1
|
Ernesto Alvarez F, Clairambault J. Phenotype divergence and cooperation in isogenic multicellularity and in cancer. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2024; 41:135-155. [PMID: 38970827 DOI: 10.1093/imammb/dqae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/14/2024] [Indexed: 07/08/2024]
Abstract
We discuss the mathematical modelling of two of the main mechanisms that pushed forward the emergence of multicellularity: phenotype divergence in cell differentiation and between-cell cooperation. In line with the atavistic theory of cancer, this disease being specific of multicellular animals, we set special emphasis on how both mechanisms appear to be reversed, however not totally impaired, rather hijacked, in tumour cell populations. Two settings are considered: the completely innovating, tinkering, situation of the emergence of multicellularity in the evolution of species, which we assume to be constrained by external pressure on the cell populations, and the completely planned-in the body plan-situation of the physiological construction of a developing multicellular animal from the zygote, or of bet hedging in tumours, assumed to be of clonal formation, although the body plan is largely-but not completely-lost in its constituting cells. We show how cancer impacts these two settings and we sketch mathematical models for them. We present here our contribution to the question at stake with a background from biology, from mathematics and from philosophy of science.
Collapse
|
2
|
Yan M, Liu Q. The nature of cancer. Front Med 2023; 17:796-803. [PMID: 36913173 DOI: 10.1007/s11684-022-0975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 03/14/2023]
Affiliation(s)
- Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Tari H, Kessler K, Trahearn N, Werner B, Vinci M, Jones C, Sottoriva A. Quantification of spatial subclonal interactions enhancing the invasive phenotype of pediatric glioma. Cell Rep 2022; 40:111283. [PMID: 36044867 PMCID: PMC9449134 DOI: 10.1016/j.celrep.2022.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/21/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diffuse midline gliomas (DMGs) are highly aggressive, incurable childhood brain tumors. They present a clinical challenge due to many factors, including heterogeneity and diffuse infiltration, complicating disease management. Recent studies have described the existence of subclonal populations that may co-operate to drive pro-tumorigenic processes such as cellular invasion. However, a precise quantification of subclonal interactions is lacking, a problem that extends to other cancers. In this study, we combine spatial computational modeling of cellular interactions during invasion with co-evolution experiments of clonally disassembled patient-derived DMG cells. We design a Bayesian inference framework to quantify spatial subclonal interactions between molecular and phenotypically distinct lineages with different patterns of invasion. We show how this approach could discriminate genuine interactions, where one clone enhanced the invasive phenotype of another, from those apparently only due to the complex dynamics of spatially restricted growth. This study provides a framework for the quantification of subclonal interactions in DMG.
Collapse
Affiliation(s)
- Haider Tari
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Glioma Team, The Institute of Cancer Research, London, UK
| | - Ketty Kessler
- Glioma Team, The Institute of Cancer Research, London, UK
| | - Nick Trahearn
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Benjamin Werner
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria Vinci
- Department of Haematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Chris Jones
- Glioma Team, The Institute of Cancer Research, London, UK.
| | - Andrea Sottoriva
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Research Centre for Computational Biology, Human Technopole, Milan, Italy.
| |
Collapse
|
4
|
Jacques F, Baratchart E, Pienta KJ, Hammarlund EU. Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics. Med Oncol 2022; 39:160. [PMID: 35972622 PMCID: PMC9381480 DOI: 10.1007/s12032-022-01740-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
The rise of animals represents a major but enigmatic event in the evolutionary history of life. In recent years, numerous studies have aimed at understanding the genetic basis of this transition. However, genome comparisons of diverse animal and protist lineages suggest that the appearance of gene families that were previously considered animal specific indeed preceded animals. Animals' unicellular relatives, such as choanoflagellates, ichthyosporeans, and filastereans, demonstrate complex life cycles including transient multicellularity as well as genetic toolkits for temporal cell differentiation, cell-to-cell communication, apoptosis, and cell adhesion. This has warranted further exploration of the genetic basis underlying transitions in cellular organization. An alternative model for the study of transitions in cellular organization is tumors, which exploit physiological programs that characterize both unicellularity and multicellularity. Tumor cells, for example, switch adhesion on and off, up- or downregulate specific cell differentiation states, downregulate apoptosis, and allow cell migration within tissues. Here, we use insights from both the fields of phylogenomics and tumor biology to review the evolutionary history of the regulatory systems of multicellularity and discuss their overlap. We claim that while evolutionary biology has contributed to an increased understanding of cancer, broad investigations into tissue-normal and transformed-can also contribute the framework for exploring animal evolution.
Collapse
Affiliation(s)
- Florian Jacques
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Etienne Baratchart
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenneth J Pienta
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Emma U Hammarlund
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:cancers13236100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
|
6
|
Improving cancer treatments via dynamical biophysical models. Phys Life Rev 2021; 39:1-48. [PMID: 34688561 DOI: 10.1016/j.plrev.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Despite significant advances in oncological research, cancer nowadays remains one of the main causes of mortality and morbidity worldwide. New treatment techniques, as a rule, have limited efficacy, target only a narrow range of oncological diseases, and have limited availability to the general public due their high cost. An important goal in oncology is thus the modification of the types of antitumor therapy and their combinations, that are already introduced into clinical practice, with the goal of increasing the overall treatment efficacy. One option to achieve this goal is optimization of the schedules of drugs administration or performing other medical actions. Several factors complicate such tasks: the adverse effects of treatments on healthy cell populations, which must be kept tolerable; the emergence of drug resistance due to the intrinsic plasticity of heterogeneous cancer cell populations; the interplay between different types of therapies administered simultaneously. Mathematical modeling, in which a tumor and its microenvironment are considered as a single complex system, can address this complexity and can indicate potentially effective protocols, that would require experimental verification. In this review, we consider classical methods, current trends and future prospects in the field of mathematical modeling of tumor growth and treatment. In particular, methods of treatment optimization are discussed with several examples of specific problems related to different types of treatment.
Collapse
|
7
|
Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer 2021; 125:164-175. [PMID: 33824479 PMCID: PMC8292450 DOI: 10.1038/s41416-021-01328-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Heterogeneity within a tumour increases its ability to adapt to constantly changing constraints, but adversely affects a patient's prognosis, therapy response and clinical outcome. Intratumoural heterogeneity results from a combination of extrinsic factors from the tumour microenvironment and intrinsic parameters from the cancer cells themselves, including their genetic, epigenetic and transcriptomic traits, their ability to proliferate, migrate and invade, and their stemness and plasticity attributes. Cell plasticity constitutes the ability of cancer cells to rapidly reprogramme their gene expression repertoire, to change their behaviour and identities, and to adapt to microenvironmental cues. These features also directly contribute to tumour heterogeneity and are critical for malignant tumour progression. In this article, we use breast cancer as an example of the origins of tumour heterogeneity (in particular, the mutational spectrum and clonal evolution of progressing tumours) and of tumour cell plasticity (in particular, that shown by tumour cells undergoing epithelial-to-mesenchymal transition), as well as considering interclonal cooperativity and cell plasticity as sources of cancer cell heterogeneity. We review current knowledge on the functional contribution of cell plasticity and tumour heterogeneity to malignant tumour progression, metastasis formation and therapy resistance.
Collapse
|
8
|
Chan DKH, Buczacki SJA. Tumour heterogeneity and evolutionary dynamics in colorectal cancer. Oncogenesis 2021; 10:53. [PMID: 34272358 PMCID: PMC8285471 DOI: 10.1038/s41389-021-00342-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) has a global burden of disease. Our current understanding of CRC has progressed from initial discoveries which focused on the stepwise accumulation of key driver mutations, as encapsulated in the Vogelstein model, to one in which marked heterogeneity leads to a complex interplay between clonal populations. Current evidence suggests that an initial explosion, or “Big Bang”, of genetic diversity is followed by a period of neutral dynamics. A thorough understanding of this interplay between clonal populations during neutral evolution gives insights into the roles in which driver genes may participate in the progress from normal colonic epithelium to adenoma and carcinoma. Recent advances have focused not only on genetics, transcriptomics, and proteomics but have also investigated the ecological and evolutionary processes which transform normal cells into cancer. This review first describes the role which driver mutations play in the Vogelstein model and subsequently demonstrates the evidence which supports a more complex model. This article also aims to underscore the significance of tumour heterogeneity and diverse clonal populations in cancer progression.
Collapse
Affiliation(s)
- Dedrick Kok Hong Chan
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | | |
Collapse
|
9
|
The Prognostic Impact of HER2 Genetic and Protein Expression in Pancreatic Carcinoma-HER2 Protein and Gene in Pancreatic Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040653. [PMID: 33916543 PMCID: PMC8065582 DOI: 10.3390/diagnostics11040653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal and clinically heterogeneous disease with a limited benefit from human epidermal growth factor receptor 2 (HER2)-targeted therapy. Recently, some studies have addressed the antitumoral effect of novel anti-HER2 drugs in HER2 low-expressing tumors. However, there have been few studies on the significance of low HER2 expression and genetic heterogeneity in PDAC. Using immunohistochemistry and dual-color silver-enhanced in situ hybridization based on the Trastuzumab for a gastric cancer scoring scheme, we evaluated HER2 protein expression, gene amplification, and genetic heterogeneity in three groups (HER2-neg, HER2-low, HER2-pos) of 55 patients. Among the 55 cases, 41.8% (23/55) showed HER2 expression of any intensity. HER2 amplification independent of HER2 expression was 25.5% (14/55). Patients in both these groups had a shorter overall survival than did patients in the HER2-neg group. HER2 genetic heterogeneity was identified in 37 (70.9%) of the 55 cases, mainly in HER2-neg and HER2-low groups. HER2 genetic heterogeneity significantly correlated with worse survival in the HER2-low and HER2-neg groups of PDAC. These findings support the hypothesis that low-level HER2 expression and heterogeneity have significant clinical implications in PDAC. HER2 heterogeneity might indicate the best strategies of combination therapies to prevent the development of subdominant clones with resistance potential.
Collapse
|
10
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
11
|
Martín-Pardillos A, Valls Chiva Á, Bande Vargas G, Hurtado Blanco P, Piñeiro Cid R, Guijarro PJ, Hümmer S, Bejar Serrano E, Rodriguez-Casanova A, Diaz-Lagares Á, Castellvi J, Miravet-Verde S, Serrano L, Lluch-Senar M, Sebastian V, Bribian A, López-Mascaraque L, López-López R, Ramón Y Cajal S. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer 2019; 19:666. [PMID: 31277602 PMCID: PMC6612119 DOI: 10.1186/s12885-019-5883-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in molecular and phenotypic heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells. We aimed to dissect the molecular mechanisms underlying the cooperation between different clones. Methods We produced clonal cell lines derived from the MDA-MB-231 breast cancer cell line, using the UbC-StarTrack system, which allowed tracking of multiple clones by color: GFP C3, mKO E10 and Sapphire D7. Characterization of these clones was performed by growth rate, cell metabolic activity, wound healing, invasion assays and genetic and epigenetic arrays. Tumorigenicity was tested by orthotopic and intravenous injections. Clonal cooperation was evaluated by medium complementation, co-culture and co-injection assays. Results Characterization of these clones in vitro revealed clear genetic and epigenetic differences that affected growth rate, cell metabolic activity, morphology and cytokine expression among cell lines. In vivo, all clonal cell lines were able to form tumors; however, injection of an equal mix of the different clones led to tumors with very few mKO E10 cells. Additionally, the mKO E10 clonal cell line showed a significant inability to form lung metastases. These results confirm that even in stable cell lines heterogeneity is present. In vitro, the complementation of growth medium with medium or exosomes from parental or clonal cell lines increased the growth rate of the other clones. Complementation assays, co-growth and co-injection of mKO E10 and GFP C3 clonal cell lines increased the efficiency of invasion and migration. Conclusions These findings support a model where interplay between clones confers aggressiveness, and which may allow identification of the factors involved in cellular communication that could play a role in clonal cooperation and thus represent new targets for preventing tumor progression. Electronic supplementary material The online version of this article (10.1186/s12885-019-5883-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Martín-Pardillos
- Translational Molecular Pathology Group, Vall d'Hebron Research Institute, Barcelona, Spain. .,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.
| | - Ángeles Valls Chiva
- Translational Molecular Pathology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Gemma Bande Vargas
- Translational Molecular Pathology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Roberto Piñeiro Cid
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Cancer Modelling Lab, Roche-CHUS Joint Unit, Santiago de Compostela, Spain
| | - Pedro J Guijarro
- Translational Molecular Pathology Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Eva Bejar Serrano
- Translational Molecular Pathology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Ángel Diaz-Lagares
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain.,Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Josep Castellvi
- Hospital Vall d'Hebron, Anatomía Patológica, Barcelona, Spain
| | - Samuel Miravet-Verde
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Institute of Science and Technology, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Institute of Science and Technology, Barcelona, Spain
| | - Víctor Sebastian
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Zaragoza, Spain.,Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Ana Bribian
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal-CSIC, Madrid, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal-CSIC, Madrid, Spain
| | - Rafael López-López
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain.,Roche-CHUS Joint Unit, University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Santiago Ramón Y Cajal
- Translational Molecular Pathology Group, Vall d'Hebron Research Institute, Barcelona, Spain. .,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain. .,Hospital Vall d'Hebron, Anatomía Patológica, Barcelona, Spain.
| |
Collapse
|
12
|
Carvalho VPD, Grassi ML, Palma CDS, Carrara HHA, Faça VM, Candido Dos Reis FJ, Poersch A. The contribution and perspectives of proteomics to uncover ovarian cancer tumor markers. Transl Res 2019; 206:71-90. [PMID: 30529050 DOI: 10.1016/j.trsl.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Despite all the advances in understanding the mechanisms involved in ovarian cancer (OC) development, many aspects still need to be unraveled and understood. Tumor markers (TMs) are of special interest in this disease. Some aspects of clinical management of OC might be improved by the use of validated TMs, such as differentiating subtypes, defining the most appropriate treatment, monitoring the course of the disease, or predicting clinical outcome. The Food and Drug Administration (FDA) has approved a few TMs for OC: CA125 (cancer antigen 125; monitoring), HE4 (Human epididymis protein; monitoring), ROMA (Risk Of Malignancy Algorithm; HE4+CA125; prediction of malignancy) and OVA1 (Vermillion's first-generation Multivariate Index Assay [MIA]; prediction of malignancy). Proteomics can help advance the research in the field of TMs for OC. A variety of biological materials are being used in proteomic analysis, among them tumor tissues, interstitial fluids, tumor fluids, ascites, plasma, and ovarian cancer cell lines. However, the discovery and validation of new TMs for OC is still very challenging. The enormous heterogeneity of histological types of samples and the individual variability of patients (lifestyle, comorbidities, drug use, and family history) are difficult to overcome in research protocols. In this work, we sought to gather relevant information regarding TMs, OC, biological samples for proteomic analysis, as well as markers and algorithms approved by the FDA for use in clinical routine.
Collapse
Affiliation(s)
| | - Mariana Lopes Grassi
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Camila de Souza Palma
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Aline Poersch
- Department of Biochemistry and Immunology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cell Based Therapy, Hemotherapy Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Kandagatla P, Maguire LH, Hardiman KM. Biology of Nodal Spread in Colon Cancer: Insights from Molecular and Genetic Studies. Eur Surg Res 2018; 59:361-370. [PMID: 30537705 PMCID: PMC6542270 DOI: 10.1159/000494832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) lymph node metastases are common but their genetics and the mechanism whereby these metastases occur are not well understood. Here we present recent data regarding genetic heterogeneity in primary CRCs and their metastasis. In addition, we explain the different potential models describing the mechanisms of metastasis and the data supporting them. Multiple studies have also revealed a variety of prognostic molecular markers that are associated with lymph node metastasis in CRC. A better understanding of genetic heterogeneity and the mechanisms of metastasis is critical to predicting clinical response and resistance to targeted therapy.
Collapse
Affiliation(s)
- Pridvi Kandagatla
- Department of Surgery, Henry Ford Health System, Wayne State University, Detroit, Michigan, USA
| | - Lilias H Maguire
- Division of Colorectal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Karin M Hardiman
- Division of Colorectal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA,
| |
Collapse
|
14
|
Farmanbar A, Firouzi S, Makałowski W, Kneller R, Iwanaga M, Utsunomiya A, Nakai K, Watanabe T. Mutational Intratumor Heterogeneity is a Complex and Early Event in the Development of Adult T-cell Leukemia/Lymphoma. Neoplasia 2018; 20:883-893. [PMID: 30032036 PMCID: PMC6074008 DOI: 10.1016/j.neo.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/02/2022]
Abstract
The clonal architecture of tumors plays a vital role in their pathogenesis and invasiveness; however, it is not yet clear how this clonality contributes to different malignancies. In this study we sought to address mutational intratumor heterogeneity (ITH) in adult T-cell leukemia/lymphoma (ATL). ATL is a malignancy with an incompletely understood molecular pathogenesis caused by infection with human T-cell leukemia virus type-1 (HTLV-1). To determine the clonal structure through tumor genetic diversity profiles, we investigated 142 whole-exome sequencing data of tumor and matched normal samples from 71 ATL patients. Based on SciClone analysis, the ATL samples showed a wide spectrum of modes over clonal/subclonal frequencies ranging from one to nine clusters. The average number of clusters was six across samples, but the number of clusters differed among different samples. Of these ATL samples, 94% had more than two clusters. Aggressive ATL cases had slightly more clonal clusters than indolent types, indicating the presence of ITH during earlier stages of disease. The known significantly mutated genes in ATL were frequently clustered together and possibly coexisted in the same clone. IRF4, CCR4, TP53, and PLCG1 mutations were almost clustered in subclones with a moderate variant allele frequency (VAF), whereas HLA-B, CARD11, and NOTCH1 mutations were clustered in subclones with lower VAFs. Taken together, these results show that ATL displays a high degree of ITH and a complex subclonal structure. Our findings suggest that clonal/subclonal architecture might be a useful measure for prognostic purposes and personalized assessment of the therapeutic response.
Collapse
Affiliation(s)
- Amir Farmanbar
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Sanaz Firouzi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Germany.
| | - Robert Kneller
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | - Masako Iwanaga
- Department of Frontier Life Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan.
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Department of Advanced Medical Innovation St. Marianna University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
15
|
Gerlinger M. Metastasis Seeding Cells: Lone Invaders or Mass Migrators? Clin Cancer Res 2018; 24:2032-2034. [PMID: 29386220 PMCID: PMC5933519 DOI: 10.1158/1078-0432.ccr-17-3644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
Lymph node metastases are among the best predictors of recurrence and of cancer-related death in early-stage colorectal cancers. Yet, despite their clinical and biological relevance, it remains elusive how lymph node metastases develop and whether metastatic seeding is a major bottleneck that restrains genetic heterogeneity of metastatic disease. Clin Cancer Res; 24(9); 2032-4. ©2018 AACRSee related article by Ulintz et al., p. 2214.
Collapse
Affiliation(s)
- Marco Gerlinger
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
16
|
House CD, Jordan E, Hernandez L, Ozaki M, James JM, Kim M, Kruhlak MJ, Batchelor E, Elloumi F, Cam MC, Annunziata CM. NFκB Promotes Ovarian Tumorigenesis via Classical Pathways That Support Proliferative Cancer Cells and Alternative Pathways That Support ALDH + Cancer Stem-like Cells. Cancer Res 2017; 77:6927-6940. [PMID: 29074539 PMCID: PMC5732863 DOI: 10.1158/0008-5472.can-17-0366] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/13/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022]
Abstract
Understanding the mechanisms supporting tumor-initiating cells (TIC) is vital to combat advanced-stage recurrent cancers. Here, we show that in advanced ovarian cancers NFκB signaling via the RelB transcription factor supports TIC populations by directly regulating the cancer stem-like associated enzyme aldehyde dehydrogenase (ALDH). Loss of RelB significantly inhibited spheroid formation, ALDH expression and activity, chemoresistance, and tumorigenesis in subcutaneous and intrabursal mouse xenograft models of human ovarian cancer. RelB also affected expression of the ALDH gene ALDH1A2 Interestingly, classical NFκB signaling through the RelA transcription factor was equally important for tumorigenesis in the intrabursal model, but had no effect on ALDH. In this case, classical signaling via RelA was essential for proliferating cells, whereas the alternative signaling pathway was not. Our results show how NFκB sustains diverse cancer phenotypes via distinct classical and alternative signaling pathways, with implications for improved understanding of disease recurrence and therapeutic response. Cancer Res; 77(24); 6927-40. ©2017 AACR.
Collapse
Affiliation(s)
- Carrie D House
- Women's Malignancies Branch, National Cancer Institute, Bethesda, Maryland
| | - Elizabeth Jordan
- Women's Malignancies Branch, National Cancer Institute, Bethesda, Maryland
| | - Lidia Hernandez
- Women's Malignancies Branch, National Cancer Institute, Bethesda, Maryland
| | - Michelle Ozaki
- Women's Malignancies Branch, National Cancer Institute, Bethesda, Maryland
| | - Jana M James
- Women's Malignancies Branch, National Cancer Institute, Bethesda, Maryland
| | - Marianne Kim
- Women's Malignancies Branch, National Cancer Institute, Bethesda, Maryland
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland
| | - Eric Batchelor
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Fathi Elloumi
- Collaborative Bioinformatics Resource, National Cancer Institute, Bethesda, Maryland
| | - Margaret C Cam
- Collaborative Bioinformatics Resource, National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|
17
|
Goldman A, Kohandel M, Clairambault J. Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer, Part 2: from Theoretical Biology to Mathematical Models. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Abstract
Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan).
Collapse
Affiliation(s)
- Dennis A Steindler
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, and
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA; and
| | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, FL
| |
Collapse
|
19
|
Andrade SS, Sumikawa JT, Castro ED, Batista FP, Paredes-Gamero E, Oliveira LC, Guerra IM, Peres GB, Cavalheiro RP, Juliano L, Nazário AP, Facina G, Tsai SM, Oliva MLV, Girão MJBC. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells. Oncotarget 2017; 8:16851-16874. [PMID: 28187434 PMCID: PMC5370006 DOI: 10.18632/oncotarget.15170] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.
Collapse
Affiliation(s)
- Sheila Siqueira Andrade
- Department of Gynecology of The Federal University of São Paulo, Brazil
- Charitable Association of Blood Collection – COLSAN, São Paulo, SP, Brazil
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo USP, Piracicaba, SP, Brazil
| | | | | | | | | | | | | | | | | | - Luiz Juliano
- Department of Biophysics of The Federal University of São Paulo, Brazil
| | | | - Gil Facina
- Department of Gynecology of The Federal University of São Paulo, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of São Paulo USP, Piracicaba, SP, Brazil
| | | | - Manoel João Batista Castello Girão
- Department of Gynecology of The Federal University of São Paulo, Brazil
- Charitable Association of Blood Collection – COLSAN, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Snowden E, Porter W, Hahn F, Ferguson M, Tong F, Parker JS, Middlebrook A, Ghanekar S, Dillmore WS, Blaesius R. Immunophenotyping and Transcriptomic Outcomes in PDX-Derived TNBC Tissue. Mol Cancer Res 2016; 15:429-438. [PMID: 28039356 DOI: 10.1158/1541-7786.mcr-16-0286-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
Cancer tissue functions as an ecosystem of a diverse set of cells that interact in a complex tumor microenvironment. Genomic tools applied to biopsies in bulk fail to account for this tumor heterogeneity, whereas single-cell imaging methods limit the number of cells which can be assessed or are very resource intensive. The current study presents methods based on flow cytometric analysis and cell sorting using known cell surface markers (CXCR4/CD184, CD24, THY1/CD90) to identify and interrogate distinct groups of cells in triple-negative breast cancer clinical biopsy specimens from patient-derived xenograft (PDX) models. The results demonstrate that flow cytometric analysis allows a relevant subgrouping of cancer tissue and that sorting of these subgroups provides insights into cancer cell populations with unique, reproducible, and functionally divergent gene expression profiles. The discovery of a drug resistance signature implies that uncovering the functional interaction between these populations will lead to deeper understanding of cancer progression and drug response.Implications: PDX-derived human breast cancer tissue was investigated at the single-cell level, and cell subpopulations defined by surface markers were identified which suggest specific roles for distinct cellular compartments within a solid tumor. Mol Cancer Res; 15(4); 429-38. ©2016 AACR.
Collapse
Affiliation(s)
- Eileen Snowden
- BD Technologies, Research Triangle Park, Durham, North Carolina
| | - Warren Porter
- BD Technologies, Research Triangle Park, Durham, North Carolina
| | - Friedrich Hahn
- BD Technologies, Research Triangle Park, Durham, North Carolina
| | | | - Frances Tong
- BD Technologies, Research Triangle Park, Durham, North Carolina
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | - Rainer Blaesius
- BD Technologies, Research Triangle Park, Durham, North Carolina.
| |
Collapse
|
21
|
Kim S, Kim B, Song YS. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci 2016; 107:1173-8. [PMID: 27297561 PMCID: PMC5021036 DOI: 10.1111/cas.12987] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Malignant ascites constitute a unique tumor microenvironment providing a physical structure for the accumulation of cellular and acellular components. Ascites is initiated and maintained by physical and biological factors resulting from underlying disease and forms an ecosystem that contributes to disease progression. It has been demonstrated that the cellular contents and the molecular signatures of ascites change continuously during the course of a disease. Over the past decade, increasing attention has been given to the characterization of components of ascites and their role in the progression of ovarian cancer, the most malignant gynecologic cancer in women. This review will discuss the role of ascites in disease progression, in terms of modulating cancer cell behavior and contributing to tumor heterogeneity.
Collapse
Affiliation(s)
- Soochi Kim
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Nano System Institute, Seoul National University, Seoul, Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea. .,Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
22
|
Chisholm RH, Lorenzi T, Clairambault J. Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation. Biochim Biophys Acta Gen Subj 2016; 1860:2627-45. [PMID: 27339473 DOI: 10.1016/j.bbagen.2016.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/05/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Drug-induced drug resistance in cancer has been attributed to diverse biological mechanisms at the individual cell or cell population scale, relying on stochastically or epigenetically varying expression of phenotypes at the single cell level, and on the adaptability of tumours at the cell population level. SCOPE OF REVIEW We focus on intra-tumour heterogeneity, namely between-cell variability within cancer cell populations, to account for drug resistance. To shed light on such heterogeneity, we review evolutionary mechanisms that encompass the great evolution that has designed multicellular organisms, as well as smaller windows of evolution on the time scale of human disease. We also present mathematical models used to predict drug resistance in cancer and optimal control methods that can circumvent it in combined therapeutic strategies. MAJOR CONCLUSIONS Plasticity in cancer cells, i.e., partial reversal to a stem-like status in individual cells and resulting adaptability of cancer cell populations, may be viewed as backward evolution making cancer cell populations resistant to drug insult. This reversible plasticity is captured by mathematical models that incorporate between-cell heterogeneity through continuous phenotypic variables. Such models have the benefit of being compatible with optimal control methods for the design of optimised therapeutic protocols involving combinations of cytotoxic and cytostatic treatments with epigenetic drugs and immunotherapies. GENERAL SIGNIFICANCE Gathering knowledge from cancer and evolutionary biology with physiologically based mathematical models of cell population dynamics should provide oncologists with a rationale to design optimised therapeutic strategies to circumvent drug resistance, that still remains a major pitfall of cancer therapeutics. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Rebecca H Chisholm
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Tommaso Lorenzi
- School of Mathematics and Statistics, University of St Andrews, North Haugh, KY16 9SS, St Andrews, Scotland, United Kingdom. http://www.tommasolorenzi.com
| | - Jean Clairambault
- INRIA Paris, MAMBA team, 2, rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France; Sorbonne Universités, UPMC Univ. Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions, Boîte courrier 187, 4 Place Jussieu, 75252 Paris Cedex 05, France.
| |
Collapse
|
23
|
Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget 2016; 6:20785-800. [PMID: 26299805 PMCID: PMC4673229 DOI: 10.18632/oncotarget.4750] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/17/2015] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is characterized by recurrent mutations deregulating key cell signaling cascades and providing the cancer cells with novel functional traits. Among the most frequent mutations in CRC are gain-of-function missense mutations in KRAS and BRAF. Oncogenic activation of KRAS and BRAF is mutually exclusive and occurs in approximately 40% and 10% of all CRCs, respectively. Here we summarize genetic alterations currently described in the literature and databases, indicating overlapping but also specific co-occurrences with either mutated BRAF or KRAS. We describe common and potentially specific biological functions of KRAS and BRAF oncoproteins in the intestinal epithelial cells and during initiation and progression of CRC. We discuss signal transduction networks, highlighting individual functions of oncogenic KRAS and BRAF in terms of feedback loops and their impact on treatment outcome. Finally, we give an update on current strategies of targeted therapeutic intervention in oncogenic RAS-RAF signaling networks for the treatment of metastatic CRC and outline future directions.
Collapse
|
24
|
Wang G, Chen L, Yu B, Zellmer L, Xu N, Liao DJ. Learning about the Importance of Mutation Prevention from Curable Cancers and Benign Tumors. J Cancer 2016; 7:436-45. [PMID: 26918057 PMCID: PMC4749364 DOI: 10.7150/jca.13832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Some cancers can be cured by chemotherapy or radiotherapy, presumably because they are derived from those cell types that not only can die easily but also have already been equipped with mobility and adaptability, which would later allow the cancers to metastasize without the acquisition of additional mutations. From a viewpoint of biological dispersal, invasive and metastatic cells may, among other possibilities, have been initial losers in the competition for resources with other cancer cells in the same primary tumor and thus have had to look for new habitats in order to survive. If this is really the case, manipulation of their ecosystems, such as by slightly ameliorating their hardship, may prevent metastasis. Since new mutations may occur, especially during and after therapy, to drive progression of cancer cells to metastasis and therapy-resistance, preventing new mutations from occurring should be a key principle for the development of new anticancer drugs. Such new drugs should be able to kill cancer cells very quickly without leaving the surviving cells enough time to develop new mutations and select resistant or metastatic clones. This principle questions the traditional use and the future development of genotoxic drugs for cancer therapy.
Collapse
Affiliation(s)
- Gangshi Wang
- 1. Department of Geriatric Gastroenterology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lichan Chen
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Baofa Yu
- 3. Beijing Baofa Cancer Hospital, Shahe Wangzhuang Gong Ye Yuan, Chang Pin Qu, Beijing 102206, P.R. China
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P.R. China
| | - D Joshua Liao
- 5. D. Joshua Liao, Clinical Research Center, Guizhou Medical University Hospital, Guizhou, Guiyang 550004, P.R. China
| |
Collapse
|
25
|
Vertical suppression of the EGFR pathway prevents onset of resistance in colorectal cancers. Nat Commun 2015; 6:8305. [PMID: 26392303 PMCID: PMC4595628 DOI: 10.1038/ncomms9305] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/09/2015] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted drugs are clinically effective anti-cancer therapies. However, tumours treated with single agents usually develop resistance. Here we use colorectal cancer (CRC) as a model to study how the acquisition of resistance to EGFR-targeted therapies can be restrained. Pathway-oriented genetic screens reveal that CRC cells escape from EGFR blockade by downstream activation of RAS-MEK signalling. Following treatment of CRC cells with anti-EGFR, anti-MEK or the combination of the two drugs, we find that EGFR blockade alone triggers acquired resistance in weeks, while combinatorial treatment does not induce resistance. In patient-derived xenografts, EGFR-MEK combination prevents the development of resistance. We employ mathematical modelling to provide a quantitative understanding of the dynamics of response and resistance to these single and combination therapies. Mechanistically, we find that the EGFR-MEK Combo blockade triggers Bcl-2 and Mcl-1 downregulation and initiates apoptosis. These results provide the rationale for clinical trials aimed at preventing rather than intercepting resistance. Cancer patients often respond well to primary treatment but then develop resistance. Here, Misale et al. show that dual treatment with EGFR and MEK inhibitors block resistance in mice containing patient-derived xenografts and provide a mathematical model that describes the temporal development of resistant tumour clones.
Collapse
|
26
|
Chiaradonna F, Barozzi I, Miccolo C, Bucci G, Palorini R, Fornasari L, Botrugno OA, Pruneri G, Masullo M, Passafaro A, Galimberti VE, Fantin VR, Richon VM, Pece S, Viale G, Di Fiore PP, Draetta G, Pelicci PG, Minucci S, Chiocca S. Redox-Mediated Suberoylanilide Hydroxamic Acid Sensitivity in Breast Cancer. Antioxid Redox Signal 2015; 23:15-29. [PMID: 25897982 PMCID: PMC4492673 DOI: 10.1089/ars.2014.6189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Vorinostat (suberoylanilide hydroxamic acid; SAHA) is a histone deacetylase inhibitor (HDACi) approved in the clinics for the treatment of T-cell lymphoma and with the potential to be effective also in breast cancer. We investigated the responsiveness to SAHA in human breast primary tumors and cancer cell lines. RESULTS We observed a differential response to drug treatment in both human breast primary tumors and cancer cell lines. Gene expression analysis of the breast cancer cell lines revealed that genes involved in cell adhesion and redox pathways, especially glutathione metabolism, were differentially expressed in the cell lines resistant to SAHA compared with the sensitive ones, indicating their possible association with drug resistance mechanisms. Notably, such an association was also observed in breast primary tumors. Indeed, addition of buthionine sulfoximine (BSO), a compound capable of depleting cellular glutathione, significantly enhanced the cytotoxicity of SAHA in both breast cancer cell lines and primary breast tumors. INNOVATION We identify and validate transcriptional differences in genes involved in redox pathways, which include potential predictive markers of sensitivity to SAHA. CONCLUSION In breast cancer, it could be relevant to evaluate the expression of antioxidant genes that may favor tumor resistance as a factor to consider for potential clinical application and treatment with epigenetic drugs (HDACis).
Collapse
Affiliation(s)
- Ferdinando Chiaradonna
- 1 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy .,2 SYSBIO Centre of Systems Biology , Milan, Italy
| | - Iros Barozzi
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Claudia Miccolo
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Gabriele Bucci
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Roberta Palorini
- 1 Department of Biotechnology and Biosciences, University of Milano-Bicocca , Milan, Italy .,2 SYSBIO Centre of Systems Biology , Milan, Italy
| | - Lorenzo Fornasari
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Oronza A Botrugno
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Giancarlo Pruneri
- 4 Department of Pathology, European Institute of Oncology , Milan, Italy
| | - Michele Masullo
- 4 Department of Pathology, European Institute of Oncology , Milan, Italy
| | - Alfonso Passafaro
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | | | - Valeria R Fantin
- 6 Oncology Research Unit, Pfizer Global Research and Development , La Jolla, California
| | | | - Salvatore Pece
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Giuseppe Viale
- 4 Department of Pathology, European Institute of Oncology , Milan, Italy
| | - Pier Paolo Di Fiore
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Giulio Draetta
- 8 Institute for Applied Cancer, The University of Texas MD Anderson Cancer Center Science , Houston, Texas
| | - Pier Giuseppe Pelicci
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| | - Saverio Minucci
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy .,9 Department of Biosciences, University of Milan , Milan, Italy
| | - Susanna Chiocca
- 3 Department of Experimental Oncology, European Institute of Oncology , Milan, Italy
| |
Collapse
|
27
|
Blagden SP. Harnessing Pandemonium: The Clinical Implications of Tumor Heterogeneity in Ovarian Cancer. Front Oncol 2015; 5:149. [PMID: 26175968 PMCID: PMC4485078 DOI: 10.3389/fonc.2015.00149] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Heterogeneity has emerged as a key feature of ovarian cancer between different ovarian cancer subtypes; within single ovarian cancer subtypes; and within individual patient tumors. At the genomic level, with the advent of ultra-deep sequencing technologies alongside RNA-Seq, epigenomics, and proteomics, the complexity surrounding heterogeneity has deepened. Here, we summarize the emerging understanding of heterogeneity in cancer as a whole and the key discoveries in this area relating to ovarian cancer. We explore the therapeutic limitations and possibilities posed by heterogeneity and how these will influence the future of ovarian cancer treatment and research.
Collapse
Affiliation(s)
- Sarah P Blagden
- Department of Oncology, Churchill Hospital, University of Oxford , Oxford , UK
| |
Collapse
|
28
|
Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity. Mol Aspects Med 2015; 45:3-13. [PMID: 26024970 DOI: 10.1016/j.mam.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor's perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor's inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor's proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies.
Collapse
|
29
|
Abstract
Lung cancer is one of the most frequently diagnosed cancers and is the leading cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC), a heterogeneous class of tumours, represents approximately 85% of all new lung cancer diagnoses. Tobacco smoking remains the main risk factor for developing this disease, but radon exposure and air pollution also have a role. Most patients are diagnosed with advanced-stage disease owing to inadequate screening programmes and late onset of clinical symptoms; consequently, patients have a very poor prognosis. Several diagnostic approaches can be used for NSCLC, including X-ray, CT and PET imaging, and histological examination of tumour biopsies. Accurate staging of the cancer is required to determine the optimal management strategy, which includes surgery, radiochemotherapy, immunotherapy and targeted approaches with anti-angiogenic monoclonal antibodies or tyrosine kinase inhibitors if tumours harbour oncogene mutations. Several of these driver mutations have been identified (for example, in epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)), and therapy continues to advance to tackle acquired resistance problems. Also, palliative care has a central role in patient management and greatly improves quality of life. For an illustrated summary of this Primer, visit: http://go.nature.com/rWYFgg.
Collapse
|
30
|
Akimoto J, Fukuhara H, Suda T, Nagai K, Hashimoto R, Michihiro K. Disseminated cerebellar hemangioblastoma in two patients without von Hippel-Lindau disease. Surg Neurol Int 2014; 5:145. [PMID: 25324974 PMCID: PMC4199185 DOI: 10.4103/2152-7806.142321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/08/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Two patients who had received a total resection of cerebellar hemangioblastoma developed cerebrospinal fluid dissemination during a long-term follow-up period. We present this rare disease with discussion based on the literature. CASE DESCRIPTION The patients were two women aged 45 and 57 years. In the cerebellar hemisphere, one patient had cystic hemangioblastoma of mural nodule type and the other had solid type. Both the patients successfully underwent total resection by craniotomy. They presented no mutations in the von Hippel-Lindau disease (VHL) gene or lesions in the other organs. One patient developed local recurrence 38 months after the initial surgery, and received stereotactic radiosurgery. Three spinal cord tumors developed 91 months later, and the tumors were disseminated to the entire cerebrospinal cavity 107 months later. The other patient developed hydrocephalus 53 months after the initial surgery with tumor tissues disseminated in the intracranial subarachnoid space. The conditions of the two patients gradually aggravated despite treatment with ventriculo-peritoneal shunt and irradiation to the whole brain and whole spinal cord. CONCLUSION Cerebrospinal fluid dissemination of cerebellar hemangioblastoma was found dominantly in non-VHL patients. The diagnosis was made 10 years after the initial surgery. Irradiation therapy was performed, but the patients died about 2 years after the diagnosis was given. Molecular targeted therapies including vascular proliferation suppression have been attempted lately, but no effective therapy has been established. Early diagnosis of dissemination as well as combination of aggressive excision and stereotactic radiosurgery are considered to be appropriate for current interventions.
Collapse
Affiliation(s)
- Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | | | - Tomohiro Suda
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Ryo Hashimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Kohno Michihiro
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
31
|
Zhang J, Lou X, Zellmer L, Liu S, Xu N, Liao DJ. Just like the rest of evolution in Mother Nature, the evolution of cancers may be driven by natural selection, and not by haphazard mutations. Oncoscience 2014; 1:580-90. [PMID: 25594068 PMCID: PMC4278337 DOI: 10.18632/oncoscience.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022] Open
Abstract
Sporadic carcinogenesis starts from immortalization of a differentiated somatic cell or an organ-specific stem cell. The immortalized cell incepts a new or quasinew organism that lives like a parasite in the patient and usually proceeds to progressive simplification, constantly engendering intermediate organisms that are simpler than normal cells. Like organismal evolution in Mother Nature, this cellular simplification is a process of Darwinian selection of those mutations with growth- or survival-advantages, from numerous ones that occur randomly and stochastically. Therefore, functional gain of growth- or survival-sustaining oncogenes and functional loss of differentiation-sustaining tumor suppressor genes, which are hallmarks of cancer cells and contribute to phenotypes of greater malignancy, are not drivers of carcinogenesis but are results from natural selection of advantageous mutations. Besides this mutation-load dependent survival mechanism that is evolutionarily low and of an asexual nature, cancer cells may also use cell fusion for survival, which is an evolutionarily-higher mechanism and is of a sexual nature. Assigning oncogenes or tumor suppressor genes or their mutants as drivers to induce cancer in animals may somewhat coerce them to create man-made oncogenic pathways that may not really be a course of sporadic cancer formations in the human.
Collapse
Affiliation(s)
- Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Lucas Zellmer
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P.R. China
| | - D Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|