1
|
Gao Y, Xue R, Guo R, Yang F, Sha X, Li Y, Hua R, Li G, Shen Q, Li K, Liu W, Xu Y, Zhou P, Wei Z, Zhang Z, Cao Y, He X, Wu H. CALR3 defects disrupt sperm-zona pellucida binding in humans: new insights into male factor fertilization failure and relevant clinical therapeutic approaches. Hum Reprod 2024:deae205. [PMID: 39237102 DOI: 10.1093/humrep/deae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
STUDY QUESTION Do biallelic deleterious variants of Calreticulin 3 (CALR3) cause fertilization failure (FF), resulting in male infertility in humans? SUMMARY ANSWER Biallelic mutations in CALR3 were identified in two infertile men from unrelated families and were shown to cause FF associated with failed sperm-zona pellucida (ZP) binding. WHAT IS KNOWN ALREADY In male mice, the Calr3-knockout has been reported to cause male infertility and FF. However, the mechanism behind this remains unclear in humans. STUDY DESIGN, SIZE, DURATION Sequencing studies were conducted in a research hospital on samples from Han Chinese families with primary infertility and sperm head deformations to identify the underlying genetic causes. PARTICIPANTS/MATERIALS, SETTING, METHODS Data from two infertile probands characterized by sperm head deformation were collected through in silico analysis. Sperm cells from the probands were characterized using light and electron microscopy and used to verify the pathogenicity of genetic factors through functional assays. Subzonal insemination (SUZI) and IVF assays were performed to determine the exact pathogenesis of FF. ICSI were administered to overcome CALR3-affected male infertility. MAIN RESULTS AND THE ROLE OF CHANCE Novel biallelic deleterious mutations in CALR3 were identified in two infertile men from unrelated families. We found one homozygous frameshift CALR3 mutation (M1: c.17_27del, p.V6Gfs*34) and one compound heterozygous CALR3 mutation (M2: c.943A>G, p.N315D; M3: c.544T>C, p.Y182H). These mutations are rare in the general population and cause acrosomal ultrastructural defects in affected sperm. Furthermore, spermatozoa from patients harbouring the CALR3 mutations were unable to bind to the sperm-ZP or they disrupted gamete fusion or prevented oocyte activation. Molecular assays have revealed that CALR3 is crucial for the maturation of the ZP binding protein in humans. Notably, the successful fertilization via SUZI and ICSI attempts for two patients, as well as the normal expression of PLCζ in the mutant sperm, suggests that ICSI is an optimal treatment for CALR3-deficient FF. LIMITATIONS, REASONS FOR CAUTION The results are based on sperm-related findings from two patients. Further studies are required to gain insight into the developmental stage and function of CALR3 in human testis. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the underlying risk of FF associated with sperm defects and provide a valuable reference for personalized genetic counselling and clinical treatment of these patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key R&D Program of China (2021YFC2700901), Hefei Comprehensive National Science Center Medical-Industrial Integration Medical Equipment Innovation Research Platform Project (4801001202), the National Natural Science Foundation of China (82201803, 82371621, 82271639), Foundation of the Education Department of Anhui Province (gxgwfx2022007), Key Project of Natural Science Research of Anhui Educational Committee (2023AH053287), and the Clinical Medical Research Transformation Project of Anhui Province (202204295107020037). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Fan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuan Sha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rong Hua
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
| | - Guotong Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Wenwen Liu
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
2
|
Ye Z, Sabatier P, Martin-Gonzalez J, Eguchi A, Lechner M, Østergaard O, Xie J, Guo Y, Schultz L, Truffer R, Bekker-Jensen DB, Bache N, Olsen JV. One-Tip enables comprehensive proteome coverage in minimal cells and single zygotes. Nat Commun 2024; 15:2474. [PMID: 38503780 PMCID: PMC10951212 DOI: 10.1038/s41467-024-46777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Mass spectrometry (MS)-based proteomics workflows typically involve complex, multi-step processes, presenting challenges with sample losses, reproducibility, requiring substantial time and financial investments, and specialized skills. Here we introduce One-Tip, a proteomics methodology that seamlessly integrates efficient, one-pot sample preparation with precise, narrow-window data-independent acquisition (nDIA) analysis. One-Tip substantially simplifies sample processing, enabling the reproducible identification of >9000 proteins from ~1000 HeLa cells. The versatility of One-Tip is highlighted by nDIA identification of ~6000 proteins in single cells from early mouse embryos. Additionally, the study incorporates the Uno Single Cell Dispenser™, demonstrating the capability of One-Tip in single-cell proteomics with >3000 proteins identified per HeLa cell. We also extend One-Tip workflow to analysis of extracellular vesicles (EVs) extracted from blood plasma, demonstrating its high sensitivity by identifying >3000 proteins from 16 ng EV preparation. One-Tip expands capabilities of proteomics, offering greater depth and throughput across a range of sample types.
Collapse
Affiliation(s)
- Zilu Ye
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Pierre Sabatier
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Akihiro Eguchi
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Maico Lechner
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jingsheng Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuan Guo
- Tecan Group Ltd., Männedorf, Switzerland
| | | | | | | | | | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Felten M, Distler U, von Wiegen N, Łącki M, Behl C, Tenzer S, Stöcker W, Körschgen H. Substrate profiling of the metalloproteinase ovastacin uncovers specific enzyme-substrate interactions and discloses fertilization-relevant substrates. FEBS J 2024; 291:114-131. [PMID: 37690456 DOI: 10.1111/febs.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The metalloproteinase ovastacin is released by the mammalian egg upon fertilization and cleaves a distinct peptide bond in zona pellucida protein 2 (ZP2), a component of the enveloping extracellular matrix. This limited proteolysis causes zona pellucida hardening, abolishes sperm binding, and thereby regulates fertility. Accordingly, this process is tightly controlled by the plasma protein fetuin-B, an endogenous competitive inhibitor. At present, little is known about how the cleavage characteristics of ovastacin differ from closely related proteases. Physiological implications of ovastacin beyond ZP2 cleavage are still obscure. In this study, we employed N-terminal amine isotopic labeling of substrates (N-TAILS) contained in the secretome of mouse embryonic fibroblasts to elucidate the substrate specificity and the precise cleavage site specificity. Furthermore, we were able to unravel the physicochemical properties governing ovastacin-substrate interactions as well as the individual characteristics that distinguish ovastacin from similar proteases, such as meprins and tolloid. Eventually, we identified several substrates whose cleavage could affect mammalian fertilization. Consequently, these substrates indicate newly identified functions of ovastacin in mammalian fertilization beyond zona pellucida hardening.
Collapse
Affiliation(s)
- Matthias Felten
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Nele von Wiegen
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Mateusz Łącki
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Germany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, The Autophagy Lab, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| |
Collapse
|
4
|
The stallion sperm acrosome: Considerations from a research and clinical perspective. Theriogenology 2023; 196:121-149. [PMID: 36413868 DOI: 10.1016/j.theriogenology.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
During the fertilization process, the interaction between the sperm and the oocyte is mediated by a process known as acrosomal exocytosis (AE). Although the role of the sperm acrosome on fertilization has been studied extensively over the last 70 years, little is known about the molecular mechanisms that govern acrosomal function, particularly in species other than mice or humans. Even though subfertility due to acrosomal dysfunction is less common in large animals than in humans, the evaluation of sperm acrosomal function should be considered not only as a complementary but a routine test when individuals are selected for breeding potential. This certainly holds true for stallions, which might display lower levels of fertility in the face of "acceptable" sperm quality parameters determined by conventional sperm assays. Nowadays, the use of high throughput technologies such as flow cytometry or mass spectrometry-based proteomic analysis is commonplace in the research arena. Such techniques can also be implemented in clinical scenarios of males with "idiopathic" subfertility. The current review focuses on the sperm acrosome, with particular emphasis on the stallion. We aim to describe the physiological events that lead to the acrosome formation within the testis, the role of very specific acrosomal proteins during AE, the methods to study the occurrence of AE under in vitro conditions, and the potential use of molecular biology techniques to discover new markers of acrosomal function and subfertility associated with acrosomal dysfunction in stallions.
Collapse
|
5
|
Schaapkens X, Bobylev EO, Reek JNH, Mooibroek TJ. A [Pd 2L 4] 4+ cage complex for n-octyl-β-d-glycoside recognition. Org Biomol Chem 2021; 18:4734-4738. [PMID: 32608444 DOI: 10.1039/d0ob01081b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cage complex [Pd294]4+ (3') binds n-octyl glycosides in DCM/DMSO (9 : 1) solution with Ka ≈ 51 M-1 for n-Oct-β-d-Glc and Ka ≈ 29 M-1 for n-Oct-β-d-Gal.
Collapse
Affiliation(s)
- Xander Schaapkens
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Eduard O Bobylev
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Joost N H Reek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Tiddo J Mooibroek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Schaapkens X, Holdener JH, Tolboom J, Bobylev EO, Reek JNH, Mooibroek TJ. An Octa-Urea [Pd 2 L 4 ] 4+ Cage that Selectively Binds to n-octyl-α-D-Mannoside. Chemphyschem 2021; 22:1187-1192. [PMID: 33878234 PMCID: PMC8252426 DOI: 10.1002/cphc.202100229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Designing compounds for the selective molecular recognition of carbohydrates is a challenging task for supramolecular chemists. Macrocyclic compounds that incorporate isophtalamide or bisurea spacers linking two aromatic moieties have proven effective for the selective recognition of all-equatorial carbohydrates. Here, we explore the molecular recognition properties of an octa-urea [Pd2 L4 ]4+ cage complex (4). It was found that small anions like NO3- and BF4- bind inside 4 and inhibit binding of n-octyl glycosides. When the large non-coordinating anion 'BArF ' was used, 4 showed excellent selectivity towards n-octyl-α-D-Mannoside with binding in the order of Ka ≈16 M-1 versus non-measurable affinities for other glycosides including n-octyl-β-D-Glucoside (in CH3 CN/H2 O 91 : 9).
Collapse
Affiliation(s)
- Xander Schaapkens
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joël H. Holdener
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Jens Tolboom
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Eduard O. Bobylev
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tiddo J. Mooibroek
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
7
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
8
|
Gahlay GK, Rajput N. The enigmatic sperm proteins in mammalian fertilization: an overview†. Biol Reprod 2020; 103:1171-1185. [PMID: 32761117 DOI: 10.1093/biolre/ioaa140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
Mammalian fertilization involves a physical interaction between a sperm and an egg followed by molecular interactions amongst their various cell surface molecules. These interactions are initially mediated on the egg's outermost matrix, zona pellucida (ZP), and then its plasma membrane. To better understand this process, it is pertinent to find the corresponding molecules on sperm that interact with ZP or the egg's plasma membrane. Although currently, we have some knowledge about the binding partners for egg's plasma membrane on sperm, yet the ones involved in an interaction with ZP have remained remarkably elusive. This review provides comprehensive knowledge about the various sperm proteins participating in mammalian fertilization and discusses the possible reasons for not being able to identify the strong sperm surface candidate (s) for ZP adhesion. It also hypothesizes the existence of a multi-protein complex(s), members of which participate in oviduct transport, cumulus penetration, zona adhesion, and adhesion/fusion with the egg's plasma membrane; with some protein(s) having multiple roles during this process. Identification of these proteins is crucial as it improves our understanding of the process and allows us to successfully treat infertility, develop contraceptives, and improve artificial reproductive technologies.
Collapse
Affiliation(s)
- Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
9
|
Tomida S, Takata M, Hirata T, Nagae M, Nakano M, Kizuka Y. The SH3 domain in the fucosyltransferase FUT8 controls FUT8 activity and localization and is essential for core fucosylation. J Biol Chem 2020; 295:7992-8004. [PMID: 32350116 DOI: 10.1074/jbc.ra120.013079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Core fucose is an N-glycan structure synthesized by α1,6-fucosyltransferase 8 (FUT8) localized to the Golgi apparatus and critically regulates the functions of various glycoproteins. However, how FUT8 activity is regulated in cells remains largely unclear. At the luminal side and uncommon for Golgi proteins, FUT8 has an Src homology 3 (SH3) domain, which is usually found in cytosolic signal transduction molecules and generally mediates protein-protein interactions in the cytosol. However, the SH3 domain has not been identified in other glycosyltransferases, suggesting that FUT8's functions are selectively regulated by this domain. In this study, using truncated FUT8 constructs, immunofluorescence staining, FACS analysis, cell-surface biotinylation, proteomics, and LC-electrospray ionization MS analyses, we reveal that the SH3 domain is essential for FUT8 activity both in cells and in vitro and identified His-535 in the SH3 domain as the critical residue for enzymatic activity of FUT8. Furthermore, we found that although FUT8 is mainly localized to the Golgi, it also partially localizes to the cell surface in an SH3-dependent manner, indicating that the SH3 domain is also involved in FUT8 trafficking. Finally, we identified ribophorin I (RPN1), a subunit of the oligosaccharyltransferase complex, as an SH3-dependent binding protein of FUT8. RPN1 knockdown decreased both FUT8 activity and core fucose levels, indicating that RPN1 stimulates FUT8 activity. Our findings indicate that the SH3 domain critically controls FUT8 catalytic activity and localization and is required for binding by RPN1, which promotes FUT8 activity and core fucosylation.
Collapse
Affiliation(s)
- Seita Tomida
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan.,Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Misaki Takata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Tetsuya Hirata
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Disease, Osaka University, Suita, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan .,Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Gifu, Japan
| |
Collapse
|
10
|
Fahrenkamp E, Algarra B, Jovine L. Mammalian egg coat modifications and the block to polyspermy. Mol Reprod Dev 2020; 87:326-340. [PMID: 32003503 PMCID: PMC7155028 DOI: 10.1002/mrd.23320] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.
Collapse
Affiliation(s)
- Eileen Fahrenkamp
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
11
|
Abstract
The perpetuation and preservation of distinct species rely on mechanisms that ensure that only interactions between gametes of the same species can give rise to viable and fertile offspring. Species-specificity can act at various stages, ranging from physical/behavioral pre-copulatory mechanisms, to pre-zygotic incompatibility during fertilization, to post-zygotic hybrid incompatibility. Herein, we focus on our current knowledge of the molecular mechanisms responsible for species-specificity during fertilization. While still poorly understood, decades of research have led to the discovery of molecules implicated in species-specific gamete interactions, starting from initial sperm-egg attraction to the binding of sperm and egg. While many of these molecules have been described as species-specific in their mode of action, relatively few have been demonstrated as such with definitive evidence. Thus, we also raise remaining questions that need to be addressed in order to characterize gamete interaction molecules as species-specific.
Collapse
|
12
|
Bhakta HH, Refai FH, Avella MA. The molecular mechanisms mediating mammalian fertilization. Development 2019; 146:146/15/dev176966. [PMID: 31375552 DOI: 10.1242/dev.176966] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fertilization is a key biological process in which the egg and sperm must recognize one another and fuse to form a zygote. Although the process is a continuum, mammalian fertilization has been studied as a sequence of steps: sperm bind and penetrate through the zona pellucida of the egg, adhere to the egg plasma membrane and finally fuse with the egg. Following fusion, effective blocks to polyspermy ensure monospermic fertilization. Here, we review how recent advances obtained using genetically modified mouse lines bring new insights into the molecular mechanisms regulating mammalian fertilization. We discuss models for these processes and we include studies showing that these mechanisms may be conserved across different mammalian species.
Collapse
Affiliation(s)
- Hanisha H Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Fares H Refai
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| | - Matteo A Avella
- Department of Biological Science, College of Engineering and Natural Sciences, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
13
|
Francesconi O, Roelens S. Biomimetic Carbohydrate‐Binding Agents (CBAs): Binding Affinities and Biological Activities. Chembiochem 2019; 20:1329-1346. [DOI: 10.1002/cbic.201800742] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
14
|
The importance of trace minerals copper, manganese, selenium and zinc in bovine sperm-zona pellucida binding. ZYGOTE 2019; 27:89-96. [PMID: 30871652 DOI: 10.1017/s0967199419000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummarySperm-zona pellucida (ZP) binding is a necessary event for successful fertilization. The aim of this study was to determine the effect of trace minerals such as copper (Cu), manganese (Mn), selenium (Se) and zinc (Zn) on bovine spermatozoa binding to ZP. Sperm viability, functional membrane integrity, acrosomal status (AS), total antioxidant capacity (TAC) and sperm lipid peroxidation (LPO) were also evaluated. For the present study, in vitro fertilization (IVF) medium was supplemented with Cu (0.4 µg/ml Cu), Mn (5 ng/ml Mn), Se (100 ng/ml Se), Zn (0.8 µg/ml Zn), all minerals (Cu+Mn+Se+Zn), or tested without supplement (Control). Considerably more sperm bound to ZP when Cu, Se or Zn were added to the IVF medium, but there were no difference compared with the Control, Mn and Cu+Mn+Se+Zn groups. After 1 h of incubation, viability was increased by the addition of Cu, Mn and Se with respect to the Control but, after 2 h, viability was higher only with the addition of Mn to IVF medium. Functional membrane integrity improved in sperm treated with Cu. Acrosome integrity was higher in sperm treated with Zn after 1 h of incubation. LPO was significantly higher in sperm treated with Cu or Cu+Mn+Se+Zn. The mean TACs of sperm treated with Cu, Mn, Zn or Cu+Mn+Se+Zn were lower than in the Control. In conclusion, the results obtained in the present study determined that the presence of Cu, Se and Zn in the IVF medium increased the number of spermatozoa bound to the ZP, highlighting the importance of these minerals in the fertilization process.
Collapse
|
15
|
Acuña F, Tano de la Hoz MF, Díaz AO, Portiansky EL, Barbeito CG, Flamini MA. Histochemistry of the zona pellucida of the ovary of a species with natural polyovulation: Lagostomus maximus
(Rodentia, Hystricomorpha, Chinchillidae). Reprod Domest Anim 2018; 54:207-215. [DOI: 10.1111/rda.13333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Francisco Acuña
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias; Universidad Nacional de La Plata (LHYEDEYC, FCV-UNLP); La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - María F. Tano de la Hoz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
- Instituto de Investigaciones Marinas y Costeras, Departamento de Biología, Facultad de Ciencias Naturales y Exactas; Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (IIMyC, FCEyN-UNMDP-CONICET); Mar del Plata Argentina
| | - Alcira O. Díaz
- Instituto de Investigaciones Marinas y Costeras, Departamento de Biología, Facultad de Ciencias Naturales y Exactas; Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (IIMyC, FCEyN-UNMDP-CONICET); Mar del Plata Argentina
| | - Enrique L. Portiansky
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias; Universidad Nacional de La Plata (LAI, FCV-UNLP); La Plata Argentina
| | - Claudio G. Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias; Universidad Nacional de La Plata (LHYEDEYC, FCV-UNLP); La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Mirta A. Flamini
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada, Facultad de Ciencias Veterinarias; Universidad Nacional de La Plata (LHYEDEYC, FCV-UNLP); La Plata Argentina
| |
Collapse
|
16
|
Inci F, Ozen MO, Saylan Y, Miansari M, Cimen D, Dhara R, Chinnasamy T, Yuksekkaya M, Filippini C, Kumar DK, Calamak S, Yesil Y, Durmus NG, Duncan G, Klevan L, Demirci U. A Novel On-Chip Method for Differential Extraction of Sperm in Forensic Cases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800121. [PMID: 30250782 PMCID: PMC6145299 DOI: 10.1002/advs.201800121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/13/2018] [Indexed: 05/20/2023]
Abstract
One out of every six American women has been the victim of a sexual assault in their lifetime. However, the DNA casework backlog continues to increase outpacing the nation's capacity since DNA evidence processing in sexual assault casework remains a bottleneck due to laborious and time-consuming differential extraction of victim's and perpetrator's cells. Additionally, a significant amount (60-90%) of male DNA evidence may be lost with existing procedures. Here, a microfluidic method is developed that selectively captures sperm using a unique oligosaccharide sequence (Sialyl-LewisX), a major carbohydrate ligand for sperm-egg binding. This method is validated with forensic mock samples dating back to 2003, resulting in 70-92% sperm capture efficiency and a 60-92% reduction in epithelial fraction. Captured sperm are then lysed on-chip and sperm DNA is isolated. This method reduces assay-time from 8 h to 80 min, providing an inexpensive alternative to current differential extraction techniques, accelerating identification of suspects and advancing public safety.
Collapse
Affiliation(s)
- Fatih Inci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Mehmet O. Ozen
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Yeseren Saylan
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Morteza Miansari
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Duygu Cimen
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Raghu Dhara
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Thiruppathiraja Chinnasamy
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Mehmet Yuksekkaya
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Chiara Filippini
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Deepan Kishore Kumar
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Semih Calamak
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Yusuf Yesil
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - Naside Gozde Durmus
- Department of BiochemistryStanford UniversityStanford Genome Technology CenterPalo AltoCA94304USA
| | - George Duncan
- Crime LaboratoryBroward County Sheriff's OfficeFort LauderdaleFL33301USA
| | | | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
- Department of Electrical Engineering (by courtesy)Stanford UniversityStanfordCA94305USA
| |
Collapse
|
17
|
|
18
|
Wang Y, Meng S, Yue T, Li S, Li Z. The rapid assembling of oligosaccharides by the developed HASP strategy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Intra J, Veltri C, De Caro D, Perotti ME, Pasini ME. In vitro evidence for the participation of Drosophila melanogaster sperm β-N-acetylglucosaminidases in the interactions with glycans carrying terminal N-acetylglucosamine residues on the egg's envelopes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21403. [PMID: 28695569 DOI: 10.1002/arch.21403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fertilization is a complex and multiphasic process, consisting of several steps, where egg-coating envelope's glycoproteins and sperm surface receptors play a critical role. Sperm-associated β-N-acetylglucosaminidases, also known as hexosaminidases, have been identified in a variety of organisms. Previously, two isoforms of hexosaminidases, named here DmHEXA and DmHEXB, were found as intrinsic proteins in the sperm plasma membrane of Drosophila melanogaster. In the present work, we carried out different approaches using solid-phase assays in order to analyze the oligosaccharide recognition ability of D. melanogaster sperm hexosaminidases to interact with well-defined carbohydrate chains that might functionally mimic egg glycoconjugates. Our results showed that Drosophila hexosaminidases prefer glycans carrying terminal β-N-acetylglucosamine, but not core β-N-acetylglucosamine residues. The capacity of sperm β-N-acetylhexosaminidases to bind micropylar chorion and vitelline envelope was examined in vitro assays. Binding was completely blocked when β-N-acetylhexosaminidases were preincubated with the glycoproteins ovalbumin and transferrin, and the monosaccharide β-N-acetylglucosamine. Overall, these data support the hypothesis of the potential role of these glycosidases in sperm-egg interactions in Drosophila.
Collapse
Affiliation(s)
- Jari Intra
- Department of Biosciences, University of Milano, Milano, Italy
| | - Concetta Veltri
- Department of Biosciences, University of Milano, Milano, Italy
| | - Daniela De Caro
- Department of Biosciences, University of Milano, Milano, Italy
| | | | | |
Collapse
|
20
|
Manhardt CT, Punch PR, Dougher CWL, Lau JTY. Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J Biol Chem 2017; 292:13514-13520. [PMID: 28717006 DOI: 10.1074/jbc.c117.795138] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Recent reports have documented that extracellular sialyltransferases can remodel both cell-surface and secreted glycans by a process other than the canonical cell-autonomous glycosylation that occurs within the intracellular secretory apparatus. Despite association of the abundance of these extracellular sialyltransferases, particularly ST6Gal-1, with disease states such as cancer and a variety of inflammatory conditions, the prevalence of this extrinsic glycosylation pathway in vivo remains unknown. Here we observed no significant extrinsic sialylation in resting mice, suggesting that extrinsic sialylation is not a constitutive process. However, extrinsic sialylation in the periphery could be triggered by inflammatory challenges, such as exposure to ionizing radiation or to bacterial lipopolysaccharides. Sialic acids from circulating platelets were used in vivo to remodel target cell surfaces. Platelet activation was minimally sufficient to elicit extrinsic sialylation, as demonstrated with the FeCl3 model of mesenteric artery thrombosis. Although extracellular ST6Gal-1 supports extrinsic sialylation, other sialyltransferases are present in systemic circulation. We also observed in vivo extrinsic sialylation in animals deficient in ST6Gal-1, demonstrating that extrinsic sialylation is not mediated exclusively by ST6Gal-1. Together, these observations form an emerging picture of glycans biosynthesized by the canonical cell-autonomous glycosylation pathway, but subjected to remodeling by extracellular glycan-modifying enzymes.
Collapse
Affiliation(s)
| | | | | | - Joseph T Y Lau
- From the Departments of Molecular and Cellular Biology and
| |
Collapse
|
21
|
Ríos P, Mooibroek TJ, Carter TS, Williams C, Wilson MR, Crump MP, Davis AP. Enantioselective carbohydrate recognition by synthetic lectins in water. Chem Sci 2017; 8:4056-4061. [PMID: 28626561 PMCID: PMC5465552 DOI: 10.1039/c6sc05399h] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/28/2017] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate receptors with a chiral framework have been generated by combining a tetra-aminopyrene and a C3-symmetrical triamine via isophthalamide spacers bearing water-solubilising groups. These "synthetic lectins" are the first to show enantiodiscrimination in aqueous solution, binding N-acetylglucosamine (GlcNAc) with 16 : 1 enantioselectivity. They also show exceptional affinities. GlcNAc is bound with Ka up to 1280 M-1, more than twice that measured for previous synthetic lectins, and three times the value for wheat germ agglutinin, the lectin traditionally employed to bind GlcNAc in glycobiological research. Glucose is bound with Ka = 250 M-1, again higher than previous synthetic lectins. The results suggest that chirality can improve complementarity to carbohydrate substrates and may thus be advantageous in synthetic lectin design.
Collapse
Affiliation(s)
- Pablo Ríos
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Tiddo J Mooibroek
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Tom S Carter
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Christopher Williams
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Miriam R Wilson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Matthew P Crump
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Anthony P Davis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| |
Collapse
|
22
|
Schwartz LB, Naftolin F, Lyttle CR, Penzias AS, Meaddough EL, Kliman HJ. Mouse Ascites Golgi (MAG) Mucin Expression and Regulation by Progesterone in the Rat Uterus. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | - Erika L. Meaddough
- Department of Obstetrics of Gynecology, Yale University School of Medicine, New Haven, Connecticut; University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Harvey J. Kliman
- Department of Obstetrics of Gynecology, Yale University School of Medicine, New Haven, Connecticut; University of Pennsylvania Medical Center, Philadelphia, Pennsylvania; Reproductive and Placental Research Unit, Department of Obstetrics and Gnecology, Yale University School of Medicine, 333 Cedar Street, 312 FMB, New Haven, CT 06520-8063 http://info.med.yale.edu/obgyn/kliman
| |
Collapse
|
23
|
Tosti E, Ménézo Y. Gamete activation: basic knowledge and clinical applications. Hum Reprod Update 2016; 22:420-39. [PMID: 27278231 PMCID: PMC4917743 DOI: 10.1093/humupd/dmw014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/01/2016] [Indexed: 01/07/2023] Open
Abstract
Background The first clues to the process of gamete activation date back to nearly 60 years ago. The mutual activation of gametes is a crucial event during fertilization. In the testis and ovaries, spermatozoa and oocytes are in a state of meiotic and metabolic quiescence and require reciprocal signals in order to undergo functional changes that lead to competence for fertilization. First, the oocyte activates sperm by triggering motility, chemoattraction, binding and the acrosome reaction, culminating with the fusion of the two plasma membranes. At the end of this cascade of events, collectively known as sperm capacitation, sperm-induced oocyte activation occurs, generating electrical, morphological and metabolic modifications in the oocyte. Objective and rationale The aim of this review is to provide the current state of knowledge regarding the entire process of gamete activation in selected specific animal models that have contributed to our understanding of fertilization in mammals, including humans. Here we describe in detail the reciprocal induction of the two activation processes, the molecules involved and the mechanisms of cell interaction and signal transduction that ultimately result in successful embryo development and creation of a new individual. Search methods We carried out a literature survey with no restrictions on publication date (from the early 1950s to March 2016) using PubMed/Medline, Google Scholar and Web of Knowledge by utilizing common keywords applied in the field of fertilization and embryo development. We also screened the complete list of references published in the most recent research articles and relevant reviews published in English (both animal and human studies) on the topics investigated. Outcomes Literature on the principal animal models demonstrates that gamete activation is a pre-requisite for successful fertilization, and is a process common to all species studied to date. We provide a detailed description of the dramatic changes in gamete morphology and behavior, the regulatory molecules triggering gamete activation and the intracellular ions and second messengers involved in active metabolic pathways in different species. Recent scientific advances suggest that artificial gamete activation may represent a novel technique to improve human IVF outcomes, but this approach requires caution. Wider implications Although controversial, manipulation of gamete activation represents a promising tool for ameliorating the fertilization rate in assisted reproductive technologies. A better knowledge of mechanisms that transform the quiescent oocyte into a pluripotent cell may also provide new insights for the clinical use of stem cells.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Yves Ménézo
- London Fertility Associates, 104 Harley Street, London WIG7JD, UK
| |
Collapse
|
24
|
Tanphaichitr N, Kongmanas K, Kruevaisayawan H, Saewu A, Sugeng C, Fernandes J, Souda P, Angel JB, Faull KF, Aitken RJ, Whitelegge J, Hardy D, Berger T, Baker M. Remodeling of the plasma membrane in preparation for sperm-egg recognition: roles of acrosomal proteins. Asian J Androl 2016; 17:574-82. [PMID: 25994642 PMCID: PMC4492047 DOI: 10.4103/1008-682x.152817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction of sperm with the egg's extracellular matrix, the zona pellucida (ZP) is the first step of the union between male and female gametes. The molecular mechanisms of this process have been studied for the past six decades with the results obtained being both interesting and confusing. In this article, we describe our recent work, which attempts to address two lines of questions from previous studies. First, because there are numerous ZP binding proteins reported by various researchers, how do these proteins act together in sperm–ZP interaction? Second, why do a number of acrosomal proteins have ZP affinity? Are they involved mainly in the initial sperm–ZP binding or rather in anchoring acrosome reacting/reacted spermatozoa to the ZP? Our studies reveal that a number of ZP binding proteins and chaperones, extracted from the anterior sperm head plasma membrane, coexist as high molecular weight (HMW) complexes, and that these complexes in capacitated spermatozoa have preferential ability to bind to the ZP. Zonadhesin (ZAN), known as an acrosomal protein with ZP affinity, is one of these proteins in the HMW complexes. Immunoprecipitation indicates that ZAN interacts with other acrosomal proteins, proacrosin/acrosin and sp32 (ACRBP), also present in the HMW complexes. Immunodetection of ZAN and proacrosin/acrosin on spermatozoa further indicates that both proteins traffic to the sperm head surface during capacitation where the sperm acrosomal matrix is still intact, and therefore they are likely involved in the initial sperm–ZP binding step.
Collapse
Affiliation(s)
- Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa; Department of Obstetrics and Gynaecology, University of Ottawa; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Arend P. ABO (histo) blood group phenotype development and human reproduction as they relate to ancestral IgM formation: A hypothesis. Immunobiology 2016; 221:116-27. [DOI: 10.1016/j.imbio.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/18/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
26
|
Meng S, Tian T, Wang YH, Meng XB, Li ZJ. Convergent synthesis of oligosaccharides on the gram-scale using cetyl thioglycoside based on a hydrophobically assisted switching phase method. Org Biomol Chem 2016; 14:7722-30. [DOI: 10.1039/c6ob01267a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A hydrophobically assisted switching phase (HASP) method is an efficient strategy for the synthesis of carrier-loaded oligosaccharides.
Collapse
Affiliation(s)
- Shuai Meng
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Tian Tian
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yun-He Wang
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xiang-Bao Meng
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Zhong-Jun Li
- The State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
27
|
Meng S, Tian T, Han D, Wang LN, Tang SG, Meng XB, Li ZJ. Efficient assembly of oligomannosides using the hydrophobically assisted switching phase method. Org Biomol Chem 2015; 13:6711-22. [PMID: 25967589 DOI: 10.1039/c5ob00730e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hydrophobically assisted switching phase (HASP) method was applied in the assembly of oligomannosides. A new mannosyl donor with high reactivity was selected after a series of optimization studies, which was suitable for the synthesis of oligomannosides via the HASP method. The practicability of the HASP method towards the synthesis of branched oligosaccharides was explored and two branched penta-mannosides were assembled efficiently.
Collapse
Affiliation(s)
- Shuai Meng
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
López-Úbeda R, García-Vázquez FA, Romar R, Gadea J, Muñoz M, Hunter RHF, Coy P. Oviductal Transcriptome Is Modified after Insemination during Spontaneous Ovulation in the Sow. PLoS One 2015; 10:e0130128. [PMID: 26098421 PMCID: PMC4476686 DOI: 10.1371/journal.pone.0130128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Gene Expression Microarray technology was used to compare oviduct transcriptome between inseminated and non-inseminated pigs during spontaneous oestrus. We used an in vivo model approaching the study from a physiological point of view in which no hormonal treatment (animals were in natural oestrus) and no artificial sperm selection (selection was performed within the female genital) were imposed. It is therefore emphasised that no surgical introduction of spermatozoa and no insemination at a site other than the physiological one were used. This approach revealed 17 genes that were two-fold or more up-regulated in oviducts exposed to spermatozoa and/or developing embryos and 9 genes that were two-fold or more down-regulated. Functional analysis of the genes revealed that the top canonical pathways affected by insemination were related to the inflammatory response and immune system (Network 1) to molecular transport, protein trafficking and developmental disorder (Network 2) and to cell-to-cell signalling and interaction (Network 3). Some of the genes in network 1 had been previously detected in the oviduct of human and animals, where they were over-expressed in the presence of spermatozoa or pre-implantation embryos (C3, IGHG1, ITIH4, TNF and SERPINE1) whereas others were not previously reported (SAA2, ALOX12, CD1D and SPP1). Genes in Network 2 included RAB1B and TOR3A, the latter being described for the first time in the oviduct and clearly expressed in the epithelial cells of the mucosa layer. Network 3 integrated the genes with the highest down-regulation level (CYP51, PTH1R and TMOD3). Data in the present study indicate a change in gene expression during gamete encounter at the site of fertilization after a natural sperm selection within the female genital tract. These changes would indicate a modification of the environment preparing the oviduct for a successful fertilization and for an adequate embryo early development.
Collapse
Affiliation(s)
- Rebeca López-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco A. García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Marta Muñoz
- Centro de Biotecnología Animal—SERIDA, Deva, Gijón, Asturias, Spain
| | | | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
- * E-mail:
| |
Collapse
|
29
|
Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein. Molecules 2015; 20:9468-86. [PMID: 26007194 PMCID: PMC6272592 DOI: 10.3390/molecules20059468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 12/17/2022] Open
Abstract
Protein-carbohydrate interaction regulates multiple important processes during fertilization, an essential biological event where individual gametes undergo intercellular recognition to fuse and generate a zygote. In the mammalian female reproductive tract, sperm temporarily adhere to the oviductal epithelium via the complementary interaction between carbohydrate-binding proteins on the sperm membrane and carbohydrates on the oviductal cells. After detachment from the oviductal epithelium at the appropriate time point following ovulation, sperm migrate and occasionally bind to the extracellular matrix, called the zona pellucida (ZP), which surrounds the egg, thereafter undergoing the exocytotic acrosomal reaction to penetrate the envelope and to reach the egg plasma membrane. This sperm-ZP interaction also involves the direct interaction between sperm carbohydrate-binding proteins and carbohydrates within the ZP, most of which have been conserved across divergent species from mammals to amphibians and echinoderms. This review focuses on the carbohydrate-mediated interaction of sperm with the female reproductive tract, mainly the interaction between sperm and the ZP, and introduces the fertilization-suppressive action of dicalcin, a Xenopus laevis ZP protein-associated protein. The action of dicalcin correlates significantly with a dicalcin-dependent change in the lectin-staining pattern within the ZP, suggesting a unique role of dicalcin as an inherent protein that is capable of regulating the affinity between the lectin and oligosaccharides attached on its target glycoprotein.
Collapse
|
30
|
Accogli G, Douet C, Ambruosi B, Martino NA, Uranio MF, Deleuze S, Dell'Aquila ME, Desantis S, Goudet G. Differential expression and localization of glycosidic residues in in vitro- and in vivo-matured cumulus-oocyte complexes in equine and porcine species. Mol Reprod Dev 2014; 81:1115-35. [PMID: 25511183 DOI: 10.1002/mrd.22432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022]
Abstract
Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and βN-acetylgalactosamine (GalNAc)-terminating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models.
Collapse
Affiliation(s)
- Gianluca Accogli
- Section of Veterinary Clinics and Animal Productions, Department Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A role for carbohydrate recognition in mammalian sperm-egg binding. Biochem Biophys Res Commun 2014; 450:1195-203. [DOI: 10.1016/j.bbrc.2014.06.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
|
32
|
Avella MA, Baibakov B, Dean J. A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. ACTA ACUST UNITED AC 2014; 205:801-9. [PMID: 24934154 PMCID: PMC4068139 DOI: 10.1083/jcb.201404025] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ZP251–149 domain is necessary for human and mouse gamete recognition on the surface of the zona pellucida and for mouse fertility. The extracellular zona pellucida surrounds ovulated eggs and mediates gamete recognition that is essential for mammalian fertilization. Zonae matrices contain three (mouse) or four (human) glycoproteins (ZP1–4), but which protein binds sperm remains controversial. A defining characteristic of an essential zona ligand is sterility after genetic ablation. We have established transgenic mice expressing human ZP4 that form zonae pellucidae in the absence of mouse or human ZP2. Neither mouse nor human sperm bound to these ovulated eggs, and these female mice were sterile after in vivo insemination or natural mating. The same phenotype was observed with truncated ZP2 that lacks a restricted domain within ZP251–149. Chimeric human/mouse ZP2 isoforms expressed in transgenic mice and recombinant peptide bead assays confirmed that this region accounts for the taxon specificity observed in human–mouse gamete recognition. These observations in transgenic mice document that the ZP251–149 sperm-binding domain is necessary for human and mouse gamete recognition and penetration through the zona pellucida.
Collapse
Affiliation(s)
- Matteo A Avella
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Boris Baibakov
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
33
|
Chiu PCN, Lam KKW, Wong RCW, Yeung WSB. The identity of zona pellucida receptor on spermatozoa: an unresolved issue in developmental biology. Semin Cell Dev Biol 2014; 30:86-95. [PMID: 24747367 DOI: 10.1016/j.semcdb.2014.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
Mammalian oocytes are surrounded by an acellular zona pellucida (ZP). Fertilization begins when a capacitated spermatozoon binds to the ZP. Defective sperm-ZP interaction is a cause of male infertility and reduced fertilization rates in clinical assisted reproduction treatment. Despite the importance of spermatozoa-ZP binding, the mechanisms and regulation of the interaction are unclear partly due to the failure in the identification of ZP receptor on spermatozoa. Most of the previous studies assumed that the sperm ZP receptor is a single molecular species, and a number of potential candidates had been suggested. Yet none of them can be considered as the sole sperm ZP receptor. Accumulated evidence suggested that the sperm ZP receptor is a dynamic multi-molecular structure requiring coordinated action of different proteins that are assembled into a functional complex during post-testicular maturation and capacitation. The complex components may include carbohydrate-binding, protein-binding and acrosomal matrix proteins which work as a suite to mediate spermatozoa-ZP interaction. This article aims to review the latest insights in the identification of the sperm ZP receptor. Continued investigation of the area will provide considerable understanding of the regulation of fertilization that will be useful for practical application in human contraception and reproductive medicine.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Rachel C W Wong
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
34
|
Posttranslational modifications of zona pellucida proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:111-40. [PMID: 25030762 DOI: 10.1007/978-1-4939-0817-2_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The zona pellucida (ZP), which surrounds the mammalian oocyte, functions in various aspects of fertilization. The ZP consists of three or four glycoproteins, which are derived from transmembrane proteins that lack the ability to self-assemble. Following posttranslational processing at specific sites, ectodomains of ZP precursor proteins are released from the membrane and begin to form a matrix. Glycosylational modification is thought to be involved in species-selective sperm recognition by ZP proteins. However, in mice, the supramolecular structure of the zona matrix is also important in sperm recognition. One ZP protein, ZP2, is processed at a specific site upon fertilization by ovastacin, which is released from cortical granules inside the oocyte. This phenomenon is involved in the block to polyspermy. The proteolysis of ubiquitinated ZP proteins by a sperm-associated proteasome is involved in penetration of the zona matrix by sperm, at least in the pigs. Thus, the posttranslational modification of ZP proteins is closely tied to ZP formation and the regulation of sperm-oocyte interactions.
Collapse
|
35
|
Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol 2013; 38:576-94. [PMID: 23131516 DOI: 10.1590/s1677-55382012000500002] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 12/15/2022] Open
Abstract
Unexplained male infertility is a diagnosis reserved for men in whom routine semen analyses results are within normal values and physical as well as endocrine abnormalities were ruled out. In addition to erectile problems and coital factors, immunologic causes and sperm dysfunction may contribute to such condition. New etiologies of unexplained male infertility include low level leukocytospermia and mitochondrial DNA polymerase gene polymorphism. Contemporary andrology may reveal cellular and sub-cellular sperm dysfunctions which may explain subfertility in such cases, thus aiding the clinician to direct the further work-up, diagnosis and counseling of the infertile male. The objective of this article is to highlight the concept of unexplained male infertility and focuses on the diagnosis and treatment of this condition in the era of modern andrology and assisted reproductive techniques. Extensive literature review was performed using the search engines: Pubmed, Science-direct, Ovid and Scopus.
Collapse
Affiliation(s)
- Alaa Hamada
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
36
|
The functional interaction between CDK11p58 and β-1,4-galactosyltransferase I involved in astrocyte activation caused by lipopolysaccharide. Inflammation 2013; 35:1365-77. [PMID: 22527143 DOI: 10.1007/s10753-012-9450-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glial cells are mediating the main activation of the central nervous system (CNS), being astrocytes the mayor glial cells in the brain. Glial activation may result beneficial since it could promote tissue repair and pathogen elimination. However, excessive glial activation mechanism can also have do harm to the tissue. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a key inflammatory mediator that participates in the initiation and maintenance of inflammatory reaction in some diseases. Moreover, CDK11(p58) has been reported to be associated with β-1,4-GalT-I. We have found that CDK11(p58) and β-1,4-GalT-I are induced in lipopolysaccharide (LPS)-challenged rat primary astrocytes in a affinis dose- and time-dependent manner. CDK11(p58) regulates the expression of β-1,4-GalT-I by interacting with it. After the knockdown of CDK11(p58) expression, the expression of β-1,4-GalT-I decreases, and astrocyte activation downregulates. Inversely, the expression of β-1,4-GalT-I increases, and astrocyte activation enhances due to the overexpression of CDK11(p58). Knockdown of β-1,4-GalT-I reduces the activation potentiation caused by the overexpression of CDK11(p58), illustrating the function of CDK11(p58) to promote astrocyte activation depends on β-1,4-GalT-I. The interaction between CDK11(p58) and β-1,4-GalT-I to upregulate astrocyte activation is related to activating p38 and JNK pathways. These findings indicated that the functional interaction between CDK11(p58) and β-1,4-GalT-I may play an important role during astrocyte activation after LPS administration.
Collapse
|
37
|
Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med 2013; 34:919-38. [PMID: 23352575 DOI: 10.1016/j.mam.2013.01.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies.
Collapse
Affiliation(s)
- Lei Li
- Division of Molecular Embryonic Development, State Key Laboratory of Reproductive Biology, Institute of Zoology/Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | |
Collapse
|
38
|
Avella MA, Xiong B, Dean J. The molecular basis of gamete recognition in mice and humans. Mol Hum Reprod 2013; 19:279-89. [PMID: 23335731 DOI: 10.1093/molehr/gat004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Successful fertilization heralds the onset of development and requires both gamete recognition and a definitive block to polyspermy. Sperm initially bind and penetrate the extracellular zona pellucida (ZP) that surrounds ovulated eggs, but are unable to bind the zona surrounding preimplantation embryos. The ZP of humans is composed of four (ZP1-4) and that of mouse three (ZP1-3) glycoproteins. Models for gamete recognition developed in mice had proposed that sperm bind to ZP3 glycans. However, phenotypes observed in genetically engineered mice are not consistent with this widely accepted model. More recently, taking advantage of the observation that human sperm do not bind to mouse eggs, human ZP2 was defined as the zona ligand in transgenic mouse models using gain-of-function assays. The sperm-binding site is an N-terminal domain of ZP2 that is cleaved by ovastacin, a metalloendoprotease released from egg cortical granules following fertilization. Proteolysis of this docking site provides a definitive block to polyspermy as sperm bind to uncleaved, but not cleaved ZP2 even after fertilization and cortical granule exocytosis. While progress has been made in defining the ZP ligand, less headway has been made in identifying the cognate sperm receptor. Although a number of sperm receptor candidates have been documented to interact with specific proteins in the ZP in vitro, continued fertility after genetic ablation of the cognate gene indicates that none are essential for gamete recognition. These on-going investigations inform reproductive medicine and suggest new therapies to improve fertility and/or provide contraception, thus expanding reproductive choices for human couples.
Collapse
Affiliation(s)
- Matteo A Avella
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
39
|
Liu W, Cui Z, Wang Y, Zhu X, Fan J, Bao G, Qiu J, Xu D. Elevated expression of β1,4-galactosyltransferase-I in cartilage and synovial tissue of patients with osteoarthritis. Inflammation 2012; 35:647-55. [PMID: 21750942 DOI: 10.1007/s10753-011-9357-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is considered a complex illness, characterized by cartilage degeneration, secondary synovial membrane inflammation, and subchondral bone sclerosis. Previous studies have shown β1,4-galactosylransferase-I (β1,4-GalT-I) to be a key inflammatory mediator that participates in the initiation and maintenance of inflammatory reaction in diseases. In the present study, we investigated the expression and possible biological function of β1,4-GalT-I in the cartilage and synovial tissue of OA patients. Cartilage and synovial tissue samples from OA patients and healthy controls were stained for β1,4-GalT-I. Reverse transcription-polymerase chain reaction was used to observe the expression of β1,4-GalT-I, and western blot was carried out for E-selectin. The interaction between β1,4-GalT-I and E-selectin was analyzed by double labeling immunohistochemistry and immunoprecipitation. The expression of β1,4-GalT-I increased in the cartilage and synovial tissue of OA patients compared with healthy controls. E-selectin was overexpressed and was correlated with β1,4-GalT-I in OA cartilage and synovial tissue. These data suggest that β1,4-GalT-I may play an important role in the inflammatory processes in cartilage and synovial tissue of patients with OA.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lay KM, Nakada T, Tatemoto H. Involvement of N-glycosylation of zona glycoproteins during meiotic maturation in sperm-zona pellucida interactions of porcine denuded oocytes. Anim Sci J 2012; 84:8-14. [PMID: 23302076 DOI: 10.1111/j.1740-0929.2012.01027.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study was conducted to delineate whether N-glycosylation of zona pellucida (ZP) glycoproteins occurred during meiotic maturation and whether this N-glycosylation played a role in sperm-ZP interactions of porcine cumulus denuded oocytes (DOs). After mechanical removal of cumulus cells from cumulus oocyte complexes (COCs), DOs were cultured for 44 h in in vitro maturation (IVM) culture. The experiments were carried out to determine the effects of tunicamycin, a specific N-glycosylation inhibitor, for various intervals during IVM on sperm-ZP interactions in porcine DOs. The results determined that DOs could induce meiotic maturation, although the maturation rate of DOs was earlier than that of COCs. In addition, N-glycosylation of ZP glycoproteins occurred during meiotic maturation and was crucial in sperm-ZP interactions, was responsible for sperm penetration, sperm binding to ZP and induction of acrosome reaction in ZP-bound sperm. However, the inhibition of N-glycosylation by tunicamycin during IVM did not influence ZP hardness and male pronuclear formation, indicating that this N-glycosylation was involved in the initial stage of fertilization. We conclude that 24-44 h of N-glycosylation of ZP glycoproteins during meiotic maturation was crucial in sperm penetration and sperm binding to ZP and the induction of acrosome reaction in sperm bound to ZP of porcine DOs.
Collapse
Affiliation(s)
- Khin Mar Lay
- Science of Bioresource Production, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | |
Collapse
|
41
|
Xu D, Cui Z, Liu W, Tao R, Tao T, Shen A, Wang Y. Tumor necrosis factor-α up-regulates the expression of β1,4-galactosyltransferase-I in human fibroblast-like synoviocytes. Inflammation 2012; 34:531-8. [PMID: 20886274 DOI: 10.1007/s10753-010-9260-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
β1,4-Galactosyltransferase-I (β1,4-GalT-I), which transfers galactose to the terminal N-acetylglucosamine of N- and O-linked glycans in a β1,4-linkage, is considered to be the major galactosyltransferase among the seven members of the subfamily responsible for β4 galactosylation. We previously reported, for the first time, that β1,4-GalT-I may play an important role in the inflammatory processes in synovial tissue of patients with rheumatoid arthritis (RA). In this study, we analyzed whether β1,4-GalT-I expression correlates with the expression of tumor necrosis factor-α (TNF-α) in RA. We show firstly the overexpression and co-localization of β1,4-GalT-I and TNF-α in synovial tissue of RA patients. Then, lipopolysaccharide (LPS) induces β1,4-GalT-I mRNA up-regulation in fibroblast-like synoviocytes (FLSs) through endogenous TNF-α overexpression. In addition, we observed that not only endogenous TNF-α but also exogenous TNF-α induced β1,4-GalT-I mRNA production in FLSs, and TNF-α-knockdown reverses the up-regulation of β1,4-GalT-I in FLSs induced by LPS or TNF-α. These results suggest that TNF-α contributes to the up-regulation of β1,4-GalT-I mRNA in human FLSs.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Joshi G, Davis AP. New H-bonding patterns in biphenyl-based synthetic lectins; pyrrolediamine bridges enhance glucose-selectivity. Org Biomol Chem 2012; 10:5760-3. [DOI: 10.1039/c2ob25900a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Abstract
Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.
Collapse
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Private Chinese Culture University, Taipei, Republic of China.
| |
Collapse
|
44
|
Mori E, Fukuda H, Imajoh-Ohmi S, Mori T, Takasaki S. Purification of N-acetyllactosamine-binding activity from the porcine sperm membrane: possible involvement of an ADAM complex in the carbohydrate-binding activity of sperm. J Reprod Dev 2011; 58:117-25. [PMID: 22052010 DOI: 10.1262/jrd.11-108n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the importance of carbohydrate recognition by sperm during egg zona pellucida binding has been widely reported, the sperm molecular species that recognize the carbohydrates are poorly characterized. Our previous cytochemical study indicated that two kinds of carbohydrate-binding proteins are expressed on porcine sperm heads-one recognizes N-acetyllactosamine (Galβ1-4GlcNAc-), and the other recognizes the Lewis X structure (Galβ1-4(Fucα1-3)GlcNAc-). For this report, we used proteomic techniques to characterize the sperm proteins that bind N-acetyllactosamine. Porcine sperm plasma membrane was solubilized with a detergent solution and subjected to sequential chromatography with dextran sulfate agarose, affinity, and hydroxyapatite, and the binding activities in the eluates were monitored by a solid-phase binding assay. The tryptic peptides of two proteins most likely associated with the binding activities were subjected to tandem mass spectrometry sequencing. A subsequent database search identified one of the two proteins as predicted disintegrin and metalloprotease domain-containing protein 20-like (XP_003128672). The other protein was identified as disintegrin and metalloprotease domain-containing protein 5 (AB613817) by database searches for homologous amino acid sequences, cDNA cloning, nucleotide sequencing and nucleotide database searches. Furthermore, two-dimensional blue native/SDS-PAGE demonstrated that they formed a variety of non-covalent complexes. Therefore, these ADAM complexes probably are responsible for the N-acetyllactosamine-binding activity. An affinity-purified fraction containing these ADAM complexes showed zona pellucida-binding activity, though the activity was relatively weak, and the presence of another zona pellucida-binding protein that probably works in concert with these ADAM complexes was suggested. Immunofluorescence testing suggested that ADAM20-like was localized on the anterior part of the sperm plasma membrane.
Collapse
Affiliation(s)
- Etsuko Mori
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | |
Collapse
|
45
|
Girouard J, Frenette G, Sullivan R. Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. ACTA ACUST UNITED AC 2011; 34:e475-86. [DOI: 10.1111/j.1365-2605.2011.01203.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Sasanami T, Yoshizaki N, Dohra H, Kubo H. Sperm acrosin is responsible for the sperm binding to the egg envelope during fertilization in Japanese quail (Coturnix japonica). Reproduction 2011; 142:267-76. [DOI: 10.1530/rep-11-0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An antibody library against quail sperm plasma membrane components was established and a mAb, which strongly inhibits sperm perforations of the perivitelline membrane (PVM) was obtained from the library. The antigen molecule of the mAb showed an apparent molecular weight of 45 kDa, and was distributed both on the surface and in the acrosomal matrix of the sperm head. Periodate oxidation revealed that the epitope of the antigen includes a sugar moiety. Tandem mass spectrometry analysis of the antigen revealed that the mAb recognizes sperm acrosin. When sodium dodecyl sulfate-solubilized PVM immobilized on a polyvinylidene difluoride membrane was incubated with sperm plasma membrane lysates, the sperm acrosin was detected on the PVM immobilized on the membrane, indicating that the sperm acrosin interacts with the components of PVM. Indeed, the mAb effectively inhibited the binding of acrosome-intact sperm to the PVM. These results indicate that the 45 kDa sperm acrosin is involved in the binding of sperm to the PVM in fertilization of Japanese quail.
Collapse
|
47
|
Fan Y, Yu L, Zhang Q, Jiang Y, Dai F, Chen C, Tu Q, Bi A, Xu Y, Zhao S. Cloning and characterization of a novel member of human beta-1,4-galactosyltransferase gene family. ACTA ACUST UNITED AC 2011; 42:337-45. [PMID: 18763123 DOI: 10.1007/bf02882052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1998] [Indexed: 10/22/2022]
Abstract
By using the EST strategy for identifying novel members belonging to homologous gene families, a novel fulklength cDNA encoding a protein significantly homologous to UDP-Gal: N-acetylglucosamine beta-1, 4-galactosyltransferase (GalT) was isolated from a human testis cDNA library. A nucleotide sequence of 2 173 bp long was determined to contain an open reading frame of 1 032 nucleotides (344 amino acids). In view of the homology to memben of the galactosyltransferase gene family and especially the closest relationship toGallus gallus GalT type I (CK I), the predicted product of the novel cDNA was designated as human beta-1,4-galactosyltransferase homolog I (HumGT-H1). Its mRNA is present in different degrees in 16 tissues examined. Southern analysis of human genomic DNA revealed its locus on chromosome 3.
Collapse
Affiliation(s)
- Y Fan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, 200433, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
N-glycosylation of zona glycoproteins during meiotic maturation is involved in sperm-zona pellucida interactions of porcine oocytes. Theriogenology 2011; 75:1146-52. [DOI: 10.1016/j.theriogenology.2010.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 11/22/2022]
|
49
|
Sun TT, Chung CM, Chan HC. Acrosome reaction in the cumulus oophorus revisited: involvement of a novel sperm-released factor NYD-SP8. Protein Cell 2011; 2:92-8. [PMID: 21380641 DOI: 10.1007/s13238-011-1022-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 12/13/2022] Open
Abstract
Fertilization is a process involving multiple steps that lead to the final fusion of one sperm and the oocyte to form the zygote. One of the steps, acrosome reaction (AR), is an exocytosis process, during which the outer acrosome membrane fuses with the inner sperm membrane, leading to the release of acrosome enzymes that facilitate sperm penetration of the egg investments. Though AR has been investigated for decades, the initial steps of AR in vivo, however, remain largely unknown. A well elucidated model holds the view that AR occurs on the surface of the zona pellucida (ZP), which is triggered by binding of sperm with one of the ZP glycosylated protein, ZP3. However, this model fails to explain the large number of 'falsely' acrosome-reacted sperms found within the cumulus layer in many species examined. With the emerging evidence of cross-talk between sperm and cumulus cells, the potential significance of AR in the cumulus oophorus, the outer layer of the egg, has been gradually revealed. Here we review the acrosome status within the cumulus layer, the cross-talk between sperm and cumulus cells with the involvement of a novel sperm-released factor, NYD-SP8, and re-evaluate the importance and physiological significance of the AR in the cumulus in fertilization.
Collapse
Affiliation(s)
- Ting Ting Sun
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
50
|
Clark GF. The mammalian zona pellucida: a matrix that mediates both gamete binding and immune recognition? Syst Biol Reprod Med 2011; 56:349-64. [PMID: 20662591 DOI: 10.3109/19396360903524812] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The crucial cell adhesion events required for mammalian fertilization commence when spermatozoa bind to the specialized extracellular matrix of the oocyte, known as the zona pellucida (ZP). Bound gametes then undergo a signal transduction cascade known as acrosomal exocytosis that enables them to penetrate this matrix and fuse with the oocyte to create a new individual. The ZP is therefore the target of intense investigation in the mouse, pig, bovine, and human models. Major goals in such studies are to define the adhesion molecules, signal transduction pathways, and the molecular basis for the species-restricted binding of gametes. Evidence exists indicating that protein-carbohydrate and to a lesser extent protein-protein interactions play a role in the initial gamete binding. More recent findings in an unusual sperm-somatic cell adhesion system indicate that tri- and tetraantennary N-glycans mediate initial sperm-oocyte binding in both the murine and porcine models, but conflicting data exist. A novel paradigm designated the "domain specific model" will be presented that could explain these inconsistencies. Another potential functional role of the ZP is immune recognition. Both spermatozoa and oocytes lack major histocompatibility (MHC) class I molecules that mediate the recognition of self in the immune system. This absence makes gametes less susceptible to class I restricted cytotoxic T lymphocytes, but more vulnerable to natural killer (NK) cells. Therefore a "fail safe" system for NK cell recognition should exist on both types of gametes. Another issue is that oocytes could begin to express paternal major histocompatibility antigens during the blastocyst stage prior to hatching, and thus mechanisms could also be in place to block the development of maternal adaptive immune responses. An enhanced understanding of these issues could facilitate the development of superior infertility treatments and contraceptive strategies, and define central operating principles of immune recognition in the female reproductive system.
Collapse
Affiliation(s)
- Gary F Clark
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|