1
|
Tan KT, Slevin MK, Leibowitz ML, Garrity-Janger M, Shan J, Li H, Meyerson M. Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing. CELL GENOMICS 2024; 4:100588. [PMID: 38917803 PMCID: PMC11293586 DOI: 10.1016/j.xgen.2024.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
Collapse
Affiliation(s)
- Kar-Tong Tan
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | | | - Mitchell L Leibowitz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Max Garrity-Janger
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Heng Li
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Kinzig CG, Zakusilo G, Takai KK, Myler LR, de Lange T. ATR blocks telomerase from converting DNA breaks into telomeres. Science 2024; 383:763-770. [PMID: 38359122 PMCID: PMC11267623 DOI: 10.1126/science.adg3224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/13/2023] [Indexed: 02/17/2024]
Abstract
Telomerase, the enzyme that maintains telomeres at natural chromosome ends, should be repressed at double-strand breaks (DSBs), where neotelomere formation can cause terminal truncations. We developed an assay to detect neotelomere formation at Cas9- or I-SceI-induced DSBs in human cells. Telomerase added telomeric repeats to DSBs, leading to interstitial telomeric repeat insertions or the formation of functional neotelomeres accompanied by terminal deletions. The threat that telomerase poses to genome integrity was minimized by ataxia telangiectasia and Rad3-related (ATR) kinase signaling, which inhibited telomerase at resected DSBs. In addition to acting at resected DSBs, telomerase used the extruded strand in the Cas9 enzyme-product complex as a primer for neotelomere formation. We propose that although neotelomere formation is detrimental in normal human cells, it may allow cancer cells to escape from breakage-fusion-bridge cycles.
Collapse
Affiliation(s)
- Charles G. Kinzig
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD/PhD Program, New York, NY 10065, USA
| | - George Zakusilo
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD/PhD Program, New York, NY 10065, USA
| | - Kaori K. Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Logan R. Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
3
|
Arnoult N, Cech TR. Telomerase misbehaves after a breakup. Science 2024; 383:702-703. [PMID: 38359118 PMCID: PMC11521237 DOI: 10.1126/science.adn7791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Suppressing telomerase action at broken DNA preserves genome integrity.
Collapse
Affiliation(s)
- Nausica Arnoult
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas R Cech
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Choo ZN, Behr JM, Deshpande A, Hadi K, Yao X, Tian H, Takai K, Zakusilo G, Rosiene J, Da Cruz Paula A, Weigelt B, Setton J, Riaz N, Powell SN, Busam K, Shoushtari AN, Ariyan C, Reis-Filho J, de Lange T, Imieliński M. Most large structural variants in cancer genomes can be detected without long reads. Nat Genet 2023; 55:2139-2148. [PMID: 37945902 PMCID: PMC10703688 DOI: 10.1038/s41588-023-01540-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
Short-read sequencing is the workhorse of cancer genomics yet is thought to miss many structural variants (SVs), particularly large chromosomal alterations. To characterize missing SVs in short-read whole genomes, we analyzed 'loose ends'-local violations of mass balance between adjacent DNA segments. In the landscape of loose ends across 1,330 high-purity cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved by short reads in the 87% of the human genome where copy number could be reliably measured. Some loose ends represent neotelomeres, which we propose as a hallmark of the alternative lengthening of telomeres phenotype. These pan-cancer findings were confirmed by long-molecule profiles of 38 breast cancer and melanoma cases. Our results indicate that aberrant homologous recombination is unlikely to drive the majority of large cancer SVs. Furthermore, analysis of mass balance in short-read whole genome data provides a surprisingly complete picture of cancer chromosomal structure.
Collapse
Affiliation(s)
- Zi-Ning Choo
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional MD PhD Program, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Julie M Behr
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Aditya Deshpande
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Kevin Hadi
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Xiaotong Yao
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Huasong Tian
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kaori Takai
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - George Zakusilo
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joel Rosiene
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Britta Weigelt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Klaus Busam
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Titia de Lange
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Marcin Imieliński
- New York Genome Center, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Lue NF, Autexier C. Orchestrating nucleic acid-protein interactions at chromosome ends: telomerase mechanisms come into focus. Nat Struct Mol Biol 2023; 30:878-890. [PMID: 37400652 PMCID: PMC10539978 DOI: 10.1038/s41594-023-01022-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
Telomerase is a special reverse transcriptase ribonucleoprotein dedicated to the synthesis of telomere repeats that protect chromosome ends. Among reverse transcriptases, telomerase is unique in using a stably associated RNA with an embedded template to synthesize a specified sequence. Moreover, it is capable of iteratively copying the same template region (repeat addition processivity) through multiple rounds of RNA-DNA unpairing and reannealing, that is, the translocation reaction. Biochemical analyses of telomerase over the past 3 decades in protozoa, fungi and mammals have identified structural elements that underpin telomerase mechanisms and have led to models that account for the special attributes of telomerase. Notably, these findings and models can now be interpreted and adjudicated through recent cryo-EM structures of Tetrahymena and human telomerase holoenzyme complexes in association with substrates and regulatory proteins. Collectively, these structures reveal the intricate protein-nucleic acid interactions that potentiate telomerase's unique translocation reaction and clarify how this enzyme reconfigures the basic reverse transcriptase scaffold to craft a polymerase dedicated to the synthesis of telomere DNA. Among the many new insights is the resolution of the telomerase 'anchor site' proposed more than 3 decades ago. The structures also highlight the nearly universal conservation of a protein-protein interface between an oligonucleotide/oligosaccharide-binding (OB)-fold regulatory protein and the telomerase catalytic subunit, which enables spatial and temporal regulation of telomerase function in vivo. In this Review, we discuss key features of the structures in combination with relevant functional analyses. We also examine conserved and divergent aspects of telomerase mechanisms as gleaned from studies in different model organisms.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| | - Chantal Autexier
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Anatomy and Cell Biology and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Lambert-Lanteigne P, Young A, Autexier C. Complex interaction network revealed by mutation of human telomerase 'insertion in fingers' and essential N-terminal domains and the telomere protein TPP1. J Biol Chem 2023; 299:102916. [PMID: 36649908 PMCID: PMC9958494 DOI: 10.1016/j.jbc.2023.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
In the majority of human cancer cells, cellular immortalization depends on the maintenance of telomere length by telomerase. An essential step required for telomerase function is its recruitment to telomeres, which is regulated by the interaction of the telomere protein, TPP1, with the telomerase essential N-terminal (TEN) domain of the human telomerase reverse transcriptase, hTERT. We previously reported that the hTERT 'insertion in fingers domain' (IFD) recruits telomerase to telomeres in a TPP1-dependent manner. Here, we use hTERT truncations and the IFD domain containing mutations in conserved residues or premature aging disease-associated mutations to map the interactions between the IFD and TPP1. We find that the hTERT-IFD domain can interact with TPP1. However, deletion of the IFD motif in hTERT lacking the N-terminus and the C-terminal extension does not abolish interaction with TPP1, suggesting the IFD is not essential for hTERT interaction with TPP1. Several conserved residues in the central IFD-TRAP region that we reported regulate telomerase recruitment to telomeres, and cell immortalization compromise interaction of the hTERT-IFD domain with TPP1 when mutated. Using a similar approach, we find that the IFD domain interacts with the TEN domain but is not essential for intramolecular hTERT interactions with the TEN domain. IFD-TEN interactions are not disrupted by multiple amino acid changes in the IFD or TEN, thus highlighting a complex regulation of IFD-TEN interactions as suggested by recent cryo-EM structures of human telomerase.
Collapse
Affiliation(s)
| | - Adrian Young
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Chantal Autexier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Canada; Department of Medicine, McGill University, Montréal, Canada.
| |
Collapse
|
7
|
Shan S, Li J, Han G, Zhang R, Liu Z, Zhang Z. Fluorescence imaging of intracellular telomerase activity for tumor cell identification by oligonucleotide-functionalized gold nanoparticles. Analyst 2022; 147:2405-2411. [PMID: 35579289 DOI: 10.1039/d2an00525e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a specific biological marker for the occurrence and progression of tumor cells, detection of telomerase activity is of great importance for the physiological research of tumors. However, in situ measurement of telomerase activity in living cells still remains a challenge. Herein, we report a precisely designed oligonucleotide-functionalized gold nanoparticle probe that has realized high-efficiency detection of telomerase activity for cellular imaging toward the identification of tumors. Our method has achieved intracellular imaging of telomerase activity and shows good performance towards the distinction of tumor cells from normal ones. Moreover, the method reported here for tracking tumor cells in blood has wide applications in cancer diagnosis. This strategy offers an opportunity for cancer diagnosis, guiding therapy and evaluating prognosis.
Collapse
Affiliation(s)
- Shan Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Jiajia Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Guangmei Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Ruilong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Zhengjie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| | - Zhongping Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
8
|
Karakaya E, Akdur A, Ayvazoğlu Soy E, Moray G, Haberal M. Success Rate of Grafts With Multiple Renal Vessels in 3136 Kidney Transplants. EXP CLIN TRANSPLANT 2020; 19:14-19. [PMID: 32967599 DOI: 10.6002/ect.2020.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Multiple renal vessels are often detected in living and deceased organ donors. In the past, transplant with multiple renal vessel grafts has been a contraindication because of high vascular and urological complication rates. However, improvements in vascular reconstruction and anastomosis techniques have allowed graft function to be maintained for many years. Here, we retrospectively evaluated transplant of multiple renal vessel grafts and graft survival and postoperative vascular and urological complications. MATERIALS AND METHODS From November 1975 to July 2020, there were 3136 renal transplants (716 deceased donors, 2420 living donors) performed in our center. There were 2167 living donors and 643 deceased donors with single renal vessel grafts and 253 living donors and 73 deceased donors with multiple renal vessel grafts. For anastomoses, external iliac, internal iliac, common iliac, and inferior epigastric arteries and external iliac veins were used. Cold ischemia time, anastomosis time, postoperative vascular and urological complications, acute tubular necrosis, creatinine clearance, serum creatinine levels, graft rejection episodes, and graft and patient survival rates were evaluated. RESULTS With regard to creatinine clearance, cold ischemia and anastomosis time, acute tubular necrosis, rejection episodes, and 1-, 2-, and 5-year posttransplant serum creatinine levels, there were no significant differences between the groups. Graft survival rates in the single renal vessel group were 92.9% at 1 year posttransplant and 78.3% at 5 years posttransplant; rates in the multiple renal vessel group were 93.1% at 1 year and 79.7% at 5 years. The corresponding patient survival rates were 95.5% (1 year) and 92.9% (5 years) for the single renal vessel group and 96.9% (1 year) and 87.2% (5 years) for the multiple renal vessel group. CONCLUSIONS Improved anastomosis and recon struction techniques have allowed the safe transplant of multiple renal vessel grafts that may remain functional for many years.
Collapse
Affiliation(s)
- Emre Karakaya
- From the Department of General Surgery, Baskent University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
9
|
Patrick EM, Slivka JD, Payne B, Comstock MJ, Schmidt JC. Observation of processive telomerase catalysis using high-resolution optical tweezers. Nat Chem Biol 2020; 16:801-809. [PMID: 32066968 PMCID: PMC7311264 DOI: 10.1038/s41589-020-0478-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Telomere maintenance by telomerase is essential for continuous proliferation of human cells and is vital for the survival of stem cells and 90% of cancer cells. To compensate for telomeric DNA lost during DNA replication, telomerase processively adds GGTTAG repeats to chromosome ends by copying the template region within its RNA subunit. Between repeat additions, the RNA template must be recycled. How telomerase remains associated with substrate DNA during this critical translocation step remains unknown. Using a newly developed single-molecule telomerase activity assay utilizing high-resolution optical tweezers, we demonstrate that stable substrate DNA binding at an anchor site within telomerase facilitates the processive synthesis of telomeric repeats. The product DNA synthesized by telomerase can be recaptured by the anchor site or fold into G-quadruplex structures. Our results provide detailed mechanistic insights into telomerase catalysis, a process of critical importance in aging and cancer.
Collapse
Affiliation(s)
- Eric M Patrick
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Joseph D Slivka
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Bramyn Payne
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA. .,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Zheng M, Zhang R, Tian X, Liu Z, Zhang Z. Visualizing telomerase activity for tumour identification by hybridization-triggered ratiometric fluorescence. Chem Commun (Camb) 2019; 55:2035-2038. [DOI: 10.1039/c8cc09257e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We developed a ratiometric fluorescence strategy for visualising telomerase activity to aid tumour identification by the naked eye.
Collapse
Affiliation(s)
- Manli Zheng
- School of Chemical and Chemical Engineering, Institutes of Physical Science and Information Technology, School of Life Science, Anhui University
- Hefei
- China
| | - Ruilong Zhang
- School of Chemical and Chemical Engineering, Institutes of Physical Science and Information Technology, School of Life Science, Anhui University
- Hefei
- China
| | - Xiaohe Tian
- School of Chemical and Chemical Engineering, Institutes of Physical Science and Information Technology, School of Life Science, Anhui University
- Hefei
- China
| | - Zhengjie Liu
- School of Chemical and Chemical Engineering, Institutes of Physical Science and Information Technology, School of Life Science, Anhui University
- Hefei
- China
| | - Zhongping Zhang
- School of Chemical and Chemical Engineering, Institutes of Physical Science and Information Technology, School of Life Science, Anhui University
- Hefei
- China
| |
Collapse
|
11
|
Kong X, Cruz GMS, Trinh SL, Zhu XD, Berns MW, Yokomori K. Biphasic recruitment of TRF2 to DNA damage sites promotes non-sister chromatid homologous recombination repair. J Cell Sci 2018; 131:jcs219311. [PMID: 30404833 PMCID: PMC10682959 DOI: 10.1242/jcs.219311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2023] Open
Abstract
TRF2 (TERF2) binds to telomeric repeats and is critical for telomere integrity. Evidence suggests that it also localizes to non-telomeric DNA damage sites. However, this recruitment appears to be precarious and functionally controversial. We find that TRF2 recruitment to damage sites occurs by a two-step mechanism: the initial rapid recruitment (phase I), and stable and prolonged association with damage sites (phase II). Phase I is poly(ADP-ribose) polymerase (PARP)-dependent and requires the N-terminal basic domain. The phase II recruitment requires the C-terminal MYB/SANT domain and the iDDR region in the hinge domain, which is mediated by the MRE11 complex and is stimulated by TERT. PARP-dependent recruitment of intrinsically disordered proteins contributes to transient displacement of TRF2 that separates two phases. TRF2 binds to I-PpoI-induced DNA double-strand break sites, which is enhanced by the presence of complex damage and is dependent on PARP and the MRE11 complex. TRF2 depletion affects non-sister chromatid homologous recombination repair, but not homologous recombination between sister chromatids or non-homologous end-joining pathways. Our results demonstrate a unique recruitment mechanism and function of TRF2 at non-telomeric DNA damage sites.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Gladys Mae Saquilabon Cruz
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Sally Loyal Trinh
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Michael W Berns
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92617, USA
- Department of Biomedical Engineering and Surgery, University of California, Irvine, CA 92617, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| |
Collapse
|
12
|
Jia P, Chastain M, Zou Y, Her C, Chai W. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells. Nucleic Acids Res 2017; 45:1219-1232. [PMID: 28180301 PMCID: PMC5388398 DOI: 10.1093/nar/gkw1170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022] Open
Abstract
Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability.
Collapse
Affiliation(s)
- Pingping Jia
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Ying Zou
- Cytogenetics Laboratory, Department of Pathology, the University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chengtao Her
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
13
|
Wu RA, Tam J, Collins K. DNA-binding determinants and cellular thresholds for human telomerase repeat addition processivity. EMBO J 2017; 36:1908-1927. [PMID: 28495680 PMCID: PMC5494469 DOI: 10.15252/embj.201796887] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
Abstract
The reverse transcriptase telomerase adds telomeric repeats to chromosome ends. Purified human telomerase catalyzes processive repeat synthesis, which could restore the full ~100 nucleotides of (T2AG3)n lost from replicated chromosome ends as a single elongation event. Processivity inhibition is proposed to be a basis of human disease, but the impacts of different levels of processivity on telomere maintenance have not been examined. Here, we delineate side chains in the telomerase active-site cavity important for repeat addition processivity, determine how they contribute to duplex and single-stranded DNA handling, and test the cellular consequences of partial or complete loss of repeat addition processivity for telomere maintenance. Biochemical findings oblige a new model for DNA and RNA handling dynamics in processive repeat synthesis. Biological analyses implicate repeat addition processivity as essential for telomerase function. However, telomeres can be maintained by telomerases with lower than wild-type processivity. Furthermore, telomerases with low processivity dramatically elongate telomeres when overexpressed. These studies reveal distinct consequences of changes in telomerase repeat addition processivity and expression level on telomere elongation and length maintenance.
Collapse
Affiliation(s)
- Robert Alexander Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jane Tam
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
14
|
Multiple DNA Interactions Contribute to the Initiation of Telomerase Elongation. J Mol Biol 2017; 429:2109-2123. [PMID: 28506636 DOI: 10.1016/j.jmb.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
Abstract
Telomerase maintains telomere length and chromosome integrity by adding short tandem repeats of single-stranded DNA to the 3' ends, via reverse transcription of a defined template region of its RNA subunit. To further understand the telomerase elongation mechanism, we studied the primer utilization and extension activity of the telomerase from the budding yeast Naumovozyma castellii (Saccharomyces castellii), which displays a processive nucleotide and repeat addition polymerization. For the efficient initiation of canonical elongation, telomerase required 4-nt primer 3' end complementarity to the template RNA. This DNA-RNA hybrid formation was highly important for the stabilization of an initiation-competent telomerase-DNA complex. Anchor site interactions with the DNA provided additional stabilization to the complex. Our studies indicate three additional separate interactions along the length of the DNA primer, each providing different and distinct contributions to the initiation event. A sequence-independent anchor site interaction acts immediately adjacent to the base-pairing 3' end, indicating a protein anchor site positioned very close to the catalytic site. Two additional anchor regions further 5' on the DNA provide sequence-specific contributions to the initiation of elongation. Remarkably, a non-telomeric sequence in the distal 25- to 32-nt region negatively influences the initiation of telomerase elongation, suggesting an anchor site with a regulatory role in the telomerase elongation decision.
Collapse
|
15
|
Abstract
Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Jacob M Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202; , , ,
| |
Collapse
|
16
|
Lee SS, Bohrson C, Pike AM, Wheelan SJ, Greider CW. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells. Cell Rep 2015; 13:1623-32. [PMID: 26586427 PMCID: PMC4663052 DOI: 10.1016/j.celrep.2015.10.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 12/26/2022] Open
Abstract
Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.
Collapse
Affiliation(s)
- Stella Suyong Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Craig Bohrson
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandra Mims Pike
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Jo Wheelan
- Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Carol Widney Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
17
|
Guilherme RS, Hermetz KE, Varela PT, Perez ABA, Meloni VA, Rudd MK, Kulikowski LD, Melaragno MI. Terminal 18q deletions are stabilized by neotelomeres. Mol Cytogenet 2015; 8:32. [PMID: 25969696 PMCID: PMC4427916 DOI: 10.1186/s13039-015-0135-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND All human chromosomes are capped by tandem repeat (TTAGGG)n sequences that protect them against end-to-end fusion and are essential to chromosomal replication and integrity. Therefore, after a chromosomal breakage, the deleted chromosomes must be stabilized by retaining the telomere or acquiring a new cap, by telomere healing or telomere capture. There are few reports with molecular approaches on the mechanisms involved in stabilization of 18q terminal deletions. RESULTS In this study we analyzed nine patients with 18q terminal deletion identified by G-banding and genomic array. FISH using PNA probe revealed telomeric signals in all deleted chromosomes tested. We fine-mapped breakpoints with customized arrays and sequenced six terminal deletion junctions. In all six deleted chromosomes sequenced, telomeric sequences were found directly attached to the breakpoints. Little or no microhomology was found at the breakpoints and none of the breaks sequenced were located in low copy repeat (LCR) regions, though repetitive elements were found around the breakpoints in five patients. One patient presented a more complex rearrangement with two deleted segments and an addition of 17 base pairs (bp). CONCLUSIONS We found that all six deleted chromosomes sequenced were probably stabilized by the healing mechanism leading to a neotelomere formation.
Collapse
Affiliation(s)
- Roberta Santos Guilherme
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Northeast, GA 30322, Atlanta, USA
| | - Patrícia Teixeira Varela
- Department of Biophysics, Universidade Federal de São Paulo, Rua Três de Maio 100, CEP 04023-900, São Paulo, Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - Vera Ayres Meloni
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| | - M Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Northeast, GA 30322, Atlanta, USA
| | - Leslie Domenici Kulikowski
- Department of Pathology, Laboratório de Citogenômica, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar 255, CEP 05403-000, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, CEP 04023-900, São Paulo, Brazil
| |
Collapse
|
18
|
Vasianovich Y, Harrington LA, Makovets S. Break-induced replication requires DNA damage-induced phosphorylation of Pif1 and leads to telomere lengthening. PLoS Genet 2014; 10:e1004679. [PMID: 25329304 PMCID: PMC4199488 DOI: 10.1371/journal.pgen.1004679] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway - Rad51, Rad52, Pol32, and Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with impaired DNA replication, cdc44-5 and rrm3Δ, were similar to cdc9-1: their long telomere phenotype was dependent on the Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase activity and leads to telomere lengthening.
Collapse
Affiliation(s)
- Yulia Vasianovich
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lea A. Harrington
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada
| | - Svetlana Makovets
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Parks JW, Stone MD. Coordinated DNA dynamics during the human telomerase catalytic cycle. Nat Commun 2014; 5:4146. [PMID: 24923681 PMCID: PMC4107311 DOI: 10.1038/ncomms5146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/15/2014] [Indexed: 11/09/2022] Open
Abstract
The human telomerase reverse transcriptase (hTERT) utilizes a template within the integral RNA subunit (hTR) to direct extension of telomeres. Telomerase exhibits repeat addition processivity (RAP) and must therefore translocate the nascent DNA product into a new RNA:DNA hybrid register to prime each round of telomere repeat synthesis. Here we use single-molecule FRET and nuclease protection assays to monitor telomere DNA structure and dynamics during the telomerase catalytic cycle. DNA translocation during RAP proceeds through a previously uncharacterized kinetic sub-step during which the 3′-end of the DNA substrate base pairs downstream within the hTR template. The rate constant for DNA primer re-alignment reveals this step is not rate-limiting for RAP, suggesting a second slow conformational change repositions the RNA:DNA hybrid into the telomerase active site and drives the extrusion of the 5′-end of the DNA primer out of the enzyme complex.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Michael D Stone
- 1] Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA [2] Center for Molecular Biology of RNA, University of California, 1156 High Street, Santa Cruz, California 95064, USA
| |
Collapse
|
20
|
Ludlow AT, Robin JD, Sayed M, Litterst CM, Shelton DN, Shay JW, Wright WE. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res 2014; 42:e104. [PMID: 24861623 PMCID: PMC4117742 DOI: 10.1093/nar/gku439] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase.
Collapse
Affiliation(s)
- Andrew T Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Jerome D Robin
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Mohammed Sayed
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | - Dawne N Shelton
- Bio-Rad Laboratories, Digital Biology Center, Pleasanton, CA 94566, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9039, USA
| |
Collapse
|
21
|
Gardano L. Using PCR coupled to PAGE for detection and semiquantitative evaluation of telomerase activity. Methods Mol Biol 2014; 1054:283-93. [PMID: 23913300 DOI: 10.1007/978-1-62703-565-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Telomerase is the enzyme that extends the chromosome ends, thereby contributing to eukaryotic cell genome stability. Telomerase is expressed in the majority of cells that have an unlimited proliferation such as stem cells and cancer cells. The increased interest in telomerase in cancer research, challenged by the low cellular abundance of the enzyme, has led to the development of a reliable and at the same time very sensitive approach to detect telomerase activity. The telomeric repeat amplification protocol (TRAP) represents an easy and rapid method for detection of telomerase activity in cells. A non-telomeric TS primer is extended by telomerase in the first step followed by the PCR amplification of the products. The PCR step renders this protocol very sensitive to detect telomerase activity at the single cell level making it compatible with the analysis of tumor samples. When run on a polyacrylamide gel, the PCR product is a characteristic ladder of bands due to the repetitive nature of telomeric DNA sequence. The densitometric analysis of the ladder allows the TRAP assay to be used for comparative quantification of telomerase activity in different samples.
Collapse
|
22
|
Wu RA, Collins K. Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 2014; 33:921-35. [PMID: 24619002 DOI: 10.1002/embj.201387205] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
With eukaryotic genome replication, incomplete telomere synthesis results in chromosome shortening and eventual compromise of genome stability. Telomerase counteracts this terminal sequence loss by synthesizing telomeric repeats through repeated cycles of reverse transcription of its internal RNA template. Using human telomerase domain-complementation assays for telomerase reverse transcriptase protein (TERT) and RNA in combination with the first direct footprinting assay for telomerase association with bound DNA, we resolve mechanisms by which TERT domains and RNA motifs direct repeat synthesis. Surprisingly, we find that product-template hybrid is sensed in a length- and sequence-dependent manner to set the template 5' boundary. We demonstrate that the TERT N-terminal (TEN) domain determines active-site use of the atypically short primer-template hybrid necessary for telomeric-repeat synthesis. Also against expectation, we show that the remainder of TERT (the TERT ring) supports functional recognition and physical protection of single-stranded DNA adjacent to the template hybrid. These findings establish unprecedented polymerase recognition specificities for DNA-RNA hybrid and single-stranded DNA and suggest a new perspective on the mechanisms of telomerase specialization for telomeric-repeat synthesis.
Collapse
Affiliation(s)
- Robert Alexander Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
23
|
hTERT: Another brick in the wall of cancer cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013; 752:119-128. [DOI: 10.1016/j.mrrev.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 01/06/2023]
|
24
|
Liu Z, Zhuang J, Li C, Wan P, Li N, Zhou Q, Zhou C, Huang Z, Wang Z. Long-term cultivation of human corneal endothelial cells by telomerase expression. Exp Eye Res 2012; 100:40-51. [PMID: 22575565 DOI: 10.1016/j.exer.2012.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022]
Abstract
The objective of this study was to explore the potential role of human telomerase reverse transcriptase (TERT) in extending the proliferative lifespan of human corneal endothelial cells (HCECs) under long-term cultivation. A primary culture was initiated with a pure population of HCECs in DMEM/F12 media containing 10% fetal bovine serum and other various supplements. TERT gene was successfully transfected into normal HCECs. A stable HCECs cell line (TERT-HCECs) that expressed TERT was established. The cells could be subcultured for 36 passages. Within this line of cells, TERT not only extended proliferative lifespan and inhibited apoptosis but also enhanced the cell line remaining the normal characteristics similar to HCECs. There were no significantly differences in the expression of the pump function related proteins voltage dependent anion channel 3 (VDAC3), sodium bicarbonate cotransporter member 4 (SLC4A4), chloride channel protein 3 (CLCN3), Na(+)/K(+)-ATPase α1, and ZO-1 in the cell line TERT-HCECs and primary HCECs. TERT-HCECs formed a monolayer cell sheet, maintained similar cell junction formation and pump function with primary HCECs. Karyotype analysis exhibited normal chromosomal numbers. The soft agar colony assay and tumor formation in nude mice assay showed no malignant alterations in TERT-HCECs. Our findings indicated that we had established a cell line with its similar phenotype and properties to primary HCECs. Further study of the TERT-HCECs may be valuable in studying the function of the cells in vivo.
Collapse
Affiliation(s)
- Zhiping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reynolds GE, Gao Q, Miller D, Snow BE, Harrington LA, Murnane JP. PIF1 disruption or NBS1 hypomorphism does not affect chromosome healing or fusion resulting from double-strand breaks near telomeres in murine embryonic stem cells. DNA Repair (Amst) 2011; 10:1164-73. [PMID: 21945094 DOI: 10.1016/j.dnarep.2011.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 11/26/2022]
Abstract
Telomerase serves to maintain telomeric repeat sequences at the ends of chromosomes. However, telomerase can also add telomeric repeat sequences at DNA double-strand breaks (DSBs), a process called chromosome healing. Here, we employed a method of inducing DSBs near telomeres to query the role of two proteins, PIF1 and NBS1, in chromosome healing in mammalian cells. PIF1 was investigated because the PIF1 homolog in Saccharomyces cerevisiae inhibits chromosome healing, as shown by a 1000-fold increase in chromosome in PIF1-deficient cells. NBS1 was investigated because the functional homolog of NBS1 in S. cerevisiae, Xrs2, is part of the Mre11/Rad50/Xrs2 complex that is required for chromosome healing due to its role in the processing of DSBs and recruitment of telomerase. We found that disruption of mPif1 had no detectable effect on the frequency of chromosome healing at DSBs near telomeres in murine embryonic stem cells. Moreover, the Nbs1(ΔB) hypomorph, which is defective in the processing of DSBs, also had no detectable effect on the frequency of chromosome healing, DNA degradation, or gross chromosome rearrangements (GCRs) that result from telomeric DSBs. Although we cannot rule out small changes in chromosome healing using this system, it is clear from our results that knockout of PIF1 or the Nbs1(ΔB) hypomorph does not result in large differences in chromosome healing in murine cells. These results represent the first genetic assessment of the role of these proteins in chromosome healing in mammals, and suggest that murine cells have evolved mechanisms to ensure the functional redundancy of Pif1 or Nbs1 in the regulation of chromosome healing.
Collapse
Affiliation(s)
- Gloria E Reynolds
- Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331, United States
| | | | | | | | | | | |
Collapse
|
26
|
Chen CY, Wang Q, Liu JQ, Hao YH, Tan Z. Contribution of Telomere G-Quadruplex Stabilization to the Inhibition of Telomerase-Mediated Telomere Extension by Chemical Ligands. J Am Chem Soc 2011; 133:15036-44. [DOI: 10.1021/ja204326w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang-yue Chen
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jia-quan Liu
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-hua Hao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Zheng Tan
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
27
|
Luo Y, Hermetz KE, Jackson JM, Mulle JG, Dodd A, Tsuchiya KD, Ballif BC, Shaffer LG, Cody JD, Ledbetter DH, Martin CL, Rudd MK. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements. Hum Mol Genet 2011; 20:3769-78. [PMID: 21729882 DOI: 10.1093/hmg/ddr293] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromosome rearrangements are a significant cause of intellectual disability and birth defects. Subtelomeric rearrangements, including deletions, duplications and translocations of chromosome ends, were first discovered over 40 years ago and are now recognized as being responsible for several genetic syndromes. Unlike the deletions and duplications that cause some genomic disorders, subtelomeric rearrangements do not typically have recurrent breakpoints and involve many different chromosome ends. To capture the molecular mechanisms responsible for this heterogeneous class of chromosome abnormality, we coupled high-resolution array CGH with breakpoint junction sequencing of a diverse collection of subtelomeric rearrangements. We analyzed 102 breakpoints corresponding to 78 rearrangements involving 28 chromosome ends. Sequencing 21 breakpoint junctions revealed signatures of non-homologous end-joining, non-allelic homologous recombination between interspersed repeats and DNA replication processes. Thus, subtelomeric rearrangements arise from diverse mutational mechanisms. In addition, we find hotspots of subtelomeric breakage at the end of chromosomes 9q and 22q; these sites may correspond to genomic regions that are particularly susceptible to double-strand breaks. Finally, fine-mapping the smallest subtelomeric rearrangements has narrowed the critical regions for some chromosomal disorders.
Collapse
Affiliation(s)
- Yue Luo
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res 2011; 730:28-36. [PMID: 21575645 DOI: 10.1016/j.mrfmmm.2011.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023]
Abstract
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94143-1331, USA.
| |
Collapse
|
29
|
Wang Q, Liu JQ, Chen Z, Zheng KW, Chen CY, Hao YH, Tan Z. G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. Nucleic Acids Res 2011; 39:6229-37. [PMID: 21441540 PMCID: PMC3152327 DOI: 10.1093/nar/gkr164] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Telomere G-quadruplex is emerging as a promising anti-cancer target due to its inhibition to telomerase, an enzyme expressed in more than 85% tumors. Telomerase-mediated telomere extension and some other reactions require a free 3′ telomere end in single-stranded form. G-quadruplex formation near the 3′ end of telomere DNA can leave a 3′ single-stranded tail of various sizes. How these terminal structures affect reactions at telomere end is not clear. In this work, we studied the 3′ tail size-dependence of telomere extension by either telomerase or the alternative lengthening of telomere (ALT) mechanism as well as telomere G-quadruplex unwinding. We show that these reactions require a minimal tail of 8, 12 and 6 nt, respectively. Since we have shown that G-quadruplex tends to form at the farthest 3′ distal end of telomere DNA leaving a tail of no more than 5 nt, these results imply that G-quadruplex formation may play a role in regulating reactions at the telomere ends and, as a result, serve as effective drug target for intervening telomere function.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Majerská J, Sýkorová E, Fajkus J. Non-telomeric activities of telomerase. MOLECULAR BIOSYSTEMS 2011; 7:1013-23. [DOI: 10.1039/c0mb00268b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Hannes F, Van Houdt J, Quarrell OW, Poot M, Hochstenbach R, Fryns JP, Vermeesch JR. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions. Hum Mutat 2010; 31:1343-51. [PMID: 20886614 DOI: 10.1002/humu.21368] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/07/2010] [Indexed: 11/12/2022]
Abstract
Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes.
Collapse
Affiliation(s)
- Femke Hannes
- Centre for Human Genetics, University Hospital, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Jurczyluk J, Nouwens AS, Holien JK, Adams TE, Lovrecz GO, Parker MW, Cohen SB, Bryan TM. Direct involvement of the TEN domain at the active site of human telomerase. Nucleic Acids Res 2010; 39:1774-88. [PMID: 21051362 PMCID: PMC3061064 DOI: 10.1093/nar/gkq1083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomerase is a ribonucleoprotein that adds DNA to the ends of chromosomes. The catalytic protein subunit of telomerase (TERT) contains an N-terminal domain (TEN) that is important for activity and processivity. Here we describe a mutation in the TEN domain of human TERT that results in a greatly increased primer Kd, supporting a role for the TEN domain in DNA affinity. Measurement of enzyme kinetic parameters has revealed that this mutant enzyme is also defective in dNTP polymerization, particularly while copying position 51 of the RNA template. The catalytic defect is independent of the presence of binding interactions at the 5′-region of the DNA primer, and is not a defect in translocation rate. These data suggest that the TEN domain is involved in conformational changes required to position the 3′-end of the primer in the active site during nucleotide addition, a function which is distinct from the role of the TEN domain in providing DNA binding affinity.
Collapse
Affiliation(s)
- Julie Jurczyluk
- Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xie P. A modified model for translocation events of processive nucleotide and repeat additions by the recombinant telomerase. Biophys Chem 2010; 153:83-96. [PMID: 21055868 DOI: 10.1016/j.bpc.2010.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 12/22/2022]
Abstract
Telomerase is a unique reverse transcriptase that extends the single-stranded 3' overhangs of telomeres by copying a short template sequence within the integral RNA component of the enzyme. It shows processive nucleotide and repeat addition activities, which are realized via two types of movements: translocation of the DNA:RNA hybrid away from the active site following each nucleotide addition and translocation of the 3' end of the DNA primer relative to the RNA template after each round of repeat synthesis. Here, a model is presented to describe these two types of translocation events by the recombinant Tetrahymena telomerase, via the modification of the model that has been proposed recently. Using the present model, the dynamics of the dissociation of the DNA primer from the telomerase and the dynamics of the disruption of the DNA:RNA hybrid and then repositioning of the product 3' end to the beginning of the template are studied quantitatively. Their effects on the repeat addition processivity are theoretically studied. The theoretical results are in agreement with the available experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Wyatt HDM, West SC, Beattie TL. InTERTpreting telomerase structure and function. Nucleic Acids Res 2010; 38:5609-22. [PMID: 20460453 PMCID: PMC2943602 DOI: 10.1093/nar/gkq370] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 12/15/2022] Open
Abstract
The Nobel Prize in Physiology or Medicine was recently awarded to Elizabeth Blackburn, Carol Greider and Jack Szostak for their pioneering studies on chromosome termini (telomeres) and their discovery of telomerase, the enzyme that synthesizes telomeres. Telomerase is a unique cellular reverse transcriptase that contains an integral RNA subunit, the telomerase RNA and a catalytic protein subunit, the telomerase reverse transcriptase (TERT), as well as several species-specific accessory proteins. Telomerase is essential for genome stability and is associated with a broad spectrum of human diseases including various forms of cancer, bone marrow failure and pulmonary fibrosis. A better understanding of telomerase structure and function will shed important insights into how this enzyme contributes to human disease. To this end, a series of high-resolution structural studies have provided critical information on TERT architecture and may ultimately elucidate novel targets for therapeutic intervention. In this review, we discuss the current knowledge of TERT structure and function, revealed through the detailed analysis of TERT from model organisms. To emphasize the physiological importance of telomeres and telomerase, we also present a general discussion of the human diseases associated with telomerase dysfunction.
Collapse
Affiliation(s)
- Haley D. M. Wyatt
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, EN6 3LD, UK and Southern Alberta Cancer Research Institute and Departments of Biochemistry and Molecular Biology and Oncology, Calgary, Alberta, T2N 4N1, Canada
| | - Stephen C. West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, EN6 3LD, UK and Southern Alberta Cancer Research Institute and Departments of Biochemistry and Molecular Biology and Oncology, Calgary, Alberta, T2N 4N1, Canada
| | - Tara L. Beattie
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, EN6 3LD, UK and Southern Alberta Cancer Research Institute and Departments of Biochemistry and Molecular Biology and Oncology, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
35
|
Jeang KT, Giam CZ, Majone F, Aboud M. HTLV-1 Tax: Linking transformation, DNA damage and apoptotic T-cell death. J Biol Chem 2010; 279:31991-4. [PMID: 15090550 DOI: 10.1074/jbc.r400009200] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human T-cell leukemia virus type I (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4-positive T-cell neoplasia. The HTLV-1 proto-oncogene Tax, a potent transcriptional activator of cellular and viral genes, is thought to play a pivotal role in the transforming properties of the virus by deregulating intracellular signaling pathways. During the course of HTLV-1 infection, the dysregulation of cell-cycle checkpoints and the suppression of DNA damage repair is tightly linked to the activity of the viral oncoprotein Tax. Tax activity is associated with production of reactive oxygen intermediates (ROS), chromosomal instability and DNA damage, apoptotic cell death and cellular transformation. Changes in the intracellular redox status induced by Tax promote DNA damage. Tax-mediated DNA damage is believed to be essential in initiating the transformation process by subjecting infected T cells to genetic changes that eventually promote the neoplastic state. Apoptosis and immune surveillance would then exert the necessary selection pressure for eliminating the majority of virally infected cells, while escape variants acquiring a mutator phenotype would constitute a subpopulation of genetically altered cells prone to neoplasia. While the potency of Tax-activity seems to be a determining factor for the observed effects, the cooperation of Tax with other viral proteins determines the fate and progression of HTLV-1-infected cells through DNA damage, apoptosis, survival and transformation.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Laboratory of Molecular Microbiology, Nattional Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
36
|
Zhang W, Durocher D. De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes Dev 2010; 24:502-15. [PMID: 20194442 DOI: 10.1101/gad.1869110] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA double-strand breaks (DSBs) are a threat to cell survival and genome integrity. In addition to canonical DNA repair systems, DSBs can be converted to telomeres by telomerase. This process, herein termed telomere healing, endangers genome stability, since it usually results in chromosome arm loss. Therefore, cells possess mechanisms that prevent the untimely action of telomerase on DSBs. Here we report that Mec1, the ATR ortholog, couples the detection of DNA ends with the inhibition of telomerase. Mec1 inhibits telomere healing by phosphorylating Cdc13 on its S306 residue, a phosphorylation event that suppresses Cdc13 accumulation at DSBs. Conversely, telomere addition at accidental breaks is promoted by Pph3, the yeast protein phosphatase 4 (PP4). Pph3 is itself modulated by Rrd1, an activator of PP2A family phosphatases. Rrd1 and Pph3 oppose Cdc13 S306 phosphorylation and are necessary for the efficient accumulation of Cdc13 at DNA breaks. These studies therefore identify a mechanism by which the ATR family of kinases enforces genome integrity, and a process that underscores the contribution of Cdc13 to the fate of DNA ends.
Collapse
Affiliation(s)
- Wei Zhang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Sealey DCF, Zheng L, Taboski MAS, Cruickshank J, Ikura M, Harrington LA. The N-terminus of hTERT contains a DNA-binding domain and is required for telomerase activity and cellular immortalization. Nucleic Acids Res 2009; 38:2019-35. [PMID: 20034955 PMCID: PMC2847226 DOI: 10.1093/nar/gkp1160] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase defers the onset of telomere damage-induced signaling and cellular senescence by adding DNA onto chromosome ends. The ability of telomerase to elongate single-stranded telomeric DNA depends on the reverse transcriptase domain of TERT, and also relies on protein:DNA contacts outside the active site. We purified the N-terminus of human TERT (hTEN) from Escherichia coli, and found that it binds DNA with a preference for telomeric sequence of a certain length and register. hTEN interacted with the C-terminus of hTERT in trans to reconstitute enzymatic activity in vitro. Mutational analysis of hTEN revealed that amino acids Y18 and Q169 were required for telomerase activity in vitro, but not for the interaction with telomere DNA or the C-terminus. These mutants did not reconstitute telomerase activity in cells, maintain telomere length, or extend cellular lifespan. In addition, we found that T116/T117/S118, while dispensable in vitro, were required for cellular immortalization. Thus, the interactions of hTEN with telomere DNA and the C-terminus of hTERT are functionally separable from the role of hTEN in telomere elongation activity in vitro and in vivo, suggesting other roles for the protein and nucleic acid interactions of hTEN within, and possibly outside, the telomerase catalytic core.
Collapse
Affiliation(s)
- David C F Sealey
- Department of Medical Biophysics, University of Toronto, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario, M5G 2C1, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Wyatt HDM, Tsang AR, Lobb DA, Beattie TL. Human telomerase reverse transcriptase (hTERT) Q169 is essential for telomerase function in vitro and in vivo. PLoS One 2009; 4:e7176. [PMID: 19777057 PMCID: PMC2744565 DOI: 10.1371/journal.pone.0007176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/01/2009] [Indexed: 01/13/2023] Open
Abstract
Background Telomerase is a reverse transcriptase that maintains the telomeres of linear chromosomes and preserves genomic integrity. The core components are a catalytic protein subunit, the telomerase reverse transcriptase (TERT), and an RNA subunit, the telomerase RNA (TR). Telomerase is unique in its ability to catalyze processive DNA synthesis, which is facilitated by telomere-specific DNA-binding domains in TERT called anchor sites. A conserved glutamine residue in the TERT N-terminus is important for anchor site interactions in lower eukaryotes. The significance of this residue in higher eukaryotes, however, has not been investigated. Methodology/Principal Findings To understand the significance of this residue in higher eukaryotes, we performed site-directed mutagenesis on human TERT (hTERT) Q169 to create neutral (Q169A), conservative (Q169N), and non-conservative (Q169D) mutant proteins. We show that these mutations severely compromise telomerase activity in vitro and in vivo. The functional defects are not due to abrogated interactions with hTR or telomeric ssDNA. However, substitution of hTERT Q169 dramatically impaired the ability of telomerase to incorporate nucleotides at the second position of the template. Furthermore, Q169 mutagenesis altered the relative strength of hTERT-telomeric ssDNA interactions, which identifies Q169 as a novel residue in hTERT required for optimal primer binding. Proteolysis experiments indicate that Q169 substitution alters the protease-sensitivity of the hTERT N-terminus, indicating that a conformational change in this region of hTERT is likely critical for catalytic function. Conclusions/Significance We provide the first detailed evidence regarding the biochemical and cellular roles of an evolutionarily-conserved Gln residue in higher eukaryotes. Collectively, our results indicate that Q169 is needed to maintain the hTERT N-terminus in a conformation that is necessary for optimal enzyme-primer interactions and nucleotide incorporation. We show that Q169 is critical for the structure and function of human telomerase, thereby identifying a novel residue in hTERT that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Haley D. M. Wyatt
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Allison R. Tsang
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Deirdre A. Lobb
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Tara L. Beattie
- Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
39
|
Xie P. A possible mechanism of processive nucleotide and repeat additions by the telomerase. Biosystems 2009; 97:168-78. [PMID: 19580845 DOI: 10.1016/j.biosystems.2009.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/26/2009] [Indexed: 01/03/2023]
Abstract
Telomerase is a specialized cellular ribonucleoprotein complex that can synthesize long stretches of a DNA primer by using an intrinsic RNA template sequence. This requires that the telomerase must be able to carry out both nucleotide and repeat additions. Here, based on available structures and experimental data, a model is presented to describe these two addition activities. In the model, the forward movement of the polymerase active site along the template during the processive nucleotide addition is rectified through the incorporation of a matched base, via the Brownian ratchet mechanism. The unpairing of the DNA:RNA hybrid and then repositioning of product 3'-end after each round of repeat synthesis, which are prerequisites for the processive repeat addition, are caused by a force acting on the primer. The force results from the conformational transition of the stem III pseudoknot, which is mechanically induced by the rotation of TERT fingers together with stem IV loop towards the polymerase active site upon a nucleotide binding. Based on the model, the dynamics of processive nucleotide and repeat additions by recombinant Tetrahymena telomerase is studied analytically, which gives good quantitative explanations to the previous experimental results. Moreover, some predicted results are presented. In particular, it is shown that the repeat addition processivity is mainly determined by the difference between the free-energy change required to disrupt the DNA:RNA hybrid and that required to unfold the stem III pseudoknot. A large difference in free energy corresponds to a low repeat addition processivity while a small difference in free energy corresponds to a high repeat addition processivity.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
40
|
Miura N, Sato R, Tsukamoto T, Shimizu M, Kabashima H, Takeda M, Takahashi S, Harada T, West JE, Drabkin H, Mejia JE, Shiota G, Murawaki Y, Virmani A, Gazdar AF, Oshimura M, Hasegawa J. A noncoding RNA gene on chromosome 10p15.3 may function upstream of hTERT. BMC Mol Biol 2009; 10:5. [PMID: 19187532 PMCID: PMC2661890 DOI: 10.1186/1471-2199-10-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 02/02/2009] [Indexed: 01/05/2023] Open
Abstract
Background We attempted to clone candidate genes on 10p14–15 which may regulate hTERT expression, through exon trapping using 3 BAC clones covering the region. After obtaining 20 exons, we examined the function of RGM249 (RGM: RNA gene for miRNAs) we cloned from primary cultured human hepatocytes and hepatoma cell lines. We confirmed approximately 20 bp products digested by Dicer, and investigated the function of this cloned gene and its involvement in hTERT expression by transfecting the hepatoma cell lines with full-length dsRNA, gene-specific designed siRNA, and shRNA-generating plasmid. Results RGM249 showed cancer-dominant intense expression similar to hTERT in cancer cell lines, whereas very weak expression was evident in human primary hepatocytes without telomerase activity. This gene was predicted to be a noncoding precursor RNA gene. Interestingly, RGM249 dsRNA, siRNA, and shRNA inhibited more than 80% of hTERT mRNA expression. In contrast, primary cultured cells overexpressing the gene showed no significant change in hTERT mRNA expression; the overexpression of the gene strongly suppressed hTERT mRNA in poorly differentiated cells. Conclusion These findings indicate that RGM249 might be a microRNA precursor gene involved in the differentiation and function upstream of hTERT.
Collapse
Affiliation(s)
- Norimasa Miura
- Division of Pharmacotherapeutics, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gao Q, Reynolds GE, Wilcox A, Miller D, Cheung P, Artandi SE, Murnane JP. Telomerase-dependent and -independent chromosome healing in mouse embryonic stem cells. DNA Repair (Amst) 2008; 7:1233-49. [PMID: 18502190 DOI: 10.1016/j.dnarep.2008.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 01/04/2023]
Abstract
Telomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have previously demonstrated that double-strand breaks near telomeres in mammalian cells result in either the addition of a new telomere at the site of the break, termed chromosome healing, or sister chromatid fusion that initiates chromosome instability. In the present study, we have investigated the role of telomerase in chromosome healing and the importance of chromosome healing in preventing chromosome instability. In embryonic stem cell lines that are wild type for the catalytic subunit of telomerase (TERT), chromosome healing at I-SceI-induced double-strand breaks near telomeres accounted for 22 of 35 rearrangements, with the new telomeres added directly at the site of the break in all but one instance. In contrast, in two TERT-knockout embryonic stem cell lines, chromosome healing accounted for only 1 of 62 rearrangements, with a 23 bp insertion at the site of the sole chromosome-healing event. However, in a third TERT-knockout embryonic stem cell line, 10PTKO-A, chromosome healing was a common event that accounted for 20 of 34 rearrangements. Although this chromosome healing also occurred at the I-SceI site, differences in the microhomology at the site of telomere addition demonstrated that the mechanism was distinct from that in wild-type embryonic stem cell lines. In addition, the newly added telomeres in 10PTKO-A shortened with time in culture, eventually resulting in either telomere elongation through a telomerase-independent mechanism or loss of the subtelomeric plasmid sequences entirely. The combined results demonstrate that chromosome healing can occur through both telomerase-dependent and -independent mechanisms, and that although both mechanisms can prevent degradation and sister chromatid fusion, neither mechanism is efficient enough to prevent sister chromatid fusion from occurring in many cells experiencing double-strand breaks near telomeres.
Collapse
Affiliation(s)
- Qing Gao
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Finger SN, Bryan TM. Multiple DNA-binding sites in Tetrahymena telomerase. Nucleic Acids Res 2008; 36:1260-72. [PMID: 18174223 PMCID: PMC2275084 DOI: 10.1093/nar/gkm866] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/13/2007] [Accepted: 09/24/2007] [Indexed: 12/20/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that maintains chromosome ends through de novo addition of telomeric DNA. The ability of telomerase to interact with its DNA substrate at sites outside its catalytic centre ('anchor sites') is important for its unique ability to undergo repeat addition processivity. We have developed a direct and quantitative equilibrium primer-binding assay to measure DNA-binding affinities of regions of the catalytic protein subunit of recombinant Tetrahymena telomerase (TERT). There are specific telomeric DNA-binding sites in at least four regions of TERT (the TEN, RBD, RT and C-terminal domains). Together, these sites contribute to specific and high-affinity DNA binding, with a K(d) of approximately 8 nM. Both the K(m) and K(d) increased in a stepwise manner as the primer length was reduced; thus recombinant Tetrahymena telomerase, like the endogenous enzyme, contains multiple anchor sites. The N-terminal TEN domain, which has previously been implicated in DNA binding, shows only low affinity binding. However, there appears to be cooperativity between the TEN and RNA-binding domains. Our data suggest that different DNA-binding sites are used by the enzyme during different stages of the addition cycle.
Collapse
Affiliation(s)
| | - Tracy M. Bryan
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead NSW 2145 and University of Sydney, NSW 2006, Australia
| |
Collapse
|
43
|
Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev 2007; 129:91-8. [PMID: 18054989 DOI: 10.1016/j.mad.2007.10.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/15/2007] [Accepted: 10/23/2007] [Indexed: 12/12/2022]
Abstract
Telomerase is a specialized reverse transcriptase conserved throughout almost all eukaryotic life. It plays a fundamental role in genome maintenance, adding back the telomeric DNA repeats lost from chromosome ends due to incomplete replication or damage. The protein and RNA subunits of telomerase fold and function in a co-dependent manner to establish a high fidelity of telomeric repeat synthesis. Over the past two decades, studies of telomerase have uncovered previously unanticipated levels of complexity in its assembly, activity and regulation. This review describes the current understanding of telomerase in humans, with particular focus on telomerase biogenesis and regulation in its cellular context.
Collapse
|
44
|
Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 2007; 7:270-80. [PMID: 17384582 DOI: 10.1038/nrc2111] [Citation(s) in RCA: 608] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been 30 years since a 'new' leukaemia termed adult T-cell leukaemia (ATL) was described in Japan, and more than 25 years since the isolation of the retrovirus, human T-cell leukaemia virus type 1 (HTLV-1), that causes this disease. We discuss HTLV-1 infectivity and how the HTLV-1 Tax oncoprotein initiates transformation by creating a cellular environment favouring aneuploidy and clastogenic DNA damage. We also explore the contribution of a newly discovered protein and RNA on the HTLV-1 minus strand, HTLV-1 basic leucine zipper factor (HBZ), to the maintenance of virus-induced leukaemia.
Collapse
Affiliation(s)
- Masao Matsuoka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Japan
| | | |
Collapse
|
45
|
Wyatt HDM, Lobb DA, Beattie TL. Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol 2007; 27:3226-40. [PMID: 17296728 PMCID: PMC1899913 DOI: 10.1128/mcb.02368-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomerase is a ribonucleoprotein reverse transcriptase (RT) that processively synthesizes telomeric repeats onto the ends of linear chromosomes to maintain genomic stability. It has been proposed that the N terminus of the telomerase protein subunit, telomerase RT (TERT), contains an anchor site that forms stable interactions with DNA to prevent enzyme-DNA dissociation during translocation and to promote realignment events that accompany each round of telomere synthesis. However, it is not known whether human TERT (hTERT) can directly interact with DNA in the absence of the telomerase RNA subunit. Here we use a novel primer binding assay to establish that hTERT forms stable and specific contacts with telomeric DNA in the absence of the human telomerase RNA component (hTR). We show that hTERT-mediated primer binding can be functionally uncoupled from telomerase-mediated primer extension. Our results demonstrate that the first 350 amino acids of hTERT have a critical role in regulating the strength and specificity of protein-DNA interactions, providing additional evidence that the TERT N terminus contains an anchor site. Furthermore, we establish that the RT domain of hTERT mediates important protein-DNA interactions. Collectively, these data suggest that hTERT contains distinct anchor regions that cooperate to help regulate telomerase-mediated DNA recognition and elongation.
Collapse
Affiliation(s)
- Haley D M Wyatt
- Southern Alberta Cancer Research Institute, Department of Biochemistry and Molecular Biology, Room 372B HMRB, 2220 Hospital Drive NW, Calgary, AB, Canada
| | | | | |
Collapse
|
46
|
Abstract
The structure and integrity of telomeres are essential for genome stability. Telomere dysregulation can lead to cell death, cell senescence, or abnormal cell proliferation. The maintenance of telomere repeats in most eukaryotic organisms requires telomerase, which consists of a reverse transcriptase (RT) and an RNA template that dictates the synthesis of the G-rich strand of telomere terminal repeats. Structurally, telomerase reverse transcriptase (TERT) contains unique and variable N- and C-terminal extensions that flank a central RT-like domain. The enzymology of telomerase includes features that are both similar to and distinct from those characteristic of other RTs. Two distinguishing features of TERT are its stable association with the telomerase RNA and its ability to repetitively reverse transcribe the template segment of RNA. Here we discuss TERT structure and function; its regulation by RNA-DNA, TERT-DNA, TERT-RNA, TERT-TERT interactions, and TERT-associated proteins; and the relationship between telomerase enzymology and telomere maintenance.
Collapse
Affiliation(s)
- Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Quebec, Canada.
| | | |
Collapse
|
47
|
Drosopoulos WC, Prasad VR. The active site residue Valine 867 in human telomerase reverse transcriptase influences nucleotide incorporation and fidelity. Nucleic Acids Res 2007; 35:1155-68. [PMID: 17264120 PMCID: PMC1851649 DOI: 10.1093/nar/gkm002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/22/2006] [Accepted: 12/22/2006] [Indexed: 11/14/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT), the catalytic subunit of human telomerase, contains conserved motifs common to retroviral reverse transcriptases and telomerases. Within the C motif of hTERT is the Leu866-Val867-Asp868-Asp869 tetrapeptide that includes a catalytically essential aspartate dyad. Site-directed mutagenesis of Tyr183 and Met184 residues in HIV-1 RT, residues analogous to Leu866 and Val867, revealed that they are key determinants of nucleotide binding, processivity and fidelity. In this study, we show that substitutions at Val867 lead to significant changes in overall enzyme activity and telomere repeat extension rate, but have little effect on polymerase processivity. All Val867 substitutions examined (Ala, Met, Thr) led to reduced repeat extension rates, ranging from approximately 20 to 50% of the wild-type rate. Reconstitution of V867M hTERT and telomerase RNAs (TRs) with mutated template sequences revealed the effect on extension rate was associated with a template copying defect specific to template A residues. Furthermore, the Val867 hTERT mutants also displayed increased nucleotide incorporation fidelity, implicating Val867 as a determinant of telomerase fidelity. These findings suggest that by evolving to have a valine at position 867, the wild-type hTERT protein may have partially compromised polymerase fidelity for optimal and rapid repeat synthesis.
Collapse
Affiliation(s)
- William C Drosopoulos
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Abstract
The HTLV Tax protein is crucial for viral replication and for initiating malignant transformation leading to the development of adult T-cell leukemia. Tax has been shown to be oncogenic, since it transforms and immortalizes rodent fibroblasts and human T-lymphocytes. Through CREB, NF-kappaB and SRF pathways Tax transactivates cellular promoters including those of cytokines (IL-13, IL-15), cytokine receptors (IL-2Ralpha) and costimulatory surface receptors (OX40/OX40L) leading to upregulated protein expression and activated signaling cascades (e.g. Jak/STAT, PI3Kinase, JNK). Tax also stimulates cell growth by direct binding to cyclin-dependent kinase holenzymes and/or inactivating tumor suppressors (e.g. p53, DLG). Moreover, Tax silences cellular checkpoints, which guard against DNA structural damage and chromosomal missegregation, thereby favoring the manifestation of a mutator phenotype in cells.
Collapse
Affiliation(s)
- Ralph Grassmann
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, Germany.
| | | | | |
Collapse
|
49
|
Moriarty TJ, Ward RJ, Taboski MAS, Autexier C. An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol Biol Cell 2005; 16:3152-61. [PMID: 15857955 PMCID: PMC1165400 DOI: 10.1091/mbc.e05-02-0148] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Telomerase-mediated telomeric DNA synthesis is important for eukaryotic cell immortality. Telomerase adds tracts of short telomeric repeats to DNA substrates using a unique repeat addition form of processivity. It has been proposed that repeat addition processivity is partly regulated by a telomerase reverse transcriptase (TERT)-dependent anchor site; however, anchor site-mediating residues have not been identified in any TERT. We report the characterization of an N-terminal human TERT (hTERT) RNA interaction domain 1 (RID1) mutation that caused telomerase activity defects consistent with disruption of a template-proximal anchor site, including reduced processivity on short telomeric primers and reduced activity on substrates with nontelomeric 5' sequences, but not on primers with nontelomeric G-rich 5' sequences. This mutation was located within a subregion of RID1 previously implicated in biological telomerase functions unrelated to catalytic activity (N-DAT domain). Other N-DAT and C-terminal DAT (C-DAT) mutants and a C-terminally tagged hTERT-HA variant were defective in elongating short telomeric primers, and catalytic phenotypes of DAT variants were partially or completely rescued by increasing concentrations of DNA primers. These observations imply that RID1 and the hTERT C terminus contribute to telomerase's affinity for its substrate, and that RID1 may form part of the human telomerase anchor site.
Collapse
Affiliation(s)
- Tara J Moriarty
- Department of Anatomy and Cell Biology, Experimental Medicine Division, McGill University, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|
50
|
Kundra V, Krane JF, Nikolaidis P, Green DS, Zou KH, Tuncali K, Vansonnenberg E, Silverman SG. Telomerase activity predicts malignancy in percutaneous image-guided needle biopsy specimens of the abdomen and pelvis. Radiology 2005; 234:941-7. [PMID: 15734943 DOI: 10.1148/radiol.2343031701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To determine prospectively if assessment of telomerase activity in percutaneous needle biopsy specimens improves sensitivity and specificity in the diagnosis of abdominal and pelvic malignancy. MATERIALS AND METHODS The study was approved by the institutional review board, and written informed consent was obtained from all patients. A prospective double-blinded design was used to assess telomerase activity in abdominal and pelvic biopsy specimens from 99 patients (64 men, 35 women; age range, 22-87 years). After the clinical sample was retrieved, a study specimen from an extra needle pass was divided and independently analyzed for cytologic characteristics and telomerase activity. The final diagnosis was based on chart review at a minimum 1-year follow-up. Statistical analyses included sensitivity, specificity, and accuracy of cytologic examination and/or telomerase activity in predicting malignancy. RESULTS Data from study specimens indicated that the sensitivity, specificity, and accuracy of telomerase activity (n=99) in predicting malignancy were 55%, 79%, and 60%, respectively. For cytologic examination (n=86), the sensitivity, specificity, and accuracy in predicting malignancy were 74%, 94%, and 78%, respectively. Combining the two tests (n=86) and classifying a positive reading with either test as malignant improved sensitivity (83%) (P <.05) without altering specificity (76%). In 20 patients who had clinical sample reports that were classified as indeterminate, telomerase activity (n=20) yielded a higher sensitivity (62%) (P <.05) and similar specificity (86%) compared with cytologic examination (n=15), which yielded a sensitivity of 11% and a specificity of 83%. CONCLUSION In percutaneous biopsy specimens of the abdomen and pelvis, the combination of cytologic examination and telomerase activity yielded an increased sensitivity in predicting malignancy. In addition, assessing telomerase activity can help identify cancer even when cytologic results are indeterminate.
Collapse
Affiliation(s)
- Vikas Kundra
- Division of Abdominal Imaging and Intervention, Department of Radiology and Division of Cytology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass, USA.
| | | | | | | | | | | | | | | |
Collapse
|