1
|
Ronco D, Buttiglione G, Garatti A, Parolari A. Biology of mitral valve prolapse: from general mechanisms to advanced molecular patterns-a narrative review. Front Cardiovasc Med 2023; 10:1128195. [PMID: 37332582 PMCID: PMC10272793 DOI: 10.3389/fcvm.2023.1128195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Mitral valve prolapse (MVP) represents the most frequent cause of primary mitral regurgitation. For several years, biological mechanisms underlying this condition attracted the attention of investigators, trying to identify the pathways responsible for such a peculiar condition. In the last ten years, cardiovascular research has moved from general biological mechanisms to altered molecular pathways activation. Overexpression of TGF-β signaling, for instance, was shown to play a key role in MVP, while angiotensin-II receptor blockade was found to limit MVP progression by acting on the same signaling pathway. Concerning extracellular matrix organization, the increased valvular interstitial cells density and dysregulated production of catalytic enzymes (matrix metalloproteinases above all) altering the homeostasis between collagen, elastin and proteoglycan components, have been shown to possibly provide a mechanistic basis contributing to the myxomatous MVP phenotype. Moreover, it has been observed that high levels of osteoprotegerin may contribute to the pathogenesis of MVP by increasing collagen deposition in degenerated mitral leaflets. Although MVP is believed to represent the result of multiple genetic pathways alterations, it is important to distinguish between syndromic and non-syndromic conditions. In the first case, such as in Marfan syndrome, the role of specific genes has been clearly identified, while in the latter a progressively increasing number of genetic loci have been thoroughly investigated. Moreover, genomics is gaining more interest as potential disease-causing genes and loci possibly associated with MVP progression and severity have been identified. Animal models could be of help in better understanding the molecular basis of MVP, possibly providing sufficient information to tackle specific mechanisms aimed at slowing down MVP progression, therefore developing non-surgical therapies impacting on the natural history of this condition. Although continuous progress has been made in this field, further translational studies are advocated to improve our knowledge of biological mechanisms underlying MVP development and progression.
Collapse
Affiliation(s)
- Daniele Ronco
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Gianpiero Buttiglione
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Garatti
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
| | - Alessandro Parolari
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Liu C, Epelman MS, Ten I, Ivsic T. Isolated Coronary Artery Aneurysm in a 12-Year-Old Boy With Marfan Syndrome. Tex Heart Inst J 2021; 48:472189. [PMID: 34665869 DOI: 10.14503/thij-18-6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Cherry Liu
- College of Medicine, University of Central Florida, Orlando, Florida
| | - Monica S Epelman
- College of Medicine, University of Central Florida, Orlando, Florida.,Department of Pediatric Radiology, Nemours Children's Hospital, Orlando, Florida
| | - Irina Ten
- College of Medicine, University of Central Florida, Orlando, Florida.,Division of Pediatric Critical Care, Nemours Children's Hospital, Orlando, Florida
| | - Tomislav Ivsic
- College of Medicine, University of Central Florida, Orlando, Florida.,Congenital Heart Center, Nemours Children's Hospital, Orlando, Florida
| |
Collapse
|
3
|
Morningstar JE, Nieman A, Wang C, Beck T, Harvey A, Norris RA. Mitral Valve Prolapse and Its Motley Crew-Syndromic Prevalence, Pathophysiology, and Progression of a Common Heart Condition. J Am Heart Assoc 2021; 10:e020919. [PMID: 34155898 PMCID: PMC8403286 DOI: 10.1161/jaha.121.020919] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023]
Abstract
Mitral valve prolapse (MVP) is a commonly occurring heart condition defined by enlargement and superior displacement of the mitral valve leaflet(s) during systole. Although commonly seen as a standalone disorder, MVP has also been described in case reports and small studies of patients with various genetic syndromes. In this review, we analyzed the prevalence of MVP within syndromes where an association to MVP has previously been reported. We further discussed the shared biological pathways that cause MVP in these syndromes, as well as how MVP in turn causes a diverse array of cardiac and noncardiac complications. We found 105 studies that identified patients with mitral valve anomalies within 18 different genetic, developmental, and connective tissue diseases. We show that some disorders previously believed to have an increased prevalence of MVP, including osteogenesis imperfecta, fragile X syndrome, Down syndrome, and Pseudoxanthoma elasticum, have few to no studies that use up-to-date diagnostic criteria for the disease and therefore may be overestimating the prevalence of MVP within the syndrome. Additionally, we highlight that in contrast to early studies describing MVP as a benign entity, the clinical course experienced by patients can be heterogeneous and may cause significant cardiovascular morbidity and mortality. Currently only surgical correction of MVP is curative, but it is reserved for severe cases in which irreversible complications of MVP may already be established; therefore, a review of clinical guidelines to allow for earlier surgical intervention may be warranted to lower cardiovascular risk in patients with MVP.
Collapse
Affiliation(s)
- Jordan E. Morningstar
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSC
| | - Annah Nieman
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSC
| | - Christina Wang
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSC
| | - Tyler Beck
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSC
| | - Andrew Harvey
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSC
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonSC
| |
Collapse
|
4
|
Raffetto JD, Khalil RA. Mechanisms of Lower Extremity Vein Dysfunction in Chronic Venous Disease and Implications in Management of Varicose Veins. VESSEL PLUS 2021; 5. [PMID: 34250453 DOI: 10.20517/2574-1209.2021.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic venous disease (CVD) is a common venous disorder of the lower extremities. CVD can be manifested as varicose veins (VVs), with dilated and tortuous veins, dysfunctional valves and venous reflux. If not adequately treated, VVs could progress to chronic venous insufficiency (CVI) and lead to venous leg ulcer (VLU). Predisposing familial and genetic factors have been implicated in CVD. Additional environmental, behavioral and dietary factors including sedentary lifestyle and obesity may also contribute to CVD. Alterations in the mRNA expression, protein levels and proteolytic activity of matrix metalloproteinases (MMPs) have been detected in VVs and VLU. MMP expression/activity can be modulated by venous hydrostatic pressure, hypoxia, tissue metabolites, and inflammation. MMPs in turn increase proteolysis of different protein substrates in the extracellular matrix particularly collagen and elastin, leading to weakening of the vein wall. MMPs could also promote venous dilation by increasing the release of endothelium-derived vasodilators and activating potassium channels, leading to smooth muscle hyperpolarization and relaxation. Depending on VVs severity, management usually includes compression stockings, sclerotherapy and surgical removal. Venotonics have also been promoted to decrease the progression of VVs. Sulodexide has also shown benefits in VLU and CVI, and recent data suggest that it could improve venous smooth muscle contraction. Other lines of treatment including induction of endogenous tissue inhibitors of metalloproteinases (TIMPs) and administration of exogenous synthetic inhibitors of MMPs are being explored, and could provide alternative strategies in the treatment of CVD.
Collapse
Affiliation(s)
- Joseph D Raffetto
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Fernández-Álvarez P, Codina-Sola M, Valenzuela I, Teixidó-Turá G, Cueto-González A, Paramonov I, Antolín M, López-Grondona F, Vendrell T, Evangelista A, García-Arumí E, Tizzano EF. A systematic study and literature review of parental somatic mosaicism of FBN1 pathogenic variants in Marfan syndrome. J Med Genet 2021; 59:605-612. [PMID: 33910934 DOI: 10.1136/jmedgenet-2020-107604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND A proportion of de novo variants in patients affected by genetic disorders, particularly those with autosomal dominant (AD) inheritance, could be the consequence of somatic mosaicism in one of the progenitors. There is growing evidence that germline and somatic mosaicism are more common and play a greater role in genetic disorders than previously acknowledged. In Marfan syndrome (MFS), caused by pathogenic variants in the fibrillin-1 gene (FBN1) gene, approximately 25% of the disease-causing variants are reported as de novo. Only a few cases of parental mosaicism have been reported in MFS. METHODS Employing an amplicon-based deep sequencing (ADS) method, we carried out a systematic analysis of 60 parents of 30 FBN1 positive, consecutive patients with MFS with an apparently de novo pathogenic variant. RESULTS Out of the 60 parents studied (30 families), the majority (n=51, 85%) had a systemic score of 0, seven had a score of 1 and two a score of 2, all due to minor criteria common in the normal population. We detected two families with somatic mosaicism in one of the progenitors, with a rate of 6.6% (2/30) of apparently de novo cases. CONCLUSIONS The search for parental somatic mosaicism should be routinely implemented in de novo cases of MFS, to offer appropriate genetic and reproductive counselling as well as to reveal masked, isolated clinical signs of MFS in progenitors that may require specific follow-up.
Collapse
Affiliation(s)
- Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Marta Codina-Sola
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Gisela Teixidó-Turá
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Anna Cueto-González
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ida Paramonov
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Fermina López-Grondona
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Teresa Vendrell
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Artur Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elena García-Arumí
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Departament de Patologia Neuromuscular i Mitocondrial, Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain .,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| |
Collapse
|
6
|
Sun C, Xu D, Pei Z, Yang L, Qiao Z, Lu W, Luo F, Qiu Z. Separation in genetic pathogenesis of mutations in FBN1-TB5 region between autosomal dominant acromelic dysplasia and Marfan syndrome. Birth Defects Res 2020; 112:1834-1842. [PMID: 33030311 DOI: 10.1002/bdr2.1814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/07/2022]
Abstract
Mutations in the transforming growth factor β-binding protein-like domain 5 (TB5) region of FBN1 can lead to autosomal acromelic dysplasia and Marfan syndrome, which are two diseases with apparently opposite phenotypes. We identified six patients with acromelic dysplasia carrying either the previously reported mutations c.5284G > A (p.Gly1762Ser) and c.5096A > G (p.Tyr1699Cys) or the novel mutation c.5260G > A (p.Gly1754Ser). A systematic review of patients with mutations in the FBN1-TB5 region showed that acromelic dysplasia is caused only by in-frame amino acid substitutions. In contrast, truncating mutations in the FBN1-TB5 have been reported only in Marfan syndrome. Acromelic dysplasia subtypes that share symptoms with Marfan syndrome are associated with FBN1-TB5 disulfide disruptions, which are also commonly found in Marfan syndrome. These results suggest that the type and location of mutations in the FBN1-TB5 region determine the clinical spectrum of fibrillinopathy.
Collapse
Affiliation(s)
- Chengjun Sun
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Dandan Xu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhou Pei
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China.,The Molecular Genetic Diagnosis Center, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Zhongwei Qiao
- Department of Radiology, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Luo E, Shi B, Chen QM, Zhou XD. [Dental-craniofacial manifestation and treatment of rare diseases in China]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:130-142. [PMID: 31168978 PMCID: PMC7030144 DOI: 10.7518/hxkq.2019.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Indexed: 02/05/2023]
Abstract
Rare diseases are genetic, chronic, and incurable disorders with relatively low prevalence. Thus, diagnosis and management strategies for such diseases are currently limited. This situation is exacerbated by insufficient medical sources for these diseases. The National Health and Health Committee of China recently first provided a clear definition of 121 rare diseases in the Chinese population. In this study, we summarize several dental-craniofacial manifestations associated with some rare diseases to provide a reference for dentists and oral maxillofacial surgeons aiming at fast-tracking diagnosis for the management of these rare diseases.
Collapse
Affiliation(s)
- En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Luo E, Liu H, Zhao Q, Shi B, Chen Q. Dental-craniofacial manifestation and treatment of rare diseases. Int J Oral Sci 2019; 11:9. [PMID: 30783081 PMCID: PMC6381182 DOI: 10.1038/s41368-018-0041-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 02/05/2023] Open
Abstract
Rare diseases are usually genetic, chronic and incurable disorders with a relatively low incidence. Developments in the diagnosis and management of rare diseases have been relatively slow due to a lack of sufficient profit motivation and market to attract research by companies. However, due to the attention of government and society as well as economic development, rare diseases have been gradually become an increasing concern. As several dental-craniofacial manifestations are associated with rare diseases, we summarize them in this study to help dentists and oral maxillofacial surgeons provide an early diagnosis and subsequent management for patients with these rare diseases.
Collapse
Affiliation(s)
- En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiucheng Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Sakagami H, Watanabe T, Hoshino T, Suda N, Mori K, Yasui T, Yamauchi N, Kashiwagi H, Gomi T, Oizumi T, Nagai J, Uesawa Y, Takao K, Sugita Y. Recent Progress of Basic Studies of Natural Products and Their Dental Application. MEDICINES 2018; 6:medicines6010004. [PMID: 30585249 PMCID: PMC6473826 DOI: 10.3390/medicines6010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
The present article reviews the research progress of three major polyphenols (tannins, flavonoids and lignin carbohydrate complexes), chromone (backbone structure of flavonoids) and herbal extracts. Chemical modified chromone derivatives showed highly specific toxicity against human oral squamous cell carcinoma cell lines, with much lower toxicity against human oral keratinocytes, as compared with various anticancer drugs. QSAR analysis suggests the possible correlation between their tumor-specificity and three-dimensional molecular shape. Condensed tannins in the tea extracts inactivated the glucosyltransferase enzymes, involved in the biofilm formation. Lignin-carbohydrate complexes (prepared by alkaline extraction and acid-precipitation) and crude alkaline extract of the leaves of Sasa species (SE, available as an over-the-counter drug) showed much higher anti-HIV activity, than tannins, flavonoids and Japanese traditional medicine (Kampo). Long-term treatment with SE and several Kampo medicines showed an anti-inflammatory and anti-oxidant effects in small size of clinical trials. Although the anti-periodontitis activity of synthetic angiotensin II blockers has been suggested in many papers, natural angiotensin II blockers has not yet been tested for their possible anti-periodontitis activity. There should be still many unknown substances that are useful for treating the oral diseases in the natural kingdom.
Collapse
Affiliation(s)
- Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Taihei Watanabe
- Division of Pediatric Dentistry, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Tomonori Hoshino
- Division of Pediatric Dentistry, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Naoto Suda
- Division of Orthodontics, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Kazumasa Mori
- Division of First Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Toshikazu Yasui
- Division of Oral Health, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Naoki Yamauchi
- Masuko Memorial Hospital, 35-28 Takehashi-cho, Nakamura-ku, Nagoya 453-8566, Japan.
| | - Harutsugu Kashiwagi
- Ecopale Co., Ltd., 885 Minamiisshiki, Nagaizumi-cho, Suntou-gun, Shizuoka 411-0932, Japan.
| | - Tsuneaki Gomi
- Gomi clinic, 1-10-12 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan.
| | - Takaaki Oizumi
- Daiwa Biological Research Institute Co., Ltd., 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | - Junko Nagai
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan.
| | - Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
10
|
TGF-β Signaling and the Epithelial-Mesenchymal Transition during Palatal Fusion. Int J Mol Sci 2018; 19:ijms19113638. [PMID: 30463190 PMCID: PMC6274911 DOI: 10.3390/ijms19113638] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/27/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Signaling by transforming growth factor (TGF)-β plays an important role in development, including in palatogenesis. The dynamic morphological process of palatal fusion occurs to achieve separation of the nasal and oral cavities. Critically and specifically important in palatal fusion are the medial edge epithelial (MEE) cells, which are initially present at the palatal midline seam and over the course of the palate fusion process are lost from the seam, due to cell migration, epithelial-mesenchymal transition (EMT), and/or programed cell death. In order to define the role of TGF-β signaling during this process, several approaches have been utilized, including a small interfering RNA (siRNA) strategy targeting TGF-β receptors in an organ culture context, the use of genetically engineered mice, such as Wnt1-cre/R26R double transgenic mice, and a cell fate tracing through utilization of cell lineage markers. These approaches have permitted investigators to distinguish some specific traits of well-defined cell populations throughout the palatogenic events. In this paper, we summarize the current understanding on the role of TGF-β signaling, and specifically its association with MEE cell fate during palatal fusion. TGF-β is highly regulated both temporally and spatially, with TGF-β3 and Smad2 being the preferentially expressed signaling molecules in the critical cells of the fusion processes. Interestingly, the accessory receptor, TGF-β type 3 receptor, is also critical for palatal fusion, with evidence for its significance provided by Cre-lox systems and siRNA approaches. This suggests the high demand of ligand for this fine-tuned signaling process. We discuss the new insights in the fate of MEE cells in the midline epithelial seam (MES) during the palate fusion process, with a particular focus on the role of TGF-β signaling.
Collapse
|
11
|
CT-angiography of the aorta in patients with Marfan disease - High-pitch MDCT at different levels of tube voltage combined with Sinogram Affirmed Iterative Reconstruction. Clin Imaging 2018; 51:123-132. [DOI: 10.1016/j.clinimag.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 02/06/2018] [Indexed: 01/16/2023]
|
12
|
Goyal A, Keramati AR, Czarny MJ, Resar JR, Mani A. The Genetics of Aortopathies in Clinical Cardiology. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817709787. [PMID: 28607545 PMCID: PMC5457142 DOI: 10.1177/1179546817709787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/21/2017] [Indexed: 01/16/2023]
Abstract
Aortopathies pose a significant healthcare burden due to excess early mortality, increasing incidence, and underdiagnosis. Understanding the underlying genetic causes, early diagnosis, timely surveillance, prophylactic repair, and family screening are keys to addressing these diseases. Next-generation sequencing continues to expand our understanding of the genetic causes of heritable aortopathies, rapidly clarifying their underlying molecular pathophysiology and suggesting new potential therapeutic targets. This review will summarize the pathogenetic mechanisms and management of heritable genetic aortopathies with attention to specific forms of both syndromic and nonsyndromic disorders, including Marfan syndrome, Loeys-Dietz syndrome, vascular Ehlers-Danlos syndrome, and familial thoracic aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Amit Goyal
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ali R Keramati
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Czarny
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jon R Resar
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Abstract
The aim of this study was to assess the prevalence of Marfan syndrome (MFS) in Korean adults. Data were collected from the National Health Insurance Service in Korea from 2006 through 2013. The data consisted of primary diagnoses related to MFS (Q87.4) diagnosed according to the 10th revision of the International Statistical Classification of Diseases and Related Health Problems. The age-standardized prevalence of MFS in adults was calculated using the estimated Korean population in 2010 as a reference. Overall, the prevalence of MFS was 0.90 per 100,000 persons in 2006 and 2.27 in 2013. For males in 2013, the prevalence per 100,000 persons was 2.61 in overall and 4.32 in 15-19 years-old. For females in 2013, the prevalence per 100,000 persons was 1.92 in overall and 3.02 in 10-14 years-old. In conclusion, currently, the age-standardized overall prevalence of MFS was 2.27 persons per 100,000 persons. And the overall age-standardized prevalence of MFS increased between 2006 and 2013 especially in 15-19 years-old males and 10-14 years-old females.
Collapse
Affiliation(s)
- Shin Yi Jang
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Ra Seo
- The National Health Insurance Service, Wonju, Korea
| | - Seung Woo Park
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk Kyung Kim
- Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Wei H, Hu JH, Angelov SN, Fox K, Yan J, Enstrom R, Smith A, Dichek DA. Aortopathy in a Mouse Model of Marfan Syndrome Is Not Mediated by Altered Transforming Growth Factor β Signaling. J Am Heart Assoc 2017; 6:JAHA.116.004968. [PMID: 28119285 PMCID: PMC5523644 DOI: 10.1161/jaha.116.004968] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Marfan syndrome (MFS) is caused by mutations in the gene encoding fibrillin‐1 (FBN1); however, the mechanisms through which fibrillin‐1 deficiency causes MFS‐associated aortopathy are uncertain. Recently, attention was focused on the hypothesis that MFS‐associated aortopathy is caused by increased transforming growth factor‐β (TGF‐β) signaling in aortic medial smooth muscle cells (SMC). However, there are many reasons to doubt that TGF‐β signaling drives MFS‐associated aortopathy. We used a mouse model to test whether SMC TGF‐β signaling is perturbed by a fibrillin‐1 variant that causes MFS and whether blockade of SMC TGF‐β signaling prevents MFS‐associated aortopathy. Methods and Results MFS mice (Fbn1C1039G/+ genotype) were genetically modified to allow postnatal SMC‐specific deletion of the type II TGF‐β receptor (TBRII; essential for physiologic TGF‐β signaling). In young MFS mice with and without superimposed deletion of SMC‐TBRII, we measured aortic dimensions, histopathology, activation of aortic SMC TGF‐β signaling pathways, and changes in aortic SMC gene expression. Young Fbn1C1039G/+ mice had ascending aortic dilation and significant disruption of aortic medial architecture. Both aortic dilation and disrupted medial architecture were exacerbated by superimposed deletion of TBRII. TGF‐β signaling was unaltered in aortic SMC of young MFS mice; however, SMC‐specific deletion of TBRII in Fbn1C1039G/+ mice significantly decreased activation of SMC TGF‐β signaling pathways. Conclusions In young Fbn1C1039G/+ mice, aortopathy develops in the absence of detectable alterations in SMC TGF‐β signaling. Loss of physiologic SMC TGF‐β signaling exacerbates MFS‐associated aortopathy. Our data support a protective role for SMC TGF‐β signaling during early development of MFS‐associated aortopathy.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Disease Models, Animal
- Fibrillin-1/genetics
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Marfan Syndrome/pathology
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Protein Serine-Threonine Kinases/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Signal Transduction
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Hao Wei
- Department of Medicine, University of Washington, Seattle, WA
| | - Jie Hong Hu
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Kate Fox
- Department of Medicine, University of Washington, Seattle, WA
| | - James Yan
- Department of Medicine, University of Washington, Seattle, WA
| | - Rachel Enstrom
- Department of Medicine, University of Washington, Seattle, WA
| | - Alexandra Smith
- Department of Medicine, University of Washington, Seattle, WA
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
15
|
|
16
|
Winkler EC, Wiemann S. Findings made in gene panel to whole genome sequencing: data, knowledge, ethics – and consequences? Expert Rev Mol Diagn 2016; 16:1259-1270. [DOI: 10.1080/14737159.2016.1212662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Semyachkina AN, Adyan TA, Kharabadze MN, Novikov PV, Polyakov AV. Clinical and genetic characteristics of Russian Marfan patients. RUSS J GENET+ 2015. [DOI: 10.1134/s102279541507011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Busnadiego O, Gorbenko Del Blanco D, González-Santamaría J, Habashi JP, Calderon JF, Sandoval P, Bedja D, Guinea-Viniegra J, Lopez-Cabrera M, Rosell-Garcia T, Snabel JM, Hanemaaijer R, Forteza A, Dietz HC, Egea G, Rodriguez-Pascual F. Elevated expression levels of lysyl oxidases protect against aortic aneurysm progression in Marfan syndrome. J Mol Cell Cardiol 2015; 85:48-57. [PMID: 25988230 DOI: 10.1016/j.yjmcc.2015.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023]
Abstract
Patients with Marfan syndrome (MFS) are at high risk of life-threatening aortic dissections. The condition is caused by mutations in the gene encoding fibrillin-1, an essential component in the formation of elastic fibers. While experimental findings in animal models of the disease have shown the involvement of transforming growth factor-β (TGF-β)- and angiotensin II-dependent pathways, alterations in the vascular extracellular matrix (ECM) may also play a role in the onset and progression of the aortic disease. Lysyl oxidases (LOX) are extracellular enzymes, which initiates the formation of covalent cross-linking of collagens and elastin, thereby contributing to the maturation of the ECM. Here we have explored the role of LOX in the formation of aortic aneurysms in MFS. We show that aortic tissue from MFS patients and MFS mouse model (Fbn1(C1039G/+)) displayed enhanced expression of the members of the LOX family, LOX and LOX-like 1 (LOXL1), and this is associated with the formation of mature collagen fibers. Administration of a LOX inhibitor for 8weeks blocked collagen accumulation and aggravated elastic fiber impairment, and these effects correlated with the induction of a strong and rapidly progressing aortic dilatation, and with premature death in the more severe MFS mouse model, Fbn1(mgR/mgR), without any significant effect on wild type animals. This detrimental effect occurred preferentially in the ascending portion of the aorta, with little or no involvement of the aortic root, and was associated to an overactivation of both canonical and non-canonical TGF-β signaling pathways. The blockade of angiotensin II type I receptor with losartan restored TGF-β signaling activation, normalized elastic fiber impairment and prevented the aortic dilatation induced by LOX inhibition in Fbn1(C1039G/+) mice. Our data indicate that LOX enzymes and LOX-mediated collagen accumulation play a critical protective role in aneurysm formation in MFS.
Collapse
Affiliation(s)
- O Busnadiego
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | - D Gorbenko Del Blanco
- Departamento de Biología Celular, Inmunología y Neurociencias, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - J González-Santamaría
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | - J P Habashi
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J F Calderon
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Sandoval
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | - D Bedja
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Guinea-Viniegra
- Fundación Banco Bilbao Vizcaya-CNIO Cancer Cell Biology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - M Lopez-Cabrera
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | - T Rosell-Garcia
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | - J M Snabel
- TNO Metabolic Health Research, Leiden, The Netherlands
| | - R Hanemaaijer
- TNO Metabolic Health Research, Leiden, The Netherlands
| | - A Forteza
- Hospital Universitario 12 de Octubre, Unidad de Marfan, Madrid, Spain
| | - H C Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G Egea
- Departamento de Biología Celular, Inmunología y Neurociencias, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - F Rodriguez-Pascual
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain.
| |
Collapse
|
19
|
Hugar BS, Praveen S, Kainoor SK, Shetty ARS. Sudden Death in Marfan Syndrome. J Forensic Sci 2014; 59:1126-8. [DOI: 10.1111/1556-4029.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Basappa S. Hugar
- Department of Forensic Medicine; MS Ramaiah Medical College; Bangalore 560054 India
| | | | - Sunil K. Kainoor
- Department of Forensic Medicine; MS Ramaiah Medical College; Bangalore 560054 India
| | | |
Collapse
|
20
|
Li G, Yu J, Wang K, Wang B, Wang M, Zhang S, Qin S, Yu Z. Exome sequencing identified new mutations in a Marfan syndrome family. Diagn Pathol 2014; 9:25. [PMID: 24484584 PMCID: PMC3918099 DOI: 10.1186/1746-1596-9-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/11/2014] [Indexed: 11/10/2022] Open
Abstract
Marfan syndrome is a common autosomal dominant hereditary connective tissue disorder. There is no cure for Marfan syndrome currently. Next-generation sequencing (NGS) technology is efficient to identify genetic lesions at the exome level. Here we carried out exome sequencing of two Marfan syndrome patients. Further Sanger sequencing validation in other five members from the same family was also implemented to confirm new variants which may contribute to the pathogenesis of the disease. Two new variants, including one nonsense SNP in the Marfan syndrome gene FBN1 and one missense mutation in exon 15 of LRP1, which may be related to the phenotype of the patients were identified. The exome sequencing analysis provides us a new insight into the molecular events governing pathogenesis of Marfan syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenhai Yu
- Department of Vascular Surgery, Qianfoshan Hospital, No,16766 Jingshi Road, Jinan 250014, Shandong, China.
| |
Collapse
|
21
|
Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, Engler MB, Goldmuntz E, Herrington DM, Hershberger RE, Hong Y, Johnson JA, Kittner SJ, McDermott DA, Meschia JF, Mestroni L, O’Donnell CJ, Psaty BM, Vasan RS, Ruel M, Shen WK, Terzic A, Waldman SA. Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update. Circulation 2013; 128:2813-51. [DOI: 10.1161/01.cir.0000437913.98912.1d] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Licinio J, Wong ML. A novel conceptual framework for psychiatry: vertically and horizontally integrated approaches to redundancy and pleiotropism that co-exist with a classification of symptom clusters based on DSM-5. Mol Psychiatry 2013; 18:846-8. [PMID: 23896674 DOI: 10.1038/mp.2013.90] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Effect of angiotensin II receptor blocker on experimental periodontitis in a mouse model of Marfan syndrome. Infect Immun 2012; 81:182-8. [PMID: 23115041 DOI: 10.1128/iai.00886-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marfan syndrome is an autosomal dominant disease characterized by aneurysm and dilatation of the aortic root, tall stature, and ectopia lentis. These manifestations reflect excessive signaling of transforming growth factor beta (TGF-β). Moreover, cases are frequently associated with severe periodontitis, which is a chronic inflammation of the gingiva, periodontal ligament, and alveolar bone. Recently, angiotensin II receptor blockers (ARBs) were discovered to be an effective drug class that can prevent aortic aneurysm and dilation in Marfan syndrome by inhibiting TGF-β signaling. To investigate the effect of ARB on the progression of periodontitis, the application of a potent ARB, telmisartan, was examined in a mouse model of Marfan syndrome (MgΔ). Six-week-old male heterozygous MgΔ and wild-type mice were challenged with Porphyromonas gingivalis, which causes chronic periodontitis, with and without telmisartan application. After infection, alveolar bone resorption was measured by micro-computed tomography (μCT), and inflammatory cytokine levels were examined. Infection of Porphyromonas gingivalis induced alveolar bone resorption in both MgΔ and wild-type mice. The amount of resorption was significantly larger in the former than the latter. Immunoarray and enzyme-linked immunosorbent assay (ELISA) analyses demonstrated that interleukin-17 (IL-17) and tumor necrosis factor alpha (TNF-α) levels were significantly higher in infected MgΔ mice than infected wild-type mice. Telmisartan treatment significantly suppressed the alveolar bone resorption of infected MgΔ mice. Telmisartan also significantly decreased levels of TGF-β, IL-17, and TNF-α in infected MgΔ mice to levels seen in infected wild-type mice. This study suggests that ARB can prevent the severe periodontitis frequently seen in Marfan syndrome.
Collapse
|
24
|
Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells. Proc Natl Acad Sci U S A 2011; 109:215-20. [PMID: 22178754 DOI: 10.1073/pnas.1113442109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the gene coding for FIBRILLIN-1 (FBN1), an extracellular matrix protein. MFS is inherited as an autosomal dominant trait and displays major manifestations in the ocular, skeletal, and cardiovascular systems. Here we report molecular and phenotypic profiles of skeletogenesis in tissues differentiated from human embryonic stem cells and induced pluripotent stem cells that carry a heritable mutation in FBN1. We demonstrate that, as a biological consequence of the activation of TGF-β signaling, osteogenic differentiation of embryonic stem cells with a FBN1 mutation is inhibited; osteogenesis is rescued by inhibition of TGF-β signaling. In contrast, chondrogenesis is not perturbated and occurs in a TGF-β cell-autonomous fashion. Importantly, skeletal phenotypes observed in human embryonic stem cells carrying the monogenic FBN1 mutation (MFS cells) are faithfully phenocopied by cells differentiated from induced pluripotent-stem cells derived independently from MFS patient fibroblasts. Results indicate a unique phenotype uncovered by examination of mutant pluripotent stem cells and further demonstrate the faithful alignment of phenotypes in differentiated cells obtained from both human embryonic stem cells and induced pluripotent-stem cells, providing complementary and powerful tools to gain further insights into human molecular pathogenesis, especially of MFS.
Collapse
|
25
|
Doyle A, McGarry MP, Lee NA, Lee JJ. The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res 2011; 21:327-49. [PMID: 21800101 DOI: 10.1007/s11248-011-9537-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 07/04/2011] [Indexed: 11/24/2022]
Abstract
The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic manipulation has quickly led to the creation and use of genetically engineered mice as powerful tools for cutting edge studies of human disease research including the discovery, refinement, and utility of many currently available therapeutic regimes. In particular, the creation of genetically modified mice as models of human disease has remarkably changed our ability to understand the molecular mechanisms and cellular pathways underlying disease states. Moreover, the mouse models resulting from gene transfer technologies have been important components correlating an individual's gene expression profile to the development of disease pathologies. The objective of this review is to provide physician-scientists with an expansive historical and logistical overview of the creation of mouse models of human disease through gene transfer technologies. Our expectation is that this will facilitate on-going disease research studies and may initiate new areas of translational research leading to enhanced patient care.
Collapse
Affiliation(s)
- Alfred Doyle
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, MCCRB; Cr2-206, Mayo Clinic Arizona, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
26
|
Yanagita M, Hirano H, Kobashi M, Nozaki T, Yamada S, Kitamura M, Murakami S. Periodontal disease in a patient with Prader-Willi syndrome: a case report. J Med Case Rep 2011; 5:329. [PMID: 21798057 PMCID: PMC3159111 DOI: 10.1186/1752-1947-5-329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 07/28/2011] [Indexed: 11/10/2022] Open
Abstract
Introduction Prader-Willi syndrome is a complex genetic disease caused by lack of expression of paternally inherited genes on chromosome 15q11-q13. The prevalence of Prader-Willi syndrome is estimated to be one in 10,000 to 25,000. However, descriptions of the oral and dental phenotype are rare. Case presentation We describe the clinical presentation and periodontal findings in a 20-year-old Japanese man with previously diagnosed Prader-Willi syndrome. Clinical and radiographic findings confirmed the diagnosis of periodontitis. The most striking oral findings were anterior open bite, and crowding and attrition of the lower first molars. Periodontal treatment consisted of tooth-brushing instruction and scaling. Home care involved recommended use of adjunctive chlorhexidine gel for tooth brushing twice a week and chlorhexidine mouthwash twice daily. Gingival swelling improved, but further treatment will be required and our patient's oral hygiene remains poor. The present treatment of tooth-brushing instruction and scaling every three weeks therefore only represents a temporary solution. Conclusions Rather than being a direct result of genetic defects, periodontal diseases in Prader-Willi syndrome may largely result from a loss of cuspid guidance leading to traumatic occlusion, which in turn leads to the development of periodontal diseases and dental plaque because of poor oral hygiene. These could be avoided by early interventions to improve occlusion and regular follow-up to monitor oral hygiene. This report emphasizes the importance of long-term follow-up of oral health care by dental practitioners, especially pediatric dentists, to prevent periodontal disease and dental caries in patients with Prader-Willi syndrome, who appear to have problems maintaining their own oral health.
Collapse
Affiliation(s)
- Manabu Yanagita
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Abdominal aortic aneurysm (AAA) is a multifactorial disease with a strong genetic component. Since the first candidate gene studies were published 20 years ago, approximately 100 genetic association studies using single nucleotide polymorphisms (SNPs) in biologically relevant genes have been reported on AAA. These studies investigated SNPs in genes of the extracellular matrix, the cardiovascular system, the immune system, and signaling pathways. Very few studies were large enough to draw firm conclusions and very few results could be replicated in another sample set. The more recent unbiased approaches are family-based DNA linkage studies and genome-wide genetic association studies, which have the potential of identifying the genetic basis for AAA, only when appropriately powered and well-characterized large AAA cohorts are used. SNPs associated with AAA have already been identified in these large multicenter studies. One significant association was of a variant in a gene called contactin-3, which is located on chromosome 3p12.3. However, two follow-up studies could not replicate this association. Two other SNPs, which are located on chromosome 9p21 and 9q33, were replicated in other samples. The two genes with the strongest supporting evidence of contribution to the genetic risk for AAA are the CDKN2BAS gene, also known as ANRIL, which encodes an antisense ribonucleic acid that regulates expression of the cyclin-dependent kinase inhibitors CDKN2A and CDKN2B, and DAB2IP, which encodes an inhibitor of cell growth and survival. Functional studies are now needed to establish the mechanisms by which these genes contribute toward AAA pathogenesis.
Collapse
|
28
|
Espínola-Zavaleta N, Iqbal FM, Nanda NC, Enríquez-Rodríguez E, Amezcua-Guerra LM, Bojalil-Parra R, Reyes PA, Soto ME. Echocardiographic Study of a Mestizo-Mexican Population with Marfan Syndrome. Echocardiography 2010; 27:923-30. [DOI: 10.1111/j.1540-8175.2010.01208.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Utreja A, Evans CA. Marfan Syndrome—An Orthodontic Perspective. Angle Orthod 2009; 79:394-400. [DOI: 10.2319/112707-558.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/01/2008] [Indexed: 11/23/2022] Open
Abstract
Abstract
Marfan syndrome is a heritable disorder of connective tissue that can affect the heart, blood vessels, lungs, eyes, bones, and ligaments. It is characterized by tall stature, elongated extremities, scoliosis, and a protruded or caved-in breastbone. Patients typically have a long, narrow face. A high-arched palate produced by a narrow maxilla and skeletal Class II malocclusion due to mandibular retrognathia are other common features. For a patient with no family history of the disorder, at least three body systems must be affected before a diagnosis can be made. Individuals affected by the syndrome routinely seek orthodontic treatment to correct the orofacial manifestations. In this report, the authors present the records of three patients with Marfan syndrome who were treated at a dental school. Two patients had severe periodontal disease in the absence of significant contributing local factors. The presentation of systemic symptoms and typical physical characteristics varied. The syndrome thus went unnoticed in one patient for many years. We discuss here the observed intraoral findings and the progress of orthodontic treatment to provide a brief overview of the challenges involved in treating such patients.
Collapse
Affiliation(s)
- Achint Utreja
- a Graduate (MS) Student, Department of Orthodontics, School of Dentistry, University of Illinois, Chicago, Chicago, Ill
| | - Carla A. Evans
- b Professor and Department Chair, Department of Orthodontics, School of Dentistry, University of Illinois, Chicago, Chicago, Ill
| |
Collapse
|
30
|
Loeffelbein F, Schlensak C, Dittrich S. Penetration of left and right atrial wall and aortic root by an Amplatzer atrial septal occluder in a nine year old boy with Marfan syndrome: Case report. J Cardiothorac Surg 2008; 3:25. [PMID: 18460211 PMCID: PMC2397405 DOI: 10.1186/1749-8090-3-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 05/06/2008] [Indexed: 11/26/2022] Open
Abstract
Background To describe complications associated with Amplatzer septal occluders in a patient with Marfan syndrome Case presentation A nine-year-old boy with Marfan syndrome and a 22 mm atrial septal defect (ASD) was treated successfully by interventional closure of his ASD by placing a 24 mm Amplatzer septal occluder. Follow up examinations showed a good result but an increasing enlargement of aortic root, so the patient was scheduled for operation. Intraoperative findings showed a perforation of the left atrial roof and the non-coronary sinus by penetration of the occluder device as well as penetration into the right atrial wall. The occluder was resected, the ASD was closed and the aortic sinus was reconstructed using a Dacron patch. Conclusion We describe the first case of a patient with Marfan syndrome and an interventional closure of an ASD. Due to alterations of the connective tissue, as it is typical for patients with Marfan syndrome, the Amplatzer occluder probably perforated adjacent structures more easily as in non-affected individuals. Amplatzer occluders should be used with caution and follow up examinations should be performed in short intervals.
Collapse
Affiliation(s)
- Florian Loeffelbein
- Clinic of Pediatric Cardiology, Children's University Hospital, Freiburg, Mathildenstrasse 1, D-79106 Freiburg, Germany.
| | | | | |
Collapse
|
31
|
Raffetto JD, Khalil RA. Mechanisms of varicose vein formation: valve dysfunction and wall dilation. Phlebology 2008; 23:85-98. [PMID: 18453484 DOI: 10.1258/phleb.2007.007027] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Varicose veins are a common venous disease of the lower extremity. Although the mechanisms and determinants in the development of varicosities are not clearly defined, recent clinical studies and basic science research have cast some light on possible mechanisms of the disease. In varicose veins, there are reflux and incompetent valves as well as vein wall dilation. Primary structural changes in the valves may make them ‘leaky’, with progressive reflux causing secondary changes in the vein wall. Alternatively, or concurrently, the valves may become incompetent secondary to structural abnormalities and focal dilation in vein wall segments near the valve junctions, and the reflux ensues as an epiphenomenon. The increase in venous pressure causes structural and functional changes in the vein wall that leads to further venous dilation. Increase in vein wall tension augments the expression/activity of matrix metalloproteinases (MMPs), which induces degradation of the extracellular matrix proteins and affect the structural integrity of the vein wall. Recent evidence also suggests an effect of MMPs on the endothelium and smooth muscle components of the vein wall and thereby causing changes in the venous constriction/relaxation properties. Endothelial cell injury also triggers leukocyte infiltration, activation and inflammation, which lead to further vein wall damage. Thus, vein wall dilation appears to precede valve dysfunction, and the MMP activation and superimposed inflammation and fibrosis would then lead to chronic and progressive venous insufficiency and varicose vein formation.
Collapse
Affiliation(s)
- J D Raffetto
- Division of Vascular Surgery, VA Boston Healthcare System, West Roxbury
| | - R A Khalil
- Division of Vascular Surgery, Brigham and Women's Hospital, Boston
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Hinterseher I, Krex D, Kuhlisch E, Schmidt KG, Pilarsky C, Schneiders W, Saeger HD, Bergert H. Tissue inhibitor of metalloproteinase-1 (TIMP-1) polymorphisms in a Caucasian population with abdominal aortic aneurysm. World J Surg 2008; 31:2248-54. [PMID: 17899257 DOI: 10.1007/s00268-007-9209-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The formation of a sporadic abdominal aortic aneurysm (AAA) is explained by the remodeling of the extracellular matrix (ECM) and breakdown of structural components of the vascular wall. Matrix metalloproteinases are the principal matrix-degrading proteases and are known to play a major role in the remodeling of the extracellular matrix in arterial vessels. Their activity is controlled by tissue inhibitors of metalloproteinases (TIMPs). Decreased TIMP-1 and TIMP-2 expression in the extracellular matrix of the walls of AAAs has been shown in several studies. This case control study was designed to investigate the possible impact of genetic variants of the TIMP-1 gene in the etiology of AAA. METHODS TIMP-1 single nucleotide polymorphisms (SNPs) were analyzed in a primary study sample of 50 patients with AAA and 44 controls. Differences in genotype and allele frequencies of identified polymorphisms were determined after sequencing the entire coding region and selected parts of the promoter using the automated laser fluorescence technique. A second sample (96 patients vs. 89 controls) was investigated by single-base sequencing to confirm significant results. RESULTS Three polymorphisms were identified, one of which, described for the first time in this article, is located in intron 4 (TIMP-1: 328 + 16C > T). A statistically significant difference in allele frequencies for SNP TIMP-1 372T>C was detected in the primary study group. The C allele was more frequent in male patients with AAA than in the control group [23 vs. 4, p = 0.029, OR (95% CI) 4.38 (1.13-20.47)]. However, this result could not be confirmed in a second sample of males [52 vs. 45, p = 0.624, OR (95% CI) 1.16 (0.65-2.06)]. There were no statistically significant differences in genotype or allele frequencies of the other detected SNPs between the two groups. CONCLUSIONS Our analysis of the entire coding region and selected parts of the promoter of the TIMP-1 gene failed to show an association between genetic polymorphisms and AAA, suggesting that variations in the TIMP-1 gene do not contribute to the development of AAA.
Collapse
Affiliation(s)
- Irene Hinterseher
- Department of Visceral, Thoracic and Vascular Surgery, Medical School of the Technical University of Dresden, Fetscherstr, 74 D-01307 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ducros E, Berthaut A, Mirshahi P, Lemarchand S, Soria J, Legeais JM, Mirshahi M. Expression of extracellular matrix proteins fibulin-1 and fibulin-2 by human corneal fibroblasts. Curr Eye Res 2007; 32:481-90. [PMID: 17612964 DOI: 10.1080/02713680701411269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The fibulins are a family of extracellular matrix (ECM) molecules that regulate the organ shape along with other growth factors and stromal cells. We report here the in vitro expression of ECM proteins fibulin-1 and fibulin-2 by human corneal fibroblasts. The ability of fibulin-1 to modulate cell motility was investigated. METHODS Fibulin-1 and fibulin-2 mRNA and proteins expression were analyzed in primary and immortalized human corneal fibroblasts (CHN) respectively by gene array, RT-PCR, and immunocytochemistry. The motility and adhesion of the cells transfected with fibulin-1 siRNA were analyzed on tissue culture polystyrene coated with Matrigel or ECM secreted by those fibroblasts. RESULTS (1) The microarray analysis shows the expression of fibulin-1, fibulin-2, and their binding partners (i.e., fibronectin, nidogen-1, aggrecan, fibrilin-1, endostatin, and laminin alpha-2 chain). Interestingly, a matrix metalloprotease, ADAMTS-1, for which fibulin-1 acts as a cofactor, was also detected in CHN. (2) The synthesis by CHN of fibulin-1 and 2 mRNA and proteins was confirmed respectively by RT-PCR and immunocytochemistry. (3) Transfection of CHN by fibulin-1 siRNA has no effect on cell adhesion but increases cell migration compared with that of the control cells. This observation suggests an important role of fibulin-1 on cell motility. CONCLUSIONS The expression of fibulins and that of their binding partners by human corneal fibroblasts indicate the important role of these proteins in the organization of supramolecular ECM structures of cornea. The variation of their expression and the structural changes of fibulins remain to be determined in corneal pathology.
Collapse
Affiliation(s)
- E Ducros
- UMRS 736 INSERM - Université Pierre et Marie Curie (Paris 6), Faculté de Médecine Paris VI, Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Westaby S, Bertoni GB. Fifty Years of Thoracic Aortic Surgery: Lessons Learned and Future Directions. Ann Thorac Surg 2007; 83:S832-4; discussion S846-50. [PMID: 17257936 DOI: 10.1016/j.athoracsur.2006.10.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
During the past 50 years, the genetic basis and natural history of aortic disease has been defined. Surgical methods evolved to reduce mortality and morbidity from bleeding, renal impairment, cerebral injury, and paraplegia. Aortic surgery is now a specialty in itself. Experienced groups achieve a mortality rate of less than 2% for root operations and less than 15% for arch surgery and aortic dissection. The introduction of stent grafts has changed the approach to vascular pathology. These are less intimidating for the patient but have unsolved risks with uncertain long-term outcome. In the future, an evidence-based balance between conventional surgical procedures versus interventional strategies is required.
Collapse
Affiliation(s)
- Stephen Westaby
- Department of Cardiac Surgery, John Radcliffe Hospital, Oxford, United Kingdom.
| | | |
Collapse
|
35
|
Hinterseher I, Bergert H, Kuhlisch E, Bloomenthal A, Pilarsky C, Ockert D, Schellong S, Saeger HD, Krex D. Matrix metalloproteinase 2 polymorphisms in a caucasian population with abdominal aortic aneurysm. J Surg Res 2006; 133:121-8. [PMID: 16458924 DOI: 10.1016/j.jss.2005.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/01/2005] [Accepted: 12/05/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND The formation of sporadic abdominal aortic aneurysm (AAA) is explained by remodeling of the extracellular matrix (ECM) and breakdown of structural components of the vascular wall. Matrix metalloproteinase 2 (MMP2) is one of the principal matrix-degrading proteases and is known to play a major role in the remodeling of the extracellular matrix in arterial vessels. Increased MMP2 expression in the extracellular matrix of the walls of AAAs has been shown in several studies. To investigate the possible impact of genetic variants of the MMP2 gene in the etiology of AAA, we conducted this case-control study. PATIENTS AND METHODS We analyzed MMP2 single-nucleotide polymorphisms (SNPs) in 51 patients with AAA and 48 controls. Differences in genotype and allele frequencies of identified polymorphisms were determined after sequencing the entire coding region and three selected parts of the promoter. RESULTS Eighteen polymorphisms were identified, 6 of which are newly described, with 3 located in the introns (c.IVS1+31C>G, c.IVS7-18G>A, c.IVS10+26C>T) and 3 located in the coding region (c.124G>A, c.1368C>T, c.1860C>T). There were no statistically significant differences in genotype or allele frequencies between the two groups. CONCLUSIONS Our analysis of the entire coding region and three parts of the promoter of the MMP2 gene failed to show an association between genetic polymorphisms and AAA, suggesting that variations in the MMP2 gene do not contribute to the development of AAA.
Collapse
Affiliation(s)
- I Hinterseher
- Department of Visceral, Thoracic, and Vascular Surgery, Technical University of Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Dürr A, Zühlke C, Bürk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LPW. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006; 38:184-90. [PMID: 16429157 DOI: 10.1038/ng1728] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 11/29/2005] [Indexed: 11/09/2022]
Abstract
We have discovered that beta-III spectrin (SPTBN2) mutations cause spinocerebellar ataxia type 5 (SCA5) in an 11-generation American kindred descended from President Lincoln's grandparents and two additional families. Two families have separate in-frame deletions of 39 and 15 bp, and a third family has a mutation in the actin/ARP1 binding region. Beta-III spectrin is highly expressed in Purkinje cells and has been shown to stabilize the glutamate transporter EAAT4 at the surface of the plasma membrane. We found marked differences in EAAT4 and GluRdelta2 by protein blot and cell fractionation in SCA5 autopsy tissue. Cell culture studies demonstrate that wild-type but not mutant beta-III spectrin stabilizes EAAT4 at the plasma membrane. Spectrin mutations are a previously unknown cause of ataxia and neurodegenerative disease that affect membrane proteins involved in glutamate signaling.
Collapse
Affiliation(s)
- Yoshio Ikeda
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church St. SE, Minneapolis, Minnesota 55455 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cheng TO. Lincoln sign: Second eponymous sign of aortic regurgitation named after a patient instead of a physician. Int J Cardiol 2005; 103:224. [PMID: 16080989 DOI: 10.1016/j.ijcard.2004.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 08/18/2004] [Indexed: 11/19/2022]
|
38
|
Ohtoh T, Ono Y, Iwasaki Y, Sakurai Y, Nishino A, Arai H, Suzuki H, Namba Y. Non-traumatic recurrent dissection and its spontaneous repair in the circle of Willis: report of two autopsy cases. Neuropathology 2003; 23:195-8. [PMID: 14570286 DOI: 10.1046/j.1440-1789.2003.00502.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-mortem examinations of the circle of Willis in two cases of subarachnoid hemorrhage disclosed a wide spectrum of vasculopathy ranging from a minimal tear between the intima and media, and between the media and adventitia, to complete transmural disruption leading to the formation of pseudoaneurysms. The presence of coexistence of the focal lesions with complete replacement of the entire arterial wall with thick fibrous connective tissues and the vasculopathy was suggestive of the spontaneous repair of recurrent non-traumatic dissection of intracranial arteries. The patients were 58-year-old and 43-year-old females. There was no history of injury to the head or neck in either case. They were hypertensive, but the degree of atherosclerotic changes in the circle of Willis was compatible with age. There was no histological evidence of vasculitis. The role of hypertension and medial mucoid degeneration in the genesis of non-traumatic dissection of intracranial arteries was discussed.
Collapse
Affiliation(s)
- Takashi Ohtoh
- Division of Pathology, South Miyagi Medical Center, Miyagi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ho NC, Park SS, Maragh KD, Gutter EM. Famous people and genetic disorders: from monarchs to geniuses--a portrait of their genetic illnesses. Am J Med Genet A 2003; 118A:187-96. [PMID: 12655501 DOI: 10.1002/ajmg.a.10158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Famous people with genetic disorders have always been a subject of interest because such news feeds the curiosity the public has for celebrities. It gives further insight into their lives and provides a medical basis for any unexplained or idiosyncratic feature or behavior they exhibit. It draws admiration from society of those who excel in their specialized fields despite the impositions of their genetic illnesses and also elicits sympathy even in the most casual observer. Such news certainly catapults a rare genetic disorder into the realm of public awareness. We hereby present six famous figures: King George III, Toulouse-Lautrec, Queen Victoria, Nicolo Paganini, Abraham Lincoln, and Vincent van Gogh, all of whom made a huge indelible mark in either the history of politics or that of the arts.
Collapse
Affiliation(s)
- Nicola C Ho
- Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
40
|
Straub AM, Grahame R, Scully C, Tonetti MS. Severe periodontitis in Marfan's syndrome: a case report. J Periodontol 2002; 73:823-6. [PMID: 12146542 DOI: 10.1902/jop.2002.73.7.823] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Connective tissue disorders, such as some forms of Ehlers-Danlos syndrome, have been associated with severe periodontitis. METHODS This report describes a case of Marfan's syndrome, an inherited disorder of connective tissue caused by mutations in the fibrillin-1 gene, in which the patient presented with severe periodontitis. RESULTS At examination, an average full-mouth clinical attachment level loss of 5.6+/-2.1 mm, furcation involvement, and severe alveolar bone loss were observed in a 41-year-old Caucasian male. Tooth hypermobility was also present. CONCLUSIONS This case appears to be the first documentation of severe periodontitis in a patient with Marfan's syndrome. It supports the hypothesis that a variety of connective tissue disorders may confer increased susceptibility to periodontal tissue breakdown.
Collapse
Affiliation(s)
- Antje M Straub
- Department of Periodontology, Eastman Dental Institute, University College, London, UK
| | | | | | | |
Collapse
|
41
|
Abstract
There is growing interest in the role of matrix metalloproteinases in vascular diseases. These conditions are often characterized by excessive tissue remodelling, and increased matrix metalloproteinase activity has been demonstrated in aneurysms, intimal hyperplasia and atherosclerotic plaque disruption. These enzymes represent a potential target for therapeutic intervention to modify vascular pathology. The core of this review is derived from a MEDLINE database literature search. The review found that there is convincing evidence of increased matrix metalloproteinase activity in a spectrum of vascular disease. Evidence for an imbalance promoting increased matrix degradation is less well documented. However, studies of matrix metalloproteinase inhibition in vascular disease models suggest potential therapeutic benefit. In conclusion, in vivo studies of matrix metalloproteinase inhibition are required to further study the potential for reversal or deceleration of the excessive tissue remodelling that accompanies vascular disorders.
Collapse
Affiliation(s)
- I M Loftus
- Department of Surgery, Leicester University, UK.
| | | |
Collapse
|
42
|
Jones K, Powell J, Brown L, Greenhalgh R, Jormsjö S, Eriksson P. The influence of 4G/5G polymorphism in the plasminogen activator inhibitor-1 gene promoter on the incidence, growth and operative risk of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2002; 23:421-5. [PMID: 12027469 DOI: 10.1053/ejvs.2002.1633] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND a single base pair deletion/insertion (4G/5G) polymorphism in the plasminogen activator inhibitor (PAI-1) promoter appears to influence PAI-1 synthesis (increased PAI-1 and inhibition of fibrinolysis with the 4G allele) and survival after severe trauma. OBJECTIVE to identify whether the 4G/5G polymorphism influences the natural history of abdominal aortic aneurysm (AAA). METHODS Four hundred and sixty patients with small AAA were genotyped for the 4G/5G polymorphism. AAA growth was assessed from serial ultrasonographic measurements, subject to linear regression analysis. Mortality following eventual elective surgery was recorded. RESULTS the frequency of the 3 genotypes (4G4G, 4G5G and 5G5G) was in Hardy-Weinberg equilibrium and similar to that in a healthy population. The mean aneurysm growth rate was 0.37, 0.35 and 0.44 cm/year respectively for patients of 4G4G, 4G5G and 5G5G genotype respectively, p = 0.07. The 30d mortality following open elective aneurysm repair was 8% (7/87), 8% (11/145) and 0% (0/56) for patients of 4G4G, 4G5G and 5G5G genotype respectively, giving a higher mortality for those carrying a 4G allele p = 0.03. CONCLUSIONS polymorphism of the PAI-1 gene promoter does not influence the development of AAA, although AAA growth is faster for patients of 5G5G genotype. However, this genotype (5G5G), which is associated with enhanced fibrinolysis, appears protective following open aneurysm repair. This effect of PAI-1 genotype on survival following surgery is likely to have widespread significance in vascular and general surgery.
Collapse
Affiliation(s)
- K Jones
- Imperial College at Charing Cross, St Dunstans Road, London W6 8RP, U.K
| | | | | | | | | | | |
Collapse
|
43
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Affiliation(s)
- E Gilbert-Barness
- Department of Pathology, University of South Florida, Tampa General Hospital, P.O. Box 1289, Tampa, FL 33601-1289, USA
| | | |
Collapse
|
45
|
Robb BW, Wachi H, Schaub T, Mecham RP, Davis EC. Characterization of an in vitro model of elastic fiber assembly. Mol Biol Cell 1999; 10:3595-605. [PMID: 10564258 PMCID: PMC25642 DOI: 10.1091/mbc.10.11.3595] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.
Collapse
Affiliation(s)
- B W Robb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Robert K. Wayne
- Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles California 90095-1606; e-mail:
- Department of Biological Anthropology, University of Oxford, Oxford OX2 6QS, United Kingdom
| | - Jennifer A. Leonard
- Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles California 90095-1606; e-mail:
- Department of Biological Anthropology, University of Oxford, Oxford OX2 6QS, United Kingdom
| | - Alan Cooper
- Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles California 90095-1606; e-mail:
- Department of Biological Anthropology, University of Oxford, Oxford OX2 6QS, United Kingdom
| |
Collapse
|
47
|
Abstract
Skeletal dysplasias, disorders of abnormal bone and cartilage development, are a heterogeneous group, each disorder with its own genetics, prevalence, prognosis, and treatment. More than 150 distinct conditions have been identified. Despite their obvious differences, the osteochondrodysplasias share many clinical and radiographic features. These patients present to the orthopedic surgeon for evaluation of disproportionate short stature, which may be apparent at birth or manifest itself only with further growth. This article discusses bone dysplasias commonly associated with spinal abnormalities. Spinal pathology can lead to deformity, neurologic sequelae, pain, and cardiopulmonary compromise and further contribute to short stature.
Collapse
Affiliation(s)
- M Kornblum
- William Beaumont Residency Program, Royal Oak, Michigan, USA
| | | |
Collapse
|
48
|
Abstract
The Marfan syndrome is a heritable disorder of connective tissue affecting approximately one in 5000 to one in 10,000 individuals. The manifestations of the Marfan syndrome primarily involve the cardiovascular, musculoskeletal, and ocular systems. Aortic dilatation and dissection are the major causes of morbidity and mortality in the Marfan syndrome. The person with Marfan syndrome is often tall and agile and may unknowingly participate in certain physical activities and sports, putting himself or herself at risk for aortic dissection and sudden death. With appropriate diagnosis and treatment, the person with the Marfan syndrome can expect to live a long life. This article will review the diagnosis, genetics, clinical manifestations, and medical and surgical management of the Marfan syndrome. Guidelines for physical activity and exercise for the person with Marfan syndrome will be presented.
Collapse
Affiliation(s)
- A C Braverman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
49
|
Rongish BJ, Drake CJ, Argraves WS, Little CD. Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Dev Dyn 1998; 212:461-71. [PMID: 9671949 DOI: 10.1002/(sici)1097-0177(199807)212:3<461::aid-aja13>3.0.co;2-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The monoclonal antibody JB3 was previously shown to react with a protein antigen present in the bilateral primitive heart-forming regions and septation-stage embryonic hearts; in addition, primary axial structures at primitive streak stages are JB3-immunopositive (Wunsch et al. [1994] Dev. Biol. 165:585-601). The JB3 antigen has an overlapping distribution pattern with fibrillin-1, and a similar molecular mass (Gallagher et al. [1993] Dev. Dyn. 196:70-78; Wunsch et al. [1994] Dev. Biol. 165:585-601). Here we present immunoblot and immunoprecipitation data showing that the JB3 antigen is secreted into tissue culture medium by day 10 chicken embryonic fibroblasts, from which it can be harvested using JB3-immunoaffinity chromatography. A single polypeptide (Mr = 350,000), which was not immunoreactive with an antibody to fibrillin-1, eluted from the affinity column. Mass spectroscopy peptide microsequencing determined the identity of the JB3 antigen to be an avian homologue of fibrillin-2. Live, whole-mounted, quail embryos were immunolabeled using a novel microinjection approach, and subsequently fixed. Laser scanning confocal microscopy indicated an elaborate scaffold of fibrillin-2 filaments encasing formed somites. At more caudal axial positions, discrete, punctate foci of immunofluorescent fibrillin-2 were observed; this pattern corresponded to the position of segmental plate mesoderm. Between segmental plate mesoderm and fully-formed somites, progressively longer filamentous assemblies of fibrillin-2 were observed, suggesting a developmental progression of fibrillin-2 fibril assembly across the somite-forming region of avian embryos. Extensive filaments of fibrillin-2 connect somites to the notochord. Similarly, fibrillin-2 connects the mesoderm associated with the anterior intestinal portal to the midline. Thus, fibrillin-2 fibrils are organized by a diverse group of cells of mesodermal or mesodermally derived mesenchymal origin. Fibrillin-2 microfilaments are assembled in a temporal and spatial pattern that is coincident with cranial-to-caudal segmentation, and regression of the anterior intestinal portal. Fibrillin-2 may function to impart physical stability to embryonic tissues during morphogenesis of the basic vertebrate body plan.
Collapse
Affiliation(s)
- B J Rongish
- Department of Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- J F Sotos
- Ohio State University College of Medicine, Columbus, USA
| |
Collapse
|