1
|
Tavaré S. Birth and death processes in phylogenetics and population genetics. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230300. [PMID: 39976404 PMCID: PMC11867164 DOI: 10.1098/rstb.2023.0300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 02/21/2025] Open
Abstract
This review focuses on linear birth-and-death processes (LBDPs), describing the basic properties of the population-size process and the underlying ancestral trees that record how the evolving species (or individuals or cells) are related. The first section describes the Yule, or linear birth, process setting. Analogous results for the birth-and-death process (BDP) are given. The stochastic structure of the reconstructed tree obtained by pruning branches that do not survive to the present time is detailed. In §2, the BDP with immigration is described. Immigration is a mechanism to introduce new types into a population evolving through time. For the Yule process, marked Poisson process arguments are used to illustrate properties of the sample variance of the number of families observed in two consecutive time intervals. In the final section, we describe a recent method for approximate Bayesian computation using random forests, and illustrate it with an example of inference from DNA sequence data about the split rate and mutation rate in a birth-and-death model for the evolution of a cell population.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
Collapse
Affiliation(s)
- Simon Tavaré
- Irving Institute for Cancer Dynamics, Columbia University, 1190 Amsterdam Avenue, New York, NY10027, USA
| |
Collapse
|
2
|
Soni V, Versoza CJ, Pfeifer SP, Jensen JD. Estimating the distribution of fitness effects in aye-ayes ( Daubentonia madagascariensis ), accounting for population history as well as mutation and recombination rate heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631144. [PMID: 39803457 PMCID: PMC11722344 DOI: 10.1101/2025.01.02.631144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The distribution of fitness effects (DFE) characterizes the range of selection coefficients from which new mutations are sampled, and thus holds a fundamentally important role in evolutionary genomics. To date, DFE inference in primates has been largely restricted to haplorrhines, with limited data availability leaving the other suborder of primates, strepsirrhines, largely under-explored. To advance our understanding of the population genetics of this important taxonomic group, we here map exonic divergence in aye-ayes ( Daubentonia madagascariensis ) - the only extant member of the Daubentoniidae family of the Strepsirrhini suborder. We further infer the DFE in this highly-endangered species, utilizing a recently published high-quality annotated reference genome, a well-supported model of demographic history, as well as both direct and indirect estimates of underlying mutation and recombination rates. The inferred distribution is generally characterized by a greater proportion of deleterious mutations relative to humans, providing evidence of a larger long-term effective population size. In addition however, both immune-related and sensory-related genes were found to be amongst the most rapidly evolving in the aye-aye genome.
Collapse
|
3
|
Soni V, Versoza CJ, Terbot JW, Jensen JD, Pfeifer SP. Inferring fine-scale mutation and recombination rate maps in aye-ayes ( Daubentonia madagascariensis ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.28.630620. [PMID: 39763842 PMCID: PMC11703150 DOI: 10.1101/2024.12.28.630620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The rate of input of new genetic mutations, and the rate at which that variation is reshuffled, are key evolutionary processes shaping genomic diversity. Importantly, these rates vary not just across populations and species, but also across individual genomes. Despite previous studies having demonstrated that failing to account for rate heterogeneity across the genome can bias the inference of both selective and neutral population genetic processes, mutation and recombination rate maps have to date only been generated for a relatively small number of organisms. Here, we infer such fine-scale maps for the aye-aye ( Daubentonia madagascariensis ) - a highly endangered strepsirrhine that represents one of the earliest splits in the primate clade, and thus stands as an important outgroup to the more commonly-studied haplorrhines - utilizing a recently released fully-annotated genome combined with high-quality population sequencing data. We compare our indirectly inferred rates to previous pedigree-based estimates, finding further evidence of relatively low mutation and recombination rates in aye-ayes compared to other primates.
Collapse
|
4
|
Hirano T, Saito T, Ito S, Ye B, Linscott TM, Do VT, Dong Z, Chiba S. Phylogenomic analyses reveal incongruences between divergence times and fossil records of freshwater snails in East Asia. Mol Phylogenet Evol 2023; 182:107728. [PMID: 36804427 DOI: 10.1016/j.ympev.2023.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Fossils provide important insight into our understanding of phylogenetic history by serving as calibration points for divergence time estimation. However, uncertainties in the fossil record due to parallel evolution and convergent evolution can critically affect estimates of node ages. Here, we compare and contrast estimates of phylogenetic divergence with geologic and fossil history for two freshwater snail genera of the family Viviparidae in East Asia (Cipangopaludina and Margarya). Cipangopaludina species are commonly widely distributed species in East Asia, but extant Margarya species are endemic to the ancient lakes in Yunnan, China. According to some previous studies, parallel evolution or convergent evolution of shell morphology has occurred in the family several times which may affect divergence time estimation using fossil records. In this study, we used SNP data derived from ddRAD-seq loci to investigate population demographic history of both genera. Our results show a common pattern of lake endemic lineages diversifying from widely distributed lineages in the Miocene, and multiple colonization to a single ancient lake occurred in the Pleistocene. Our results indicate substantial incongruence among estimated phylogenomic divergence times, some fossil records, and formation ages of ancient lakes. These findings suggest some fossil records may be misidentified in these groups and highlight the need to carefully evaluate geological evidence and fossil records when using these for divergence time estimation.
Collapse
Affiliation(s)
- Takahiro Hirano
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Miyagi, Japan; Biology Program, Faculty of Science, University of the Ryukyus, Okinawa, Japan.
| | - Takumi Saito
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Shun Ito
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan
| | - Bin Ye
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan; Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - T Mason Linscott
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Van Tu Do
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | - Zhengzhong Dong
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Satoshi Chiba
- Center for Northeast Asian Studies, Tohoku University, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
5
|
Vallender EJ, Hotchkiss CE, Lewis AD, Rogers J, Stern JA, Peterson SM, Ferguson B, Sayers K. Nonhuman primate genetic models for the study of rare diseases. Orphanet J Rare Dis 2023; 18:20. [PMID: 36721163 PMCID: PMC9887761 DOI: 10.1186/s13023-023-02619-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Pre-clinical research and development relies heavily upon translationally valid models of disease. A major difficulty in understanding the biology of, and developing treatments for, rare disease is the lack of animal models. It is important that these models not only recapitulate the presentation of the disease in humans, but also that they share functionally equivalent underlying genetic causes. Nonhuman primates share physiological, anatomical, and behavioral similarities with humans resulting from close evolutionary relationships and high genetic homology. As the post-genomic era develops and next generation sequencing allows for the resequencing and screening of large populations of research animals, naturally occurring genetic variation in nonhuman primates with clinically relevant phenotypes is regularly emerging. Here we review nonhuman primate models of multiple rare genetic diseases with a focus on the similarities and differences in manifestation and etiologies across species. We discuss how these models are being developed and how they can offer new tools and opportunities for researchers interested in exploring novel therapeutics for these and other genetic diseases. Modeling human genetic diseases in translationally relevant nonhuman primates presents new prospects for development of therapeutics and a better understanding of rare diseases. The post-genomic era offers the opportunity for the discovery and further development of more models like those discussed here.
Collapse
Affiliation(s)
- Eric J. Vallender
- University of Mississippi Medical Center, Jackson, MS USA
- Tulane National Primate Research Center, Covington, LA USA
| | - Charlotte E. Hotchkiss
- University of Washington, Seattle, WA USA
- Washington National Primate Research Center, Seattle, WA USA
| | - Anne D. Lewis
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Jeffrey Rogers
- Baylor College of Medicine, Houston, TX USA
- Wisconsin National Primate Research Center, Madison, WI USA
| | - Joshua A. Stern
- University of California-Davis, Davis, CA USA
- California National Primate Research Center, Davis, CA USA
| | - Samuel M. Peterson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Betsy Ferguson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Ken Sayers
- Texas Biomedical Research Institute, San Antonio, TX USA
- Southwest National Primate Research Center, San Antonio, TX USA
| |
Collapse
|
6
|
Stoltz J. Layered habitats: An evolutionary model for present-day recreational needs. Front Psychol 2022; 13:914294. [PMID: 36582316 PMCID: PMC9793991 DOI: 10.3389/fpsyg.2022.914294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Urbanisation and lifestyle-related illnesses increase globally. This highlights the need to shape modern human habitats to support basic recreational needs, promoting such things as physical activity and restoration of high stress levels and cognitive fatigue. Previous research suggests eight perceived qualities in the outdoor environment, described as eight perceived sensory dimensions, as universally meaningful to people in this regard. However quite extensively studied in relation to various health and wellbeing outcomes, human sensitivity and appreciation for these qualities has not yet been explicitly analysed from an evolutionary perspective. This paper investigates their possible evolutionary roots and suggests an order for their development. This is linked with empirical findings on their relative capacity to support restoration of stress and cognitive fatigue. Qualities of earlier origin are suggested to correspond to older, more fundamental adaptations. Each subsequently developed quality implies an increased complexity of our environmental relations, associated with higher demands on more recently developed capacities. The proposed model thus links the more restorative Serene, Sheltered, Natural, and Cohesive perceived sensory dimensions with earlier stages of our development while the more demanding Diverse, Open, Cultural, and Social qualities are associated with more recent transitions. It might be of relevance when shaping modern human habitats from a health-promoting perspective, and have applications in the planning and design of, e.g., health care settings, rehabilitation gardens, urban green areas, recreational forests or other similar outdoor environments.
Collapse
|
7
|
Pozzi L, Penna A. Rocks and clocks revised: New promises and challenges in dating the primate tree of life. Evol Anthropol 2022; 31:138-153. [PMID: 35102633 DOI: 10.1002/evan.21940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 01/14/2023]
Abstract
In recent years, multiple technological and methodological advances have increased our ability to estimate phylogenies, leading to more accurate dating of the primate tree of life. Here we provide an overview of the limitations and potentials of some of these advancements and discuss how dated phylogenies provide the crucial temporal scale required to understand primate evolution. First, we review new methods, such as the total-evidence dating approach, that promise a better integration between the fossil record and molecular data. We then explore how the ever-increasing availability of genomic-level data for more primate species can impact our ability to accurately estimate timetrees. Finally, we discuss more recent applications of mutation rates to date divergence times. We highlight example studies that have applied these approaches to estimate divergence dates within primates. Our goal is to provide a critical overview of these new developments and explore the promises and challenges of their application in evolutionary anthropology.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Anna Penna
- Department of Anthropology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Didier G, Laurin M. Distributions of extinction times from fossil ages and tree topologies: the example of mid-Permian synapsid extinctions. PeerJ 2021; 9:e12577. [PMID: 34966586 PMCID: PMC8667717 DOI: 10.7717/peerj.12577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently. Because of this, our method can estimate extinction times of lineages represented by a single fossil, provided that they belong to a clade that includes other fossil occurrences. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian (early Permian), or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that the biological crisis in the late Kungurian/early Roadian consisted of a progressive decline in biodiversity throughout the Kungurian.
Collapse
Affiliation(s)
| | - Michel Laurin
- CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements” UMR 7207), Paris, France
| |
Collapse
|
9
|
Bobe R, Wood B. Estimating origination times from the early hominin fossil record. Evol Anthropol 2021; 31:92-102. [PMID: 34662482 DOI: 10.1002/evan.21928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/25/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022]
Abstract
The age of the earliest recovered fossil evidence of a hominin taxon is all too often equated with that taxon's origination. However, the earliest known fossil record nearly always postdates, sometimes by a substantial period of time, the true origination of a taxon. Here we evaluate the first appearance records of the earliest potential hominins (Sahelanthropus, Ardipithecus, Orrorin), as well as of the genera Australopithecus, Homo, and Paranthropus, to illustrate the considerable uncertainty regarding the actual timing of origin of these taxa. By placing confidence intervals on the first appearance records of early hominin taxa, we can better evaluate patterns of hominin diversity, turnover, and potential correlations with climatic and environmental changes.
Collapse
Affiliation(s)
- René Bobe
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, School of Anthropology, University of Oxford, Oxford, UK.,Gorongosa National Park, Sofala, Mozambique.,Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Guindon S. Rates and Rocks: Strengths and Weaknesses of Molecular Dating Methods. Front Genet 2020; 11:526. [PMID: 32536940 PMCID: PMC7267027 DOI: 10.3389/fgene.2020.00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
I present here an in-depth, although non-exhaustive, review of two topics in molecular dating. Clock models, which describe the evolution of the rate of evolution, are considered first. Some of the shortcomings of popular approaches-uncorrelated clock models in particular-are presented and discussed. Autocorrelated models are shown to be more reasonable from a biological perspective. Some of the most recent autocorrelated models also rely on a coherent treatment of instantaneous and average substitution rates while previous models are based on implicit approximations. Second, I provide a brief overview of the processes involved in collecting and preparing fossil data. I then review the main techniques that use this data for calibrating the molecular clock. I argue that, in its current form, the fossilized birth-death process relies on assumptions about the mechanisms underlying fossilization and the data collection process that may negatively impact the date estimates. Node-dating approaches make better use of the data available, even though they rest on paleontologists' intervention to prepare raw fossil data. Altogether, this study provides indications that may help practitioners in selecting appropriate methods for molecular dating. It will also hopefully participate in defining the contour of future methodological developments in the field.
Collapse
Affiliation(s)
- Stéphane Guindon
- Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CNRS and Université Montpellier (UMR 5506), Montpellier, France
| |
Collapse
|
11
|
Springer MS, Foley NM, Brady PL, Gatesy J, Murphy WJ. Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary. Front Genet 2019; 10:1241. [PMID: 31850081 PMCID: PMC6896846 DOI: 10.3389/fgene.2019.01241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/08/2019] [Indexed: 01/29/2023] Open
Abstract
Deciphering the timing of the placental mammal radiation is a longstanding problem in evolutionary biology, but consensus on the tempo and mode of placental diversification remains elusive. Nevertheless, an accurate timetree is essential for understanding the role of important events in Earth history (e.g., Cretaceous Terrestrial Revolution, KPg mass extinction) in promoting the taxonomic and ecomorphological diversification of Placentalia. Archibald and Deutschman described three competing models for the diversification of placental mammals, which are the Explosive, Long Fuse, and Short Fuse Models. More recently, the Soft Explosive Model and Trans-KPg Model have emerged as additional hypotheses for the placental radiation. Here, we review molecular and paleontological evidence for each of these five models including the identification of general problems that can negatively impact divergence time estimates. The Long Fuse Model has received more support from relaxed clock studies than any of the other models, but this model is not supported by morphological cladistic studies that position Cretaceous eutherians outside of crown Placentalia. At the same time, morphological cladistics has a poor track record of reconstructing higher-level relationships among the orders of placental mammals including the results of new pseudoextinction analyses that we performed on the largest available morphological data set for mammals (4,541 characters). We also examine the strengths and weaknesses of different timetree methods (node dating, tip dating, and fossilized birth-death dating) that may now be applied to estimate the timing of the placental radiation. While new methods such as tip dating are promising, they also have problems that must be addressed if these methods are to effectively discriminate among competing hypotheses for placental diversification. Finally, we discuss the complexities of timetree estimation when the signal of speciation times is impacted by incomplete lineage sorting (ILS) and hybridization. Not accounting for ILS results in dates that are older than speciation events. Hybridization, in turn, can result in dates than are younger or older than speciation dates. Disregarding this potential variation in "gene" history across the genome can distort phylogenetic branch lengths and divergence estimates when multiple unlinked genomic loci are combined together in a timetree analysis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicole M. Foley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Peggy L. Brady
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Marshall CR. Using the Fossil Record to Evaluate Timetree Timescales. Front Genet 2019; 10:1049. [PMID: 31803226 PMCID: PMC6871265 DOI: 10.3389/fgene.2019.01049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
The fossil and geologic records provide the primary data used to established absolute timescales for timetrees. For the paleontological evaluation of proposed timetree timescales, and for node-based methods for constructing timetrees, the fossil record is used to bracket divergence times. Minimum brackets (minimum ages) can be established robustly using well-dated fossils that can be reliably assigned to lineages based on positive morphological evidence. Maximum brackets are much harder to establish, largely because it is difficult to establish definitive evidence that the absence of a taxon in the fossil record is real and not just due to the incompleteness of the fossil and rock records. Five primary methods have been developed to estimate maximum age brackets, each of which is discussed. The fact that the fossilization potential of a group typically decreases the closer one approaches its time of origin increases the challenge of estimating maximum age brackets. Additional complications arise: 1) because fossil data actually bracket the time of origin of the first relevant fossilizable morphology (apomorphy), not the divergence time itself; 2) due to the phylogenetic uncertainty in the placement of fossils; 3) because of idiosyncratic temporal and geographic gaps in the rock and fossil records; and 4) if the preservation potential of a group changed significantly during its history. In contrast, uncertainties in the absolute ages of fossils are typically relatively unimportant, even though the vast majority of fossil cannot be dated directly. These issues and relevant quantitative methods are reviewed, and their relative magnitudes assessed, which typically correlate with the age of the group, its geographic range, and species richness.
Collapse
Affiliation(s)
- Charles R. Marshall
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
13
|
Comparative morphology of the primate tongue. Ann Anat 2019; 223:19-31. [DOI: 10.1016/j.aanat.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
14
|
Álvarez-Carretero S, Goswami A, Yang Z, Dos Reis M. Bayesian Estimation of Species Divergence Times Using Correlated Quantitative Characters. Syst Biol 2019; 68:967-986. [DOI: 10.1093/sysbio/syz015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Discrete morphological data have been widely used to study species evolution, but the use of quantitative (or continuous) morphological characters is less common. Here, we implement a Bayesian method to estimate species divergence times using quantitative characters. Quantitative character evolution is modeled using Brownian diffusion with character correlation and character variation within populations. Through simulations, we demonstrate that ignoring the population variation (or population “noise”) and the correlation among characters leads to biased estimates of divergence times and rate, especially if the correlation and population noise are high. We apply our new method to the analysis of quantitative characters (cranium landmarks) and molecular data from carnivoran mammals. Our results show that time estimates are affected by whether the correlations and population noise are accounted for or ignored in the analysis. The estimates are also affected by the type of data analyzed, with analyses of morphological characters only, molecular data only, or a combination of both; showing noticeable differences among the time estimates. Rate variation of morphological characters among the carnivoran species appears to be very high, with Bayesian model selection indicating that the independent-rates model fits the morphological data better than the autocorrelated-rates model. We suggest that using morphological continuous characters, together with molecular data, can bring a new perspective to the study of species evolution. Our new model is implemented in the MCMCtree computer program for Bayesian inference of divergence times.
Collapse
Affiliation(s)
- Sandra Álvarez-Carretero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Anjali Goswami
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5DB, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
15
|
Guindon S. Accounting for Calibration Uncertainty: Bayesian Molecular Dating as a "Doubly Intractable" Problem. Syst Biol 2018; 67:651-661. [PMID: 29385558 DOI: 10.1093/sysbio/syy003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
This study introduces a new Bayesian technique for molecular dating that explicitly accommodates for uncertainty in the phylogenetic position of calibrated nodes derived from the analysis of fossil data. The proposed approach thus defines an adequate framework for incorporating expert knowledge and/or prior information about the way fossils were collected in the inference of node ages. Although it belongs to the class of "node-dating" approaches, this method shares interesting properties with "tip-dating" techniques. Yet, it alleviates some of the computational and modeling difficulties that hamper tip-dating approaches. The influence of fossil data on the probabilistic distribution of trees is the crux of the matter considered here. More specifically, among all the phylogenies that a tree model (e.g., the birth-death process) generates, only a fraction of them "agree" with the fossil data. Bayesian inference under the new model requires taking this fraction into account. However, evaluating this quantity is difficult in practice. A generic solution to this issue is presented here. The proposed approach relies on a recent statistical technique, the so-called exchange algorithm, dedicated to drawing samples from "doubly intractable" distributions. A small example illustrates the problem of interest and the impact of uncertainty in the placement of calibration constraints in the phylogeny given fossil data. An analysis of land plant sequences and multiple fossils further highlights the pertinence of the proposed approach.
Collapse
Affiliation(s)
- Stéphane Guindon
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
16
|
DNA Polymerase Sequences of New World Monkey Cytomegaloviruses: Another Molecular Marker with Which To Infer Platyrrhini Systematics. J Virol 2018; 92:JVI.00980-18. [PMID: 29976674 DOI: 10.1128/jvi.00980-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/22/2023] Open
Abstract
Over the past few decades, a large number of studies have identified herpesvirus sequences from many mammalian species around the world. Among the different nonhuman primate species tested so far for cytomegaloviruses (CMVs), only a few were from the New World. Seeking to identify CMV homologues in New World monkeys (NWMs), we carried out molecular screening of 244 blood DNA samples from 20 NWM species from Central and South America. Our aim was to reach a better understanding of their evolutionary processes within the Platyrrhini parvorder. Using PCR amplification with degenerate consensus primers targeting highly conserved amino acid motifs encoded by the herpesvirus DNA polymerase gene, we characterized novel viral sequences from 12 species belonging to seven genera representative of the three NWM families. BLAST searches, pairwise nucleotide and amino acid sequence comparisons, and phylogenetic analyses confirmed that they all belonged to the Cytomegalovirus genus. Previously determined host taxa allowed us to demonstrate a good correlation between the distinct monophyletic clades of viruses and those of the infected primates at the genus level. In addition, the evolutionary branching points that separate NWM CMVs were congruent with the divergence dates of their hosts at the genus level. These results significantly expand our knowledge of the host range of this viral genus and strongly support the occurrence of cospeciation between these viruses and their hosts. In this respect, we propose that NWM CMV DNA polymerase gene sequences may serve as reliable molecular markers with which to infer Platyrrhini phylogenetics.IMPORTANCE Investigating evolutionary processes between viruses and nonhuman primates has led to the discovery of a large number of herpesviruses. No study published so far on primate cytomegaloviruses has extensively studied New World monkeys (NWMs) at the subspecies, species, genus, and family levels. The present study sought to identify cytomegalovirus homologues in NWMs and to decipher their evolutionary relationships. This led us to characterize novel viruses from 12 of the 20 primate species tested, which are representative of the three NWM families. The identification of distinct viruses in these primates not only significantly expands our knowledge of the host range of this viral genus but also sheds light on its evolutionary history. Phylogenetic analyses and molecular dating of the sequences obtained support a virus-host coevolution.
Collapse
|
17
|
Abstract
The role of climate change in the origin and diversification of early hominins is hotly debated. Most accounts of early hominin evolution link observed fluctuations in species diversity to directional shifts in climate or periods of intense climatic instability. None of these hypotheses, however, have tested whether observed diversity patterns are distorted by variation in the quality of the hominin fossil record. Here, we present a detailed examination of early hominin diversity dynamics, including both taxic and phylogenetically corrected diversity estimates. Unlike past studies, we compare these estimates to sampling metrics for rock availability (hominin-, primate-, and mammal-bearing formations) and collection effort, to assess the geological and anthropogenic controls on the sampling of the early hominin fossil record. Taxic diversity, primate-bearing formations, and collection effort show strong positive correlations, demonstrating that observed patterns of early hominin taxic diversity can be explained by temporal heterogeneity in fossil sampling rather than genuine evolutionary processes. Peak taxic diversity at 1.9 million years ago (Ma) is a sampling artifact, reflecting merely maximal rock availability and collection effort. In contrast, phylogenetic diversity estimates imply peak diversity at 2.4 Ma and show little relation to sampling metrics. We find that apparent relationships between early hominin diversity and indicators of climatic instability are, in fact, driven largely by variation in suitable rock exposure and collection effort. Our results suggest that significant improvements in the quality of the fossil record are required before the role of climate in hominin evolution can be reliably determined.
Collapse
|
18
|
Holmes AJ, Patrick LM. The Myth of Optimality in Clinical Neuroscience. Trends Cogn Sci 2018; 22:241-257. [PMID: 29475637 PMCID: PMC5829018 DOI: 10.1016/j.tics.2017.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
Clear evidence supports a dimensional view of psychiatric illness. Within this framework the expression of disorder-relevant phenotypes is often interpreted as a breakdown or departure from normal brain function. Conversely, health is reified, conceptualized as possessing a single ideal state. We challenge this concept here, arguing that there is no universally optimal profile of brain functioning. The evolutionary forces that shape our species select for a staggering diversity of human behaviors. To support our position we highlight pervasive population-level variability within large-scale functional networks and discrete circuits. We propose that, instead of examining behaviors in isolation, psychiatric illnesses can be best understood through the study of domains of functioning and associated multivariate patterns of variation across distributed brain systems.
Collapse
Affiliation(s)
- Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA.
| | - Lauren M Patrick
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Matschiner M, Musilová Z, Barth JMI, Starostová Z, Salzburger W, Steel M, Bouckaert R. Bayesian Phylogenetic Estimation of Clade Ages Supports Trans-Atlantic Dispersal of Cichlid Fishes. Syst Biol 2018; 66:3-22. [PMID: 28173588 DOI: 10.1093/sysbio/syw076] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/21/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Divergence-time estimation based on molecular phylogenies and the fossil record has provided insights into fundamental questions of evolutionary biology. In Bayesian node dating, phylogenies are commonly time calibrated through the specification of calibration densities on nodes representing clades with known fossil occurrences. Unfortunately, the optimal shape of these calibration densities is usually unknown and they are therefore often chosen arbitrarily, which directly impacts the reliability of the resulting age estimates. As possible solutions to this problem, two nonexclusive alternative approaches have recently been developed, the “fossilized birth–death” (FBD) model and “total-evidence dating.” While these approaches have been shown to perform well under certain conditions, they require including all (or a random subset) of the fossils of each clade in the analysis, rather than just relying on the oldest fossils of clades. In addition, both approaches assume that fossil records of different clades in the phylogeny are all the product of the same underlying fossil sampling rate, even though this rate has been shown to differ strongly between higher level taxa. We here develop a flexible new approach to Bayesian age estimation that combines advantages of node dating and the FBD model. In our new approach, calibration densities are defined on the basis of first fossil occurrences and sampling rate estimates that can be specified separately for all clades. We verify our approach with a large number of simulated data sets, and compare its performance to that of the FBD model. We find that our approach produces reliable age estimates that are robust to model violation, on par with the FBD model. By applying our approach to a large data set including sequence data from over 1000 species of teleost fishes as well as 147 carefully selected fossil constraints, we recover a timeline of teleost diversification that is incompatible with previously assumed vicariant divergences of freshwater fishes. Our results instead provide strong evidence for transoceanic dispersal of cichlids and other groups of teleost fishes.
Collapse
Affiliation(s)
- Michael Matschiner
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Zuzana Musilová
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Julia M I Barth
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Mike Steel
- Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Remco Bouckaert
- Department of Computer Science, University of Auckland, Auckland, New Zealand.,Computational Evolution Group, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
The Zone of Latent Solutions and Its Relation to the Classics: Vygotsky and Köhler. EVOLUTION OF PRIMATE SOCIAL COGNITION 2018. [DOI: 10.1007/978-3-319-93776-2_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Karabatsos G, Leisen F. An approximate likelihood perspective on ABC methods. STATISTICS SURVEYS 2018. [DOI: 10.1214/18-ss120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Herrera JP. Primate diversification inferred from phylogenies and fossils. Evolution 2017; 71:2845-2857. [PMID: 28913907 DOI: 10.1111/evo.13366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.
Collapse
Affiliation(s)
- James P Herrera
- Richard Gilder Graduate School, Department of Mammalogy and Division of Vertebrate Paleontology, American Museum of Natural History, New York, New York 10024.,Department of Mammalogy, American Museum of Natural History, New York, New York 10024
| |
Collapse
|
23
|
Yang Z, Donoghue PCJ. Dating species divergences using rocks and clocks. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0126. [PMID: 27325825 DOI: 10.1098/rstb.2015.0126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
24
|
Holland SM. The non-uniformity of fossil preservation. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0130. [PMID: 27325828 DOI: 10.1098/rstb.2015.0130] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/12/2022] Open
Abstract
The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Steven M Holland
- Department of Geology, University of Georgia, Athens, GA 30602-2501, USA
| |
Collapse
|
25
|
Using Confidence Intervals to Quantify the Uncertainty in the End-Points of Stratigraphic Ranges. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600001911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the many contributions paleontology makes to our understanding of the biosphere and its evolution is a direct temporal record of biotic events. However, assuming fossils have been correctly identified and accurately dated, stratigraphic ranges underestimate true temporal ranges: observed first occurrences are too young, and observed last occurrences are too old. Here I introduce the techniques developed for placing confidence intervals on the end-points of stratigraphic ranges. I begin with the analysis of single taxa in local sections – with the simplest of assumptions – random fossilization. This is followed by a discussion of the methods developed to handle the fact that the recovery of fossils is often non-random in space and time. After discussion of how confidence intervals can be used to test for simultaneous origination and extinctions, I conclude with an example application of confidence intervals to unravel the relative importance of background extinction, environmental change and mass extinction of ammonite species at the end of the Cretaceous in western Tethys.
Collapse
|
26
|
Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating. Mol Phylogenet Evol 2017; 114:386-400. [PMID: 28709986 PMCID: PMC5546266 DOI: 10.1016/j.ympev.2017.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 07/09/2017] [Indexed: 11/30/2022]
Abstract
Fossil calibrations are the utmost source of information in molecular clock dating. The quality of calibrations has a major impact on divergence time estimates. In general, truncation has a great impact on calibrations. The different strategies for generating the effective prior also had considerable impact. It is important to inspect the joint time prior used by the dating program before any Bayesian dating analysis.
Fossil calibrations are the utmost source of information for resolving the distances between molecular sequences into estimates of absolute times and absolute rates in molecular clock dating analysis. The quality of calibrations is thus expected to have a major impact on divergence time estimates even if a huge amount of molecular data is available. In Bayesian molecular clock dating, fossil calibration information is incorporated in the analysis through the prior on divergence times (the time prior). Here, we evaluate three strategies for converting fossil calibrations (in the form of minimum- and maximum-age bounds) into the prior on times, which differ according to whether they borrow information from the maximum age of ancestral nodes and minimum age of descendent nodes to form constraints for any given node on the phylogeny. We study a simple example that is analytically tractable, and analyze two real datasets (one of 10 primate species and another of 48 seed plant species) using three Bayesian dating programs: MCMCTree, MrBayes and BEAST2. We examine how different calibration strategies, the birth-death process, and automatic truncation (to enforce the constraint that ancestral nodes are older than descendent nodes) interact to determine the time prior. In general, truncation has a great impact on calibrations so that the effective priors on the calibration node ages after the truncation can be very different from the user-specified calibration densities. The different strategies for generating the effective prior also had considerable impact, leading to very different marginal effective priors. Arbitrary parameters used to implement minimum-bound calibrations were found to have a strong impact upon the prior and posterior of the divergence times. Our results highlight the importance of inspecting the joint time prior used by the dating program before any Bayesian dating analysis.
Collapse
|
27
|
|
28
|
The pioneering role of PRDM9 indel mutations in tarsier evolution. Sci Rep 2016; 6:34618. [PMID: 27698394 PMCID: PMC5048142 DOI: 10.1038/srep34618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023] Open
Abstract
PRDM9 is currently the sole speciation gene found in vertebrates causing hybrid sterility probably due to incompatible alleles. Its role in defining the double strand break loci during the meiotic prophase I is crucial for proper chromosome segregation. Therefore, the rapid turnover of the loci determining zinc finger array seems to be causative for incompatibilities. We here investigated the zinc finger domain-containing exon of PRDM9 in 23 tarsiers. Tarsiers, the most basal extant haplorhine primates, exhibit two frameshifting indels at the 5'-end of the array. The first mutation event interrupts the reading frame and function while the second compensates both. The fixation of this allele variant in tarsiers led to hypothesize that de- and reactivation of the zinc finger domain drove the speciation in early haplorhine or tarsiiform primates. Moreover, the high allelic diversity within Tarsius points to multiple effects of genetic drift reflecting their phylogeographic history since the Miocene.
Collapse
|
29
|
Ling C, Hamada T, Gao J, Zhao G, Sun D, Shi W. MrBayes tgMC 3++: A High Performance and Resource-Efficient GPU-Oriented Phylogenetic Analysis Method. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:845-854. [PMID: 26529779 DOI: 10.1109/tcbb.2015.2495202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
MrBayes is a widespread phylogenetic inference tool harnessing empirical evolutionary models and Bayesian statistics. However, the computational cost on the likelihood estimation is very expensive, resulting in undesirably long execution time. Although a number of multi-threaded optimizations have been proposed to speed up MrBayes, there are bottlenecks that severely limit the GPU thread-level parallelism of likelihood estimations. This study proposes a high performance and resource-efficient method for GPU-oriented parallelization of likelihood estimations. Instead of having to rely on empirical programming, the proposed novel decomposition storage model implements high performance data transfers implicitly. In terms of performance improvement, a speedup factor of up to 178 can be achieved on the analysis of simulated datasets by four Tesla K40 cards. In comparison to the other publicly available GPU-oriented MrBayes, the tgMC3++ method (proposed herein) outperforms the tgMC3 (v1.0), nMC3 (v2.1.1) and oMC3 (v1.00) methods by speedup factors of up to 1.6, 1.9 and 2.9, respectively. Moreover, tgMC3++ supports more evolutionary models and gamma categories, which previous GPU-oriented methods fail to take into analysis.
Collapse
|
30
|
Donoghue PCJ, Yang Z. The evolution of methods for establishing evolutionary timescales. Philos Trans R Soc Lond B Biol Sci 2016; 371:20160020. [PMID: 27325838 PMCID: PMC4920342 DOI: 10.1098/rstb.2016.0020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/12/2022] Open
Abstract
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
31
|
Drummond AJ, Stadler T. Bayesian phylogenetic estimation of fossil ages. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150129. [PMID: 27325827 PMCID: PMC4920331 DOI: 10.1098/rstb.2015.0129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 12/26/2022] Open
Abstract
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Alexei J Drummond
- Department of Computer Science, University of Auckland, Auckland 1010, New Zealand Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
32
|
Puttick MN, Thomas GH, Benton MJ. Dating placentalia: Morphological clocks fail to close the molecular fossil gap. Evolution 2016; 70:873-86. [PMID: 26990798 PMCID: PMC5071738 DOI: 10.1111/evo.12907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 11/27/2022]
Abstract
Dating the origin of Placentalia has been a contentious issue for biologists and paleontologists. Although it is likely that crown‐group placentals originated in the Late Cretaceous, nearly all molecular clock estimates point to a deeper Cretaceous origin. An approach with the potential to reconcile this discrepancy could be the application of a morphological clock. This would permit the direct incorporation of fossil data in node dating, and would break long internal branches of the tree, so leading to improved estimates of node ages. Here, we use a large morphological dataset and the tip‐calibration approach of MrBayes. We find that the estimated date for the origin of crown mammals is much older, ∼130–145 million years ago (Ma), than fossil and molecular clock data (∼80–90 Ma). Our results suggest that tip calibration may result in estimated dates that are more ancient than those obtained from other sources of data. This can be partially overcome by constraining the ages of internal nodes on the tree; however, when this was applied to our dataset, the estimated dates were still substantially more ancient than expected. We recommend that results obtained using tip calibration, and possibly morphological dating more generally, should be treated with caution.
Collapse
Affiliation(s)
- Mark N Puttick
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, United Kingdom.
| | - Gavin H Thomas
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
33
|
Soligo C, Smaers JB. Contextualising primate origins--an ecomorphological framework. J Anat 2016; 228:608-29. [PMID: 26830706 PMCID: PMC4804135 DOI: 10.1111/joa.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Ecomorphology - the characterisation of the adaptive relationship between an organism's morphology and its ecological role - has long been central to theories of the origin and early evolution of the primate order. This is exemplified by two of the most influential theories of primate origins: Matt Cartmill's Visual Predation Hypothesis, and Bob Sussman's Angiosperm Co-Evolution Hypothesis. However, the study of primate origins is constrained by the absence of data directly documenting the events under investigation, and has to rely instead on a fragmentary fossil record and the methodological assumptions inherent in phylogenetic comparative analyses of extant species. These constraints introduce particular challenges for inferring the ecomorphology of primate origins, as morphology and environmental context must first be inferred before the relationship between the two can be considered. Fossils can be integrated in comparative analyses and observations of extant model species and laboratory experiments of form-function relationships are critical for the functional interpretation of the morphology of extinct species. Recent developments have led to important advancements, including phylogenetic comparative methods based on more realistic models of evolution, and improved methods for the inference of clade divergence times, as well as an improved fossil record. This contribution will review current perspectives on the origin and early evolution of primates, paying particular attention to their phylogenetic (including cladistic relationships and character evolution) and environmental (including chronology, geography, and physical environments) contextualisation, before attempting an up-to-date ecomorphological synthesis of primate origins.
Collapse
Affiliation(s)
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
34
|
Zhang C, Stadler T, Klopfstein S, Heath TA, Ronquist F. Total-Evidence Dating under the Fossilized Birth-Death Process. Syst Biol 2016; 65:228-49. [PMID: 26493827 PMCID: PMC4748749 DOI: 10.1093/sysbio/syv080] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022] Open
Abstract
Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth-death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects, including sampling biases, are adequately addressed.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4053 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Switzerland
| | - Seraina Klopfstein
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden; Department of Invertebrates, Natural History Museum Bern, CH-3005 Bern, Switzerland
| | - Tracy A Heath
- Department of Integrative Biology, University of California, Berkeley, CA 94720 USA; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden;
| |
Collapse
|
35
|
Ogilvie HA, Heled J, Xie D, Drummond AJ. Computational Performance and Statistical Accuracy of *BEAST and Comparisons with Other Methods. Syst Biol 2016; 65:381-96. [PMID: 26821913 PMCID: PMC4851174 DOI: 10.1093/sysbio/syv118] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/07/2015] [Indexed: 01/02/2023] Open
Abstract
Under the multispecies coalescent model of molecular evolution, gene trees have independent evolutionary histories within a shared species tree. In comparison, supermatrix concatenation methods assume that gene trees share a single common genealogical history, thereby equating gene coalescence with species divergence. The multispecies coalescent is supported by previous studies which found that its predicted distributions fit empirical data, and that concatenation is not a consistent estimator of the species tree. *BEAST, a fully Bayesian implementation of the multispecies coalescent, is popular but computationally intensive, so the increasing size of phylogenetic data sets is both a computational challenge and an opportunity for better systematics. Using simulation studies, we characterize the scaling behavior of *BEAST, and enable quantitative prediction of the impact increasing the number of loci has on both computational performance and statistical accuracy. Follow-up simulations over a wide range of parameters show that the statistical performance of *BEAST relative to concatenation improves both as branch length is reduced and as the number of loci is increased. Finally, using simulations based on estimated parameters from two phylogenomic data sets, we compare the performance of a range of species tree and concatenation methods to show that using *BEAST with tens of loci can be preferable to using concatenation with thousands of loci. Our results provide insight into the practicalities of Bayesian species tree estimation, the number of loci required to obtain a given level of accuracy and the situations in which supermatrix or summary methods will be outperformed by the fully Bayesian multispecies coalescent.
Collapse
Affiliation(s)
- Huw A Ogilvie
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia
| | - Joseph Heled
- Department of Computer Science, University of Auckland, Auckland, New Zealand; Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| | - Dong Xie
- Department of Computer Science, University of Auckland, Auckland, New Zealand; Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| | - Alexei J Drummond
- Department of Computer Science, University of Auckland, Auckland, New Zealand; Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
dos Reis M, Donoghue PCJ, Yang Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 2015; 17:71-80. [PMID: 26688196 DOI: 10.1038/nrg.2015.8] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Five decades have passed since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics and studying the macroevolutionary process of speciation and extinction to estimating a timescale for life on Earth.
Collapse
Affiliation(s)
- Mario dos Reis
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
37
|
Phillips MJ. Geomolecular Dating and the Origin of Placental Mammals. Syst Biol 2015; 65:546-57. [PMID: 26658702 DOI: 10.1093/sysbio/syv115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
In modern evolutionary divergence analysis the role of geological information extends beyond providing a timescale, to informing molecular rate variation across the tree. Here I consider the implications of this development. I use fossil calibrations to test the accuracy of models of molecular rate evolution for placental mammals, and reveal substantial misspecification associated with life history rate correlates. Adding further calibrations to reduce dating errors at specific nodes unfortunately tends to transfer underlying rate errors to adjacent branches. Thus, tight calibration across the tree is vital to buffer against rate model errors. I argue that this must include allowing maximum bounds to be tight when good fossil records permit, otherwise divergences deep in the tree will tend to be inflated by the interaction of rate errors and asymmetric confidence in minimum and maximum bounds. In the case of placental mammals I sought to reduce the potential for transferring calibration and rate model errors across the tree by focusing on well-supported calibrations with appropriately conservative maximum bounds. The resulting divergence estimates are younger than others published recently, and provide the long-anticipated molecular signature for the placental mammal radiation observed in the fossil record near the 66 Ma Cretaceous-Paleogene extinction event.
Collapse
Affiliation(s)
- Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
38
|
Zhou X, Sun F, Xu S, Yang G, Li M. The position of tree shrews in the mammalian tree: Comparing multi-gene analyses with phylogenomic results leaves monophyly of Euarchonta doubtful. Integr Zool 2015; 10:186-98. [PMID: 25311886 DOI: 10.1111/1749-4877.12116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The well-accepted Euarchonta grandorder is a pruned version of Archonta nested within the Euarchontoglires (or Supraprimates) clade. At present, it includes tree shrews (Scandentia), flying lemurs (Dermoptera) and primates (Primates). Here, a phylogenomic dataset containing 1912 exons from 22 representative mammals was compiled to investigate the phylogenetic relationships within this group. Phylogenetic analyses and hypothesis testing suggested that tree shrews can be classified as a sister group to Primates or to Glires or even as a basal clade within Euarchontoglires. Further analyses of both modified and original previously published datasets found that the phylogenetic position of tree shrews is unstable. We also found that two of three exonic indels reported as synapomorphies of Euarchonta in a previous study do not unambiguously support the monophyly of such a clade. Therefore, the monophyly of both Euarchonta and Sundatheria (Dermoptera + Scandentia) are suspect. Molecular dating and divergence rate analyses suggested that the ancestor of Euarchontoglires experienced a rapid divergence, which may cause the unresolved position of tree shrews even using the whole genomic data.
Collapse
Affiliation(s)
- Xuming Zhou
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
39
|
Sanderson MJ. Back to the past: a new take on the timing of flowering plant diversification. THE NEW PHYTOLOGIST 2015; 207:257-259. [PMID: 26096201 DOI: 10.1111/nph.13462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
40
|
Eriksson O. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol Rev Camb Philos Soc 2014; 91:168-86. [DOI: 10.1111/brv.12164] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Ove Eriksson
- Department of Ecology, Environment and Plant Sciences; Stockholm University; SE-106 91 Stockholm Sweden
| |
Collapse
|
41
|
Yarmishyn AA, Batagov AO, Tan JZ, Sundaram GM, Sampath P, Kuznetsov VA, Kurochkin IV. HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome. BMC Genomics 2014; 15 Suppl 9:S7. [PMID: 25522241 PMCID: PMC4290621 DOI: 10.1186/1471-2164-15-s9-s7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies. Results We developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer. Conclusions Our findings greatly extend the number of noncoding RNAs functionally implicated in tumor development and patient treatment and highlight their role as potential prognostic biomarkers of neuroblastomas.
Collapse
|
42
|
Gavryushkina A, Welch D, Stadler T, Drummond AJ. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput Biol 2014; 10:e1003919. [PMID: 25474353 PMCID: PMC4263412 DOI: 10.1371/journal.pcbi.1003919] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Phylogenetic analyses which include fossils or molecular sequences that are sampled through time require models that allow one sample to be a direct ancestor of another sample. As previously available phylogenetic inference tools assume that all samples are tips, they do not allow for this possibility. We have developed and implemented a Bayesian Markov Chain Monte Carlo (MCMC) algorithm to infer what we call sampled ancestor trees, that is, trees in which sampled individuals can be direct ancestors of other sampled individuals. We use a family of birth-death models where individuals may remain in the tree process after sampling, in particular we extend the birth-death skyline model [Stadler et al., 2013] to sampled ancestor trees. This method allows the detection of sampled ancestors as well as estimation of the probability that an individual will be removed from the process when it is sampled. We show that even if sampled ancestors are not of specific interest in an analysis, failing to account for them leads to significant bias in parameter estimates. We also show that sampled ancestor birth-death models where every sample comes from a different time point are non-identifiable and thus require one parameter to be known in order to infer other parameters. We apply our phylogenetic inference accounting for sampled ancestors to epidemiological data, where the possibility of sampled ancestors enables us to identify individuals that infected other individuals after being sampled and to infer fundamental epidemiological parameters. We also apply the method to infer divergence times and diversification rates when fossils are included along with extant species samples, so that fossilisation events are modelled as a part of the tree branching process. Such modelling has many advantages as argued in the literature. The sampler is available as an open-source BEAST2 package (https://github.com/CompEvol/sampled-ancestors). A central goal of phylogenetic analysis is to estimate evolutionary relationships and the dynamical parameters underlying the evolutionary branching process (e.g. macroevolutionary or epidemiological parameters) from molecular data. The statistical methods used in these analyses require that the underlying tree branching process is specified. Standard models for the branching process which were originally designed to describe the evolutionary past of present day species do not allow one sampled taxon to be the ancestor of another. However the probability of sampling a direct ancestor is not negligible for many types of data. For example, when fossil and living species are analysed together to infer species divergence times, fossil species may or may not be direct ancestors of living species. In epidemiology, a sampled individual (a host from which a pathogen sequence was obtained) can infect other individuals after sampling, which then go on to be sampled themselves. The models that account for direct ancestors produce phylogenetic trees with a different structure from classic phylogenetic trees and so using these models in inference requires new computational methods. Here we developed a method for phylogenetic analysis that accounts for the possibility of direct ancestors.
Collapse
Affiliation(s)
- Alexandra Gavryushkina
- Department of Computer Science, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
- * E-mail: (AJD); (AG)
| | - David Welch
- Department of Computer Science, University of Auckland, Auckland, New Zealand
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland
| | - Alexei J. Drummond
- Department of Computer Science, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
- * E-mail: (AJD); (AG)
| |
Collapse
|
43
|
Placental Evolution within the Supraordinal Clades of Eutheria with the Perspective of Alternative Animal Models for Human Placentation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/639274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here a survey of placental evolution is conducted. Placentation is a key factor for the evolution of placental mammals that had evolved an astonishing diversity. As a temporary organ that does not allow easy access, it is still not well understood. The lack of data also is a restriction for better understanding of placental development, structure, and function in the human. Animal models are essential, because experimental access to the human placenta is naturally restricted. However, there is not a single ideal model that is entirely similar to humans. It is particularly important to establish other models than the mouse, which is characterised by a short gestation period and poorly developed neonates that may provide insights only for early human pregnancy. In conclusion, current evolutionary studies have contributed essentially to providing a pool of experimental models for recent and future approaches that may also meet the requirements of a long gestation period and advanced developmental status of the newborn in the human. Suitability and limitations of taxa as alternative animal models are discussed. However, further investigations especially in wildlife taxa should be conducted in order to learn more about the full evolutionary plasticity of the placenta system.
Collapse
|
44
|
Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014; 75:165-83. [PMID: 24583291 PMCID: PMC4059600 DOI: 10.1016/j.ympev.2014.02.023] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Abstract
The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.
| | - Jason A Hodgson
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States; Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Andrew S Burrell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States.
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR, United States.
| | - Ryan L Raaum
- New York Consortium in Evolutionary Primatology, United States; Department of Anthropology, Lehman College & The Graduate Center, City University of New York, Bronx, NY, United States.
| | - Todd R Disotell
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, NY, United States; New York Consortium in Evolutionary Primatology, United States.
| |
Collapse
|
45
|
Di Fiore A, Chaves PB, Cornejo FM, Schmitt CA, Shanee S, Cortés-Ortiz L, Fagundes V, Roos C, Pacheco V. The rise and fall of a genus: Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, Lagothrix flavicauda, and on the evolutionary history of the family Atelidae (Primates: Platyrrhini). Mol Phylogenet Evol 2014; 82 Pt B:495-510. [PMID: 24751996 DOI: 10.1016/j.ympev.2014.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/27/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022]
Abstract
Using complete mitochondrial genome sequences, we provide the first molecular analysis of the phylogenetic position of the yellow-tailed woolly monkey, Lagothrix flavicauda (a.k.a. Oreonax flavicauda), a critically endangered neotropical primate endemic to northern Perú. The taxonomic status and phylogenetic position of yellow-tailed woolly monkeys have been debated for many years, but in this study both Bayesian and maximum likelihood phylogenetic reconstructions unequivocally support a monophyletic woolly monkey clade that includes L. flavicauda as the basal taxon within the radiation. Bayesian dating analyses using several alternative calibrations suggest that the divergence of yellow-tailed woolly monkeys from other Lagothrix occurred in the Pleistocene, ∼2.1Ma, roughly 6.5 my after the divergence of woolly monkeys from their sister genus, Brachyteles. Additionally, comparative analysis of the cytochrome oxidase subunit 2 (COX2) gene shows that genetic distances between yellow-tailed woolly monkeys and other Lagothrix from across the genus' geographic distribution fall well within the range of between-species divergences seen in a large number of other platyrrhine primate genera at the same locus and outside the range of between-genus divergences. Our results thus confirm a position within Lagothrix for the yellow-tailed woolly monkey and strongly suggest that the name Oreonax be formally considered a synonym for this genus. This revision in taxonomic status does not change the dire conservation threats facing the yellow-tailed woolly monkey in Perú, where the remaining wild population is estimated at only ∼10,000 individuals living in a highly fragmented landscape.
Collapse
Affiliation(s)
- Anthony Di Fiore
- Department of Anthropology, New York University, USA; Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, USA.
| | - Paulo B Chaves
- Department of Anthropology, New York University, USA; Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, USA; New York Consortium in Evolutionary Primatology (NYCEP), USA
| | - Fanny M Cornejo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, USA; Fundación Yunkawasi, Perú
| | - Christopher A Schmitt
- Department of Anthropology, New York University, USA; Center for Neurobehavioral Genetics, University of California, Los Angeles, USA; Department of Anthropology, University of Southern California, USA
| | | | | | - Valéria Fagundes
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Brazil
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Víctor Pacheco
- Museo de Historia Natural, Departamento de Mastozoologia, Universidad Nacional Mayor de San Marcos, Perú
| |
Collapse
|
46
|
dos Reis M, Donoghue PCJ, Yang Z. Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Biol Lett 2014; 10:20131003. [PMID: 24429684 PMCID: PMC3917342 DOI: 10.1098/rsbl.2013.1003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
O'Leary et al. (O'Leary et al. 2013 Science339, 662–667. (doi:10.1126/science.1229237)) performed a fossil-only dating analysis of mammals, concluding that the ancestor of placentals post-dated the Cretaceous–Palaeogene boundary, contradicting previous palaeontological and molecular studies that placed the ancestor in the Cretaceous. They incorrectly used fossil ages as species divergence times for crown groups, while in fact the former should merely form minimum-age bounds for the latter. Statistical analyses of the fossil record have shown that crown groups are significantly older than the oldest ingroup fossil, so that fossils do not directly reflect the true ages of clades. Here, we analyse a 20 million nucleotide genome-scale alignment in conjunction with a probabilistic interpretation of the fossil ages from O'Leary et al. Our combined analysis of fossils and molecules demonstrates that Placentalia originated in the Cretaceous.
Collapse
Affiliation(s)
- Mario dos Reis
- Department of Genetics, Evolution and Environment, University College London, , Gower St., London WC1E 6BT, UK
| | | | | |
Collapse
|
47
|
Bapst DW. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12081] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- David W. Bapst
- Department of Geophysical Sciences; University of Chicago; 5734 South Ellis; Chicago; IL; 60637; USA
| |
Collapse
|
48
|
Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, Roos C. A mitogenomic phylogeny of living primates. PLoS One 2013; 8:e69504. [PMID: 23874967 PMCID: PMC3713065 DOI: 10.1371/journal.pone.0069504] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022] Open
Abstract
Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.
Collapse
Affiliation(s)
- Knut Finstermeier
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Matthias Meyer
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eva Kreuz
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael Hofreiter
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail:
| |
Collapse
|
49
|
Pennell MW, Harmon LJ. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Ann N Y Acad Sci 2013; 1289:90-105. [DOI: 10.1111/nyas.12157] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Luke J. Harmon
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies; University of Idaho; Moscow; Idaho
| |
Collapse
|
50
|
Nowak MD, Smith AB, Simpson C, Zwickl DJ. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS One 2013; 8:e66245. [PMID: 23755303 PMCID: PMC3673923 DOI: 10.1371/journal.pone.0066245] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates.
Collapse
Affiliation(s)
- Michael D Nowak
- Institute of Systematic Botany, University of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|