1
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
2
|
Davies GA, Bryant AR, Reynolds JD, Jirik FR, Sharkey KA. Prion diseases and the gastrointestinal tract. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2006; 20:18-24. [PMID: 16432555 PMCID: PMC2538961 DOI: 10.1155/2006/184528] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gastrointestinal (GI) tract plays a central role in the pathogenesis of transmissible spongiform encephalopathies. These are human and animal diseases that include bovine spongiform encephalopathy, scrapie and Creutzfeldt-Jakob disease. They are uniformly fatal neurological diseases, which are characterized by ataxia and vacuolation in the central nervous system. Although they are known to be caused by the conversion of normal cellular prion protein to its infectious conformational isoform (PrPsc) the process by which this isoform is propagated and transported to the brain remains poorly understood. M cells, dendritic cells and possibly enteroendocrine cells are important in the movement of infectious prions across the GI epithelium. From there, PrPsc propagation requires B lymphocytes, dendritic cells and follicular dendritic cells of Peyer's patches. The early accumulation of the disease-causing agent in the plexuses of the enteric nervous system supports the contention that the autonomic nervous system is important in disease transmission. This is further supported by the presence of PrPsc in the ganglia of the parasympathetic and sympathetic nerves that innervate the GI tract. Additionally, the lymphoreticular system has been implicated as the route of transmission from the gut to the brain. Although normal cellular prion protein is found in the enteric nervous system, its role has not been characterized. Further research is required to understand how the cellular components of the gut wall interact to propagate and transmit infectious prions to develop potential therapies that may prevent the progression of transmissible spongiform encephalopathies.
Collapse
Affiliation(s)
- Gwynivere A Davies
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta
| | - Adam R Bryant
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Department of Anatomy and Cell Biology, University of Calgary, Calgary, Alberta
| | - John D Reynolds
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Department of Anatomy and Cell Biology, University of Calgary, Calgary, Alberta
| | - Frank R Jirik
- Alberta Bone and Joint Institute, University of Calgary, Calgary, Alberta
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta
| | - Keith A Sharkey
- Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta
- Correspondence: Dr Keith Sharkey, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1. Telephone 403–220–4601, fax 403–283–3028, e-mail
| |
Collapse
|
3
|
Defaweux V, Dorban G, Demonceau C, Piret J, Jolois O, Thellin O, Thielen C, Heinen E, Antoine N. Interfaces between dendritic cells, other immune cells, and nerve fibres in mouse Peyer's patches: potential sites for neuroinvasion in prion diseases. Microsc Res Tech 2005; 66:1-9. [PMID: 15816033 DOI: 10.1002/jemt.20135] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, we examined where immune cells and nerve fibres are located in mouse Peyer's patches, with a view to identifying potential sites for neuroinvasion by prions. Special attention was paid to dendritic cells, viewed as candidate transporters of infectious prion. Double immunofluorescence labellings with anti-CD11c antibody and marker for other immune cells (B cells, T cells, follicular dendritic cells) were carried out and analysed by confocal microscopy on Peyer's patch cryosections. To reveal the extensive ganglionated networks of the myenteric and submucosal plexi and the sparse meshworks of nerve strands, we used antibodies directed against different neurofilament subunits or against glial fibrillary acidic protein. In the suprafollicular dome, dendritic cells connect, via their cytoplasmic extensions, enterocytes with M cells of the follicle-associated epithelium. They are also close to B and T cells. Nerve fibres are detected in the suprafollicular dome, notably in contact with dendritic cells. Similar connections between dendritic cells, T cells, and nerve fibres are seen in the interfollicular region. Germinal centres are not innervated; inside them dendritic cells establish contacts with follicular dendritic cells and with B cells. After immunolabelling of normal prion protein, dendritic cells of the suprafollicular dome are intensely positive labelled.
Collapse
Affiliation(s)
- Valérie Defaweux
- Institute of Human Histology, Immunology Center, Faculty of Medicine, University of Liège, B-4020 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders present in various mammals. TSEs have been studies intensively, even more so following the BSE crisis and the subsequent threat of a human nvCJD epidemic. In the 'protein-only' hypothesis, the infectious agent, called prion, is assumed to be a misfolded host protein. Transgenesis has mainly been applied to study the role of this protein, its structure-function relationship with respect to its pathogenic properties and to assess the genetic origin of the well-recognised species barrier effect. This approach has somewhat supplemented the lack of in vitro models. This review will try to summarise the impressive work that has been done in this field. Although many questions remain unanswered, transgenic experiments have and will still improve our knowledge on this disease and might help us to develop critically needed therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Luc Vilotte
- Laboratoire de Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78352, Jouy-en-Josas Cedex, France.
| | | |
Collapse
|
5
|
Burthem J, Urban B, Pain A, Roberts DJ. The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood 2001; 98:3733-8. [PMID: 11739179 DOI: 10.1182/blood.v98.13.3733] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abnormal isoforms of the prion protein (PrP(Sc)) that cause prion diseases are propagated and spread within the body by "carrier" cell(s). Cells of the immune system have been strongly implicated in this process. In particular, PrP(Sc) is known to accumulate on follicular dendritic cells (FDCs) in individuals affected by variant Creutzfeld-Jakob disease. However, FDCs do not migrate widely and the natural history of prion disorders suggests other cells may be required for the transport of PrP(Sc) from the site of ingestion to lymphoid organs and the central nervous system. Substantial evidence suggests that the spread of PrP(Sc) requires bone marrow-derived cells that express normal cellular prion protein (PrP(C)). This study examined the expression of PrP(C) on bone marrow-derived cells that interact with lymphoid follicles. High levels of PrP(C) are present on myeloid dendritic cells (DCs) that surround the splenic white pulp. These myeloid DCs are ontologically and functionally distinct from the FDCs. Consistent with these observations, expression of PrP(C) was strongly induced during the generation of mature myeloid DCs in vitro. In these cells PrP(C) colocalized with major histocompatibility complex class II molecules at the level of light microscopy. Furthermore, given the close anatomic and functional connection of myeloid DCs with lymphoid follicles, these results raise the possibility that myeloid DCs may play a role in the propagation of PrP(Sc) in humans.
Collapse
Affiliation(s)
- J Burthem
- Nuffield Department of Biochemistry and Cellular Science, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
6
|
Gill DS, Tredwin CJ, Gill SK, Ironside JW. The transmissible spongiform encephalopathies (prion diseases): a review for dental surgeons. Int Dent J 2001; 51:439-46. [PMID: 11789711 DOI: 10.1002/j.1875-595x.2001.tb00857.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The transmissible spongiform encephalopathies (prion diseases) are a fatal group of neurological diseases characterised by the accumulation of an abnormal form of prion protein in the brain. In humans, these disorders occur in sporadic, acquired and familial forms. Outbreaks of bovine spongiform encephalopathy, predominantly in the United Kingdom, and the emergence of a clinically and pathologically distinct human prion disease, variant CJD, has generated much interest in the transmissible spongiform encephalopathies. As the agent is detectable in lymphoid and neural tissue in variant CJD, clinicians should be aware of the possibility of cross infection of the causative agent. This is particularly important because the abnormal prion protein is resistant to routine sterilisation procedures. This article reviews the transmissible spongiform encephalopathies, and summarises guidelines concerning prevention of crossinfection when treating patients with or at risk of developing prion disease.
Collapse
Affiliation(s)
- D S Gill
- Department of Orthodontics, Dental Institute, The Royal London Hospital, Whitechapel, UK.
| | | | | | | |
Collapse
|
7
|
Abstract
Prion diseases are transmissible neurodegenerative conditions that include Creutzfeldt-Jakob disease (CJD) in humans and bovine spongiform encephalopathy (BSE) and scrapie in animals. Prions appear to be composed principally or entirely of abnormal isoforms of a host-encoded glycoprotein, prion protein. Prion propagation involves recruitment of host cellular prion protein, composed primarily of alpha-helical structure, into a disease specific isoform rich in beta-sheet structure. The existence of multiple prion strains has been difficult to explain in terms of a protein-only infections agent, but recent studies suggest that strain specific phenotypes can be encoded by different prion protein conformations and glycosylation patterns. The ability of a protein to encode phenotypic information has important biological implications. The appearance of a novel human prion disease, variant CJD, and the clear experimental evidence that it is caused by exposure to BSE has highlighted the need to understand the molecular basis of prion propagation, pathogenesis, and the barriers limiting intermammalian transmission. It is unclear if a large epidemic of variant CJD will occur in the years ahead.
Collapse
Affiliation(s)
- J Collinge
- MRC Prion Unit and Department of Neurogenetics, Imperial College School of Medicine at St. Mary's, London, United Kingdom.
| |
Collapse
|
8
|
Lueck CJ, McIlwaine GG, Zeidler M. Creutzfeldt-Jakob disease and the eye. I. Background and patient management. Eye (Lond) 2000; 14 ( Pt 3A):263-90. [PMID: 11026987 DOI: 10.1038/eye.2000.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This article attempts to summarise our current understanding of TSEs as they affect man. Specific aspects relevant to ophthalmological practice, in particular the management of patients in day-to-day clinical practice and with respect to corneal transplantation, have been discussed. In the companion article we discuss the specific ophthalmic and neuro-ophthalmic features of these diseases.
Collapse
Affiliation(s)
- C J Lueck
- Department of Clinical Neuroscience, Western General Hospital, Edinburgh, UK.
| | | | | |
Collapse
|
9
|
Wrathall A. Risks of transmission of spongiform encephalopathies by reproductive technologies in domesticated ruminants. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0301-6226(99)00163-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Abstract
It is clear that the prion strain causing bovine spongiform encephalopathy (BSE) in cattle has infected human beings, manifesting itself as a novel human prion disease, variant Creutzfeldt-Jakob disease (CjD). Studies of the incubation periods seen in previous epidemics of human prion disease and of the effect of transmission barriers limiting spread of these diseases between species, suggest that the early variant CJD cases may have been exposed during the preclinical phase of the BSE epidemic. It must therefore be considered that many cases may follow from later exposure in an epidemic that would be expected to evolve over decades. Since the number of people currently incubating this disease is unknown, there are concerns that prions might be transmitted iatrogenically via blood transfusion, tissue donation, and, since prions resist routine sterilisation, contamination of surgical instruments. Such risks remain unquantified. Although variant CJD can be diagnosed during life by tonsil biopsy, a prion-specific blood test is needed to assess and manage this potential threat to public health. The theoretical possibility that BSE prions might have transferred to other species and continue to present a risk to human health cannot be excluded at present.
Collapse
Affiliation(s)
- J Collinge
- Department of Neurogenetics, Imperial College School of Medicine at St Mary's, London, UK.
| |
Collapse
|
11
|
Abstract
The occurrence of new variant Creutzfeldt-Jakob disease and the experimental confirmation that it is caused by the same prion strain as BSE has dramatically highlighted the need for a precise understanding of the molecular basis of prion propagation. The molecular basis of prion-strain diversity, previously a major challenge to the protein-only model, is now becoming clearer. The conformational change thought to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta-structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. These and other advances in the fundamental biology of prion propagation are leading to prion diseases becoming arguably the best understood of the neurodegenerative conditions and strategies for the development of rational therapeutics are becoming clearer.
Collapse
Affiliation(s)
- J D Wadsworth
- MRC Prion Unit Department of Neurogenetics Imperial College School of Medicine at St. Mary's London, W2 1PG, UK
| | | | | | | |
Collapse
|
12
|
Franklin IM. The impact on British blood services on BSE and v-CJD: implications for patients, donors and public health. Scott Med J 1999; 44:35-6. [PMID: 10370977 DOI: 10.1177/003693309904400201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Hill AF, Butterworth RJ, Joiner S, Jackson G, Rossor MN, Thomas DJ, Frosh A, Tolley N, Bell JE, Spencer M, King A, Al-Sarraj S, Ironside JW, Lantos PL, Collinge J. Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 1999; 353:183-9. [PMID: 9923873 DOI: 10.1016/s0140-6736(98)12075-5] [Citation(s) in RCA: 449] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Prion diseases are associated with the accumulation of an abnormal isoform of cellular prion protein (PrPSc), which is the principal constituent of prions. Prions replicate in lymphoreticular tissues before neuroinvasion, suggesting that lymphoreticular biopsy samples may allow early diagnosis by detection of PrPSc. Variant Creutzfeldt-Jakob disease (variant CJD) is difficult to distinguish from common psychiatric disorders in its early stages and definitive diagnosis has relied on neuropathology. We studied lymphoreticular tissues from a necropsy series and assessed tonsillar biopsy samples as a diagnostic investigation for human prion disease. METHODS Lymphoreticular tissues (68 tonsils, 64 spleens, and 40 lymph nodes) were obtained at necropsy from patients affected by prion disease and from neurological and normal controls. Tonsil biopsy sampling was done on 20 patients with suspected prion disease. Tissues were analysed by western blot to detect and type PrPSc, by PrP immunohistochemistry, or both. FINDINGS All lymphoreticular tissues obtained at necropsy from patients with neuropathologically confirmed variant CJD, but not from patients with other prion diseases or controls, were positive for PrPSc. In addition, PrPSc typing revealed a consistent pattern (designated type 4t) different from that seen in variant CJD brain (type 4) or in brain from other CJD subtypes (types 1-3). Tonsil biopsy tissue was positive in all eight patients with an adequate biopsy sample and whose subsequent course has confirmed, or is highly consistent with, a diagnosis of variant CJD and negative in all patients subsequently confirmed to have other diagnoses. INTERPRETATION We found that if, in the appropriate clinical context, a tonsil biopsy sample was positive for PrPSc, variant CJD could be diagnosed, which obviates the need for a brain biopsy sample to be taken. Our results also show that variant CJD has a different pathogenesis to sporadic CJD.
Collapse
Affiliation(s)
- A F Hill
- Department of Neurogenetics, Imperial College School of Medicine at St Mary's Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|