2013.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/04/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
|
27
|
Grange J, Moody JD, Ascione MPA, Hansen MDH. Zyxin-VASP interactions alter actin regulatory activity in zyxin-VASP complexes. Cell Mol Biol Lett 2013; 18:1-10. [PMID: 23076992 PMCID: PMC6275665 DOI: 10.2478/s11658-012-0035-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023] Open
Abstract
Cell-cell and cell-substrate adhesions are sites of dramatic actin rearrangements and where actin-membrane connections are tightly regulated. Zyxin-VASP complexes localize to sites of cell-cell and cell-substrate adhesion and function to regulate actin dynamics and actin-membrane connections at these sites. To accomplish these functions, zyxin recruits VASP to cellular sites via proline-rich binding sites near zyxin's amino terminus. While the prevailing thought has been that zyxin simply acts as a scaffold protein for VASP binding, the identification of a LIM domain-VASP interaction could complicate this view. Here we assess how zyxin-VASP binding through both the proline rich motifs and the LIM domains alters specific VASP functions. We find that neither individual interaction alters VASP's actin regulatory activities. In contrast, however, we find that full-length zyxin dramatically reduces VASP-mediated actin bundling and actin assembly. Taken together, these results suggest a model where zyxin-VASP complexes occur in complex organizations with suppressed actin regulatory activity.
Collapse
Affiliation(s)
- Jacob Grange
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| | - James D. Moody
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| | - Marc P. A. Ascione
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| | - Marc D. H. Hansen
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB Provo, Brigham, UT 84602 USA
| |
Collapse
|
28
|
Yamamura M, Noguchi K, Nakano Y, Segawa E, Zushi Y, Takaoka K, Kishimoto H, Hashimoto-Tamaoki T, Urade M. Functional analysis of Zyxin in cell migration and invasive potential of oral squamous cell carcinoma cells. Int J Oncol 2013; 42:873-80. [PMID: 23292068 DOI: 10.3892/ijo.2013.1761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 11/05/2022] Open
Abstract
Zyxin is an evolutionarily conserved protein that has been implicated in the regulation of actin assembly and is mainly located at focal adhesions. However, the biological roles of Zyxin in cancer cells are incompletely understood. We analyzed the functions of Zyxin in cell migration and the invasive potential of OSCC. Zyxin expression was examined using eight OSCC cell lines with two different cell morphologies (6 epithelial type and 2 fibroblastic type). To knockdown Zyxin expression, OSCC cells were transfected with Zyxin siRNA and control siRNA. The cell lines were studied by western blot analysis, immunocytochemical analysis and cell migration and invasion assay. Epithelial type OSCC cells showed a high level of E-cadherin expression and a low level of Zyxin expression. N-cadherin as well as Zyxin were strongly expressed in fibroblastic type OSCC cells. Expression levels of LPP and TRIP6, members of the human Zyxin family, did not differ between epithelial type and fibroblastic type. Knockdown of Zyxin expression by siRNA in fibroblastic type OSCC cells was associated with cell morphological changes from spindle (fibroblastic) to polygonal (epithelial) shape and significantly inhibited cell growth as well as cell migration and invasion. Expression levels of Rac1 and Cdc42 were weaker in Zyxin siRNA-treated fibroblastic type OSCC cells than in control siRNA-treated cells, but the expression of RhoA did not differ significantly. Treatment of fibroblastic type OSCC cells with Rac1 inhibitor decreased the expression of Zyxin mRNA and protein. Zyxin is suggested to promote growth, migration and invasiveness of fibroblastic type OSCC cells by upregulating Rac1 and Cdc42.
Collapse
Affiliation(s)
- Michiyo Yamamura
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hansen MDH, Kwiatkowski AV. Control of actin dynamics by allosteric regulation of actin binding proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:1-25. [PMID: 23445807 DOI: 10.1016/b978-0-12-407697-6.00001-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regulated assembly and organization of actin filaments allows the cell to construct a large diversity of actin-based structures specifically suited to a range of cellular processes. A vast array of actin regulatory proteins must work in concert to form specific actin networks within cells, and spatial and temporal requirements for actin assembly necessitate rapid regulation of protein activity. This chapter explores a common mechanism of controlling the activity of actin binding proteins: allosteric autoinhibition by interdomain head-tail interactions. Intramolecular interactions maintain these proteins in a closed conformation that masks protein domains needed to regulate actin dynamics. Autoinhibition is typically relieved by two or more ligand binding and/or posttranslational modification events that expose key protein domains. Regulation through multiple inputs permits precise temporal and spatial control of protein activity to guide actin network formation.
Collapse
Affiliation(s)
- Marc D H Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
30
|
Shimamura S, Sasaki K, Tanaka M. The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins. J Biol Chem 2012; 288:1171-83. [PMID: 23161539 DOI: 10.1074/jbc.m112.386722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In our attempt to screen for substrates of Src family kinases in glioblastoma, Src kinase-associated phosphoprotein 2 (SKAP2) was identified. Although SKAP2 has been suggested to be associated with integrin-mediated adhesion of hematopoietic cells, little is known about its molecular function and the effects in other types of cells and tumors. Here, we demonstrate that SKAP2 physically associates with actin assembly factors WAVE2 and cortactin and inhibits their interaction. Cortactin is required for the membrane localization of WAVE2, and SKAP2 suppresses actin polymerization mediated by WAVE2 and cortactin in vitro. Knockdown of SKAP2 in NIH3T3 accelerated cell migration and enhanced translocation of WAVE2 to the cell membrane, and those effects of SKAP2 depend on the binding activity of SKAP2 to WAVE2. Furthermore, reduction of SKAP2 in the glioblastoma promoted tumor invasion both in ex vivo organotypic rat brain slices and immune-deficient mouse brains. These results suggest that SKAP2 negatively regulates cell migration and tumor invasion in fibroblasts and glioblastoma cells by suppressing actin assembly induced by the WAVE2-cortactin complex, indicating that SKAP2 may be a novel candidate for the suppressor of tumor progression.
Collapse
Affiliation(s)
- Shintaro Shimamura
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | |
Collapse
|
31
|
Mise N, Savai R, Yu H, Schwarz J, Kaminski N, Eickelberg O. Zyxin is a transforming growth factor-β (TGF-β)/Smad3 target gene that regulates lung cancer cell motility via integrin α5β1. J Biol Chem 2012; 287:31393-405. [PMID: 22778267 DOI: 10.1074/jbc.m112.357624] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although TGF-β acts as a tumor suppressor in normal tissues and in early carcinogenesis, these tumor suppressor effects are lost in advanced malignancies. Single cell migration and epithelial-mesenchymal transition (EMT), both of which are regulated by TGF-β, are critical steps in mediating cancer progression. Here, we sought to identify novel direct targets of TGF-β signaling in lung cancer cells and have indentified the zyxin gene as a target of Smad3-mediated TGF-β1 signaling. Zyxin concentrates at focal adhesions and along the actin cytoskeleton; as such, we hypothesized that cytoskeletal organization, motility, and EMT in response to TGF-β1 might be regulated by zyxin expression. We show that TGF-β1 treatment of lung cancer cells caused rapid phospho-Smad3-dependent expression of zyxin. Zyxin expression was critical for the formation and integrity of cell adherens junctions. Silencing of zyxin decreased expression of the focal adhesion protein vasodilator-activated phospho-protein (VASP), although the formation and morphology of focal adhesions remained unchanged. Zyxin-depleted cells displayed significantly increased integrin α5β1 levels, accompanied by enhanced adhesion to fibronectin and acquisition of a mesenchymal phenotype in response to TGF-β1. Zyxin silencing led to elevated integrin α5β1-dependent single cell motility. Importantly, these features are mirrored in the K-ras-driven mouse model of lung cancer. Here, lung tumors revealed decreased levels of both zyxin and phospho-Smad3 when compared with normal tissues. Our data thus demonstrate that zyxin is a novel functional target and effector of TGF-β signaling in lung cancer. By regulating cell-cell junctions, integrin α5β1 expression, and cell-extracellular matrix adhesion, zyxin may regulate cancer cell motility and EMT during lung cancer development and progression.
Collapse
Affiliation(s)
- Nikica Mise
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Actin dynamics associated with focal adhesions. Int J Cell Biol 2012; 2012:941292. [PMID: 22505938 PMCID: PMC3312244 DOI: 10.1155/2012/941292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/16/2011] [Indexed: 01/09/2023] Open
Abstract
Cell-matrix adhesion plays a major role during cell migration. Proteins from adhesion structures connect the extracellular matrix to the actin cytoskeleton, allowing the growing actin network to push the plasma membrane and the contractile cables (stress fibers) to pull the cell body. Force transmission to the extracellular matrix depends on several parameters including the regulation of actin dynamics in adhesion structures, the contractility of stress fibers, and the mechanosensitive response of adhesion structures. Here we highlight recent findings on the molecular mechanisms by which actin assembly is regulated in adhesion structures and the molecular basis of the mechanosensitivity of focal adhesions.
Collapse
|
33
|
Mechanism of actin filament nucleation by the bacterial effector VopL. Nat Struct Mol Biol 2011; 18:1068-74. [PMID: 21873984 PMCID: PMC3168117 DOI: 10.1038/nsmb.2110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/30/2011] [Indexed: 12/21/2022]
Abstract
Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected by bacteria into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich Homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own, and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, which is stabilized by a terminal coiled-coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data lead to a model where VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.
Collapse
|
34
|
LMO7 mediates cell-specific activation of the Rho-myocardin-related transcription factor-serum response factor pathway and plays an important role in breast cancer cell migration. Mol Cell Biol 2011; 31:3223-40. [PMID: 21670154 DOI: 10.1128/mcb.01365-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor that regulates cell-specific functions such as muscle development and breast cancer metastasis. The myocardin-related transcription factors (MRTFs), which are transcriptional coactivators mediating cell-specific functions of SRF, are also ubiquitously expressed. How MRTFs and SRF drive cell-specific transcription is still not fully understood. Here we show that LIM domain only 7 (LMO7) is a cell-specific regulator of MRTFs and plays an important role in breast cancer cell migration. LMO7 activates MRTFs by relieving actin-mediated inhibition in a manner that requires, and is synergistic with, Rho GTPase. Whereas Rho is required for LMO7 to activate full-length MRTFs that have three RPEL actin-binding motifs, the disruption of individual actin-RPEL interactions is sufficient to eliminate the Rho dependency and to allow the strong Rho-independent function of LMO7. Mechanistically, we show that LMO7 colocalizes with F-actin and reduces the G-actin/F-actin ratio via a Rho-independent mechanism. The knockdown of LMO7 in HeLa and MDA-MB-231 cells compromises both basal and Rho-stimulated MRTF activities and impairs the migration of MDA-MB-231 breast cancer cells. We also show that LMO7 is upregulated in the stroma of invasive breast carcinoma in a manner that correlates with the increased expression of SRF target genes that regulate muscle and actin cytoskeleton functions. Together, this study reveals a novel cell-specific mechanism regulating Rho-MRTF-SRF signaling and breast cancer cell migration and identifies a role for actin-RPEL interactions in integrating Rho and cell-specific signals to achieve both the synergistic and Rho-dependent activation of MRTFs.
Collapse
|
35
|
Oelkers JM, Vinzenz M, Nemethova M, Jacob S, Lai FPL, Block J, Szczodrak M, Kerkhoff E, Backert S, Schlüter K, Stradal TEB, Small JV, Koestler SA, Rottner K. Microtubules as platforms for assaying actin polymerization in vivo. PLoS One 2011; 6:e19931. [PMID: 21603613 PMCID: PMC3095617 DOI: 10.1371/journal.pone.0019931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/21/2011] [Indexed: 11/19/2022] Open
Abstract
The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.
Collapse
Affiliation(s)
- J. Margit Oelkers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Marlene Vinzenz
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Sonja Jacob
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Frank P. L. Lai
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Developmental and Regenerative Biology, Institute of Medical Biology, Immunos, Singapore, Singapore
| | - Jennifer Block
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | | | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, Bavarian Genome Research Network, University Hospital Regensburg, Regensburg, Germany
| | - Steffen Backert
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Kai Schlüter
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - Theresia E. B. Stradal
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - J. Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Stefan A. Koestler
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Klemens Rottner
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
36
|
Call GS, Chung JY, Davis JA, Price BD, Primavera TS, Thomson NC, Wagner MV, Hansen MDH. Zyxin phosphorylation at serine 142 modulates the zyxin head-tail interaction to alter cell-cell adhesion. Biochem Biophys Res Commun 2010; 404:780-4. [PMID: 21168386 DOI: 10.1016/j.bbrc.2010.12.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 01/21/2023]
Abstract
Zyxin is an actin regulatory protein that is concentrated at sites of actin-membrane association, particularly cell junctions. Zyxin participates in actin dynamics by binding VASP, an interaction that occurs via proline-rich N-terminal ActA repeats. An intramolecular association of the N-terminal LIM domains at or near the ActA repeats can prevent VASP and other binding partners from binding full-length zyxin. Such a head-tail interaction likely accounts for how zyxin function in actin dynamics, cell adhesion, and cell migration can be regulated by the cell. Since zyxin binding to several partners, via the LIM domains, requires phosphorylation, it seems likely that zyxin phosphorylation might alter the head-tail interaction and, thus, zyxin activity. Here we show that zyxin point mutants at a known phosphorylation site, serine 142, alter the ability of a zyxin fragment to directly bind a separate zyxin LIM domains fragment protein. Further, expression of the zyxin phosphomimetic mutant results in increased localization to cell-cell contacts of MDCK cells and generates a cellular phenotype, namely inability to disassemble cell-cell contacts, precisely like that produced by expression of zyxin mutants that lack the entire regulatory LIM domain region. These data suggest that zyxin phosphorylation at serine 142 results in release of the head-tail interaction, changing zyxin activity at cell-cell contacts.
Collapse
Affiliation(s)
- Greg S Call
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB, Provo, UT 84602, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Smith MA, Blankman E, Gardel ML, Luettjohann L, Waterman CM, Beckerle MC. A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev Cell 2010; 19:365-76. [PMID: 20833360 DOI: 10.1016/j.devcel.2010.08.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/24/2010] [Accepted: 07/09/2010] [Indexed: 10/24/2022]
Abstract
To maintain mechanical homeostasis, cells must recognize and respond to changes in cytoskeletal integrity. By imaging live cells expressing fluorescently tagged cytoskeletal proteins, we observed that actin stress fibers undergo local, acute, force-induced elongation and thinning events that compromise their stress transmission function, followed by stress fiber repair that restores this capability. The LIM protein zyxin rapidly accumulates at sites of strain-induced stress fiber damage and is essential for stress fiber repair and generation of traction force. Zyxin promotes recruitment of the actin regulatory proteins α-actinin and VASP to compromised stress fiber zones. α-Actinin plays a critical role in restoration of actin integrity at sites of local stress fiber damage, whereas both α-actinin and VASP independently contribute to limiting stress fiber elongation at strain sites, thus promoting stabilization of the stress fiber. Our findings demonstrate a mechanism for rapid repair and maintenance of the structural integrity of the actin cytoskeleton.
Collapse
Affiliation(s)
- Mark A Smith
- Department of Biology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
38
|
Nguyen TN, Uemura A, Shih W, Yamada S. Zyxin-mediated actin assembly is required for efficient wound closure. J Biol Chem 2010; 285:35439-45. [PMID: 20801875 DOI: 10.1074/jbc.m110.119487] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cytoskeletal regulation of cell adhesion is vital to the organization of multicellular structures. The focal adhesion protein zyxin emerged as a key regulator of actin assembly because zyxin recruits Enabled/vasodilator-stimulated phospho-proteins (Ena/VASP) to promote actin assembly. Zyxin also localizes to the sites of cell-cell adhesion and is thought to promote actin assembly with Ena/VASP. Using shRNA targeted to zyxin, we analyzed the roles of zyxin at adhesive contacts. In zyxin-deficient cells, the actin assembly at both focal adhesion and cell-cell adhesion was limited, but their migration rate was unchanged. Cell spreading on E-cadherin-coated surfaces and the formation of cell clusters were slower for zyxin-deficient cells than wild type cells. By ablating a single cell within a cell monolayer, we quantified the rate of wound closure driven by a contractile circumferential actin ring. Zyxin-deficient cells failed to recruit VASP to cell-cell junctions at the wound edge and had a slower wound closure rate than wild type cells. Our results suggest that, by recruiting VASP, zyxin regulates actin assembly at the sites of force-bearing cell-cell adhesion.
Collapse
Affiliation(s)
- Thuc Nghi Nguyen
- Biomedical Engineering Department, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
39
|
Hervy M, Hoffman LM, Jensen CC, Smith M, Beckerle MC. The LIM Protein Zyxin Binds CARP-1 and Promotes Apoptosis. Genes Cancer 2010; 1:506-515. [PMID: 20852740 DOI: 10.1177/1947601910376192] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Zyxin is a dual-function LIM domain protein that regulates actin dynamics in response to mechanical stress and shuttles between focal adhesions and the cell nucleus. Here we show that zyxin contributes to UV-induced apoptosis. Exposure of wild-type fibroblasts to UV-C irradiation results in apoptotic cell death, whereas cells harboring a homozygous disruption of the zyxin gene display a statistically significant survival advantage. To gain insight into the molecular mechanism by which zyxin promotes apoptotic signaling, we expressed an affinity-tagged zyxin variant in zyxin-null cells and isolated zyxin-associated proteins from cell lysates under physiological conditions. A 130-kDa protein that was co-isolated with zyxin was identified by microsequence analysis as the Cell Cycle and Apoptosis Regulator Protein-1 (CARP-1). CARP-1 associates with the LIM region of zyxin. Zyxin lacking the CARP-1 binding region shows reduced proapoptotic activity in response to UV-C irradiation. We demonstrate that CARP-1 is a nuclear protein. Zyxin is modified by phosphorylation in cells exposed to UV-C irradiation, and nuclear accumulation of zyxin is induced by UV-C exposure. These findings highlight a novel mechanism for modulating the apoptotic response to UV irradiation.
Collapse
Affiliation(s)
- Martial Hervy
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
40
|
Han J, Liu G, Profirovic J, Niu J, Voyno-Yasenetskaya T. Zyxin is involved in thrombin signaling via interaction with PAR-1 receptor. FASEB J 2009; 23:4193-206. [PMID: 19690217 DOI: 10.1096/fj.09-131862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protease-activated receptor 1 (PAR-1) mediates thrombin signaling in human endothelial cells. As a G-protein-coupled receptor, PAR-1 transmits thrombin signal through activation of the heterotrimeric G proteins, Gi, Gq, and G12/13. In this study, we demonstrated that zyxin, a LIM-domain-containing protein, is involved in thrombin-mediated actin cytoskeleton remodeling and serum response element (SRE)-dependent gene transcription. We determined that zyxin binds to the C-terminal domain of PAR-1, providing a possible mechanism of involvement of zyxin as a signal transducer in PAR-1 signaling. Data showing that disruption of PAR-1-zyxin interaction inhibited thrombin-induced stress fiber formation and SRE activation supports this hypothesis. Similarly, depletion of zyxin using siRNA inhibited thrombin-induced actin stress fiber formation and SRE-dependent gene transcription. In addition, depletion of zyxin resulted in delay of endothelial barrier restoration after thrombin treatment. Notably, down-regulation of zyxin did not affect thrombin-induced activation of RhoA or Gi, Gq, and G12/13 heterotrimeric G proteins, implicating a novel signaling pathway regulated by PAR-1 that is not mediated by G-proteins. The observation that zyxin targets VASP, a partner of zyxin in regulation of actin assembly and dynamics, to focal adhesions and along stress fibers on thrombin stimulation suggests that zyxin may participate in thrombin-induced cytoskeletal remodeling through recruitment of VASP. In summary, this study establishes a crucial role of zyxin in thrombin signaling in endothelial cells and provides evidence for a novel PAR-1 signaling pathway mediated by zyxin.
Collapse
Affiliation(s)
- Jingyan Han
- Department of Pharmacology (MC 868), University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
41
|
Crimaldi L, Courtneidge SA, Gimona M. Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation. Exp Cell Res 2009; 315:2581-92. [PMID: 19540230 DOI: 10.1016/j.yexcr.2009.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/29/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
Podosome formation in vascular smooth muscle cells is characterized by the recruitment of AFAP-110, p190RhoGAP, and cortactin, which have specific roles in Src activation, local down-regulation of RhoA activity, and actin polymerization, respectively. However, the molecular mechanism that underlies their specific recruitment to podosomes remains unknown. The scaffold protein Tks5 is localized to podosomes in Src-transformed fibroblasts and in smooth muscle cells, and may serve as a specific recruiting adapter for various components during podosome formation. We show here that induced mislocalization of Tks5 to the surface of mitochondria leads to a major subcellular redistribution of AFAP-110, p190RhoGAP, and cortactin, and to inhibition of podosome formation. Analysis of a series of similarly mistargeted deletion mutants of Tks5 indicates that the fifth SH3 domain is essential for this recruitment. A Tks5 mutant lacking the PX domain also inhibits podosome formation and induces the redistribution of AFAP-110, p190RhoGAP, and cortactin to the perinuclear area. By expressing a catalytically inactive point mutant and by siRNA-mediated expression knock-down we also provide evidence that p190RhoGAP is required for podosome formation. Together our findings demonstrate that Tks5 plays a central role in the recruitment of AFAP-110, p190RhoGAP, and cortactin to drive podosome formation.
Collapse
Affiliation(s)
- Luca Crimaldi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, Santa Maria, Imbaro, Chieti, Italy.
| | | | | |
Collapse
|
42
|
Mori M, Nakagami H, Koibuchi N, Miura K, Takami Y, Koriyama H, Hayashi H, Sabe H, Mochizuki N, Morishita R, Kaneda Y. Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Mol Biol Cell 2009; 20:3115-24. [PMID: 19439447 DOI: 10.1091/mbc.e09-01-0046] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) confers destabilization of cell-cell adhesion and cell motility required for morphogenesis or cancer metastasis. Here we report that zyxin, a focal adhesion-associated LIM protein, is essential for actin reorganization for cell migration in TGF-beta1-induced EMT in normal murine mammary gland (NMuMG) cells. TGF-beta1 induced the relocation of zyxin from focal adhesions to actin fibers. In addition, TGF-beta1 up-regulated zyxin via a transcription factor, Twist1. Depletion of either zyxin or Twist1 abrogated the TGF-beta1-dependent EMT, including enhanced cell motility and actin reorganization, indicating the TGF-beta1-Twist1-zyxin signal for EMT. Both zyxin and Twist1 were predominantly expressed in the cardiac atrioventricular canal (AVC) that undergoes EMT during heart development. We further performed ex vivo AVC explant assay and revealed that zyxin was required for the reorganization of actin fibers and migration of the endocardial cells. Thus, zyxin reorganizes actin fibers and enhances cell motility in response to TGF-beta1, thereby regulating EMT.
Collapse
Affiliation(s)
- Masaki Mori
- Division of Gene Therapy Science and Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Moody JD, Grange J, Ascione MPA, Boothe D, Bushnell E, Hansen MDH. A zyxin head-tail interaction regulates zyxin-VASP complex formation. Biochem Biophys Res Commun 2008; 378:625-8. [PMID: 19061869 DOI: 10.1016/j.bbrc.2008.11.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 11/19/2008] [Indexed: 01/21/2023]
Abstract
Zyxin is an adhesion protein that regulates actin assembly by binding to VASP family members through N-terminal proline-rich motifs. Evidence suggests that zyxin's C-terminal LIM domains function as a negative regulator of zyxin-VASP complexes. Zyxin LIM domains access to binding partners is negatively regulated by an unknown mechanism. One possibility is that zyxin LIM domains mediate a head-tail interaction, blocking interactions with other proteins. Such a mechanism might prevent both zyxin-VASP complexes activity and LIM domain access. In this report, the effect of LIM domains on zyxin-VASP complex assembly is defined. We find that zyxin LIM domains associate with zyxin's VASP binding sites, preventing zyxin from binding to PKA-phosphorylated VASP. Unphosphorylated VASP overcomes the head-tail interaction, a result of a direct interaction with the LIM domain region. Zyxin, like a growing number of actin regulators, is controlled by intramolecular interactions.
Collapse
Affiliation(s)
- James D Moody
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB, Provo, UT 84602, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chastre E, Abdessamad M, Kruglov A, Bruyneel E, Bracke M, Di Gioia Y, Beckerle MC, Roy F, Kotelevets L. TRIP6, a novel molecular partner of the MAGI‐1 scaffolding molecule, promotes invasiveness. FASEB J 2008; 23:916-28. [DOI: 10.1096/fj.08-106344] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Alexey Kruglov
- INSERM U773Université Paris 7ParisFrance
- Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesMoscow RegionRussia
| | - Erik Bruyneel
- Laboratory of Experimental CancerologyGhent University HospitalGhentBelgium
| | - Marc Bracke
- Laboratory of Experimental CancerologyGhent University HospitalGhentBelgium
| | | | - Mary C. Beckerle
- Huntsman Cancer Institute, Departments of Biology and Oncological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Frans Roy
- Departments of Molecular Biomedical Research and Molecular BiologyVLB‐Ghent UniversityGhentBelgium
| | | |
Collapse
|
45
|
Hirata H, Tatsumi H, Sokabe M. Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 2008; 121:2795-804. [DOI: 10.1242/jcs.030320] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We examined the effects of mechanical forces on actin polymerization at focal adhesions (FAs). Actin polymerization at FAs was assessed by introducing fluorescence-labeled actin molecules into permeabilized fibroblasts cultured on fibronectin. When cell contractility was inhibited by the myosin-II inhibitor blebbistatin, actin polymerization at FAs was diminished, whereas α5β1 integrin remained accumulated at FAs. This suggests that actin polymerization at FAs depends on mechanical forces. To examine the action of mechanical forces more directly, the blebbistatin-treated cells were subjected to a sustained uniaxial stretch, which induced actin polymerization at FAs. These results demonstrate the novel role of mechanical forces in inducing actin polymerization at FAs. To reveal the molecular mechanism underlying the force-induced actin polymerization at FAs, we examined the distribution of zyxin, a postulated actin-regulatory protein. Actin-polymerizing activity was strong at zyxin-rich FAs. Accumulation of zyxin at FAs was diminished by blebbistatin, whereas uniaxial stretching of the cells induced zyxin accumulation. Displacing endogenous zyxin from FAs by expressing the FA-targeting region of zyxin decreased the force-induced actin polymerization at FAs. These results suggest that zyxin is involved in mechanical-force-dependent facilitation of actin polymerization at FAs.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Cell Mechanosensing Project, ICORP/SORST, Japan Science and Technology Agency, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Molecular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Hitoshi Tatsumi
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Cell Mechanosensing Project, ICORP/SORST, Japan Science and Technology Agency, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Molecular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
46
|
Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol 2008; 18:220-7. [DOI: 10.1016/j.tcb.2008.03.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/01/2008] [Accepted: 03/03/2008] [Indexed: 11/21/2022]
|
47
|
Trichet L, Sykes C, Plastino J. Relaxing the actin cytoskeleton for adhesion and movement with Ena/VASP. ACTA ACUST UNITED AC 2008; 181:19-25. [PMID: 18378777 PMCID: PMC2287277 DOI: 10.1083/jcb.200710168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
At cell–cell contacts, as well as at the leading edge of motile cells, the plasticity of actin structures is maintained, in part, through labile connections to the plasma membrane. Here we explain how and why Drosophila enabled/vasodilator stimulated phosphoprotein (Ena/VASP) proteins are candidates for driving this cytoskeleton modulation under the membrane.
Collapse
Affiliation(s)
- Léa Trichet
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique, Paris 7, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
48
|
Miyoshi J, Takai Y. Structural and functional associations of apical junctions with cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:670-91. [DOI: 10.1016/j.bbamem.2007.12.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 12/11/2022]
|
49
|
Endlich N, Otey CA, Kriz W, Endlich K. Movement of stress fibers away from focal adhesions identifies focal adhesions as sites of stress fiber assembly in stationary cells. ACTA ACUST UNITED AC 2008; 64:966-76. [PMID: 17868136 DOI: 10.1002/cm.20237] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Force generated in contractile actin filament bundles (stress fibers-SFs) is transmitted to the extracellular matrix (ECM) via linker proteins and transmembrane integrins at focal adhesions (FAs). Though it has long been known that actin is rapidly exchanged in FAs, the connection between SFs and FAs has not been studied in detail. We introduced fiduciary marks on SFs by expressing GFP-palladin or GFP-alpha-actinin-1, which are both FA and dense body proteins, and by pattern bleaching of GFP-actin. Following fiduciary marks on SFs over time by time-lapse fluorescence microscopy, we detected assembly of SFs at FAs in stationary cells resulting in movement of SFs away from FAs with a velocity of 0.2-0.4 microm/min. Visualization of FAs in GFP-palladin/DsRed-paxillin double transfected cells showed that SF elongation was not accompanied by a change in FA length. SF elongation at FAs depended on actin polymerization and force as demonstrated by inhibitors of actin polymerization (cytochalasin D, jasplakinolide) and inhibitors of myosin-dependent contraction (blebbistatin, Y-27632), respectively. Our finding of SF assembly at FAs has important implications for SF formation, force transmission, and tension distribution within the actin cytoskeletal network of stationary cells.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, Ernst Moritz Arndt University, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
50
|
Latonen L, Järvinen PM, Laiho M. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death. Exp Cell Res 2007; 314:738-47. [PMID: 18177859 DOI: 10.1016/j.yexcr.2007.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/25/2007] [Accepted: 11/27/2007] [Indexed: 11/19/2022]
Abstract
Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions.
Collapse
Affiliation(s)
- Leena Latonen
- Molecular Cancer Biology Program, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|