1
|
Lv H, Ai D. Hippo/yes-associated protein signaling functions as a mechanotransducer in regulating vascular homeostasis. J Mol Cell Cardiol 2021; 162:158-165. [PMID: 34547259 DOI: 10.1016/j.yjmcc.2021.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Cells are constantly exposed to various mechanical forces, including hydrostatic pressure, cyclic stretch, fluid shear stress, and extracellular matrix stiffness. Mechanical cues can be translated into the cell-specific transcriptional process by a cellular mechanic-transducer. Evidence suggests that mechanical signals assist activated intracellular signal transduction pathways and the relative phenotypic adaptation to coordinate cell behavior and disease appropriately. The Hippo/yes-associated protein (YAP) signaling pathway is regulated in response to numerous mechanical stimuli. It plays an important role in the mechanotransduction mechanism, which converts mechanical forces to cascades of molecular signaling to modulate gene expression. This review summarizes the recent findings relevant to the Hippo/YAP pathway-based mechanotransduction in cell behavior and maintaining blood vessels, as well as cardiovascular disease.
Collapse
Affiliation(s)
- Huizhen Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, Tianjin Medical University, Tianjin 300070, China; Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, Tianjin Medical University, Tianjin 300070, China; Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
2
|
Olaopa M, Zhou HM, Snider P, Wang J, Schwartz RJ, Moon AM, Conway SJ. Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Dev Biol 2011; 356:308-22. [PMID: 21600894 DOI: 10.1016/j.ydbio.2011.05.583] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
Systemic loss-of-function studies have demonstrated that Pax3 transcription factor expression is essential for dorsal neural tube, early neural crest and muscle cell lineage morphogenesis. Cardiac neural crest cells participate in both remodeling of the pharyngeal arch arteries and outflow tract septation during heart development, but the lineage specific role of Pax3 in neural crest function has not yet been determined. To gain insight into the requirement of Pax3 within the neural crest, we conditionally deleted Pax3 in both the premigratory and migratory neural crest populations via Wnt1-Cre and Ap2α-Cre and via P0-Cre in only the migratory neural crest, and compared these phenotypes to the pulmonary atresia phenotype observed following the systemic loss of Pax3. Surprisingly, using Wnt1-Cre deletion there are no resultant heart defects despite the loss of Pax3 from the premigratory and migratory neural crest. In contrast, earlier premigratory and migratory Ap2α-Cre mediated deletion resulted in double outlet right ventricle alignment heart defects. In order to assess the tissue-specific contribution of neural crest to heart development, genetic ablation of neural crest lineage using a Wnt1-Cre-activated diphtheria toxin fragment-A cell-killing system was employed. Significantly, ablation of Wnt1-Cre-expressing neural crest cells resulted in fully penetrant persistent truncus arteriosus malformations. Combined, the data show that Pax3 is essential for early neural crest progenitor formation, but is not required for subsequent cardiac neural crest progeny morphogenesis involving their migration to the heart or septation of the outflow tract.
Collapse
Affiliation(s)
- Michael Olaopa
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Ma Y, Zhang P, Wang F, Yang J, Yang Z, Qin H. The relationship between early embryo development and tumourigenesis. J Cell Mol Med 2011; 14:2697-701. [PMID: 21029369 PMCID: PMC3822720 DOI: 10.1111/j.1582-4934.2010.01191.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
With the recent substantial progress in developmental biology and cancer biology, the similarities between early embryo development and tumourigenesis, as well as the important interaction between tumours and embryos become better appreciated. In this paper, we review in detail the embryonic origin of tumour, and the similarities between early embryo development and tumourigenesis with respect to cell invasive behaviours, epigenetic regulation, gene expression, protein profiling and other important biological behaviours. Given an improved understanding of the relationship between early embryo development and tumourigenesis, now we have better and broader resources to attack cancer from the perspective of developmental biology and develop next generation of prognostic and therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Yanlei Ma
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
4
|
Culver JC, Dickinson ME. The effects of hemodynamic force on embryonic development. Microcirculation 2010; 17:164-78. [PMID: 20374481 DOI: 10.1111/j.1549-8719.2010.00025.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Blood vessels have long been known to respond to hemodynamic force, and several mechanotransduction pathways have been identified. However, only recently have we begun to understand the effects of hemodynamic force on embryonic development. In this review, we will discuss specific examples illustrating the role of hemodynamic force during the development of the embryo, with particular focus on the development of the vascular system and the morphogenesis of the heart. We will also discuss the important functions served by mechanotransduction and hemodynamic force during placentation, as well as in regulating the maintenance and division of embryonic, hematopoietic, neural, and mesenchymal stem cells. Pathological misregulation of mechanosensitive pathways during pregnancy and embryonic development may contribute to the occurrence of cardiovascular birth defects, as well as to a variety of other diseases, including preeclampsia. Thus, there is a need for future studies focusing on better understanding the physiological effects of hemodynamic force during embryonic development and their role in the pathogenesis of disease.
Collapse
Affiliation(s)
- James C Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
5
|
Abstract
Cerebral cavernous malformations (CCM) are characterized by abnormal dilated intracranial capillaries that predispose to hemorrhage. The development of some CCMs in humans has been attributed to mutations in the CCM1 genes. Currently, contradictory results have been generated regarding the vascular endothelial cell population changes in Ccm1 deficiency in zebrafish. We hypothesize that the inconsistent results simply reflect the spatial and temporal difference for the observed vascular endothelial cells during zebrafish embryonic development. Using high resolution images in vivo, we demonstrated that the loss of Ccm1 in zebrafish embryos leads to marked increases in apoptosis in vascular endothelium at the end stage of microvascular angiogenesis. In vivo zebrafish studies were further substantiated by in vitro findings in human endothelial cells that elucidated the biochemical pathways of CCM1 deficiency. We found that that loss of CCM1 in vitro promotes apoptosis through decreased activation of the integrin-linked kinase survival signaling pathway. In summary, Ccm1 has been identified as a key modulator in maintaining microvascular integrity during zebrafish embryonic angiogenesis.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Daniele Rigamonti
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmed Badr
- COE for Neurosciences, Departments of Anesthesiology, Biomedical Sciences, Neurosurgery, Texas Tech University Health Science Center, 4800 Alberta Avenue, El Paso, TX 79905, USA
| | - Jun Zhang
- COE for Neurosciences, Departments of Anesthesiology, Biomedical Sciences, Neurosurgery, Texas Tech University Health Science Center, 4800 Alberta Avenue, El Paso, TX 79905, USA
| |
Collapse
|
6
|
Tang S, Snider P, Firulli AB, Conway SJ. Trigenic neural crest-restricted Smad7 over-expression results in congenital craniofacial and cardiovascular defects. Dev Biol 2010; 344:233-47. [PMID: 20457144 DOI: 10.1016/j.ydbio.2010.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/10/2023]
Abstract
Smad7 is a negative regulator of TGFbeta superfamily signaling. Using a three-component triple transgenic system, expression of the inhibitory Smad7 was induced via doxycycline within the NCC lineages at pre- and post-migratory stages. Consistent with its role in negatively regulating both TGFbeta and BMP signaling in vitro, induction of Smad7 within the NCC significantly suppressed phosphorylation levels of both Smad1/5/8 and Smad2/3 in vivo, resulting in subsequent loss of NCC-derived craniofacial, pharyngeal and cardiac OFT cushion cells. At the cellular level, increased cell death was observed in pharyngeal arches. However, cell proliferation and NCC-derived smooth muscle differentiation were unaltered. NCC lineage mapping demonstrated that cardiac NCC emigration and initial migration were not affected, but subsequent colonization of the OFT was significantly reduced. Induction of Smad7 in post-migratory NCC resulted in interventricular septal chamber septation defects, suggesting that TGFbeta superfamily signaling is also essential for cardiac NCC at post-migratory stages to govern normal cardiac development. Taken together, the data illustrate that tightly regulated TGFbeta superfamily signaling plays an essential role during craniofacial and cardiac NCC colonization and cell survival in vivo.
Collapse
Affiliation(s)
- Sunyong Tang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
7
|
Tirziu D, Simons M. Endothelium as master regulator of organ development and growth. Vascul Pharmacol 2008; 50:1-7. [PMID: 18804188 DOI: 10.1016/j.vph.2008.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 01/11/2023]
Abstract
Development of the vasculature is one of the earliest events during embryogenesis, preceding organ formation. Organogenesis requires a complex set of paracrine signals between the vasculature and the developing nonvascular tissues to support differentiation and organ growth. However, the role of endothelium in controlling organ growth and, ultimately, size is little-understood. In this review, we summarize new data regarding the endothelium function in order to provide a more comprehensive understanding of the communication between the endothelium and the organ's tissue.
Collapse
Affiliation(s)
- Daniela Tirziu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | |
Collapse
|
8
|
Snider P, Fix JL, Rogers R, Peabody-Dowling G, Ingram D, Lilly B, Conway SJ. Generation and characterization of Csrp1 enhancer-driven tissue-restricted Cre-recombinase mice. Genesis 2008; 46:167-76. [PMID: 18327771 DOI: 10.1002/dvg.20379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell type-specific genetic modification using the LoxP/Cre system is a powerful tool for genetic analysis of distinct cell lineages. Because of the unique arterial smooth muscle-restricted expression of a 5.0 kb cysteine-rich protein (Csrp1) enhancer (Lilly et al.,2001, Dev Biol 240:531-547), we hypothesized that a transgenic Cre line would prove useful for the smooth muscle lineage-specific genetic manipulation. Here we describe a transgenic mouse line, ECsrp1(Cre), where Cre is initially specifically expressed in arterial smooth muscle cells. Use of the ROSA26R reporter allele confirmed that Cre-mediated recombination in vascular smooth muscle cells began at approximately E10.0 and was highly proficient. Subsequently, Cre is expressed in restricted skeletal and nonvascular smooth muscle lineages. This lineage tracing data is important for future conditional knockout studies to understand where and when Cre-mediated deletion occurs and where Cre-expressing daughter cells finally localize. Additionally, we crossed the ECsrp1(Cre) mice to the ROSA26(-eGFP-DTA) diphtheria toxin A-expressing mice to genetically ablate ECsrp1(Cre) expressing cells. This ECsrp1(Cre) transgenic line should thus prove useful for genetic analysis of diverse aspects of cardiovascular morphogenesis and as a general smooth muscle lineage deletor line.
Collapse
Affiliation(s)
- Paige Snider
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Ma YL, Qin HL. Research progress in correlation between early embryo development and tumorigenesis. Shijie Huaren Xiaohua Zazhi 2008; 16:1337-1343. [DOI: 10.11569/wcjd.v16.i12.1337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the increased cognition in developmental biology, researchers have discovered the similarity of biological behaviors between early embryo development and tumorigenesis, as well as the important interaction between tumors and embryos. Therefore, it enlightens us to study tumors from the view of developmental biology, which may provide a new clue for tumor therapy. In this article, we review in detail the embryonic origin of tumors, the similarity between early embryo development and tumorigenesis at the level of gene and protein expression, their important biological behaviors, and moreover, the interaction between tumors and embryos from the angle of developmental biology.
Collapse
|