1
|
Goya L, Mateos R. Antioxidant and Anti-inflammatory Effects of Marine Phlorotannins and Bromophenols Supportive of Their Anticancer Potential. Nutr Rev 2025; 83:e1225-e1242. [PMID: 38894623 DOI: 10.1093/nutrit/nuae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Following the goal of optimizing nutrition, the food industry has been continuously working on food reformulation, nutritional patterns, functional foods development, and the general promotion of a healthy lifestyle. To this end, the scientific community has been increasingly investigating natural compounds that could prevent or treat chronic diseases. Phlorotannins and bromophenols are phenolic compounds particularly present in marine organisms. There is extensive evidence that shows their potential in the prevention of noncommunicable diseases, including cancer, the second cause of mortality worldwide. Numerous studies have demonstrated the anticarcinogenic activity of polyphenolic algae compounds both in cell culture and experimental animal models. Although recent reviews are also available, the present update focuses on the most recent findings related to the antioxidant/anti-inflammatory effect of seaweed phenolics, as well as their regulatory capacity for new molecular targets. Additionally, the review addresses and discusses the close link between inflammation and oxidative stress, along with their relationship with tumor onset and progression, including the most recent findings supporting this correlation. Although clinical studies are still needed to support this evidence, phlorotannins and bromophenols constitute an emerging bioactive group with high potential as chemopreventive agents and/or potential adjuvants for existing cancer therapies.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Song QX, Zhang YY, Li YL, Liu F, Liu YJ, Li YK, Li CJ, Zhou C, Shen JF. The crucial role of NR2A mediating the activation of satellite glial cells in the trigeminal ganglion contributes to orofacial inflammatory pain during TMJ inflammation. Neuropharmacology 2024; 261:110173. [PMID: 39357737 DOI: 10.1016/j.neuropharm.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Temporomandibular joint inflammatory diseases are a significant subtype of temporomandibular disorders (TMD) characterized by inflammatory pain in the orofacial area. The N-methyl-D-aspartate receptor (NMDAR), specifically the NR2A subtype, was crucial in neuropathic pain. However, the exact role of NR2A in inflammatory pain in the TMJ and the molecular and cellular mechanisms mediating peripheral sensitization in the trigeminal ganglion (TG) remain unclear. This study utilized male and female mice to induce the TMJOA model by injecting Complete Freund's adjuvant (CFA) into the TMJ and achieve conditional knockout (CKO) of NR2A in the TG using Cre/Loxp technology. The Von-Frey filament test results showed that CFA-induced orofacial pain with reduced mechanical withdrawal threshold (MWT), which was not developed in NR2A CKO mice. Additionally, the up-regulation of interleukin (IL)-1β, IL-6, and nerve growth factor (NGF) in the TG induced by CFA did not occur by NR2A deficiency. In vitro, NMDA activated satellite glial cells (SGCs) with high expression of glial fibrillary acidic protein (GFAP), and both NMDA and LPS led to increased IL-1β, IL-6, and NGF in SGCs. NR2A deficiency reduced these stimulating effects of NMDA and LPS. The regulation of IL-1β involved the p38, Protein Kinase A (PKA), and Protein Kinase C (PKC) pathways, while IL-6 signaling relied on PKA and PKC pathways. NGF regulation was primarily through the p38 pathway. This study highlighted NR2A's crucial role in the TG peripheral sensitization during TMJ inflammation by mediating ILs and NGF, suggesting potential targets for orofacial inflammatory pain management.
Collapse
Affiliation(s)
- Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhang J, Yan C, He W, Wang M, Liu J. Inhibition against p38/MEF2C pathway by Pamapimod protects osteoarthritis chondrocytes hypertrophy. Panminerva Med 2024; 66:365-371. [PMID: 33263251 DOI: 10.23736/s0031-0808.20.04170-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The p38 mitogen-activated protein kinase pathway plays an important role in the pathogenesis of osteoarthritis (OA) involving in hypertrophy, calcification, and apoptosis of chondrocytes (CHs). In this study, we focused on a p38 inhibitor named Pamapimod (PAM) in the effect of CH hypertrophy degeneration. METHODS CHs were isolated from the cartilage collected from OA patients. Insulin-Transferrin-Selenium (ITS) medium was used as a hypertrophic inducer to establish CH hypertrophy model. Asiatic acid (AA) was used to activate p38 phosphorylation. We transfected CHs with myocyte enhancer factor 2C (MEF2C)-plasmid to upregulate MEF2C expression. Chondrogenic gene expression such as type II collagen and SOX-9, and hypertrophic genes such as type X collagen, MMP-13, and Runx-2 were analyzed by western blot, real-time polymerase chain reaction or immunofluorescence. RESULTS ITS and AA all contributed to the CHs hypertrophy with an upregulation of p-p38 and MEF2C protein expression. PAM treatments significantly inhibited p-p38 and MEF2C expression, down-regulated type X collagen, MMP-13, and Runx-2 expression and upregulated type II collagen and SOX-9 levels. PAM indirectly affected MEF2C expression and resulted in CHs hypertrophy suppression. CONCLUSIONS PAM protects CHs hypertrophy by the inhibition of the p38/MEF2C pathway.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chen Yan
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Weidong He
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Min Wang
- Department of Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jian Liu
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China -
| |
Collapse
|
4
|
Rong X, Li R, Gong T, Li H, Zhao X, Cao G, Li M, Li B, Yang Y, Guo X. CircMEF2C(2, 3) modulates proliferation and adipogenesis of porcine intramuscular preadipocytes by miR-383/671-3p/ MEF2C axis. iScience 2024; 27:109710. [PMID: 38689646 PMCID: PMC11059125 DOI: 10.1016/j.isci.2024.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024] Open
Abstract
Circular RNA is a special category of non-coding RNA that has emerged as epigenetic regulator of adipose tissue development. However, the mechanism governing intramuscular adipogenesis of circRNA remains largely uncharted. In this study, circMEF2C(2, 3), looped by MEF2C exons 2 and 3, was identified from the pig MEF2C gene. Expression of circMEF2C(2, 3) is upregulated in early stage of intramuscular adipogenesis and muscular tissue of lean pigs (DLY pig). Subsequently, overexpression or knockdown of circMEF2C(2, 3) reflected that it participates in promoting proliferation and inhibiting adipogenic differentiation in porcine intramuscular preadipocytes and murine C3H10T1/2 cells. Mechanically, circMEF2C(2, 3) competitively combined with miR-383 and miR-671-3p to the 3'-UTR of MEF2C, which maintains MEF2C expression in regulating proliferation and adipogenesis. In summary, circMEF2C(2, 3) is a key regulator in the proliferation and adipogenic differentiation of intramuscular adipogenesis, suggesting its potential as a multi-target strategy for adipose development and associated diseases.
Collapse
Affiliation(s)
- Xiaoyin Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Ruixiao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Tianye Gong
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Haonan Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Xiaolei Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, P.R. China
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, P.R. China
| |
Collapse
|
5
|
Lozano-Velasco E, Garcia-Padilla C, Carmona-Garcia M, Gonzalez-Diaz A, Arequipa-Rendon A, Aranega AE, Franco D. MEF2C Directly Interacts with Pre-miRNAs and Distinct RNPs to Post-Transcriptionally Regulate miR-23a-miR-27a-miR-24-2 microRNA Cluster Member Expression. Noncoding RNA 2024; 10:32. [PMID: 38804364 PMCID: PMC11130849 DOI: 10.3390/ncrna10030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early development of several cell types, including muscle cells. Over the last decade, a novel layer of complexity modulating gene regulation has emerged as non-coding RNAs have been identified, impacting both transcriptional and post-transcriptional regulation. microRNAs represent the most studied and abundantly expressed subtype of small non-coding RNAs, and their functional roles have been widely documented. On the other hand, our knowledge of the transcriptional and post-transcriptional regulatory mechanisms that drive microRNA expression is still incipient. We recently demonstrated that MEF2C is able to transactivate the long, but not short, regulatory element upstream of the miR-23a-miR-27a-miR-24-2 transcriptional start site. However, MEF2C over-expression and silencing, respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 mature cluster members without affecting pri-miRNA expression levels, thus supporting additional MEF2C-driven regulatory mechanisms. Within this study, we demonstrated a complex post-transcriptional regulatory mechanism directed by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster members, distinctly involving different domains of the MEF2C transcription factor and the physical interaction with pre-miRNAs and Ksrp, HnRNPa3 and Ddx17 transcripts.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Miguel Carmona-Garcia
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Alba Gonzalez-Diaz
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Angela Arequipa-Rendon
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
6
|
Xia L, Nie T, Lu F, Huang L, Shi X, Ren D, Lu J, Li X, Xu T, Cui B, Wang Q, Gao G, Yang Q. Direct regulation of FNIP1 and FNIP2 by MEF2 sustains MTORC1 activation and tumor progression in pancreatic cancer. Autophagy 2024; 20:505-524. [PMID: 37772772 PMCID: PMC10936626 DOI: 10.1080/15548627.2023.2259735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) orchestrates diverse environmental signals to facilitate cell growth and is frequently activated in cancer. Translocation of MTORC1 from the cytosol to the lysosomal surface by the RRAG GTPases is the key step in MTORC1 activation. Here, we demonstrated that transcription factors MEF2A and MEF2D synergistically regulated MTORC1 activation via modulating its cyto-lysosome shutting. Mechanically, MEF2A and MEF2D controlled the transcription of FNIP1 and FNIP2, the components of the FLCN-FNIP1 or FNIP2 complex that acts as a RRAGC-RRAGD GTPase-activating element to promote the recruitment of MTORC1 to lysosome and its activation. Furthermore, we determined that the pro-oncogenic protein kinase SRC/c-Src directly phosphorylated MEF2D at three conserved tyrosine residues. The tyrosine phosphorylation enhanced MEF2D transcriptional activity and was indispensable for MTORC1 activation. Finally, both the protein and tyrosine phosphorylation levels of MEF2D are elevated in human pancreatic cancers, positively correlating with MTORC1 activity. Depletion of both MEF2A and MEF2D or expressing the unphosphorylatable MEF2D mutant suppressed tumor cell growth. Thus, our study revealed a transcriptional regulatory mechanism of MTORC1 that promoted cell anabolism and proliferation and uncovered its critical role in pancreatic cancer progression.Abbreviation: ACTB: actin beta; ChIP: chromatin immunoprecipitation; EGF: epidermal growth factor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FLCN: folliculin; FNIP1: folliculin interacting protein 1; FNIP2: folliculin interacting protein 2; GAP: GTPase activator protein; GEF: guanine nucleotide exchange factors; GTPase: guanosine triphosphatase; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF2: myocyte enhancer factor 2; MEF2A: myocyte enhancer factor 2A; MEF2D: myocyte enhancer factor 2D; MEF2D-3YF: Y131F, Y333F, Y337F mutant; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NR4A1: nuclear receptor subfamily 4 group A member 1; RPTOR: regulatory associated protein of MTOR complex 1; RHEB: Ras homolog, mTORC1 binding; RPS6KB1: ribosomal protein S6 kinase B1; RRAG: Ras related GTP binding; RT-qPCR: real time-quantitative PCR; SRC: SRC proto-oncogene, non-receptor tyrosine kinase; TMEM192: transmembrane protein 192; WT: wild-type.
Collapse
Affiliation(s)
- Li Xia
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Huang
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaolong Shi
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianjun Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaobin Li
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tuo Xu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Hou H, Yang Y, Chen R, Guo Z. Osthole protects H9c2 cardiomyocytes against trastuzumab-induced damage by enhancing autophagy through the p38MAPK/mTOR signaling pathway. Toxicol In Vitro 2023; 93:105704. [PMID: 37769856 DOI: 10.1016/j.tiv.2023.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Trastuzumab (TRZ) is a novel targeted anti-tumor agent that significantly improve the survival of patients with human epidermal growth factor receptor (HER2) positive breast cancer. However, its clinical application is limited due to the side effects of cardiotoxicity. Osthole (OST), a coumarin derivative isolated from Cnidium monnieri (L.) Cusson, has previously demonstrated cardioprotective effects. The aim of this study was to observe the protective effect of OST on TRZ-induced cardiomyocytes damage and to explore its potential mechanism. The results showed that OST pretreatment could significantly inhibit TRZ-induced cardiomyocytes damage, markedly increase the ratio of LC3II/I and Beclin-1 protein expression, and reduce the protein expression of p62. OST pretreatment significantly attenuated oxidative stress and apoptosis induced by TRZ, as evidenced by reducing intracellular ROS level, the Bax/Bcl-2 ratio, and Caspase-3 protein expression. Additionally, OST markedly increased the phosphorylation level of p38MAPK and decreased the mTOR phosphorylation level. However, the effects of OST on enhancing autophagy, reducing oxidative stress, apoptosis, and the phosphorylation level of mTOR were reversed after the addition of 3-MA or SB203580. Molecular docking results indicated that OST exerted a good binding ability with the p38MAPK protein. Our findings suggested that OST could protect TRZ-induced cardiomyocytes damage by enhancing autophagy via the p38MAPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Huan Hou
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Department of Pharmacy, Dazhou Central Hospital, Dazhou 635000, China
| | - Yaping Yang
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rong Chen
- Clinic Pharmacology Laboratory, Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Central China Fuwai Hospital of Zhengzhou University, Henan 451464, China.
| |
Collapse
|
8
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
9
|
Kim J, Hong SK, Yang Y, Lee A, Hoffmeister KM, Gantner BN, Park JI. Prolonged warm ischemia time increases mitogen-activated protein kinase activity and decreases perfusate cytokine levels in ex vivo rat liver machine perfusion. FRONTIERS IN TRANSPLANTATION 2023; 2:1215182. [PMID: 38993858 PMCID: PMC11235240 DOI: 10.3389/frtra.2023.1215182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/10/2023] [Indexed: 07/13/2024]
Abstract
Introduction Machine perfusion is increasingly being utilized in liver transplantation in lieu of traditional cold static organ preservation. Nevertheless, better understanding of the molecular mechanisms underlying the ischemia-reperfusion injury (IRI) during ex vivo perfusion is necessary to improve the viability of liver grafts after transplantation using machine perfusion technology. Since key cellular signaling pathways involved in hepatic IRI may allow a chance for designing a promising approach to improve the clinical outcomes from this technology, we determined how warm ischemia time (WIT) during procurement affects the activity of mitogen-activated protein kinase (MAPK) and perfusate concentration of cytokines in an ex vivo rat liver machine perfusion model. Methods Male Sprague-Dawley rats underwent in situ hepatic ischemia with varying WIT (0, 10, 20, 30 min, n = 5 each), and subsequently 3 h of cold ischemia time and 2 h of machine perfusion prior to determining the degree of MAPK activation-phosphorylation and cytokine concentration in liver tissue and perfusates, respectively. Results Our data revealed a strong correlation between incremental WIT and a series of liver injury markers, and that prolonged WIT increases ERK1/2 and p54 JNK phosphorylation during machine perfusion. Notably, specific cytokine levels (MCP-1, MIP-2, GRO/KC, IL-10, and IL-5) were inversely correlated with the phosphorylation levels of ERK1/2, p38 MAPK, and p46/p54 JNK. Discussion These results suggest that MAPK activation, specifically ERK1/2 and p54 JNK phosphorylation, have potential as a biomarker for hepatic IRI pathophysiology during machine perfusion. Elucidation of their functional significance may lead to designing a novel strategy to increase the clinical benefit of machine perfusion.
Collapse
Affiliation(s)
- Joohyun Kim
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Seung-Keun Hong
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yongqiang Yang
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alice Lee
- Department of Surgery, Division of Transplant Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karin M. Hoffmeister
- Versiti Translational Glycomics Center, Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Benjamin N. Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Qu R, Zhou M, Qiu Y, Peng Y, Yin X, Liu B, Bi H, Gao Y, Guo D. Glucocorticoids improve the balance of M1/M2 macrophage polarization in experimental autoimmune uveitis through the P38MAPK-MEF2C axis. Int Immunopharmacol 2023; 120:110392. [PMID: 37262960 DOI: 10.1016/j.intimp.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Uveitis is a common ocular disease that can induce serious complications and sequelae. It is one of the major causes of blindness. Currently, mounting evidence suggests that glucocorticoids (GCs) can suppress ocular inflammation and promote the healing of damaged ocular tissues, but the underlying mechanism remains unclear. The present study aimed to elucidate the mechanism by which GCs modulate the homeostasis of M1/M2 macrophage polarization in experimental autoimmune uveitis (EAU) through the p38MAPK-MEF2C axis. Female Lewis rats were randomly divided into four groups: a normal control (NC) group, an EAU group, an EAU + glucocorticoid (EAU + GC) group, and an EAU + p38MAPK inhibitor (EAU + SB) group. The EAU model was induced in EAU, EAU + GC, and EAU + SB groups, followed by the treatments of normal saline, GC (predisione), and SB203580, respectively. The findings demonstrated that the rats in GC and SB groups had much less ocular inflammation, and the clinical and pathological scores decreased. Further research revealed that GC and SB treatment could inhibit iNOS and CD86 expression while promoting Arg-1 and CD206 secretion in IRBP-induced uveitis rats. Moreover, we found that the role of GC was similar to the results of SB203580, but the role of GC was masked by the C16-PAF (a p38MAPK activator) treatment. Molecular docking and western blot results confirmed that GC's therapeutic action against EAU is mediated via the p38MAPK-MEF2C axis. It regulates macrophage polarization by encouraging M1 to M2 transition and releasing anti-inflammatory factors.
Collapse
Affiliation(s)
- Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Bin Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan'e Gao
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
| |
Collapse
|
11
|
Vishal K, Barajas Alonso E, DeAguero AA, Waters JA, Chechenova MB, Cripps RM. Phosphorylation of the Myogenic Factor Myocyte Enhancer Factor-2 Impacts Myogenesis In Vivo. Mol Cell Biol 2023; 43:241-253. [PMID: 37184381 PMCID: PMC10251773 DOI: 10.1080/10985549.2023.2198167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
Activity of the myogenic regulatory protein myocyte enhancer factor-2 (MEF2) is modulated by post-translational modification. We investigated the in vivo phosphorylation of Drosophila MEF2, and identified serine 98 (S98) as a phosphorylated residue. Phospho-mimetic (S98E) and phospho-null (S98A) isoforms of MEF2 did not differ from wild-type in their activity in vitro, so we used CRISPR/Cas9 to generate an S98A allele of the endogenous gene. In mutant larvae we observed phenotypes characteristic of reduced MEF2 function, including reduced body wall muscle size and reduced expression of myofibrillar protein genes; conversely,S98A homozygotes showed enhanced MEF2 function through muscle differentiation within the adult myoblasts associated with the wing imaginal disc. In adults, S98A homozygotes were viable with normal mobility, yet showed patterning defects in muscles that were enhanced when the S98A allele was combined with a Mef2 null allele. Overall our data indicate that blocking MEF2 S98 phosphorylation in myoblasts enhances its myogenic capability, whereas blocking S98 phosphorylation in differentiating muscles attenuates MEF2 function. Our studies are among the first to assess the functional significance of MEF2 phosphorylation sites in the intact animal, and suggest that the same modification can have profoundly different effects upon MEF2 function depending upon the developmental context.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Ashley A. DeAguero
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jennifer A. Waters
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Maria B. Chechenova
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
12
|
Li T, Conroy KL, Kim AM, Halmai J, Gao K, Moreno E, Wang A, Passerini AG, Nolta JA, Zhou P. Role of MEF2C in the Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cells 2023; 41:341-353. [PMID: 36639926 PMCID: PMC10128960 DOI: 10.1093/stmcls/sxad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) not only provide an abundant source of vascular cells for potential therapeutic applications in vascular disease but also constitute an excellent model for understanding the mechanisms that regulate the differentiation and the functionality of vascular cells. Here, we reported that myocyte enhancer factor 2C (MEF2C) transcription factor, but not any other members of the MEF2 family, was robustly upregulated during the differentiation of vascular progenitors and endothelial cells (ECs) from hiPSCs. Vascular endothelial growth factors (VEGF) strongly induced MEF2C expression in endothelial lineage cells. The specific upregulation of MEF2C during the commitment of endothelial lineage was dependent on the extracellular signal regulated kinase (ERK). Moreover, knockdown of MEF2C with shRNA in hiPSCs did not affect the differentiation of ECs from these hiPSCs, but greatly reduced the migration and tube formation capacity of the hiPSC-derived ECs. Through a chromatin immunoprecipitation-sequencing, genome-wide RNA-sequencing, quantitative RT-PCR, and immunostaining analyses of the hiPSC-derived endothelial lineage cells with MEF2C inhibition or knockdown compared to control hiPSC-derived ECs, we identified TNF-related apoptosis inducing ligand (TRAIL) and transmembrane protein 100 (TMEM100) as novel targets of MEF2C. This study demonstrates an important role for MEF2C in regulating human EC functions and highlights MEF2C and its downstream effectors as potential targets to treat vascular malfunction-associated diseases.
Collapse
Affiliation(s)
- Tao Li
- School of Medicine, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Kelsey L Conroy
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Amy M Kim
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Julian Halmai
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| | - Kewa Gao
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Emily Moreno
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Jan A Nolta
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| | - Ping Zhou
- Stem Cell Program and Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- University of California Davis Gene Therapy Center, Sacramento, CA, USA
| |
Collapse
|
13
|
Moustafa A, Hashemi S, Brar G, Grigull J, Ng SHS, Williams D, Schmitt-Ulms G, McDermott JC. The MEF2A transcription factor interactome in cardiomyocytes. Cell Death Dis 2023; 14:240. [PMID: 37019881 PMCID: PMC10076289 DOI: 10.1038/s41419-023-05665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Transcriptional regulators encoded by the Myocyte Enhancer Factor 2 (MEF2) gene family play a fundamental role in cardiac development, homeostasis and pathology. Previous studies indicate that MEF2A protein-protein interactions serve as a network hub in several cardiomyocyte cellular processes. Based on the idea that interactions with regulatory protein partners underly the diverse roles of MEF2A in cardiomyocyte gene expression, we undertook a systematic unbiased screen of the MEF2A protein interactome in primary cardiomyocytes using an affinity purification-based quantitative mass spectrometry approach. Bioinformatic processing of the MEF2A interactome revealed protein networks involved in the regulation of programmed cell death, inflammatory responses, actin dynamics and stress signaling in primary cardiomyocytes. Further biochemical and functional confirmation of specific protein-protein interactions documented a dynamic interaction between MEF2A and STAT3 proteins. Integration of transcriptome level data from MEF2A and STAT3-depleted cardiomyocytes reveals that the balance between MEF2A and STAT3 activity exerts a level of executive control over the inflammatory response and cardiomyocyte cell survival and experimentally ameliorates Phenylephrine induced cardiomyocyte hypertrophy. Lastly, we identified several MEF2A/STAT3 co-regulated genes, including the MMP9 gene. Herein, we document the cardiomyocyte MEF2A interactome, which furthers our understanding of protein networks involved in the hierarchical control of normal and pathophysiological cardiomyocyte gene expression in the mammalian heart.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Sara Hashemi
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Seneca College, School of Health Sciences, King City, ON, L7B 1B3, Canada
| | - Gurnoor Brar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada
| | - Siemon H S Ng
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Analytical Development, Notch Therapeutics, Toronto, ON, M5G 1M1, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
14
|
Mondru AK, Aljasir MA, Alrumayh A, Nithianandarajah GN, Ahmed K, Muller J, Goldring CEP, Wilm B, Cross MJ. VEGF Stimulates Activation of ERK5 in the Absence of C-Terminal Phosphorylation Preventing Nuclear Localization and Facilitating AKT Activation in Endothelial Cells. Cells 2023; 12:967. [PMID: 36980305 PMCID: PMC10047687 DOI: 10.3390/cells12060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival.
Collapse
Affiliation(s)
- Anil Kumar Mondru
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Mohammad A. Aljasir
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Ahmed Alrumayh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Gopika N. Nithianandarajah
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Jurgen Muller
- Cardiovascular Research Group, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Christopher E. P. Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
15
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
16
|
A p38α-BLIMP1 signalling pathway is essential for plasma cell differentiation. Nat Commun 2022; 13:7321. [PMID: 36443297 PMCID: PMC9703440 DOI: 10.1038/s41467-022-34969-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Plasma cells (PC) are antibody-secreting cells and terminal effectors in humoral responses. PCs differentiate directly from activated B cells in response to T cell-independent (TI) antigens or from germinal center B (GCB) cells in T cell-dependent (TD) antigen-induced humoral responses, both of which pathways are essentially regulated by the transcription factor BLIMP1. The p38 mitogen-activated protein kinase isoforms have already been implicated in B cell development, but the precise role of p38α in B cell differentiation is still largely unknown. Here we show that PC differentiation and antibody responses are severely impaired in mice with B cell-specific deletion of p38α, while B cell development and the GCB cell response are spared. By utilizing a Blimp1 reporter mouse model, we show that p38α-deficiency results in decreased BLIMP1 expression. p38α-driven BLIMP1 up-regulation is required for both TI and TD PCs differentiation. By combining CRISPR/Cas9 screening and other approaches, we identify TCF3, TCF4 and IRF4 as downstream effectors of p38α to control PC differentiation via Blimp1 transcription. This study thus identifies an important signalling pathway underpinning PC differentiation upstream of BLIMP1, and points to a highly specialized and non-redundant role for p38α among p38 isoforms.
Collapse
|
17
|
Liu M, Liu Y, Li X, Pei M, Han M, Qi F. Dexmedetomidine inhibits abnormal muscle hypertrophy of myofascial trigger points via TNF-α/ NF-κB signaling pathway in rats. Front Pharmacol 2022; 13:1031804. [PMID: 36408215 PMCID: PMC9669483 DOI: 10.3389/fphar.2022.1031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Myofascial pain syndrome (MPS) is a chronic pain disorder with inflammation-related primarily characterized by the presence of myofascial trigger points (MTrPs). Myocyte enhancer factor 2C (MEF2C) is involved in the occurrence of a variety of skeletal muscle diseases. However, it is not yet clear if MEF2C is involved in MTrPs. The purpose of this study was to investigate whether MEF2C was involved in the inflammatory pathogenesis of MTrPs. In the present study, we used RNA sequencing (RNA-seq) to compare the differential expression of myocyte enhancer factor 2C (MEF2C) in healthy participants and MTrPs participants. The widely used rat MTrPs model was established to research the upstream and downstream regulatory mechanism of MEF2C and found that MEF2C was significantly increased in patients with MTrPs. Dexmedetomidine (Dex) was injected intramuscularly in the MTrPs animal to assess its effects on MEF2C. The expression of MEF2C protein and mRNA in skeletal muscle of rats in the MTrPs group were up-regulated. In addition, the expression of TNF- α, p-P65, MLCK, and Myocilin (MyoC) was up-regulated and the mechanical pain threshold was decreased. Peripheral TNF- α injection significantly decreased the mechanical pain threshold and increased the expression of p-P65, MLCK, MEF2C, and MyoC in healthy rats. Maslinic acid increased the mechanical pain threshold and inhibited the expression of p-P65, MLCK, MEF2C, and MyoC. In addition, peripheral injection of DEX in MTrPs rats also inhibited the expression of TNF- α, p-P65, MLCK, MEF2C, and MyoC. These results suggest that MEF2C is involved in the inflammatory pathogenesis of MTrPs and DEX serves as a potential therapeutic strategy for the treatment of MPS.
Collapse
Affiliation(s)
- Mingjian Liu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu Liu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xuan Li
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Miao Pei
- Laboratory of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Anesthesiology Clinic, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Mei Han
- Department of the Quality Management, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Mei Han, ; Feng Qi,
| | - Feng Qi
- Department of Anesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Mei Han, ; Feng Qi,
| |
Collapse
|
18
|
Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans 2022; 50:1341-1352. [PMID: 36281999 PMCID: PMC9704528 DOI: 10.1042/bst20220271] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023]
Abstract
Extracellular signal-related kinases 1 and 2 (ERK1/2) are the final components of the mitogen-activated protein kinase (MAPK) phosphorylation cascade, an integral module in a diverse array of signalling pathways for shaping cell behaviour and fate. More recently, studies have shown that ERK1/2 plays an essential role downstream of immune receptors to elicit inflammatory gene expression in response to infection and cell or tissue damage. Much of this work has studied ERK1/2 activation in Toll-like receptor (TLR) pathways, providing mechanistic insights into its recruitment, compartmentalisation and activation in cells of the innate immune system. In this review, we summarise the typical activation of ERK1/2 in growth factor receptor pathways before discussing its known roles in immune cell signalling with a focus downstream of TLRs. We examine emerging research uncovering evidence of dysfunctional ERK1/2 signalling in inflammatory diseases and discuss the potential therapeutic benefit of targeting ERK1/2 pathways in inflammation.
Collapse
Affiliation(s)
- Richard M. Lucas
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
19
|
PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232012304. [PMID: 36293168 PMCID: PMC9604316 DOI: 10.3390/ijms232012304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
OCTN2 (SLC22A5) is a carnitine transporter whose main function is the active transport of carnitine into cells. In skeletal muscle and other organs, the regulation of the SLC22A5 gene transcription has been shown to depend on the nuclear transcription factor PPAR-α. Due to the observation that the muscle OCTN2 mRNA level is maintained in PPAR-α knock-out mice and that PGC-1α overexpression in C2C12 myoblasts increases OCTN2 mRNA expression, we suspected additional regulatory pathways for SLC22A5 gene transcription. Indeed, we detected several binding sites of the myocyte-enhancing factor MEF2 in the upstream region of the SLC22A5 gene, and MEF2C/MEF2D stimulated the activity of the OCTN2 promoter in gene reporter assays. This stimulation was increased by PGC-1α and was blunted for a SLC22A5 promoter fragment with a mutated MEF2 binding site. Further, we demonstrated the specific binding of MEF2 to the SLC22A5 gene promoter, and a supershift of the MEF2/DNA complex in electrophoretic mobility shift assays. In immunoprecipitation experiments, we could demonstrate the interaction between PGC-1α and MEF2. In addition, SB203580, a specific inhibitor of p38 MAPK, blocked and interferon-γ stimulated the transcriptional activity of the SLC22A5 gene promoter. Finally, mice with muscle-specific overexpression of OCTN2 showed an increase in OCTN2 mRNA and protein expression in skeletal muscle. In conclusion, we detected and characterized a second stimulatory pathway of SLC22A5 gene transcription in skeletal muscle, which involves the nuclear transcription factor MEF2 and co-stimulation by PGC-1α and which is controlled by the p38 MAPK signaling cascade.
Collapse
|
20
|
Jiang S, Yin C, Dang K, Zhang W, Huai Y, Qian A. Comprehensive ceRNA network for MACF1 regulates osteoblast proliferation. BMC Genomics 2022; 23:695. [PMID: 36207684 PMCID: PMC9541005 DOI: 10.1186/s12864-022-08910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC‑E1 pre‑osteoblast cells. RESULTS In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes. CONCLUSION This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC‑E1 osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA network to regulate osteoblast proliferation.
Collapse
Affiliation(s)
- Shanfeng Jiang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Department of Clinical Laboratory, Academician (expert) workstation, Lab of epigenetics and RNA therapy, Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Gabbia D, Roverso M, Zanotto I, Colognesi M, Sayaf K, Sarcognato S, Arcidiacono D, Zaramella A, Realdon S, Ferri N, Guido M, Russo FP, Bogialli S, Carrara M, De Martin S. A Nutraceutical Formulation Containing Brown Algae Reduces Hepatic Lipid Accumulation by Modulating Lipid Metabolism and Inflammation in Experimental Models of NAFLD and NASH. Mar Drugs 2022; 20:572. [PMID: 36135761 PMCID: PMC9501409 DOI: 10.3390/md20090572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
22
|
Zhang X, Zhang X, Liu K, Li W, Wang J, Liu P, Ma W. HIVEP3 cooperates with ferroptosis gene signatures to confer adverse prognosis in acute myeloid leukemia. Cancer Med 2022; 11:5050-5065. [PMID: 35535739 PMCID: PMC9761064 DOI: 10.1002/cam4.4806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The human immunodeficiency virus type I enhancer binding protein (HIVEP) family, which contains zinc finger and acid-rich (ZAS) domains, has been demonstrated to be implicated in vital biological processes, such as cell survival, tumor necrosis factor (TNF) signaling, and tumor formation. However, its expression patterns, prognostic relevance, and functional implications in acute myeloid leukemia (AML) remain elusive. METHODS We inspected HIVEP mRNA expression levels in datasets from The Cancer Genome Atlas (TCGA) and GSE24006. Survival analyses were orchestrated using the web-based bioinformatics platforms and R studio in two AML cohorts. Prognostic value and capacity were assessed by Cox regression analyses. Association of HIVEP3 expression levels with clinical characteristics were analyzed with R and UALCAN. Subsequentially, functional enrichment analyses were operated to interpret HIVEP3 co-expressed gene clusters. A prognostic gene signature was created by the least absolute shrinkage and selection operator (LASSO) regression algorithm. Moreover, bone marrow aspirate smears of AML patients were stained for HIVEP3 by immunohistochemistry (IHC). HIVEP3 expression was examined by qRT-PCR in leukemia cell lines treated with ferroptosis compounds in vitro. RESULTS Augmented transcriptional levels of HIVEP2 and 3 were noted in AML patients (p<0.001). HIVEP3 not only could confer adverse prognosis independently in AML patients, but also was associated with AML subtypes, age, cytogenetic risk, and disease-related molecules. Co-expressed gene clusters of HIVEP3 were enriched in functional pathways related to AML leukemogenesis, such as ribosome, metabolism, and calcium signaling. Combined with multiple tumorigenesis signaling pathways, we proposed an integrated LASSO model with HIVEP3 and ferroptosis regulators AIFM2 and LPCAT3, to predict the outcome for AML patients. Furthernore, altered HIVEP3 expression at the mRNA or protein level was confirmed in sorted leukemia cells and blast cells in bone marrow tissues. In vitro experiments authenticated the involvement of HIVEP3 in ferroptosis signaling pathways. CONCLUSIONS Our findings suggest that HIVEP3 is a de novo independent prognostic indicator, and the crosstalk between HIVEP3 and ferroptosis signaling pathways may inspire a specific perspective on the oncological network of AML.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Department of Clinical Laboratory MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory MedicineJinanPR China
| | - Xiaoyu Zhang
- Department of NephroticThe Fifth People's Hospital of JinanJinanPR China
| | - Kuo Liu
- Department of Clinical Laboratory MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory MedicineJinanPR China
| | - Wenwen Li
- Department of Clinical Laboratory MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory MedicineJinanPR China
| | - Jiazheng Wang
- Department of Clinical Laboratory MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory MedicineJinanPR China
| | - Peng Liu
- Department of Clinical Laboratory MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory MedicineJinanPR China
| | - Wanshan Ma
- Department of Clinical Laboratory MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory MedicineJinanPR China
| |
Collapse
|
23
|
Canté-Barrett K, Meijer MT, Cordo' V, Hagelaar R, Yang W, Yu J, Smits WK, Nulle ME, Jansen JP, Pieters R, Yang JJ, Haigh JJ, Goossens S, Meijerink JP. MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight 2022; 7:150363. [PMID: 35536646 PMCID: PMC9310523 DOI: 10.1172/jci.insight.150363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.
Collapse
Affiliation(s)
| | - Mariska T Meijer
- Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Jiyang Yu
- Computational Biology Department, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marloes E Nulle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Joris P Jansen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rob Pieters
- Pieters Group, Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, United States of America
| | - Jody J Haigh
- Research Institute of Oncology and Hematology, University of Manitoba, Manitoba, Canada
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jules Pp Meijerink
- Meijerink Group, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
24
|
Bioassay-Guided Isolation of 2-[p-(2-Carboxyhydrazino)phenoxy]-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol from Oroxylum indicum and the Investigation of Its Molecular Mechanism Action of Apoptosis Induction. Pharmaceuticals (Basel) 2022; 15:ph15050559. [PMID: 35631385 PMCID: PMC9148098 DOI: 10.3390/ph15050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/04/2022] Open
Abstract
The leaf crude extract of Oroxylum indicum (L.) Kurz induces genomic DNA fragmentation, comet formation, and the inhibition of cell proliferation in the prostate cancer cell line PC3, as assessed by agarose gel electrophoresis, comet assay and MTT assay, respectively. The bioactive compound was purified through bioassay-guided fractionation using preparative HPLC and MTT assay. The light brown and water-soluble compound was characterized using 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR), and electrospray ionization (ESI) mass spectrometry. The compound was identified as a glycosylated hydroquinone derivative, 2-[p-(2-Carboxyhydrazino)phenoxy]-6-(hydroxymethyl) tetrahy-dro-2H-pyran-3,4,5-triol (molecular formula, C13H18N2O8; molecular mass = 330). The identified phytocompound has not been reported earlier elsewhere. Therefore, the common name of the novel anticancer phytocompound isolated from Oroxylum indicum in this current study is oroxyquinone. The half-maximal inhibitory concentration (IC50) of oroxyquinone on PC3 cells was 58.9 µM (95% CI = 54.5 to 63.7 µM). Treatment of PC3 cells with oroxyquinone induced genomic DNA fragmentation and chromatin condensation, increased in the annexin-V positive cells, arrested the cell cycle at S phases, and inhibited the cell migration; as assessed by comet assay, DAPI staining, flow cytometry and a wound healing assay, respectively. On the investigation of the molecular mechanism of the induction of apoptosis, the results indicated that oroxyquinone induced caspase-3 and PARP independent apoptosis but through the p38 pathway and the localization of AIF into the nucleus. The present study identifies a novel anticancer molecule and provides scientific evidence supporting the therapeutic potency of Oroxylum indicum for ethnomedicinal uses.
Collapse
|
25
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
26
|
Besednova NN, Andryukov BG, Zaporozhets TS, Kuznetsova TA, Kryzhanovsky SP, Ermakova SP, Galkina IV, Shchelkanov MY. Molecular Targets of Brown Algae Phlorotannins for the Therapy of Inflammatory Processes of Various Origins. Mar Drugs 2022; 20:243. [PMID: 35447916 PMCID: PMC9025421 DOI: 10.3390/md20040243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory reactions are part of a complex biological response that plays a vital role in the appearance of various stimuli resulting from tissue and cell damage, the invasion of pathogenic bacteria, and the formation of the subsequent adaptive immune response. The production of many triggers and mediators of inflammation, which are inducers of pro-inflammatory factors, is controlled by numerous differentiation programs, through which inflammation is resolved and tissue homeostasis is restored. However, prolonged inflammatory responses or dysregulation of pro-inflammatory mechanisms can lead to chronic inflammation. Modern advances in biotechnology have made it possible to characterize the anti-inflammatory activity of phlorotannins, polyphenolic compounds from brown seaweed, and the mechanisms by which they modulate the inflammatory response. The purpose of this review is to analyze and summarize the results of numerous experimental in vitro and in vivo studies, illustrating the regulatory mechanisms of these compounds, which have a wide range of biological effects on the body. The results of these studies and the need for further research are discussed.
Collapse
Affiliation(s)
- Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Medicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Irina V. Galkina
- School of Medicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Mikhail Yu. Shchelkanov
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Medicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690091 Vladivostok, Russia
- Zhirmunsky National Scientific Center, Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690091 Vladivostok, Russia
| |
Collapse
|
27
|
Neflamapimod induces vasodilation in resistance mesenteric arteries by inhibiting p38 MAPKα and downstream Hsp27 phosphorylation. Sci Rep 2022; 12:4905. [PMID: 35318382 PMCID: PMC8941071 DOI: 10.1038/s41598-022-08877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 01/02/2023] Open
Abstract
Neflamapimod, a selective inhibitor of p38 mitogen activated protein kinase alpha (MAPKα), is under clinical investigation for its efficacy in Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB). Here, we investigated if neflamapimod-mediated acute inhibition of p38 MAPKα could induce vasodilation in resistance-size rat mesenteric arteries. Our pressure myography data demonstrated that neflamapimod produced a dose-dependent vasodilation in mesenteric arteries. Our Western blotting data revealed that acute neflamapimod treatment significantly reduced the phosphorylation of p38 MAPKα and its downstream target heat-shock protein 27 (Hsp27) involved in cytoskeletal reorganization and smooth muscle contraction. Likewise, non-selective inhibition of p38 MAPK by SB203580 attenuated p38 MAPKα and Hsp27 phosphorylation, and induced vasodilation. Endothelium denudation or pharmacological inhibition of endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2) had no effect on such vasodilation. Neflamapimod-evoked vasorelaxation remained unaltered by the inhibition of smooth muscle cell K+ channels. Altogether, our data for the first time demonstrates that in resistance mesenteric arteries, neflamapimod inhibits p38 MAPKα and phosphorylation of its downstream actin-associated protein Hsp27, leading to vasodilation. This novel finding may be clinically significant and is likely to improve systemic blood pressure and cognitive deficits in AD and DLB patients for which neflamapimod is being investigated.
Collapse
|
28
|
Li Z, Meng X, Wu P, Zha C, Han B, Li L, Sun N, Qi T, Qin J, Zhang Y, Tian K, Li S, Yang C, Ren L, Ming J, Wang P, Song Y, Jiang C, Cai J. Glioblastoma Cell-Derived lncRNA-Containing Exosomes Induce Microglia to Produce Complement C5, Promoting Chemotherapy Resistance. Cancer Immunol Res 2021; 9:1383-1399. [PMID: 34667108 DOI: 10.1158/2326-6066.cir-21-0258] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM), the most common malignant primary brain cancer in adults, nearly always becomes resistant to current treatments, including the chemotherapeutic temozolomide (TMZ). The long noncoding RNA (lncRNA) TMZ-associated lncRNA in GBM recurrence (lnc-TALC) promotes GBM resistance to TMZ. Exosomes can release biochemical cargo into the tumor microenvironment (TME) or transfer their contents, including lncRNAs, to other cells as a form of intercellular communication. In this study, we found that lnc-TALC could be incorporated into exosomes and transmitted to tumor-associated macrophages (TAM) and could promote M2 polarization of the microglia. This M2 polarization correlated with secretion of the complement components C5/C5a, which occurred downstream of lnc-TALC binding to ENO1 to promote the phosphorylation of p38 MAPK. In addition, C5 promoted the repair of TMZ-induced DNA damage, leading to chemotherapy resistance, and C5a-targeted immunotherapy showed improved efficacy that limited lnc-TALC-mediated TMZ resistance. Our results reveal that exosome-transmitted lnc-TALC could remodel the GBM microenvironment and reduce tumor sensitivity to TMZ chemotherapy, indicating that the lnc-TALC-mediated cross-talk between GBM cells and microglia could attenuate chemotherapy efficacy and pointing to potential combination therapy strategies to overcome TMZ resistance in GBM.See related Spotlight by Zhao and Xie, p. 1372.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Han
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Lulu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tengfei Qi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shupeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changxiao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lejia Ren
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguang Ming
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pandeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China. .,Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Predictive Value of Gut Microbiome for Cognitive Impairment in Patients with Hypertension. DISEASE MARKERS 2021; 2021:1683981. [PMID: 34659587 PMCID: PMC8514967 DOI: 10.1155/2021/1683981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
A connection exists between hypertension (HTN) and cognitive impairment (CI) or gut microbiota (GM) and neuropsychiatric disease. However, the link between GM and HTNCI has not been illustrated. This study endeavoured to profile the landscape of GM in HTNCI patients and evaluate the value of GM as HTNCI biomarkers. We recruited 128 patients with hypertension and assigned them to two groups of different MoCA scores. Clinical and biological data were recorded. GM composition was illustrated with 16S ribosomal RNA sequencing, and the dominant species were identified by linear discriminant analysis Effect Size (LEfSe). It showed higher abundance of TM7 and lower abundances of Veillonella and Peptoniphilus in the HTNCI group than in the HTN without cognitive impairment (HTNnCI) group. We next clarified the link between GM and MoCA scores or HTNCI factors. KEGG analysis revealed the involvement of decreased bile secretion. An evident correlation showed up between HTNCI and Veillonella abundance (P = 0.0340). We concluded that some representative GM species, especially Veillonella, could predict cognitive impairment in hypertension patients, making them potential benchmarks of HTNCI.
Collapse
|
30
|
Wang P, Zhao J, Sun X. DYRK1A phosphorylates MEF2D and decreases its transcriptional activity. J Cell Mol Med 2021; 25:6082-6093. [PMID: 34109727 PMCID: PMC8256340 DOI: 10.1111/jcmm.16505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Myocyte enhancer factor 2D (MEF2D) is predominantly expressed in the nucleus and associated with cell growth, differentiation, survival and apoptosis. Previous studies verified that phosphorylation at different amino acids determined MEF2's transcriptional activity which was essential in regulating downstream target genes expression. What regulates phosphorylation of MEF2D and affects its function has not been fully elucidated. Here, we uncovered that dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A), a kinase critical in Down's syndrome pathogenesis, directly bound to and phosphorylated MEF2D at Ser251 in vitro. Phosphorylation of MEF2D by DYRK1A significantly increased MEF2D protein level but attenuated its transcriptional activity, which resulted in decreased transcriptions of MEF2D target genes. Phosphorylation mutated Ser251A MEF2D exhibited enhanced transcriptional activity compared with wild type MEF2D. MEF2D and DYRK1A were observed co-localized in HEK293 and U87MG cells. Moreover, DYRK1A-mediated MEF2D phosphorylation in vitro might influence its nuclear export upon subcellular fractionation, which partially explained the reduction of MEF2D transcriptional activity by DYRK1A. Our results indicated that DYRK1A might be a regulator of MEF2D transcriptional activity and indirectly get involved in regulation of MEF2D target genes.
Collapse
Affiliation(s)
- Pin Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Juan Zhao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
31
|
Lu F, Wang R, Xia L, Nie T, Gao F, Yang S, Huang L, Shao K, Liu J, Yang Q. Regulation of IFN-Is by MEF2D Promotes Inflammatory Homeostasis in Microglia. J Inflamm Res 2021; 14:2851-2863. [PMID: 34234510 PMCID: PMC8254549 DOI: 10.2147/jir.s307624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background Microglia play an essential role in the central nervous system immune response. The transcription factor myocyte enhancer factor-2 D (MEF2D) is known to participate in stress regulation in various cell types and is easily activated in microglia. MEF2D has been shown to transcriptionally regulate several cytokine genes in immune cells and directly regulates the inflammatory response, suggesting that MEF2D may act as a key stimulus response regulator of microglia and is involved in the regulation of brain microhomeostasis. To uncover the molecular mechanism of MEF2D in the inflammatory system, in the present study, we investigated the global effect of MEF2D in activated microglia and explored its potential regulatory network. Methods Experiments with a recombinant lentiviral vector containing either shRNA or overexpressing MEF2D were performed in the murine microglial BV2 cell line. Transcriptome sequencing and global gene expression patterns were analysed in lipopolysaccharide-stimulated shMEF2D BV2 cells. Pro- and anti-inflammatory factors were assessed by Western blot, qPCR or ELISA, and microglial activity was assessed by phagocytosis and morphologic analysis. The direct binding of MEF2D to the promoter region of interferon regulatory factor 7 (IRF7) was tested by ChIP-qPCR. The interferon-stimulated genes (ISGs) were tested by qPCR. Results MEF2D actively participated in the inflammatory response of BV2 microglial cells. Stably expressed RNAi-induced silencing of MEF2D disrupted the microglial immune balance in two ways: (1) the expression of proinflammatory factors, such as NLRP3, IL-1β, and iNOS was promoted; and (2) the type-I interferon signalling pathway was markedly inhibited by directly modulating IRF7 transcription. In contrast, overexpression of MEF2D significantly reduced the expression of NLRP3 and iNOS under LPS stimulation and alleviated the level of immune stress in microglia. Conclusion These findings demonstrate that MEF2D plays an important role in regulating inflammatory homeostasis partly through transcriptional regulation of the type-I interferon signalling pathway.
Collapse
Affiliation(s)
- Fangfang Lu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China.,Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Li Xia
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Shaosong Yang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Kaifeng Shao
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Airforce Medical University of PLA, Xi'an, Shaanxi, 710038, People's Republic of China
| |
Collapse
|
32
|
Brennan CM, Emerson CP, Owens J, Christoforou N. p38 MAPKs - roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight 2021; 6:e149915. [PMID: 34156029 PMCID: PMC8262482 DOI: 10.1172/jci.insight.149915] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
p38 MAPKs play a central role in orchestrating the cellular response to stress and inflammation and in the regulation of myogenesis. Potent inhibitors of p38 MAPKs have been pursued as potential therapies for several disease indications due to their antiinflammatory properties, although none have been approved to date. Here, we provide a brief overview of p38 MAPKs, including their role in regulating myogenesis and their association with disease progression. Finally, we discuss targeting p38 MAPKs as a therapeutic approach for treating facioscapulohumeral muscular dystrophy and other muscular dystrophies by addressing multiple pathological mechanisms in skeletal muscle.
Collapse
Affiliation(s)
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
33
|
Xiao F, Tang CY, Tang HN, Wu HX, Hu N, Li L, Zhou HD. Long Non-coding RNA 332443 Inhibits Preadipocyte Differentiation by Targeting Runx1 and p38-MAPK and ERK1/2-MAPK Signaling Pathways. Front Cell Dev Biol 2021; 9:663959. [PMID: 34169072 PMCID: PMC8217766 DOI: 10.3389/fcell.2021.663959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral regulators of pathophysiological processes, but their specific roles and mechanisms in adipose tissue development remain largely unknown. Here, through microarray analysis, co-expression, and tissue specific analysis of adipocyte tissues after fasting for 72 h, we found that Lnc-FR332443 expression was dramatically decreased, as well as the expression of Runx1. The UCSC database and Ensembl database indicated that Lnc-FR332443 is the antisense lncRNA of Runx1. Lnc-FR332443 and Runx1 are highly enriched in adipose tissue and downregulated during adipogenic differentiation. Adipose tissue-specific knockdown of Lnc-FR332443 increased fat mass in vivo, and specific knockdown of Lnc-FR332443 in 3T3-L1 preadipocytes promoted adipogenic differentiation. In this process, Runx1 expression was decreased when Lnc-FR332443 was downregulated in adipocytes or 3T3-L1 preadipocytes, and vice versa, when Lnc-FR332443 was upregulated, the expression of Runx1 was increased. However, overexpression of Runx1 decreased the expression of the adipocyte cell marker genes PPARγ, C/EBPα and FABP4 significantly, while not affected the expression of Lnc-FR332443. Mechanistically, Lnc-FR332443 positively regulates Runx1 expression in mouse adipocytes and suppresses adipocyte differentiation by attenuating the phosphorylation of MAPK-p38 and MAPK-ERK1/2 expression. Thus, this study indicated that Lnc-FR332443 inhibits adipogenesis and which might be a drug target for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chen-Yi Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Nan Hu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
34
|
Chen J, Wang W, Sun H, Pang L, Bao H. Binding mechanism of inhibitors to p38α MAP kinase deciphered by using multiple replica Gaussian accelerated molecular dynamics and calculations of binding free energies. Comput Biol Med 2021; 134:104485. [PMID: 33993013 DOI: 10.1016/j.compbiomed.2021.104485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
The p38α MAP Kinase has been an important target of drug design for treatment of inflammatory diseases and cancers. This work applies multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations and the molecular mechanics generalized Born surface area (MM-GBSA) method to probe the binding mechanism of inhibitors L51, R24 and 1AU to p38α. Dynamics analyses show that inhibitor bindings exert significant effect on conformational changes of the active helix α2 and the conserved DFG loop. The rank of binding free energies calculated with MM-GBSA not only agrees well with that determined by the experimental IC50 values but also suggests that mutual compensation between the enthalpy and entropy changes can improve binding of inhibitors to p38α. The analyses of free energy landscapes indicate that the L51, R24 and 1AU bound p38α display a DFG-out conformation. The residue-based free energy decomposition method is used to evaluate contributions of separate residues to the inhibitor-p38α binding and the results imply that residues V30, V38, L74, L75, I84, T106, H107, L108, M109, L167, F169 and D168 can be utilized as efficient targets of potent inhibitors toward p38α.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
35
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
36
|
Loss of Mef2D function enhances TLR induced IL-10 production in macrophages. Biosci Rep 2021; 40:225925. [PMID: 32725155 PMCID: PMC7442974 DOI: 10.1042/bsr20201859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Mef2 transcription factors comprise a family of four different isoforms that regulate a number of processes including neuronal and muscle development. While roles for Mef2C and Mef2D have been described in B-cell development their role in immunity has not been extensively studied. In innate immune cells such as macrophages, TLRs drive the production of both pro- and anti-inflammatory cytokines. IL-10 is an important anti-inflammatory cytokine produced by macrophages and it establishes an autocrine feedback loop to inhibit pro-inflammatory cytokine production. We show here that macrophages from Mef2D knockout mice have elevated levels of IL-10 mRNA induction compared with wild-type cells following LPS stimulation. The secretion of IL-10 was also higher from Mef2D knockout macrophages and this correlated to a reduction in the secretion of TNF, IL-6 and IL-12p40. The use of an IL-10 neutralising antibody showed that this reduction in pro-inflammatory cytokine production in the Mef2D knockouts was IL-10 dependent. As the IL-10 promoter has previously been reported to contain a potential binding site for Mef2D, it is possible that the binding of other Mef2 isoforms in the absence of Mef2D may result in a higher activation of the IL-10 gene. Further studies with compound Mef2 isoforms would be required to address this. We also show that Mef2D is highly expressed in the thymus, but that loss of Mef2D does not affect thymic T-cell development or the production of IFNγ from CD8 T cells.
Collapse
|
37
|
Synergistic Network Pharmacology for Traditional Chinese Medicine Liangxue Tongyu Formula in Acute Intracerebral Hemorrhagic Stroke. Neural Plast 2021; 2021:8874296. [PMID: 33727915 PMCID: PMC7936909 DOI: 10.1155/2021/8874296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Nowadays, acute intracerebral hemorrhage stroke (AICH) still causes higher mortality. Liangxue Tongyu Formula (LXTYF), originating from a traditional Chinese medicine (TCM) prescription, is widely used as auxiliary treatment for AICH. Objective To dig into the multicomponent, multitarget, and multipathway mechanism of LXTYF on treating AICH via network pharmacology and RNA-seq. Methods Network pharmacology analysis was used by ingredient collection, target exploration and prediction, network construction, and Gene Ontology (GO) and KEGG analysis, with the Cytoscape software and ClusterProfiler package in R. The RNA-seq data of the AICH-rats were analyzed for differential expression and functional enrichments. Herb-Compound-Target-Pathway (H-C-T-P) network was shown to clarify the mechanism of LXTYF for AICH. Results 76 active ingredients (quercetin, Alanine, kaempferol, etc.) of LXTYF and 376 putative targets to alleviate AICH (PTGS2, PTGS1, ESR1, etc.) were successfully identified. The protein-protein interaction (PPI) network indicated the important role of STAT3. The functional enrichment of GO and KEGG pathway showed that LXTYF is most likely to influence MAPK and PI3K-Akt signaling pathways for AICH treatment. From the RNA-seq of AICH-rats, 583 differential mRNAs were identified and 14 of them were consistent with the putative targets of LXTYF for AICH treatment. The KEGG pathway enrichment also implied that the MAPK signaling pathway was the most correlated one among all the related signaling pathways. Many important targets with expression changes of LXTYF for AICH treatment and their related pathways are great markers of antioxidation, anti-inflammatory, antiapoptosis, and lowering blood pressure, which indicated that LXTYF may play mutiroles in the mechanisms for AICH treatment. Conclusion The LXTYF attenuates AICH partially by antioxidation, anti-inflammatory, and antiapoptosis and lowers blood pressure roles through regulating the targets involved MAPK, calcium, apoptosis, and TNF signaling pathway, which provide notable clues for further experimental validation.
Collapse
|
38
|
Liu Y, Zhang Z, Li W, Tian S. PECAM1 Combines With CXCR4 to Trigger Inflammatory Cell Infiltration and Pulpitis Progression Through Activating the NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 8:593653. [PMID: 33425898 PMCID: PMC7786183 DOI: 10.3389/fcell.2020.593653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Pulpitis is a frequent bacterially driven inflammation featured with the local accumulation of inflammatory products in human dental pulps. A GEO dataset GSE16134 comprising data of inflamed dental pulp tissues was used for bioinformatics analyses. A protein-protein interaction (PPI) analysis suggested that chemokine receptor 4 (CXCR4) owned a high correlation with platelet endothelial cell adhesion molecule-1 (PECAM1). A rat model with pulpitis was established, and lipopolysaccharide (LPS)-induced human dental pulp fibroblasts (HDPFs) were used for in vitro experiments. Then, high expression of PECAM1 and CXCR4 was validated in the inflamed dental pulp tissues in rats and in LPS-induced HDPFs. Either downregulation of PECAM1 or CXCR4 suppressed inflammatory cell infiltration in inflamed tissues as well as the inflammation and apoptosis of HDPFs. A transcription factor myocyte-enhancer factor 2 (MEF2C) was predicted and validated as a positive regulator of either PECAM1 or CXCR4, which activated the NF-κB signaling pathway and promoted pulpitis progression. To sum up, this study suggested that MEF2C transcriptionally activates PECAM1 and CXCR4 to activate the B-cell and NF-κB signaling pathways, leading to inflammatory cell infiltration and pulpitis progression.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Zhang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjing Li
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songbo Tian
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
39
|
MEF2A transcriptionally upregulates the expression of ZEB2 and CTNNB1 in colorectal cancer to promote tumor progression. Oncogene 2021; 40:3364-3377. [PMID: 33863999 PMCID: PMC8116210 DOI: 10.1038/s41388-021-01774-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Colorectal cancer (CRC) is one of the leading cancers worldwide, accounting for high morbidity and mortality. The mechanisms governing tumor growth and metastasis in CRC require detailed investigation. The results of the present study indicated that the transcription factor (TF) myocyte enhancer factor 2A (MEF2A) plays a dual role in promoting proliferation and metastasis of CRC by inducing the epithelial-mesenchymal transition (EMT) and activation of WNT/β-catenin signaling. Aberrant expression of MEF2A in CRC clinical specimens was significantly associated with poor prognosis and metastasis. Functionally, MEF2A directly binds to the promoter region to initiate the transcription of ZEB2 and CTNNB1. Simultaneous activation of the expression of EMT-related TFs and Wnt/β-catenin signaling by MEF2A overexpression induced the EMT and increased the frequency of tumor formation and metastasis. The present study identified a new critical oncogene involved in the growth and metastasis of CRC, providing a potential novel therapeutic target for CRC intervention.
Collapse
|
40
|
Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, Iovino S, Lebastchi J, Pan H, Dreyfuss JM, Krook A, Zierath JR, Mann M, Kahn CR. A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes. Cell Metab 2020; 32:844-859.e5. [PMID: 32888406 PMCID: PMC7875546 DOI: 10.1016/j.cmet.2020.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Skeletal muscle insulin resistance is the earliest defect in type 2 diabetes (T2D), preceding and predicting disease development. To what extent this reflects a primary defect or is secondary to tissue cross talk due to changes in hormones or circulating metabolites is unknown. To address this question, we have developed an in vitro disease-in-a-dish model using iPS cells from T2D patients differentiated into myoblasts (iMyos). We find that T2D iMyos in culture exhibit multiple defects mirroring human disease, including an altered insulin signaling, decreased insulin-stimulated glucose uptake, and reduced mitochondrial oxidation. More strikingly, global phosphoproteomic analysis reveals a multidimensional network of signaling defects in T2D iMyos going beyond the canonical insulin-signaling cascade, including proteins involved in regulation of Rho GTPases, mRNA splicing and/or processing, vesicular trafficking, gene transcription, and chromatin remodeling. These cell-autonomous defects and the dysregulated network of protein phosphorylation reveal a new dimension in the cellular mechanisms underlying the fundamental defects in T2D.
Collapse
Affiliation(s)
- Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nicolai J Wewer Albrechtsen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Salvatore Iovino
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jasmin Lebastchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
41
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
42
|
Roche O, Fernández-Aroca DM, Arconada-Luque E, García-Flores N, Mellor LF, Ruiz-Hidalgo MJ, Sánchez-Prieto R. p38β and Cancer: The Beginning of the Road. Int J Mol Sci 2020; 21:ijms21207524. [PMID: 33053909 PMCID: PMC7589630 DOI: 10.3390/ijms21207524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer. However, the specific role of p38β (MAPK11) in cancer is still elusive, and further investigation is needed. Here, we summarize what is currently known about the role of p38β in different types of tumors and its putative implication in cancer therapy. All evidence suggests that p38β might be a key player in cancer development, and could be an important therapeutic target in several pathologies, including cancer.
Collapse
Affiliation(s)
- Olga Roche
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Elena Arconada-Luque
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Natalia García-Flores
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Liliana F. Mellor
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-420
| |
Collapse
|
43
|
Guan L, Zhan Z, Yang Y, Miao Y, Huang X, Ding M. Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons. PLoS Genet 2020; 16:e1008704. [PMID: 32986702 PMCID: PMC7544145 DOI: 10.1371/journal.pgen.1008704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/08/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
ER stress occurs in many physiological and pathological conditions. However, how chronic ER stress is alleviated in specific cells in an intact organism is an outstanding question. Here, overexpressing the gap junction protein UNC-9 (Uncoordinated) in C. elegans neurons triggers the Ire1-Xbp1-mediated stress response in an age-dependent and cell-autonomous manner. The p38 MAPK PMK-3 regulates the chronic stress through IRE-1 phosphorylation. Overexpressing gap junction protein also activates autophagy. The insulin pathway functions through autophagy, but not the transcription of genes encoding ER chaperones, to counteract the p38-Ire1-Xbp1-mediated stress response. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in a subset of cells in multicellular organism. The accumulation of unfolded proteins triggers the ER stress response (UPR), which allows cells to fight against fluctuations in protein expression under both physiological and pathological conditions. Severe acute ER stress responses can be induced by drug treatment. However, such intense ER stress rarely occurs ubiquitously in every cell type in vivo. Here, we designed a genetic system in the nematode C. elegans, which allows us to induce ER stress in specific cells, without drug treatment or any other external stimuli, and then to monitor the stress response. The p38 MAPK directly acts on the phosphorylation of IRE-1 to promote the stress response. Meanwhile, the insulin receptor function through autophagy activation to counteract the p38-IRE-1-XBP-1 pathway. Together, these results reveal an intricate cellular regulatory network in response to chronic stress in multicellular organism.
Collapse
Affiliation(s)
- Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| | - Zhigao Zhan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (LG); (MD)
| |
Collapse
|
44
|
Murakami-Sekimata A, Sekimata M, Sato N, Hayasaka Y, Nakano A. Deletion of PIN4 Suppresses the Protein Transport Defects Caused by sec12-4 Mutation in Saccharomyces cerevisiae. Microb Physiol 2020; 30:25-35. [PMID: 32958726 DOI: 10.1159/000509633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide exchange factor for Sar1p, which initiates COPII vesicle budding from the ER. The activation of Sar1p by Sec12p and the subsequent COPII coat assembly have been well characterized, but the events that take place upstream of Sec12p remain unclear. In this study, we isolated the novel extragenic suppressor of sec12-4, PIN4/MDT1, a cell cycle checkpoint target. A yeast two-hybrid screening was used to identify Pin4/Mdt1p as a binding partner of the casein kinase I isoform Hrr25p, which we have previously identified as a modulator of Sec12p function. Deletion of PIN4 suppressed both defects of temperature-sensitive growth and the partial protein transport observed in sec12-4 mutants. The results of this study suggest that Pin4p provides novel aspects of Sec12p modulations.
Collapse
Affiliation(s)
- Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan,
| | - Masayuki Sekimata
- Radioisotope Research Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Natsumi Sato
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuto Hayasaka
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Japan
| |
Collapse
|
45
|
Brennan A, Leech JT, Kad NM, Mason JM. Selective antagonism of cJun for cancer therapy. J Exp Clin Cancer Res 2020; 39:184. [PMID: 32917236 PMCID: PMC7488417 DOI: 10.1186/s13046-020-01686-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
The activator protein-1 (AP-1) family of transcription factors modulate a diverse range of cellular signalling pathways into outputs which can be oncogenic or anti-oncogenic. The transcription of relevant genes is controlled by the cellular context, and in particular by the dimeric composition of AP-1. Here, we describe the evidence linking cJun in particular to a range of cancers. This includes correlative studies of protein levels in patient tumour samples and mechanistic understanding of the role of cJun in cancer cell models. This develops an understanding of cJun as a focal point of cancer-altered signalling which has the potential for therapeutic antagonism. Significant work has produced a range of small molecules and peptides which have been summarised here and categorised according to the binding surface they target within the cJun-DNA complex. We highlight the importance of selectively targeting a single AP-1 family member to antagonise known oncogenic function and avoid antagonism of anti-oncogenic function.
Collapse
Affiliation(s)
- Andrew Brennan
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - James T Leech
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
46
|
Ni S, Xiong XB, Ni XY. MgCl2 promotes mouse mesenchymal stem cell osteogenic differentiation by activating the p38/Osx/Runx2 signaling pathway. Mol Med Rep 2020; 22:3904-3910. [PMID: 32901870 PMCID: PMC7533493 DOI: 10.3892/mmr.2020.11487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Magnesium, an important inorganic mineral component in bones, enhances osteoblast adhesion and osteogenic gene expression. Mg2+‑containing hydroxyapatite promotes mouse mesenchymal stem cell (MMSC) osteogenic differentiation. In the present study, MMSCs were cultured in media containing different concentrations of MgCl2 (0 and 20 mM) for different time periods. Western blotting and reverse transcription‑quantitative PCR were performed to determine the expression levels of phosphorylated (p)‑p38 mitogen‑activated protein kinase (MAPK), the osteoblast‑specific transcription factor Osterix (Osx), runt‑related transcription factor 2 (Runx2), and p38 downstream genes, such as 27 kDa heat shock protein (hsp27), activating transcription factor 4 (Atf4), myocyte enhancer factor 2C (Mef2c) and CCAAT/enhancer‑binding protein homologous protein (Ddit3). The facilitatory effect of MgCl2 on MMSC osteogenic differentiation was assessed via Alizarin Red staining. The results suggested that MgCl2 increased p38 phosphorylation compared with the control group. Downstream genes of the p38 signaling pathway, including Osx and Runx2, as well as several osteogenesis‑associated downstream target genes, including Hsp27, Atf4, Ddit3 and Mef2c, were significantly upregulated in the Mg2+‑treated group compared with the control group. The increased osteogenic differentiation in the Mg2+‑treated group was significantly attenuated in MMSCs treated with SB203580, a specific inhibitor of the p38 signaling pathway. The results suggested that appropriate concentrations of MgCl2 promoted MMSC osteogenic differentiation via regulation of the p38/Osx/Runx2 signaling pathway.
Collapse
Affiliation(s)
- Su Ni
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Xin-Bo Xiong
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials, Shenzhen University, Shenzhen, Guangdong 518086, P.R. China
| | - Xin-Ye Ni
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
47
|
Dantas Machado AC, Cooper BH, Lei X, Di Felice R, Chen L, Rohs R. Landscape of DNA binding signatures of myocyte enhancer factor-2B reveals a unique interplay of base and shape readout. Nucleic Acids Res 2020; 48:8529-8544. [PMID: 32738045 PMCID: PMC7470950 DOI: 10.1093/nar/gkaa642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
Myocyte enhancer factor-2B (MEF2B) has the unique capability of binding to its DNA target sites with a degenerate motif, while still functioning as a gene-specific transcriptional regulator. Identifying its DNA targets is crucial given regulatory roles exerted by members of the MEF2 family and MEF2B's involvement in B-cell lymphoma. Analyzing structural data and SELEX-seq experimental results, we deduced the DNA sequence and shape determinants of MEF2B target sites on a high-throughput basis in vitro for wild-type and mutant proteins. Quantitative modeling of MEF2B binding affinities and computational simulations exposed the DNA readout mechanisms of MEF2B. The resulting binding signature of MEF2B revealed distinct intricacies of DNA recognition compared to other transcription factors. MEF2B uses base readout at its half-sites combined with shape readout at the center of its degenerate motif, where A-tract polarity dictates nuances of binding. The predominant role of shape readout at the center of the core motif, with most contacts formed in the minor groove, differs from previously observed protein-DNA readout modes. MEF2B, therefore, represents a unique protein for studies of the role of DNA shape in achieving binding specificity. MEF2B-DNA recognition mechanisms are likely representative for other members of the MEF2 family.
Collapse
Affiliation(s)
- Ana Carolina Dantas Machado
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendon H Cooper
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao Lei
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Rosa Di Felice
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Remo Rohs
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
48
|
Disabled-2: a positive regulator of the early differentiation of myoblasts. Cell Tissue Res 2020; 381:493-508. [PMID: 32607799 PMCID: PMC7431403 DOI: 10.1007/s00441-020-03237-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022]
Abstract
Dab2 is an adaptor protein and a tumor suppressor. Our previous study has found that Dab2 was expressed in early differentiating skeletal muscles in mouse embryos. In this study, we determined the role of Dab2 in the skeletal muscle differentiation using C2C12 myoblasts in vitro and Xenopus laevis embryos in vivo. The expression of Dab2 was increased in C2C12 myoblasts during the formation of myotubes in vitro. Knockdown of Dab2 expression in C2C12 myoblasts resulted in a reduction of myotube formation, whereas the myotube formation was enhanced upon overexpression of Dab2. Re-expression of Dab2 in C2C12 myoblasts with downregulated expression of Dab2 restored their capacity to form myotubes. Microarray profiling and subsequent network analyses on the 155 differentially expressed genes after Dab2 knockdown showed that Mef2c was an important myogenic transcription factor regulated by Dab2 through the p38 MAPK pathway. It was also involved in other pathways that are associated with muscular development and functions. In Xenopus embryos developed in vivo, XDab2 was expressed in the myotome of somites where various myogenic markers were also expressed. Knockdown of XDab2 expression with antisense morpholinos downregulated the expression of myogenic markers in somites. In conclusion, this study is the first to provide solid evidence to show that Dab2 is a positive regulator of the early myoblast differentiation.
Collapse
|
49
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
50
|
Chen LF, Lyons MR, Liu F, Green MV, Hedrick NG, Williams AB, Narayanan A, Yasuda R, West AE. The NMDA receptor subunit GluN3A regulates synaptic activity-induced and myocyte enhancer factor 2C (MEF2C)-dependent transcription. J Biol Chem 2020; 295:8613-8627. [PMID: 32393578 DOI: 10.1074/jbc.ra119.010266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 05/01/2020] [Indexed: 11/06/2022] Open
Abstract
N-Methyl-d-aspartate type glutamate receptors (NMDARs) are key mediators of synaptic activity-regulated gene transcription in neurons, both during development and in the adult brain. Developmental differences in the glutamate receptor ionotropic NMDA 2 (GluN2) subunit composition of NMDARs determines whether they activate the transcription factor cAMP-responsive element-binding protein 1 (CREB). However, whether the developmentally regulated GluN3A subunit also modulates NMDAR-induced transcription is unknown. Here, using an array of techniques, including quantitative real-time PCR, immunostaining, reporter gene assays, RNA-Seq, and two-photon glutamate uncaging with calcium imaging, we show that knocking down GluN3A in rat hippocampal neurons promotes the inducible transcription of a subset of NMDAR-sensitive genes. We found that this enhancement is mediated by the accumulation of phosphorylated p38 mitogen-activated protein kinase in the nucleus, which drives the activation of the transcription factor myocyte enhancer factor 2C (MEF2C) and promotes the transcription of a subset of synaptic activity-induced genes, including brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton-associated protein (Arc). Our evidence that GluN3A regulates MEF2C-dependent transcription reveals a novel mechanism by which NMDAR subunit composition confers specificity to the program of synaptic activity-regulated gene transcription in developing neurons.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Fang Liu
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew V Green
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathan G Hedrick
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley B Williams
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Arthy Narayanan
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|