1
|
Wang WC, Hou TC, Kuo CY, Lai YC. Amplifications of EVX2 and HOXD9-HOXD13 on 2q31 in mature cystic teratomas of the ovary identified by array comparative genomic hybridization may explain teratoma characteristics in chondrogenesis and osteogenesis. J Ovarian Res 2024; 17:129. [PMID: 38907278 PMCID: PMC11193297 DOI: 10.1186/s13048-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/16/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Teratomas are a common type of germ cell tumor. However, only a few reports on their genomic constitution have been published. The study of teratomas may provide a better understanding of their stepwise differentiation processes and molecular bases, which could prove useful for the development of tissue-engineering technologies. METHODS In the present study, we analyzed the copy number aberrations of nine ovarian mature cystic teratomas using array comparative genomic hybridization in an attempt to reveal their genomic aberrations. RESULTS The many chromosomal aberrations observed on array comparative genomic hybridization analysis reveal the complex genetics of this tumor. Amplifications and deletions of large DNA fragments were observed in some samples, while amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, NDUFV1 on 11q13.2, and RPL10, SNORA70, DNASE1L1, TAZ, ATP6AP1, and GDI1 on Xq28 were found in all nine mature cystic teratomas. CONCLUSIONS Our results indicated that amplifications of these genes may play an important etiological role in teratoma formation. Moreover, amplifications of EVX2 and HOXD9-HOXD13 on 2q31.1, found on array comparative genomic hybridization, may help to explain the characteristics of teratomas in chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Wen-Chung Wang
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung, Taiwan
| | - Tai-Cheng Hou
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Chen-Yun Kuo
- Department of Pathology, Jen-Ai Hospital, Taichung, Taiwan
| | - Yen-Chein Lai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Road, Taichung, 402, Taiwan, R.O.C..
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Moreno-Corona NC, de León-Bautista MP, León-Juárez M, Hernández-Flores A, Barragán-Gálvez JC, López-Ortega O. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Traffic 2024; 25:e12950. [PMID: 38923715 DOI: 10.1111/tra.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.
Collapse
Affiliation(s)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia, Mexico
- Human Health, Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | | | - Juan Carlos Barragán-Gálvez
- División de Ciencias Naturales y Exactas, Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, Paris, France
| |
Collapse
|
3
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
4
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Maheshwari S. Repercussion of Primary Nucleation Pathway: Dementia and Cognitive Impairment. Curr Aging Sci 2024; 17:196-204. [PMID: 38083895 DOI: 10.2174/0118746098243327231117113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/05/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Vaseem A Ansari
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | |
Collapse
|
5
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Akahoshi K, Nakagawa E, Goto YI, Inoue K. Duplication within two regions distal to MECP2: clinical similarity with MECP2 duplication syndrome. BMC Med Genomics 2023; 16:43. [PMID: 36879246 PMCID: PMC9987063 DOI: 10.1186/s12920-023-01465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND X-linked methyl-CpG-binding protein 2 (MECP2) duplication syndrome is prevalent in approximately 1% of X-linked intellectual disabilities. Accumulating evidence has suggested that MECP2 is the causative gene of MECP2 duplication syndrome. We report a case of a 17-year-old boy with a 1.2 Mb duplication distal to MECP2 on chromosome Xq28. Although this region does not contain MECP2, the clinical features and course of the boy are remarkably similar to those observed in MECP2 duplication syndrome. Recently, case reports have described duplication in the region distal to, and not containing, MECP2. These regions have been classified as the K/L-mediated Xq28 duplication region and int22h1/int22h2-mediated Xq28 duplication region. The case reports also described signs similar to those of MECP2 duplication syndrome. To the best of our knowledge, ours is the first case to include these two regions. CASE PRESENTATION The boy presented with a mild to moderate regressive intellectual disability and progressive neurological disorder. He developed epilepsy at the age of 6 years and underwent a bilateral equinus foot surgery at 14 years of age because of the increasing spasticity in lower extremities since the age of 11. Intracranial findings showed hypoplasia of the corpus callosum, cerebellum, and brain stem; linear hyperintensity in the deep white matter; and decreased white matter capacity. During his childhood, he suffered from recurrent infection. However, genital problems, skin abnormalities and gastrointestinal manifestations (gastroesophageal reflux) were not observed. CONCLUSIONS Cases in which duplication was observed in the region of Xq28 that does not include MECP2 also showed symptoms similar to those of MECP2 duplication syndrome. We compared four pathologies: MECP2 duplication syndrome with minimal regions, duplication within the two distal regions without MECP2, and our case including both regions. Our results suggest that MECP2 alone may not explain all symptoms of duplication in the distal part of Xq28.
Collapse
Affiliation(s)
- Keiko Akahoshi
- Department of Pediatrics, Tokyo Children's Rehabilitation Hospital, 4-10-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan.
| | - Eiji Nakagawa
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, 187-8502, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, 187-8502, Japan
| |
Collapse
|
7
|
Tannouri N, Simmons DBD. Characterizing the origin of blood plasma proteins from organ tissues in rainbow trout (Oncorhynchus mykiss) using a comparative non-targeted proteomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101070. [PMID: 36871493 DOI: 10.1016/j.cbd.2023.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Protein expression patterns adapt to various cues to meet the needs of an organism. The dynamicity of an organism's proteome can therefore reveal information about an organism's health. Proteome databases contain limited information regarding organisms outside of medicinal biology. The UniProt human and mouse proteomes are extensively reviewed and ∼50 % of both proteomes include tissue specificity, while >99 % of the rainbow trout proteome lacks tissue specificity. This study aimed to expand knowledge on the rainbow trout proteome with a focus on understanding the origin of blood plasma proteins. Blood, brain, heart, liver, kidney, and gills were collected from adult rainbow trout, plasma and tissue proteins were analyzed using liquid chromatography tandem mass spectrometry. Over 10,000 proteins were identified across all groups. Our data indicated that the majority of the plasma proteome is shared amongst multiple tissue types, though 4-7 % of the plasma proteome is uniquely originated from each tissue (gill > heart > liver > kidney > brain).
Collapse
Affiliation(s)
- Nancy Tannouri
- Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada. https://twitter.com/nancytannouri
| | | |
Collapse
|
8
|
Straka B, Hermanovska B, Krskova L, Zamecnik J, Vlckova M, Balascakova M, Tesner P, Jezdik P, Tichy M, Kyncl M, Musilova A, Lassuthova P, Marusic P, Krsek P. Genetic Testing for Malformations of Cortical Development: A Clinical Diagnostic Study. Neurol Genet 2022; 8:e200032. [PMID: 36324633 PMCID: PMC9621608 DOI: 10.1212/nxg.0000000000200032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives Malformations of cortical development (MCD), though individually rare, constitute a significant burden of disease. The diagnostic yield of next-generation sequencing (NGS) in these patients varies across studies and methods, and novel genes and variants continue to emerge. Methods Patients (n = 123) with a definite radiologic or histopathologic diagnosis of MCD, with or without epilepsy were included in this study. They underwent NGS-based targeted gene panel (TGP) testing, whole-exome sequencing (WES), or WES-based virtual panel testing. Selected patients who underwent epilepsy surgery (n = 69) also had somatic gene testing of brain tissue-derived DNA. We analyzed predictors of positive germline genetic finding and diagnostic yield of respective methods. Results Pathogenic or likely pathogenic germline genetic variants were detected in 21% of patients (26/123). In the surgical subgroup (69/123), we performed somatic sequencing in 40% of cases (28/69) and detected causal variants in 18% (5/28). Diagnostic yield did not differ between TGP, WES-based virtual gene panel, and open WES (p = 0.69). Diagnosis of focal cortical dysplasia type 2A, epilepsy, and intellectual disability were associated with positive results of germline testing. We report previously unpublished variants in 16/26 patients and 4 cases of MCD with likely pathogenic variants in non-MCD genes. Discussion In this study, we are reporting genetic findings of a large cohort of MCD patients with epilepsy or potentially epileptogenic MCD. We determine predictors of successful ascertainment of a genetic diagnosis in real-life setting and report novel, likely pathogenic variants in MCD and non-MCD genes alike.
Collapse
Affiliation(s)
- Barbora Straka
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Barbora Hermanovska
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Lenka Krskova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Josef Zamecnik
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Marketa Vlckova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Miroslava Balascakova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Pavel Tesner
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Petr Jezdik
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Michal Tichy
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Martin Kyncl
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Alena Musilova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Petra Lassuthova
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Petr Marusic
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Pavel Krsek
- From the Department of Paediatric Neurology (B.S., B.H., A.M., P.L., P.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Pathology and Molecular Medicine (L.K., J.Z.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Biology and Medical Genetics (M.V., M.B., P.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Faculty of Electrical Engineering (P.J.), Department of Circuit Theory, Czech Technical University in Prague; Department of Neurosurgery (M.T.), Second Faculty of Medicine, Charles University and Motol University Hospital; Department of Radiology (M.K.), Second Faculty of Medicine, Charles University and Motol University Hospital; and Department of Neurology (P.M.), Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| |
Collapse
|
9
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
10
|
John A, Ng-Cordell E, Hanna N, Brkic D, Baker K. The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J Neurochem 2021; 157:208-228. [PMID: 32738165 DOI: 10.1111/jnc.15135] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence synaptic vesicle cycling (SVC disorders). Pathogenic variants in each SVC disorder gene lead to disturbance of at least one SVC subprocess, namely vesicle trafficking (e.g. KIF1A and GDI1), clustering (e.g. TRIO, NRXN1 and SYN1), docking and priming (e.g. STXBP1), fusion (e.g. SYT1 and PRRT2) or re-uptake (e.g. DNM1, AP1S2 and TBC1D24). We observe that SVC disorders share a common set of neurological symptoms (movement disorders, epilepsies), cognitive impairments (developmental delay, intellectual disabilities, cerebral visual impairment) and mental health difficulties (autism, ADHD, psychiatric symptoms). On the other hand, there is notable phenotypic variation between and within disorders, which may reflect selective disruption to SVC subprocesses, spatiotemporal and cell-specific gene expression profiles, mutation-specific effects, or modifying factors. Understanding the common cellular and systems mechanisms underlying neurodevelopmental phenotypes in SVC disorders, and the factors responsible for variation in clinical presentations and outcomes, may translate to personalized clinical management and improved quality of life for patients and families.
Collapse
Affiliation(s)
- Abinayah John
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Nancy Hanna
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Diandra Brkic
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Proteomics Study of Peripheral Blood Mononuclear Cells in Down Syndrome Children. Antioxidants (Basel) 2020; 9:antiox9111112. [PMID: 33187268 PMCID: PMC7696178 DOI: 10.3390/antiox9111112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans, which results from the triplication of chromosome 21. To search for biomarkers for the early detection and exploration of the disease mechanisms, here, we investigated the protein expression signature of peripheral blood mononuclear cells (PBMCs) in DS children compared with healthy donors (HD) by using an in-depth label-free shotgun proteomics approach. Identified proteins are found associated with metabolic pathways, cellular trafficking, DNA structure, stress response, cytoskeleton network, and signaling pathways. The results showed that a well-defined number of dysregulated pathways retain a prominent role in mediating DS pathological features. Further, proteomics results are consistent with published study in DS and provide evidences that increased oxidative stress and the increased induction of stress related response, is a participant in DS pathology. In addition, the expression levels of some key proteins have been validated by Western blot analysis while protein carbonylation, as marker of protein oxidation, was investigated. The results of this study propose that PBMCs from DS children might be in an activated state where endoplasmic reticulum stress and increased production of radical species are one of the primary events contributing to multiple DS pathological features.
Collapse
|
12
|
Gan P, Patterson M, Watanabe H, Wang K, Edmonds RA, Reinholdt LG, Sucov HM. Allelic variants between mouse substrains BALB/cJ and BALB/cByJ influence mononuclear cardiomyocyte composition and cardiomyocyte nuclear ploidy. Sci Rep 2020; 10:7605. [PMID: 32371981 PMCID: PMC7200697 DOI: 10.1038/s41598-020-64621-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Most mouse cardiomyocytes (CMs) become multinucleated shortly after birth via endoreplication and interrupted mitosis, which persists through adulthood. The very closely related inbred mouse strains BALB/cJ and BALB/cByJ differ substantially (6.6% vs. 14.3%) in adult mononuclear CM level. This difference is the likely outcome of a single X-linked polymorphic gene that functions in a CM-nonautonomous manner, and for which the BALB/cByJ allele is recessive to that of BALB/cJ. From whole exome sequence we identified two new X-linked protein coding variants that arose de novo in BALB/cByJ, in the genes Gdi1 (R276C) and Irs4 (L683F), but show that neither affects mononuclear CM level individually. No BALB/cJ-specific X-linked protein coding variants were found, implicating instead a variant that influences gene expression rather than encoded protein function. A substantially higher percentage of mononuclear CMs in BALB/cByJ are tetraploid (66.7% vs. 37.6% in BALB/cJ), such that the overall level of mononuclear diploid CMs between the two strains is similar. The difference in nuclear ploidy is the likely result of an autosomal polymorphism, for which the BALB/cByJ allele is recessive to that of BALB/cJ. The X-linked and autosomal genes independently influence mitosis such that their phenotypic consequences can be combined or segregated by appropriate breeding, implying distinct functions in karyokinesis and cytokinesis.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Michaela Patterson
- Department of Cell Biology, Neurobiology and Anatomy, and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hirofumi Watanabe
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Kristy Wang
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Reilly A Edmonds
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA. .,Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
13
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
14
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
15
|
Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, Ho HS, Keh HW, Candasamy M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer's disease, Parkinson's disease. Biomed Pharmacother 2019; 111:765-777. [PMID: 30612001 DOI: 10.1016/j.biopha.2018.12.101] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neurodegenerative diseases are usually sporadic in nature and commonly influenced by a wide range of genetic, life style and environmental factors. A unifying feature of Alzheimer's disease (AD) and Parkinson's disease (PD) is the abnormal accumulation and processing of mutant or damaged intra and extracellular proteins; this leads to neuronal vulnerability and dysfunction in the brain. Through a detailed review of ubiquitin proteasome, mRNA splicing, mitochondrial dysfunction, and oxidative stress pathway interrelation on neurodegeneration can improve the understanding of the disease mechanism. The identified pathways common to AD and PD nominate promising new targets for further studies, and as well as biomarkers. These insights suggested would likely provide major stimuli for developing unified treatment approaches to combat neurodegeneration. More broadly, pathways can serve as vehicles for integrating findings from diverse studies of neurodegeneration. The evidence examined in this review provides a brief overview of the current literature on significant pathways in promoting in AD, PD. Additionally, these insights suggest that biomarkers and treatment strategies may require simultaneous targeting of multiple components.
Collapse
Affiliation(s)
- Sean Hong Tan
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Venkatanaidu Karri
- Department of Toxicogenomics, Faculty of Health, Medicines, Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Nicole Wuen Rong Tay
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kuan Hui Chang
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hui Yen Ah
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Phui Qi Ng
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hui San Ho
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hsiao Wai Keh
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
17
|
Hosseini M, Fattahi Z, Abedini SS, Hu H, Ropers H, Kalscheuer VM, Najmabadi H, Kahrizi K. GPR126
: A novel candidate gene implicated in autosomal recessive intellectual disability. Am J Med Genet A 2018; 179:13-19. [DOI: 10.1002/ajmg.a.40531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/29/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Masoumeh Hosseini
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation Sciences Tehran Iran
| | - Zohreh Fattahi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation Sciences Tehran Iran
| | | | - Hao Hu
- Department Human Molecular GeneticsMax‐Planck‐Institute for Molecular Genetics Berlin Germany
| | - Hans‐H. Ropers
- Department Human Molecular GeneticsMax‐Planck‐Institute for Molecular Genetics Berlin Germany
| | - Vera M. Kalscheuer
- Department Human Molecular GeneticsMax‐Planck‐Institute for Molecular Genetics Berlin Germany
| | - Hossein Najmabadi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation Sciences Tehran Iran
| | - Kimia Kahrizi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation Sciences Tehran Iran
| |
Collapse
|
18
|
Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks. Anal Biochem 2018; 555:33-41. [DOI: 10.1016/j.ab.2018.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023]
|
19
|
Guarnieri FC, Pozzi D, Raimondi A, Fesce R, Valente MM, Delvecchio VS, Van Esch H, Matteoli M, Benfenati F, D'Adamo P, Valtorta F. A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility. Hum Mol Genet 2018; 26:4699-4714. [PMID: 28973667 DOI: 10.1093/hmg/ddx352] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Intellectual Disability is a common and heterogeneous disorder characterized by limitations in intellectual functioning and adaptive behaviour, whose molecular mechanisms remain largely unknown. Among the numerous genes found to be involved in the pathogenesis of intellectual disability, 10% are located on the X-chromosome. We identified a missense mutation (c.236 C > G; p.S79W) in the SYN1 gene coding for synapsin I in the MRX50 family, affected by non-syndromic X-linked intellectual disability. Synapsin I is a neuronal phosphoprotein involved in the regulation of neurotransmitter release and neuronal development. Several mutations in SYN1 have been identified in patients affected by epilepsy and/or autism. The S79W mutation segregates with the disease in the MRX50 family and all affected members display intellectual disability as sole clinical manifestation. At the protein level, the S79W Synapsin I mutation is located in the region of the B-domain involved in recognition of highly curved membranes. Expression of human S79W Synapsin I in Syn1 knockout hippocampal neurons causes aberrant accumulation of small clear vesicles in the soma, increased clustering of synaptic vesicles at presynaptic terminals and increased frequency of excitatory spontaneous release events. In addition, the presence of S79W Synapsin I strongly reduces the mobility of synaptic vesicles, with possible implications for the regulation of neurotransmitter release and synaptic plasticity. These results implicate SYN1 in the pathogenesis of non-syndromic intellectual disability, showing that alterations of synaptic vesicle trafficking are one possible cause of this disease, and suggest that distinct mutations in SYN1 may lead to distinct brain pathologies.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| | - Davide Pozzi
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, 21100 Varese, Italy
| | - Maria M Valente
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, B3000 Leuven, Belgium
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Patrizia D'Adamo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| |
Collapse
|
20
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
21
|
Zorec R, Parpura V, Verkhratsky A. Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiol (Oxf) 2018; 222. [PMID: 28665546 DOI: 10.1111/apha.12915] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Intracellular organelles, including secretory vesicles, emerged when eukaryotic cells evolved some 3 billion years ago. The primordial organelles that evolved in Archaea were similar to endolysosomes, which developed, arguably, for specific metabolic tasks, including uptake, metabolic processing, storage and disposal of molecules. In comparison with prokaryotes, cell volume of eukaryotes increased by several orders of magnitude and vesicle traffic emerged to allow for communication between distant intracellular locations. Lysosomes, first described in 1955, a prominent intermediate of endo- and exocytotic pathways, operate virtually in all eukaryotic cells including astroglia, the most heterogeneous type of homeostatic glia in the central nervous system. Astrocytes support neuronal network activity in particular through elaborated secretion, based on a complex intracellular vesicle network dynamics. Deranged homeostasis underlies disease and astroglial vesicle traffic contributes to the pathophysiology of neurodegenerative (Alzheimer's disease, Huntington's disease), neurodevelopmental diseases (intellectual deficiency, Rett's disease) and neuroinfectious (Zika virus) disorders. This review addresses astroglial cell-autonomous vesicular traffic network, as well as its into primary and secondary vesicular network defects in diseases, and considers this network as a target for developing new therapies for neurological conditions.
Collapse
Affiliation(s)
- R. Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
| | - V. Parpura
- Department of Neurobiology; Civitan International Research Center and Center for Glial Biology in Medicine; Evelyn F. McKnight Brain Institute; Atomic Force Microscopy and Nanotechnology Laboratories; University of Alabama; Birmingham AL USA
| | - A. Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
- Faculty of Biology; Medicine and Health; The University of Manchester; Manchester UK
- Achucarro Center for Neuroscience; IKERBASQUE; Basque Foundation for Science; Bilbao Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
| |
Collapse
|
22
|
Ward DI, Buckley BA, Leon E, Diaz J, Galegos MF, Hofherr S, Lewanda AF. Intellectual disability and epilepsy due to the K/L-mediated Xq28 duplication: Further evidence of a distinct, dosage-dependent phenotype. Am J Med Genet A 2018; 176:551-559. [PMID: 29341460 DOI: 10.1002/ajmg.a.38524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022]
Abstract
Copy number variants of the X-chromosome are a common cause of X-linked intellectual disability in males. Duplication of the Xq28 band has been known for over a decade to be the cause of the Lubs X-linked Mental Retardation Syndrome (OMIM 300620) in males and this duplication has been narrowed to a critical region containing only the genes MECP2 and IRAK1. In 2009, four families with a distal duplication of Xq28 not including MECP2 and mediated by low-copy repeats (LCRs) designated "K" and "L" were reported with intellectual disability and epilepsy. Duplication of a second more distal region has been described as the cause of the Int22h-1/Int22h-2 Mediated Xq28 Duplication Syndrome, characterized by intellectual disability, psychiatric problems, and recurrent infections. We report two additional families possessing the K/L-mediated Xq28 duplication with affected males having intellectual disability and epilepsy similar to the previously reported phenotype. To our knowledge, this is the second cohort of individuals to be reported with this duplication and therefore supports K/L-mediated Xq28 duplications as a distinct syndrome.
Collapse
Affiliation(s)
- David Isum Ward
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Bethany A Buckley
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eyby Leon
- Rare Disease Institute Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Jullianne Diaz
- Rare Disease Institute Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Margaret Faust Galegos
- Rare Disease Institute Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Sean Hofherr
- Rare Disease Institute Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Amy Feldman Lewanda
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland.,Rare Disease Institute Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
23
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:196-207. [DOI: 10.1002/mds.27270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Gabrielle R. Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Matthew J. Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre of Applied Neurogenetics, Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
24
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
25
|
RAB37 interacts directly with ATG5 and promotes autophagosome formation via regulating ATG5-12-16 complex assembly. Cell Death Differ 2017; 25:918-934. [PMID: 29229996 PMCID: PMC5943352 DOI: 10.1038/s41418-017-0023-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular membrane trafficking is essential for eukaryotic cell existence. Here, we show that RAB37 activation through GTP binding recruits ATG5-12 to isolation membrane and promotes autophagosome formation through the ATG5-ATG12-ATG16L1 complex. RAB37 is localized on the isolation membrane. It can bind directly with ATG5 and promotes formation of the ATG5-12-16 complex. Mutation analysis reveals that GTP-bound RAB37 exhibits an enhanced interaction with ATG5-12 and GDP-stabilised mutation impairs the interaction. RAB37 promotes ATG5-12 interaction with ATG16L1, thus facilitates lipidation of LC3B in a GTP-dependent manner to enhance autophagy. Notably, ablation of RAB37 expression affects the complex formation and decreases autophagy, whereas forced RAB37 expression promotes autophagy and also suppresses cell proliferation. Our results demonstrate a role of RAB37 in autophagosome formation through a molecular connection of RAB37, ATG5-12, ATG16L1 up to LC3B, suggesting an organiser role of RAB37 during autophagosomal membrane biogenesis. These findings have broad implications for understanding the role of RAB vesicle transport in autophagy and cancer.
Collapse
|
26
|
Martín-Davison AS, Pérez-Díaz R, Soto F, Madrid-Espinoza J, González-Villanueva E, Pizarro L, Norambuena L, Tapia J, Tajima H, Blumwald E, Ruiz-Lara S. Involvement of SchRabGDI1 from Solanum chilense in endocytic trafficking and tolerance to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:1-11. [PMID: 28818364 DOI: 10.1016/j.plantsci.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/07/2017] [Accepted: 06/17/2017] [Indexed: 05/26/2023]
Abstract
Physiological responses of plants to salinity stress requires the coordinated activation of many genes. A salt-induced gene was isolated from roots of the wild tomato species Solanum chilense and named SchRabGDI1 because it encodes a protein with high identity to GDP dissociation inhibitors of plants. These proteins are regulators of the RabGTPase cycle that play key roles in intracellular vesicular trafficking. The expression pattern of SchRabGDI1 showed an early up-regulation in roots and leaves under salt stress. Functional activity of SchRabGDI1 was shown by restoring the defective phenotype of the yeast sec19-1 mutant and the capacity of SchRabGDI1 to interact with RabGTPase was demonstrated through BiFC assays. Expression of SchRabGDI1 in Arabidopsis thaliana plants resulted in increased salt tolerance. Also, the root cells of transgenic plants showed higher rate of endocytosis under normal growth conditions and higher accumulation of sodium in vacuoles and small vesicular structures under salt stress than wild type. Our results suggest that in salt tolerant species such as S. chilense, bulk endocytosis is one of the early mechanisms to avoid salt stress, which requires the concerted expression of regulatory genes involved in vesicular trafficking of the endocytic pathway.
Collapse
Affiliation(s)
| | - Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Flavia Soto
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - José Madrid-Espinoza
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | - Lorena Pizarro
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Centro de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jaime Tapia
- Instituto de Química de los Recursos Naturales, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile.
| |
Collapse
|
27
|
Duan Y, Lin S, Xie L, Zheng K, Chen S, Song H, Zeng X, Gu X, Wang H, Zhang L, Shao H, Hong W, Zhang L, Duan S. Exome sequencing identifies a novel mutation of the GDI1 gene in a Chinese non-syndromic X-linked intellectual disability family. Genet Mol Biol 2017; 40:591-596. [PMID: 28863211 PMCID: PMC5596370 DOI: 10.1590/1678-4685-gmb-2016-0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 03/18/2017] [Indexed: 12/29/2022] Open
Abstract
X-linked intellectual disability (XLID) has been associated with various genes.
Diagnosis of XLID, especially for non-syndromic ones (NS-XLID), is often hampered by
the heterogeneity of this disease. Here we report the case of a Chinese family in
which three males suffer from intellectual disability (ID). The three patients shared
the same phenotype: no typical clinical manifestation other than IQ score ≤ 70. For a
genetic diagnosis for this family we carried out whole exome sequencing on the
proband, and validated 16 variants of interest in the genomic DNA of all the family
members. A missense mutation (c.710G > T), which mapped to exon 6 of the Rab
GDP-Dissociation Inhibitor 1 (GDI1) gene, was found segregating with
the ID phenotype, and this mutation changes the 237th position in the guanosine
diphosphate dissociation inhibitor (GDI) protein from glycine to valine (p.
Gly237Val). Through molecular dynamics simulations we found that this substitution
results in a conformational change of GDI, possibly affecting the Rab-binding
capacity of this protein. In conclusion, our study identified a novel
GDI1 mutation that is possibly NS-XLID causative, and showed that
whole exome sequencing provides advantages for detecting novel ID-associated variants
and can greatly facilitate the genetic diagnosis of the disease.
Collapse
Affiliation(s)
- Yongheng Duan
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Sheng Lin
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Lichun Xie
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Kaifeng Zheng
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Shiguo Chen
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Hui Song
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Xuchun Zeng
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Xueying Gu
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Heyun Wang
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Linghua Zhang
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Hao Shao
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Wenxu Hong
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| | - Lijie Zhang
- College of Pharmacy, Nankai University, Tianjin City, People's Republic of China
| | - Shan Duan
- Laboratory of Medical Genetics, Center for Birth Defect Research and Prevention, Shenzhen Research Institute of Population and Family Planning, Shenzhen City, People's Republic of China
| |
Collapse
|
28
|
Cellular effects mediated by pathogenic LRRK2: homing in on Rab-mediated processes. Biochem Soc Trans 2017; 45:147-154. [PMID: 28202668 DOI: 10.1042/bst20160392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease. Mutations in LRRK2 are associated with increased kinase activity that correlates with cytotoxicity, indicating that kinase inhibitors may comprise promising disease-modifying compounds. However, before embarking on such strategies, detailed knowledge of the cellular deficits mediated by pathogenic LRRK2 in the context of defined and pathologically relevant kinase substrates is essential. LRRK2 has been consistently shown to impair various intracellular vesicular trafficking events, and recent studies have shown that LRRK2 can phosphorylate a subset of proteins that are intricately implicated in those processes. In light of these findings, we here review the link between cellular deficits in intracellular trafficking pathways and the LRRK2-mediated phosphorylation of those newly identified substrates.
Collapse
|
29
|
Nicolaou O, Kousios A, Hadjisavvas A, Lauwerys B, Sokratous K, Kyriacou K. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review. J Cell Mol Med 2017; 21:993-1012. [PMID: 27878954 PMCID: PMC5387176 DOI: 10.1111/jcmm.13031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Orthodoxia Nicolaou
- Department of Electron Microscopy/Molecular PathologyThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Department of Electron Microscopy/Molecular PathologyCyprus School of Molecular MedicineNicosiaCyprus
| | - Andreas Kousios
- Department of Electron Microscopy/Molecular PathologyCyprus School of Molecular MedicineNicosiaCyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular PathologyThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Department of Electron Microscopy/Molecular PathologyCyprus School of Molecular MedicineNicosiaCyprus
| | - Bernard Lauwerys
- Department of RheumatologyUniversité catholique de LouvainBruxellesBelgium
| | - Kleitos Sokratous
- Department of Electron Microscopy/Molecular PathologyThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular PathologyThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Department of Electron Microscopy/Molecular PathologyCyprus School of Molecular MedicineNicosiaCyprus
| |
Collapse
|
30
|
Lindemann C, Thomanek N, Hundt F, Lerari T, Meyer HE, Wolters D, Marcus K. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol Chem 2017; 398:687-699. [DOI: 10.1515/hsz-2017-0104] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/28/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Quantitative mass spectrometry approaches are used for absolute and relative quantification in global proteome studies. To date, relative and absolute quantification techniques are available that differ in quantification accuracy, proteome coverage, complexity and robustness. This review focuses on most common relative or absolute quantification strategies exemplified by three experimental studies. A label-free relative quantification approach was performed for the investigation of the membrane proteome of sensory cilia to the depth of olfactory receptors in Mus musculus. A SILAC-based relative quantification approach was successfully applied for the identification of core components and transient interactors of the peroxisomal importomer in Saccharomyces cerevisiae. Furthermore, AQUA using stable isotopes was exemplified to unraveling the prenylome influenced by novel prenyltransferase inhibitors. Characteristic enrichment and fragmentation strategies for a robust quantification of the prenylome are also summarized.
Collapse
|
31
|
Zorec R, Parpura V, Vardjan N, Verkhratsky A. Astrocytic face of Alzheimer’s disease. Behav Brain Res 2017; 322:250-257. [DOI: 10.1016/j.bbr.2016.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/16/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
|
32
|
Abstract
Rab proteins are the major regulators of vesicular trafficking in eukaryotic cells. Their activity can be tightly controlled within cells: Regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), they switch between an active GTP-bound state and an inactive GDP-bound state, interacting with downstream effector proteins only in the active state. Additionally, they can bind to membranes via C-terminal prenylated cysteine residues and they can be solubilized and shuttled between membranes by chaperone-like molecules called GDP dissociation inhibitors (GDIs). In this review we give an overview of Rab proteins with a focus on the current understanding of their regulation by GEFs, GAPs and GDI.
Collapse
Affiliation(s)
- Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
33
|
Morè L, Künnecke B, Yekhlef L, Bruns A, Marte A, Fedele E, Bianchi V, Taverna S, Gatti S, D'Adamo P. Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability. Neuroscience 2017; 344:346-359. [PMID: 28057534 PMCID: PMC5315088 DOI: 10.1016/j.neuroscience.2016.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 01/17/2023]
Abstract
RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients.
Collapse
Affiliation(s)
- Lorenzo Morè
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Basil Künnecke
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Latefa Yekhlef
- Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andreas Bruns
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Antonella Marte
- Department of Pharmacy, Section of Pharmacology and Toxicology, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Veronica Bianchi
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gatti
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Patrizia D'Adamo
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
34
|
A newly identified Rab-GDI paralogue has a role in neural development in amphibia. Gene 2017; 599:78-86. [DOI: 10.1016/j.gene.2016.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022]
|
35
|
Tang BL. Rabs, Membrane Dynamics, and Parkinson's Disease. J Cell Physiol 2016; 232:1626-1633. [DOI: 10.1002/jcp.25713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore; Singapore 117597
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore 117456
| |
Collapse
|
36
|
de Ramon Francàs G, Zuñiga NR, Stoeckli ET. The spinal cord shows the way - How axons navigate intermediate targets. Dev Biol 2016; 432:43-52. [PMID: 27965053 DOI: 10.1016/j.ydbio.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Functional neural circuits depend on the establishment of specific connections between neurons and their target cells. To this end, many axons have to travel long distances to reach their target cells during development. Studies addressing the molecular mechanisms of axon guidance have to overcome the complexity of subpopulation-specific requirements with respect to pathways, guidance cues, and target recognition. Compared to the brain, the relatively simple structure of the spinal cord provides an advantage for experimental studies of axon guidance mechanisms. Therefore, the so far best understood model for axon guidance is the dI1 population of dorsal interneurons of the spinal cord. They extend their axons ventrally towards the floor plate. After midline crossing, they turn rostrally along the contralateral floor-plate border. Despite the fact that the trajectory of dI1 axons seems to be rather simple, the number of axon guidance molecules involved in the decisions taken by these axons is bewildering. Because guidance molecules and mechanisms are conserved throughout the developing nervous system, we can generalize what we have learned about the navigation of the floor plate as an intermediate target for commissural axons to the brain.
Collapse
Affiliation(s)
- Gemma de Ramon Francàs
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nikole R Zuñiga
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
37
|
Ye QH, Zhu WW, Zhang JB, Qin Y, Lu M, Lin GL, Guo L, Zhang B, Lin ZH, Roessler S, Forgues M, Jia HL, Lu L, Zhang XF, Lian BF, Xie L, Dong QZ, Tang ZY, Wang XW, Qin LX. GOLM1 Modulates EGFR/RTK Cell-Surface Recycling to Drive Hepatocellular Carcinoma Metastasis. Cancer Cell 2016; 30:444-458. [PMID: 27569582 PMCID: PMC5021625 DOI: 10.1016/j.ccell.2016.07.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/27/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
The mechanism of cancer metastasis remains poorly understood. Using gene profiling of hepatocellular carcinoma (HCC) tissues, we have identified GOLM1 as a leading gene relating to HCC metastasis. GOLM1 expression is correlated with early recurrence, metastasis, and poor survival of HCC patients. Both gain- and loss-of-function studies determine that GOLM1 acts as a key oncogene by promoting HCC growth and metastasis. It selectively interacts with epidermal growth factor receptor (EGFR) and serves as a specific cargo adaptor to assist EGFR/RTK anchoring on the trans-Golgi network (TGN) and recycling back to the plasma membrane, leading to prolonged activation of the downstream kinases. These findings reveal the functional role of GOLM1, a Golgi-related protein, in EGFR/RTK recycling and metastatic progression of HCC.
Collapse
Affiliation(s)
- Qing-Hai Ye
- Liver Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wen-Wei Zhu
- Liver Cancer Institute, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Ju-Bo Zhang
- Liver Cancer Institute, Fudan University, Shanghai 200032, China; Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Qin
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China; Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Guo-Ling Lin
- Liver Cancer Institute, Fudan University, Shanghai 200032, China
| | - Lei Guo
- Liver Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Liver Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhen-Hai Lin
- Liver Cancer Institute, Fudan University, Shanghai 200032, China
| | - Stephanie Roessler
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Institute of Pathology, University Hospital Heidelberg 69120 Heidelberg, Germany
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Xiao-Fei Zhang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Bao-Feng Lian
- Shanghai Center for Bioinformatics Technology, Shanghai 201203, China
| | - Lu Xie
- Shanghai Center for Bioinformatics Technology, Shanghai 201203, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China; Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Zhao-You Tang
- Liver Cancer Institute, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Lun-Xiu Qin
- Liver Cancer Institute, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China; Institutes of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Sun S, Yang F, Tan G, Costanzo M, Oughtred R, Hirschman J, Theesfeld CL, Bansal P, Sahni N, Yi S, Yu A, Tyagi T, Tie C, Hill DE, Vidal M, Andrews BJ, Boone C, Dolinski K, Roth FP. An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res 2016; 26:670-80. [PMID: 26975778 PMCID: PMC4864455 DOI: 10.1101/gr.192526.115] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/08/2016] [Indexed: 12/19/2022]
Abstract
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods.
Collapse
Affiliation(s)
- Song Sun
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Fan Yang
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Guihong Tan
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jodi Hirschman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Pritpal Bansal
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Nidhi Sahni
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Song Yi
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Analyn Yu
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Tanya Tyagi
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Cathy Tie
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brenda J Andrews
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada
| |
Collapse
|
39
|
Potokar M, Jorgačevski J, Lacovich V, Kreft M, Vardjan N, Bianchi V, D'Adamo P, Zorec R. Impaired αGDI Function in the X-Linked Intellectual Disability: The Impact on Astroglia Vesicle Dynamics. Mol Neurobiol 2016; 54:2458-2468. [PMID: 26971292 DOI: 10.1007/s12035-016-9834-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022]
Abstract
X-linked non-syndromic intellectual disability (XLID) is a common mental disorder recognized by cognitive and behavioral deficits. Mutations in the brain-specific αGDI, shown to alter a subset of RAB GTPases redistribution in cells, are linked to XLID, likely via changes in vesicle traffic in neurons. Here, we show directly that isolated XLID mice astrocytes, devoid of pathologic tissue environment, exhibit vesicle mobility deficits. Contrary to previous studies, we show that astrocytes express two GDI proteins. The siRNA-mediated suppression of expression of αGDI especially affected vesicle dynamics. A similar defect was recorded in astrocytes from the Gdi1 -/Y mouse model of XLID and in astrocytes with recombinant mutated human XLID αGDI. Endolysosomal vesicles studied here are involved in the release of gliosignaling molecules as well as in regulating membrane receptor density; thus, the observed changes in astrocytic vesicle mobility may, over the long time-course, profoundly affect signaling capacity of these cells, which optimize neural activity.
Collapse
Affiliation(s)
- Maja Potokar
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | | | - Marko Kreft
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Vardjan
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Veronica Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Patrizia D'Adamo
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Robert Zorec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
40
|
Binotti B, Jahn R, Chua JJE. Functions of Rab Proteins at Presynaptic Sites. Cells 2016; 5:E7. [PMID: 26861397 PMCID: PMC4810092 DOI: 10.3390/cells5010007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023] Open
Abstract
Presynaptic neurotransmitter release is dominated by the synaptic vesicle (SV) cycle and entails the biogenesis, fusion, recycling, reformation or turnover of synaptic vesicles-a process involving bulk movement of membrane and proteins. As key mediators of membrane trafficking, small GTPases from the Rab family of proteins play critical roles in this process by acting as molecular switches that dynamically interact with and regulate the functions of different sets of macromolecular complexes involved in each stage of the cycle. Importantly, mutations affecting Rabs, and their regulators or effectors have now been identified that are implicated in severe neurological and neurodevelopmental disorders. Here, we summarize the roles and functions of presynaptic Rabs and discuss their involvement in the regulation of presynaptic function.
Collapse
Affiliation(s)
- Beyenech Binotti
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - John Jia En Chua
- Interactomics and Intracellular Trafficking laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
- Neurobiology/Ageing Programme, National University of Singapore, Singapore 117456, Singapore.
- Research Group Protein trafficking in synaptic development and function, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen 37077, Germany.
| |
Collapse
|
41
|
Alther TA, Domanitskaya E, Stoeckli ET. Calsyntenin1-mediated trafficking of axon guidance receptors regulates the switch in axonal responsiveness at a choice point. Development 2016; 143:994-1004. [DOI: 10.1242/dev.127449] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/26/2016] [Indexed: 02/04/2023]
Abstract
Axon guidance at choice points depends on the precise regulation of guidance receptors on the growth cone surface. Upon arrival at the intermediate target or choice point, a switch from attraction to repulsion is required for the axon to move on. Dorsal commissural (dI1) axons crossing the ventral midline of the spinal cord in the floor plate represent a convenient model for the analysis of the molecular mechanism underlying the switch in axonal behavior.
We identified a role of Calsyntenin1 in the regulation of vesicular trafficking of guidance receptors in dI1 axons at choice points. In cooperation with RabGDI, Calsyntenin1 shuttles Rab11-positive vesicles containing Robo1 to the growth cone surface in a precisely regulated manner. In contrast, Calsyntenin1-mediated trafficking of Frizzled3, a guidance receptor in the Wnt pathway, is independent of RabGDI. Thus, tightly regulated insertion of guidance receptors, which is required for midline crossing and the subsequent turn into the longitudinal axis, is achieved by specific trafficking.
Collapse
Affiliation(s)
- Tobias A. Alther
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Elena Domanitskaya
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
42
|
Zorec R, Horvat A, Vardjan N, Verkhratsky A. Memory Formation Shaped by Astroglia. Front Integr Neurosci 2015; 9:56. [PMID: 26635551 PMCID: PMC4648070 DOI: 10.3389/fnint.2015.00056] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, the most heterogeneous glial cells in the central nervous system (CNS), execute a multitude of homeostatic functions and contribute to memory formation. Consolidation of synaptic and systemic memory is a prolonged process and hours are required to form long-term memory. In the past, neurons or their parts have been considered to be the exclusive cellular sites of these processes, however, it has now become evident that astrocytes provide an important and essential contribution to memory formation. Astrocytes participate in the morphological remodeling associated with synaptic plasticity, an energy-demanding process that requires mobilization of glycogen, which, in the CNS, is almost exclusively stored in astrocytes. Synaptic remodeling also involves bidirectional astroglial-neuronal communication supported by astroglial receptors and release of gliosignaling molecules. Astroglia exhibit cytoplasmic excitability that engages second messengers, such as Ca2+, for phasic, and cyclic adenosine monophosphate (cAMP), for tonic signal coordination with neuronal processes. The detection of signals by astrocytes and the release of gliosignaling molecules, in particular by vesicle-based mechanisms, occurs with a significant delay after stimulation, orders of magnitude longer than that present in stimulus–secretion coupling in neurons. These particular arrangements position astrocytes as integrators ideally tuned to support time-dependent memory formation.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia ; Celica Biomedical Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia ; Celica Biomedical Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana Ljubljana, Slovenia ; Celica Biomedical Ljubljana, Slovenia ; Faculty of Life Sciences, University of Manchester Manchester, UK ; Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science Bilbao, Spain ; Department of Neurosciences, University of the Basque Country Leioa, Spain ; University of Nizhny Novgorod Nizhny Novgorod, Russia
| |
Collapse
|
43
|
Shelby SJ, Feathers KL, Ganios AM, Jia L, Miller JM, Thompson DA. MERTK signaling in the retinal pigment epithelium regulates the tyrosine phosphorylation of GDP dissociation inhibitor alpha from the GDI/CHM family of RAB GTPase effectors. Exp Eye Res 2015; 140:28-40. [PMID: 26283020 DOI: 10.1016/j.exer.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 10/25/2022]
Abstract
Photoreceptor outer segments (OS) in the vertebrate retina undergo a process of continual renewal involving shedding of disc membranes that are cleared by phagocytic uptake into the retinal pigment epithelium (RPE). In dystrophic Royal College of Surgeons (RCS) rats, OS phagocytosis is blocked by a mutation in the gene encoding the receptor tyrosine kinase MERTK. To identify proteins tyrosine-phosphorylated downstream of MERTK in the RPE, MALDI-mass spectrometry with peptide-mass fingerprinting was used in comparative studies of RCS congenic and dystrophic rats. At times corresponding to peak phagocytic activity, the RAB GTPase effector GDP dissociation inhibitor alpha (GDI1) was found to undergo tyrosine phosphorylation only in congenic rats. In cryosections of native RPE/choroid, GDI1 colocalized with MERTK and the intracellular tyrosine-kinase SRC. In cultured RPE-J cells, and in transfected heterologous cells, MERTK stimulated SRC-mediated tyrosine phosphorylation of GDI1. In OS-fed RPE-J cells, GDI1 colocalized with MERTK and SRC on apparent phagosomes located near the apical membrane. In addition, both GDI1 and RAB5, a regulator of vesicular transport, colocalized with ingested OS. Taken together, these findings identify a novel role of MERTK signaling in membrane trafficking in the RPE that is likely to subserve mechanisms of phagosome formation.
Collapse
Affiliation(s)
- Shameka J Shelby
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA; Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Kecia L Feathers
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Anna M Ganios
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Jason M Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Debra A Thompson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA; Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
44
|
Abstract
Rab GTPases control intracellular membrane traffic by recruiting specific effector proteins to restricted membranes in a GTP-dependent manner. In this Cell Science at a Glance and the accompanying poster, we highlight the regulation of Rab GTPases by proteins that control their membrane association and activation state, and provide an overview of the cellular processes that are regulated by Rab GTPases and their effectors, including protein sorting, vesicle motility and vesicle tethering. We also discuss the physiological importance of Rab GTPases and provide examples of diseases caused by their dysfunctions.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo N-0379, Norway Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo N-0379, Norway
| |
Collapse
|
45
|
Donovan KW, Bretscher A. Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J Cell Biol 2015; 210:181-9. [PMID: 26169352 PMCID: PMC4508886 DOI: 10.1083/jcb.201501118] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
Post-Golgi secretory vesicle trafficking is a coordinated process, with transport and regulatory mechanisms to ensure appropriate exocytosis. While the contributions of many individual regulatory proteins to this process are well studied, the timing and dependencies of events have not been defined. Here we track individual secretory vesicles and associated proteins in vivo during tethering and fusion in budding yeast. Secretory vesicles tether to the plasma membrane very reproducibly for ∼18 s, which is extended in cells defective for membrane fusion and significantly lengthened and more variable when GTP hydrolysis of the exocytic Rab is delayed. Further, the myosin-V Myo2p regulates the tethering time in a mechanism unrelated to its interaction with exocyst component Sec15p. Two-color imaging of tethered vesicles with Myo2p, the GEF Sec2p, and several exocyst components allowed us to document a timeline for yeast exocytosis in which Myo2p leaves 4 s before fusion, whereas Sec2p and all the components of the exocyst disperse coincident with fusion.
Collapse
Affiliation(s)
- Kirk W Donovan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
46
|
Erdem-Eraslan L, Heijsman D, de Wit M, Kremer A, Sacchetti A, van der Spek PJ, Smitt PAES, French PJ. Tumor-specific mutations in low-frequency genes affect their functional properties. J Neurooncol 2015; 122:461-70. [PMID: 25694352 PMCID: PMC4436689 DOI: 10.1007/s11060-015-1741-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
Abstract
Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8-32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type.
Collapse
Affiliation(s)
- Lale Erdem-Eraslan
- Department of Neurology, Be 430A, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Daphne Heijsman
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maurice de Wit
- Department of Neurology, Be 430A, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Andreas Kremer
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Peter A. E. Sillevis Smitt
- Department of Neurology, Be 430A, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Pim J. French
- Department of Neurology, Be 430A, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
47
|
Vardjan N, Verkhratsky A, Zorec R. Pathologic Potential of Astrocytic Vesicle Traffic: New Targets to Treat Neurologic Diseases? Cell Transplant 2015; 24:599-612. [DOI: 10.3727/096368915x687750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Robert Zorec
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
48
|
Mignogna ML, Giannandrea M, Gurgone A, Fanelli F, Raimondi F, Mapelli L, Bassani S, Fang H, Van Anken E, Alessio M, Passafaro M, Gatti S, Esteban JA, Huganir R, D'Adamo P. The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nat Commun 2015; 6:6504. [PMID: 25784538 PMCID: PMC4383008 DOI: 10.1038/ncomms7504] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 02/03/2015] [Indexed: 01/31/2023] Open
Abstract
RAB39B is a member of the RAB family of small GTPases that controls intracellular vesicular trafficking in a compartment-specific manner. Mutations in the RAB39B gene cause intellectual disability comorbid with autism spectrum disorder and epilepsy, but the impact of RAB39B loss of function on synaptic activity is largely unexplained. Here we show that protein interacting with C-kinase 1 (PICK1) is a downstream effector of GTP-bound RAB39B and that RAB39B-PICK1 controls trafficking from the endoplasmic reticulum to the Golgi and, hence, surface expression of GluA2, a subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). The role of AMPARs in synaptic transmission varies depending on the combination of subunits (GluA1, GluA2 and GluA3) they incorporate. RAB39B downregulation in mouse hippocampal neurons skews AMPAR composition towards non GluA2-containing Ca2+-permeable forms and thereby alters synaptic activity, specifically in hippocampal neurons. We posit that the resulting alteration in synaptic function underlies cognitive dysfunction in RAB39B-related disorders. Mutations in the RAB39B gene, which encodes a protein involved in vesicular trafficking, are associated with intellectual disability, but the impact of RAB39B loss of function on synaptic activity is not known. Here the authors show that RAB39B interacts with PICK1, and that this interaction is critical for the translocation of AMPA receptor subunits into the Golgi.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- 1] Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy [2] F. Hoffmann-La Roche AG, pRED Pharma Research &Early Development, DTA Neuroscience, CH4070 Basel, Switzerland [3] Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maila Giannandrea
- 1] Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy [2] F. Hoffmann-La Roche AG, pRED Pharma Research &Early Development, DTA Neuroscience, CH4070 Basel, Switzerland
| | - Antonia Gurgone
- 1] Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy [2] Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lisa Mapelli
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Silvia Bassani
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Huaqiang Fang
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Eelco Van Anken
- IRCCS San Raffaele Scientific Institute, Division of Genetics and Cell Biology, 20132 Milan, Italy
| | - Massimo Alessio
- IRCCS San Raffaele Scientific Institute, Division of Genetics and Cell Biology, 20132 Milan, Italy
| | - Maria Passafaro
- CNR Institute of Neuroscience, Department of BIOMETRA, University of Milan, 20129 Milan, Italy
| | - Silvia Gatti
- F. Hoffmann-La Roche AG, pRED Pharma Research &Early Development, DTA Neuroscience, CH4070 Basel, Switzerland
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Richard Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Patrizia D'Adamo
- Dulbecco Telethon Institute at IRCCS San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy
| |
Collapse
|
49
|
Kaufman KM, Linghu B, Szustakowski JD, Husami A, Yang F, Zhang K, Filipovich AH, Fall N, Harley JB, Nirmala NR, Grom AA. Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheumatol 2015; 66:3486-95. [PMID: 25047945 DOI: 10.1002/art.38793] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Macrophage activation syndrome (MAS), a life-threatening complication of systemic juvenile idiopathic arthritis (JIA), resembles familial hemophagocytic lymphohistiocytosis (HLH), a constellation of autosomal-recessive immune disorders resulting from deficiency in cytolytic pathway proteins. We undertook this study to test our hypothesis that MAS predisposition in systemic JIA could be attributed to rare gene sequence variants affecting the cytotolytic pathway. METHODS Whole-exome sequencing was used in 14 patients with systemic JIA and MAS and in their parents to identify protein-altering single-nucleotide polymorphisms/indels in known HLH-associated genes. To discover new candidate genes, the entire whole-exome sequencing data were filtered to identify protein-altering, rare recessive homozygous, compound heterozygous, and de novo variants with the potential to affect the cytolytic pathway. RESULTS Heterozygous protein-altering rare variants in the known genes (LYST,MUNC13-4, and STXBP2) were found in 5 of 14 patients with systemic JIA and MAS (35.7%). This was in contrast to only 4 variants in 4 of 29 patients with systemic JIA without MAS (13.8%). Homozygosity and compound heterozygosity analysis applied to the entire whole-exome sequencing data in systemic JIA/MAS revealed 3 recessive pairs in 3 genes and compound heterozygotes in 73 genes. We also identified 20 heterozygous rare protein-altering variants that occurred in at least 2 patients. Many of the identified genes encoded proteins with a role in actin and microtubule reorganization and vesicle-mediated transport. "Cellular assembly and organization" was the top cellular function category based on Ingenuity Pathways Analysis (P < 3.10 × 10(-5) ). CONCLUSION Whole-exome sequencing performed in patients with systemic JIA and MAS identified rare protein-altering variants in known HLH-associated genes as well as in new candidate genes.
Collapse
Affiliation(s)
- Kenneth M Kaufman
- Cincinnati Children's Hospital Medical Center and Cincinnati VA Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Background The importance of mutations in disease phenotype has been studied, with information available in databases such as OMIM. However, it remains a research challenge for the possibility of clustering amino acid residues based on an underlying interaction, such as co-evolution, to understand how mutations in these related sites can lead to different disease phenotypes. Results This paper presents an integrative approach to identify groups of co-evolving residues, known as protein sectors. By studying a protein family using multiple sequence alignments and statistical coupling analysis, we attempted to determine if it is possible that these groups of residues could be related to disease phenotypes. After the protein sectors were identified, disease-associated residues within these groups of amino acids were mapped to a structure representing the protein family. In this study, we used the proposed pipeline to analyze two test cases of spermine synthase and Rab GDP dissociation inhibitor. Conclusions The results suggest that there is a possible link between certain groups of co-evolving residues and different disease phenotypes. The pipeline described in this work could also be used to study other protein families associated with human diseases.
Collapse
|