1
|
Chen L, Cheng Y, Zhang G, Zhou Y, Zhang Z, Chen Q, Feng Y. WGBS of embryonic gonads revealed that long non-coding RNAs in the MHM region might be involved in cell autonomous sex identity and female gonadal development in chickens. Epigenetics 2024; 19:2283657. [PMID: 38037805 PMCID: PMC10761181 DOI: 10.1080/15592294.2023.2283657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/01/2023] [Indexed: 12/02/2023] Open
Abstract
DNA methylation plays a key role in sex determination and differentiation in vertebrates. However, there are few studies on DNA methylation involved in chicken gonad development, and most focused on male hypermethylated regions (MHM). It is unclear whether there are specific differentially methylated regions (DMRs) in chicken embryonic gonads regulating sex determination and differentiation. Here, the DNA methylation maps showed that the difference of DNA methylation level between sexes was much higher at embryonic day 10 (E10) than that at embryonic day 6 (E6), and the significant differentially methylated regions at both stages were mainly distributed on the Z chromosome, including MHM1 and MHM2. The results of bisulphite sequencing PCR (BSP) and qRT-PCR showed hypomethylation of female MHM and upregulation of long non-coding RNAs (lncRNAs) whose promoter in the MHM region was consistent with the sequencing results, and similar results were in brain and muscle. In female sex-reversed gonads, the methylation pattern of MHM remained unchanged, and the expression levels of the three candidate lncRNAs were significantly decreased compared with those in females, but were significantly increased compared to males. The fluorescence in situ hybridization (FISH) results also showed that these lncRNAs were highly expressed in female embryonic gonads. The results of methyltransferase inhibitor and dual-luciferase reporter assay suggest that lncRNA expression may be regulated by DNA methylation within their promoters. Therefore, we speculated that MHM may be involved in cell-autonomous sex identity in chickens, and that lncRNAs regulated by MHM may be involved in female sexual differentiation.
Collapse
Affiliation(s)
- Ligen Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yu Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guixin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zhen Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qianhong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Liu Z, Gao D. Hydin as the Candidate Master Sex Determination Gene in Channel Catfish (Ictalurus punctatus) and Its Epigenetic Regulation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:6. [PMID: 39579181 DOI: 10.1007/s10126-024-10387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 11/25/2024]
Abstract
Sex determination is a fascinating area of research. To date, more than 20 master sex determination (SD) genes have been reported from vertebrate animals. With channel catfish (Ictalurus punctatus), much work has been conducted to determine its master SD gene, ranging from genetic linkage mapping, genome-wide association (GWA) analysis, genome sequencing, comparative genome analysis, epigenomic analysis, transcriptome analysis, and functional studies. Here in this mini review, we provide positional, expression, regulatory, and functional evidence supporting hydin (hydrocephalus-inducing protein or HYDIN axonemal central pair apparatus protein-like) as a master SD gene in channel catfish. Hydin is located within the sex determination region (SDR) within a mapped 8.9-Mb non-recombinational segment on chromosome 4 of channel catfish. It is highly expressed in genetic males, but not in genetic females. The alleles of X and Y are highly differentially methylated with the X chromosome being hypermethylated and the Y chromosome hypomethylated. The hypomethylated Y allele of hydin is expressed while the hypermethylated X allele is not expressed. Such allelic expression fits well with the XY sex determination system of channel catfish. Functional analysis using a methylation blocker, 5-aza-dC, demonstrated that demethylation, especially within the SDR, is accompanied with increased expression of hydin, which led to sex reversal of genetic females into phenotypic males. These evidences support the candidacy of hydin as a master SD gene in channel catfish. Future knockout and analysis of affected genes after hydin knockout should provide insights into how hydin functions as a master SD gene.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, 38505, USA.
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, 38505, USA
| |
Collapse
|
3
|
Bista B, González-Rodelas L, Álvarez-González L, Wu ZQ, Montiel EE, Lee LS, Badenhorst DB, Radhakrishnan S, Literman R, Navarro-Dominguez B, Iverson JB, Orozco-Arias S, González J, Ruiz-Herrera A, Valenzuela N. De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Res 2024; 34:1553-1569. [PMID: 39414368 PMCID: PMC11529993 DOI: 10.1101/gr.279443.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere-telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere-telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zhi-Qiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Eugenia E Montiel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ling Sze Lee
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Daleen B Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Beatriz Navarro-Dominguez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374, USA
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, 080003 Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
4
|
Souza GM, Kretschmer R, Toma GA, de Oliveira AM, Deon GA, Setti PG, Zeni Dos Santos R, Goes CAG, Del Valle Garnero A, Gunski RJ, de Oliveira EHC, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Satellitome analysis on the pale-breasted thrush Turdus leucomelas (Passeriformes; Turdidae) uncovers the putative co-evolution of sex chromosomes and satellite DNAs. Sci Rep 2024; 14:20656. [PMID: 39232109 PMCID: PMC11375038 DOI: 10.1038/s41598-024-71635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.
Collapse
Affiliation(s)
- Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | | | - Ricardo José Gunski
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97307-020, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller Universität, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
5
|
de Oliveira AM, Souza GM, Toma GA, Dos Santos N, Dos Santos RZ, Goes CAG, Deon GA, Setti PG, Porto-Foresti F, Utsunomia R, Gunski RJ, Del Valle Garnero A, Herculano Correa de Oliveira E, Kretschmer R, Cioffi MDB. Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype. Genome 2024; 67:109-118. [PMID: 38316150 DOI: 10.1139/gen-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Uno Y, Matsubara K. Unleashing diversity through flexibility: The evolutionary journey of sex chromosomes in amphibians and reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:230-241. [PMID: 38155517 DOI: 10.1002/jez.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Sex determination systems have greatly diversified between amphibians and reptiles, with such as the different sex chromosome compositions within a single species and transition between temperature-dependent sex determination (TSD) and genetic sex determination (GSD). In most sex chromosome studies on amphibians and reptiles, the whole-genome sequence of Xenopous tropicalis and chicken have been used as references to compare the chromosome homology of sex chromosomes among each of these taxonomic groups, respectively. In the present study, we reviewed existing reports on sex chromosomes, including karyotypes, in amphibians and reptiles. Furthermore, we compared the identified genetic linkages of sex chromosomes in amphibians and reptiles with the chicken genome as a reference, which is believed to resemble the ancestral tetrapod karyotype. Our findings revealed that sex chromosomes in amphibians are derived from genetic linkages homologous to various chicken chromosomes, even among several frogs within single families, such as Ranidae and Pipidae. In contrast, sex chromosomes in reptiles exhibit conserved genetic linkages with chicken chromosomes, not only across most species within a single family, but also within closely related families. The diversity of sex chromosomes in amphibians and reptiles may be attributed to the flexibility of their sex determination systems, including the ease of sex reversal in these animals.
Collapse
Affiliation(s)
- Yoshinobu Uno
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Matsubara
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
7
|
O’Connor RE, Kretschmer R, Romanov MN, Griffin DK. A Bird's-Eye View of Chromosomic Evolution in the Class Aves. Cells 2024; 13:310. [PMID: 38391923 PMCID: PMC10886771 DOI: 10.3390/cells13040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.
Collapse
Affiliation(s)
- Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| |
Collapse
|
8
|
Rajawat D, Panigrahi M, Nayak SS, Bhushan B, Mishra BP, Dutt T. Dissecting the genomic regions of selection on the X chromosome in different cattle breeds. 3 Biotech 2024; 14:50. [PMID: 38268984 PMCID: PMC10803714 DOI: 10.1007/s13205-023-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - B. P. Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
9
|
Liu F, Zhang X, Wei X, Li Y, Liu W, Gan G, Xiao L, Wang X, Luo H. Gonadal transcriptome analysis of paradise fish Macropodus opercularis to reveal sex-related genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101125. [PMID: 37666127 DOI: 10.1016/j.cbd.2023.101125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Macropodus opercularis is an ornamental fish species endemic to China, with obvious sexual dimorphism in phenotype. To obtain the gene expression profile of the gonads of M. opercularis and explore its sex-related genes, six cDNA libraries were constructed from the sexually mature M. opercularis, and RNA-seq analysis was performed. The sequenced clean data were assembled by de novo splicing to generate 171,415 unigenes, and differentially expressed genes (DEGs) screening revealed that there were 41,638 DEGs in the gonads of M. opercularis. By comparing those DEGS in the ovary with the testis, we found 29,870 DEGs were upregulated and 11,768 DEGs were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis showed that GO terms related to cell cycle and gamete formation were enriched, and pathway signals related to sex differences, such as FoxO signalling pathway and PI3K-Akt signalling pathway, were also detected. Reverse transcript fluorescence quantitative PCR (RT-qPCR) validation of 14 DEGs associated with sex differences showed that the RT-qPCR results were consistent with RNA-Seq analysis, and five genes, foxl2, sox3, foxo, zar1, cyp19a1, were significantly expressed in the ovaries. dmrt1, cyp11b, amh, sf1, sox9, gdf6, dmrt3, fstl1 and hsd11b2, a total of nine genes were significantly expressed in the testis. The results of this study provide a basis for the study of gonadal differentiation, developmental mechanisms and related functional genes in M. opercularis.
Collapse
Affiliation(s)
- Fan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China. https://twitter.com/@FanLiu_
| | - Xueling Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Xiaokai Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Yu Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Wei Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Guochen Gan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Lingling Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Xinyue Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China.
| |
Collapse
|
10
|
Clinton M, Zhao D. Avian Sex Determination: A Chicken and Egg Conundrum. Sex Dev 2023; 17:120-133. [PMID: 36796340 PMCID: PMC10659007 DOI: 10.1159/000529754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Primary sex determination is the developmental process that results in the sexual differentiation of the gonads. Vertebrate sex determination is generally considered to follow the model based on the mammalian system, where a sex-specific master regulatory gene activates one of the two different gene networks that underlie testis and ovary differentiation. SUMMARY It is now known that, while many of the molecular components of these pathways are conserved across different vertebrates, a wide variety of different trigger factors are utilized to initiate primary sex determination. In birds, the male is the homogametic sex (ZZ), and significant differences exist between the avian system of sex determination and that of mammals. For example, DMRT1, FOXL2, and estrogen are key factors in gonadogenesis in birds, but none are essential for primary sex determination in mammals. KEY MESSAGE Gonadal sex determination in birds is thought to depend on a dosage-based mechanism involving expression of the Z-linked DMRT1 gene, and it may be that this "mechanism" is simply an extension of the cell autonomous sex identity associated with avian tissues, with no sex-specific trigger required.
Collapse
Affiliation(s)
- Michael Clinton
- Roslin Institute Chicken Embryology (RICE) Group, Gene Function and Development, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Debiao Zhao
- Roslin Institute Chicken Embryology (RICE) Group, Gene Function and Development, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| |
Collapse
|
11
|
Sarmah H, Sawada A, Hwang Y, Miura A, Shimamura Y, Tanaka J, Yamada K, Mori M. Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Front Cell Dev Biol 2023; 11:1070560. [PMID: 36743411 PMCID: PMC9893295 DOI: 10.3389/fcell.2023.1070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.
Collapse
Affiliation(s)
- Hemanta Sarmah
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Anri Sawada
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Youngmin Hwang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Akihiro Miura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Munemasa Mori
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
12
|
Qin H, Wang J, Jia X, Zhi Y, Sun L, Zhang J, Wang J, Lu Y. Quantitative proteomics analysis of chicken embryos reveals key proteins that affect right gonadal degeneration in females. Proteomics 2022:e2200428. [PMID: 36574226 DOI: 10.1002/pmic.202200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
In birds, embryonic gonads of females develop in a way different from mammals, with the left one develops into a functional ovary, while the right one degenerates during embryogenesis. Here, we examined the proteomics profiles of the female and male left and right gonads at embryonic day 6.5 (E6.5) with the label free tandem mass spectrometry proteomics technique. The relative protein abundance of the left and right gonads of female and male embryos was determined to identify their differential proteins. Overall, a total of 7726 proteins were identified, of which 79 and 54 proteins were significantly different in female and male right gonads compared with female left gonads and male left gonads respectively. Bioinformatics analysis showed that the proteins DMRT1, ZFPM2, TSHZ3 were potentially associated with the degeneration of the right gonads in female embryos. The proteomics in this study provide clues for further elucidation of the pathways of sex determination, sex differentiation, and right gonadal degeneration in birds.
Collapse
Affiliation(s)
- Haimei Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Reproductive Medicine, Guangxi Medical and health key discipline construction project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Baise, China
| | - Jingyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Zhang Jiagang Animal Husbandry and Veterinary Station, Zhang Jiagang, Jiangsu, China
| | - Xiaoxuan Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yifei Zhi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lingling Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiale Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junli Wang
- Reproductive Medicine, Guangxi Medical and health key discipline construction project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Baise, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Panthum T, Jaisamut K, Singchat W, Ahmad SF, Kongkaew L, Wongloet W, Dokkaew S, Kraichak E, Muangmai N, Duengkae P, Srikulnath K. Something Fishy about Siamese Fighting Fish ( Betta splendens) Sex: Polygenic Sex Determination or a Newly Emerged Sex-Determining Region? Cells 2022; 11:1764. [PMID: 35681459 PMCID: PMC9179492 DOI: 10.3390/cells11111764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Fishes provide a unique and intriguing model system for studying the genomic origin and evolutionary mechanisms underlying sex determination and high sex-chromosome turnover. In this study, the mode of sex determination was investigated in Siamese fighting fish, a species of commercial importance. Genome-wide SNP analyses were performed on 75 individuals (40 males and 35 females) across commercial populations to determine candidate sex-specific/sex-linked loci. In total, 73 male-specific loci were identified and mapped to a 5.6 kb region on chromosome 9, suggesting a putative male-determining region (pMDR) containing localized dmrt1 and znrf3 functional sex developmental genes. Repeat annotations of the pMDR revealed an abundance of transposable elements, particularly Ty3/Gypsy and novel repeats. Remarkably, two out of the 73 male-specific loci were located on chromosomes 7 and 19, implying the existence of polygenic sex determination. Besides male-specific loci, five female-specific loci on chromosome 9 were also observed in certain populations, indicating the possibility of a female-determining region and the polygenic nature of sex determination. An alternative explanation is that male-specific loci derived from other chromosomes or female-specific loci in Siamese fighting fish recently emerged as new sex-determining loci during domestication and repeated hybridization.
Collapse
Affiliation(s)
- Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Kitipong Jaisamut
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Lalida Kongkaew
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Wongsathit Wongloet
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Sahabhop Dokkaew
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
14
|
Zarkower D, Murphy MW. DMRT1: An Ancient Sexual Regulator Required for Human Gonadogenesis. Sex Dev 2022; 16:112-125. [PMID: 34515237 PMCID: PMC8885888 DOI: 10.1159/000518272] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulators related to the invertebrate sexual regulators doublesex and mab-3 occur throughout metazoans and control sex in most animal groups. Seven of these DMRT genes are found in mammals, and mouse genetics has shown that one, Dmrt1, plays a crucial role in testis differentiation, both in germ cells and somatic cells. Deletions and, more recently, point mutations affecting human DMRT1 have demonstrated that its heterozygosity is associated with 46,XY complete gonadal dysgenesis. Most of our detailed knowledge of DMRT1 function in the testis, the focus of this review, derives from mouse studies, which have revealed that DMRT1 is essential for male somatic and germ cell differentiation and maintenance of male somatic cell fate after differentiation. Moreover, ectopic DMRT1 can reprogram differentiated female granulosa cells into male Sertoli-like cells. The ability of DMRT1 to control sexual cell fate likely derives from at least 3 properties. First, DMRT1 functionally collaborates with another key male sex regulator, SOX9, and possibly other proteins to maintain and reprogram sexual cell fate. Second, and related, DMRT1 appears to function as a pioneer transcription factor, binding "closed" inaccessible chromatin and promoting its opening to allow binding by other regulators including SOX9. Third, DMRT1 binds DNA by a highly unusual form of interaction and can bind with different stoichiometries.
Collapse
Affiliation(s)
- David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark W. Murphy
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Poulat F. Non-Coding Genome, Transcription Factors, and Sex Determination. Sex Dev 2021; 15:295-307. [PMID: 34727549 DOI: 10.1159/000519725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.
Collapse
Affiliation(s)
- Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, Montpellier, France
| |
Collapse
|
16
|
Kratochvíl L, Gamble T, Rovatsos M. Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200108. [PMID: 34304592 PMCID: PMC8310715 DOI: 10.1098/rstb.2020.0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Sex chromosomes are a great example of a convergent evolution at the genomic level, having evolved dozens of times just within amniotes. An intriguing question is whether this repeated evolution was random, or whether some ancestral syntenic blocks have significantly higher chance to be co-opted for the role of sex chromosomes owing to their gene content related to gonad development. Here, we summarize current knowledge on the evolutionary history of sex determination and sex chromosomes in amniotes and evaluate the hypothesis of non-random emergence of sex chromosomes. The current data on the origin of sex chromosomes in amniotes suggest that their evolution is indeed non-random. However, this non-random pattern is not very strong, and many syntenic blocks representing putatively independently evolved sex chromosomes are unique. Still, repeatedly co-opted chromosomes are an excellent model system, as independent co-option of the same genomic region for the role of sex chromosome offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and gene identity. Future studies should use these systems more to explore the convergent/divergent evolution of sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
- Milwaukee Public Museum, Milwaukee, WI, USA
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
17
|
Mezzasalma M, Guarino FM, Odierna G. Lizards as Model Organisms of Sex Chromosome Evolution: What We Really Know from a Systematic Distribution of Available Data? Genes (Basel) 2021; 12:1341. [PMID: 34573323 PMCID: PMC8468487 DOI: 10.3390/genes12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/19/2023] Open
Abstract
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; (F.M.G.); (G.O.)
| |
Collapse
|
18
|
Ioannidis J, Taylor G, Zhao D, Liu L, Idoko-Akoh A, Gong D, Lovell-Badge R, Guioli S, McGrew MJ, Clinton M. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proc Natl Acad Sci U S A 2021; 118:e2020909118. [PMID: 33658372 PMCID: PMC7958228 DOI: 10.1073/pnas.2020909118] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In birds, males are the homogametic sex (ZZ) and females the heterogametic sex (ZW). Primary sex determination is thought to depend on a sex chromosome gene dosage mechanism, and the most likely sex determinant is the Z chromosome gene Doublesex and Mab-3-Related Transcription factor 1 (DMRT1). To clarify this issue, we used a CRISPR-Cas9-based monoallelic targeting approach and sterile surrogate hosts to generate birds with targeted mutations in the DMRT1 gene. The resulting chromosomally male (ZZ) chicken with a single functional copy of DMRT1 developed ovaries in place of testes, demonstrating the avian sex-determining mechanism is based on DMRT1 dosage. These ZZ ovaries expressed typical female markers and showed clear evidence of follicular development. However, these ZZ adult birds with an ovary in place of testes were indistinguishable in appearance to wild-type adult males, supporting the concept of cell-autonomous sex identity (CASI) in birds. In experiments where estrogen synthesis was blocked in control ZW embryos, the resulting gonads developed as testes. In contrast, if estrogen synthesis was blocked in ZW embryos that lacked DMRT1, the gonads invariably adopted an ovarian fate. Our analysis shows that DMRT1 is the key sex determination switch in birds and that it is essential for testis development, but that production of estrogen is also a key factor in primary sex determination in chickens, and that this production is linked to DMRT1 expression.
Collapse
Affiliation(s)
- Jason Ioannidis
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom;
| | - Gunes Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Debiao Zhao
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, People's Republic of China
| | - Alewo Idoko-Akoh
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, People's Republic of China
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Silvana Guioli
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Mike J McGrew
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom;
| | - Michael Clinton
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| |
Collapse
|
19
|
Comparative Mapping of the Macrochromosomes of Eight Avian Species Provides Further Insight into Their Phylogenetic Relationships and Avian Karyotype Evolution. Cells 2021; 10:cells10020362. [PMID: 33572408 PMCID: PMC7916199 DOI: 10.3390/cells10020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Avian genomes typically consist of ~10 pairs of macro- and ~30 pairs of microchromosomes. While inter-chromosomally, a pattern emerges of very little change (with notable exceptions) throughout evolution, intrachromosomal changes remain relatively poorly studied. To rectify this, here we use a pan-avian universally hybridising set of 74 chicken bacterial artificial chromosome (BAC) probes on the macrochromosomes of eight bird species: common blackbird, Atlantic canary, Eurasian woodcock, helmeted guinea fowl, houbara bustard, mallard duck, and rock dove. A combination of molecular cytogenetic, bioinformatics, and mathematical analyses allowed the building of comparative cytogenetic maps, reconstruction of a putative Neognathae ancestor, and assessment of chromosome rearrangement patterns and phylogenetic relationships in the studied neognath lineages. We observe that, as with our previous studies, chicken appears to have the karyotype most similar to the ancestor; however, previous reports of an increased rate of intrachromosomal change in Passeriformes (songbirds) appear not to be the case in our dataset. The use of this universally hybridizing probe set is applicable not only for the re-tracing of avian karyotype evolution but, potentially, for reconstructing genome assemblies.
Collapse
|
20
|
Bellott DW, Page DC. Dosage-sensitive functions in embryonic development drove the survival of genes on sex-specific chromosomes in snakes, birds, and mammals. Genome Res 2021; 31:198-210. [PMID: 33479023 PMCID: PMC7849413 DOI: 10.1101/gr.268516.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Different ancestral autosomes independently evolved into sex chromosomes in snakes, birds, and mammals. In snakes and birds, females are ZW and males are ZZ; in mammals, females are XX and males are XY. Although X and Z Chromosomes retain nearly all ancestral genes, sex-specific W and Y Chromosomes suffered extensive genetic decay. In both birds and mammals, the genes that survived on sex-specific chromosomes are enriched for broadly expressed, dosage-sensitive regulators of gene expression, subject to strong purifying selection. To gain deeper insight into the processes that govern survival on sex-specific chromosomes, we carried out a meta-analysis of survival across 41 species-three snakes, 24 birds, and 14 mammals-doubling the number of ancestral genes under investigation and increasing our power to detect enrichments among survivors relative to nonsurvivors. Of 2564 ancestral genes, representing an eighth of the ancestral amniote genome, only 324 survive on present-day sex-specific chromosomes. Survivors are enriched for dosage-sensitive developmental processes, particularly development of neural crest-derived structures, such as the face. However, there was no enrichment for expression in sex-specific tissues, involvement in sex determination or gonadogenesis pathways, or conserved sex-biased expression. Broad expression and dosage sensitivity contributed independently to gene survival, suggesting that pleiotropy imposes additional constraints on the evolution of dosage compensation. We propose that maintaining the viability of the heterogametic sex drove gene survival on amniote sex-specific chromosomes, and that subtle modulation of the expression of survivor genes and their autosomal orthologs has disproportionately large effects on development and disease.
Collapse
Affiliation(s)
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Akhlaghpour A, Taei A, Ghadami SA, Bahadori Z, Yakhkeshi S, Molamohammadi S, Kiani T, Samadian A, Ghezelayagh Z, Haghparast N, Khalooghi K, Braun T, Baharvand H, Hassani SN. Chicken Interspecies Chimerism Unveils Human Pluripotency. Stem Cell Reports 2021; 16:39-55. [PMID: 33357408 PMCID: PMC7815937 DOI: 10.1016/j.stemcr.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are commonly kept in a primed state but also able to acquire a more immature naive state under specific conditions in vitro. Acquisition of naive state changes several properties of hPSCs and might affect their contribution to embryonic development in vivo. However, the lack of an appropriate animal test system has made it difficult to assess potential differences for chimera formation between naive and primed hPSCs. Here, we report that the developing chicken embryo is a permissive host for hPSCs, allowing analysis of the pluripotency potential of hPSCs. Transplantation of naive-like and primed hPSCs at matched developmental stages resulted in robust chimerism. Importantly, the ability of naive-like but not of primed hPSCs to form chimera was substantially reduced when injected at non-matched developmental stages. We propose that contribution to chick embryogenesis is an informative and versatile test to identify different pluripotent states of hPSCs.
Collapse
Affiliation(s)
- Azimeh Akhlaghpour
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | | | - Zahra Bahadori
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Sepideh Molamohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Tahereh Kiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Azam Samadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran
| | - Keynoosh Khalooghi
- Department of Cardiac Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, Tehran, Iran.
| |
Collapse
|
22
|
Repeat Sequence Mapping Shows Different W Chromosome Evolutionary Pathways in Two Caprimulgiformes Families. BIRDS 2020. [DOI: 10.3390/birds1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although birds belonging to order Caprimulgiformes show extensive karyotype variation, data concerning their genomic organization is still scarce, as most studies have presented only results obtained from conventional staining analyses. Nevertheless, some interesting findings have been observed, such as the W chromosome of the Common Potoo, Nyctibius griseus (2n = 86), which has the same morphology and size of the Z chromosome, a rare feature in Neognathae birds. Hence, we aimed to investigate the process by which the W chromosome of this species was enlarged. For that, we analyzed comparatively the chromosome organization of the Common Potoo and the Scissor-tailed Nightjar, Hydropsalis torquata (2n = 74), which presents the regular differentiated sex chromosomes, by applying C-banding, G-banding and mapping of repetitive DNAs (microsatellite repeats and 18S rDNA). Our results showed an accumulation of constitutive heterochromatin in the W chromosome of both species. However, 9 out of 11 microsatellite sequences hybridized in the large W chromosome in the Common Potoo, while none of them hybridized in the W chromosome of the Scissor-tailed Nightjar. Therefore, we can conclude that the accumulation of microsatellite sequences, and consequent increase in constitutive heterochromatin, was responsible for the enlargement of the W chromosome in the Common Potoo. Based on these results, we conclude that even though these two species belong to the same order, their W chromosomes have gone through different evolutionary histories, with an extra step of accumulation of repetitive sequences in the Common Potoo.
Collapse
|
23
|
Kuhl H, Li L, Wuertz S, Stöck M, Liang XF, Klopp C. CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes. Gigascience 2020; 9:giaa034. [PMID: 32449778 PMCID: PMC7247394 DOI: 10.1093/gigascience/giaa034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Easy-to-use and fast bioinformatics pipelines for long-read assembly that go beyond the contig level to generate highly continuous chromosome-scale genomes from raw data remain scarce. RESULT Chromosome-Scale Assembler (CSA) is a novel computationally highly efficient bioinformatics pipeline that fills this gap. CSA integrates information from scaffolded assemblies (e.g., Hi-C or 10X Genomics) or even from diverged reference genomes into the assembly process. As CSA performs automated assembly of chromosome-sized scaffolds, we benchmark its performance against state-of-the-art reference genomes, i.e., conventionally built in a laborious fashion using multiple separate assembly tools and manual curation. CSA increases the contig lengths using scaffolding, local re-assembly, and gap closing. On certain datasets, initial contig N50 may be increased up to 4.5-fold. For smaller vertebrate genomes, chromosome-scale assemblies can be achieved within 12 h using low-cost, high-end desktop computers. Mammalian genomes can be processed within 16 h on compute-servers. Using diverged reference genomes for fish, birds, and mammals, we demonstrate that CSA calculates chromosome-scale assemblies from long-read data and genome comparisons alone. Even contig-level draft assemblies of diverged genomes are helpful for reconstructing chromosome-scale sequences. CSA is also capable of assembling ultra-long reads. CONCLUSIONS CSA can speed up and simplify chromosome-level assembly and significantly lower costs of large-scale family-level vertebrate genome projects.
Collapse
Affiliation(s)
- Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
| | - Ling Li
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, No.1 Shizishan Street, Hongshan District, 430070 Wuhan, Hubei Province, P.R. China
| | - Sven Wuertz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
| | - Matthias Stöck
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University; Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, No.1 Shizishan Street, Hongshan District, 430070 Wuhan, Hubei Province, P.R. China
| | - Christophe Klopp
- Sigenae, Bioinfo Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAe, 24 Chemin de Borde Rouge, 31320 Auzeville-Tolosane, Castanet Tolosan, France
| |
Collapse
|
24
|
Zou X, Wang J, Qu H, Lv XH, Shu DM, Wang Y, Ji J, He YH, Luo CL, Liu DW. Comprehensive analysis of miRNAs, lncRNAs, and mRNAs reveals potential players of sexually dimorphic and left-right asymmetry in chicken gonad during gonadal differentiation. Poult Sci 2020; 99:2696-2707. [PMID: 32359607 PMCID: PMC7597365 DOI: 10.1016/j.psj.2019.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022] Open
Abstract
Despite thousands of sex-biased genes being found in chickens, the genetic control of sexually dimorphic and left-right asymmetry during gonadal differentiation is not yet completely understood. This study aimed to identify microRNAs (miRNAs), long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), and signaling pathways during gonadal differentiation in chick embryos (day 6/stage 29). The left and right gonads were collected for RNA sequencing. Sex-biased, side-biased miRNAs, lncRNAs, mRNAs, and shared differentially expressed miRNAs (DEmiRNA)–differentially expressed mRNAs (DEmRNA)–differentially expressed lncRNAs (DElncRNA) interaction networks were performed. A total of 8 DEmiRNAs, 183 DElncRNAs, and 123 DEmRNAs were identified for the sex-biased genes, and 7 DEmiRNAs, 189 DElncRNAs, and 183 DEmRNAs for the side-biased genes. The results of quantitative real-time PCR were generally consistent with the RNA-sequencing results. The study suggested that miRNAs and lncRNAs regulation were novel gene-specific dosage compensation mechanism and they could contribute to left-right asymmetry of chicken, but sex-biased and side-biased miRNAs, lncRNAs, and mRNAs were independent of each other. The competing endogenous RNA (ceRNA) networks showed that 17 target pairs including miR-7b (CYP19A1, FSHR, GREB1, STK31, CORIN, and TDRD9), miR-211 (FSHR, GREB1, STK31, CORIN, and TDRD9), miR-204 (FSHR, GREB1, CORIN, and TDRD9), and miR-302b-5p (CYP19A1 and TDRD9) may play crucial roles in ovarian development. These analyses provide new clues to uncover molecular mechanisms and signaling networks of ovarian development.
Collapse
Affiliation(s)
- X Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - J Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - H Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - X H Lv
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - D M Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - J Ji
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Y H He
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - C L Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - D W Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Sahoo L, Sahoo S, Mohanty M, Sankar M, Dixit S, Das P, Rasal KD, Rather MA, Sundaray JK. Molecular characterization, computational analysis and expression profiling of Dmrt1 gene in Indian major carp, Labeo rohita (Hamilton 1822). Anim Biotechnol 2019; 32:413-426. [PMID: 31880491 DOI: 10.1080/10495398.2019.1707683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sexual dimorphism of fish morphology, physiology and behavior is diverse and complex in nature. Doublesex and mab-3 related transcription factor (Dmrt) is a large protein family whose function is sexual development and differentiation in vertebrates. Here, we report a full-length cDNA sequence of Labeo rohita (rohu) Dmrt1 of 907 bp length having 798 bp of open reading frame encoding 265 amino acids. The molecular weight of rohu DMRT1 protein was found to be 28.74 KDa and isoelectric point was 7.53. DMRT1 protein contains 23 positively and 24 negatively charged amino acids with a GRAVY score of -0.618. A characteristic DM domain was found in DMRT1 protein, which is a novel DNA-binding domain. Phylogenetic analysis showed maximum similarity with Cyprinus carpio when compared with DMRT1 of other vertebrates. Molecular docking study identified active sites to be targeted for drug designing. Rohu DMRT1 was observed to interact with other proteins such as FOXL2, CYP19a1a, AMH and SOX9a. Differential expression study revealed higher expression in testis tissue implying its role in male sex differentiation and testicular development. The information generated in the present work could facilitate further research to resolve the issues related to gonadal maturation and reproduction of commercially important aquaculture species.
Collapse
Affiliation(s)
- L Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - S Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Sankar
- ICAR-Central Marine Research Institute, Mandapam Regional Centre, Tamil Nadu, India
| | - S Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K D Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M A Rather
- Division of Fish genetics and Biotechnology, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - J K Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
26
|
Nielsen SV, Guzmán-Méndez IA, Gamble T, Blumer M, Pinto BJ, Kratochvíl L, Rovatsos M. Escaping the evolutionary trap? Sex chromosome turnover in basilisks and related lizards (Corytophanidae: Squamata). Biol Lett 2019; 15:20190498. [PMID: 31594492 DOI: 10.1098/rsbl.2019.0498] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Most pleurodont lizard families (anoles, iguanas and their relatives), with the exception of the basilisks and casquehead lizards (family Corytophanidae), share homologous XX/XY sex chromosomes, syntenic with chicken chromosome 15. Here, we used a suite of methods (i.e. RADseq, RNAseq and qPCR) to identify corytophanid sex chromosomes for the first time. We reveal that all examined corytophanid species have partially degenerated XX/XY sex chromosomes, syntenic with chicken chromosome 17. Transcriptomic analyses showed that the expression of X-linked genes in the corytophanid, Basiliscus vittatus, is not balanced between the sexes, which is rather exceptional under male heterogamety, and unlike the dosage-balanced sex chromosomes in other well-studied XX/XY systems, including the green anole, Anolis carolinensis. Corytophanid sex chromosomes may represent a rare example of a turnover away from stable, differentiated sex chromosomes. However, because of poor phylogenetic resolution among pleurodont families, we cannot reject the alternative hypothesis that corytophanid sex chromosomes evolved independently from an unknown ancestral system.
Collapse
Affiliation(s)
- Stuart V Nielsen
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.,Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.,Milwaukee Public Museum, 800 W. Wells Street, Milwaukee, WI 53233, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA
| | - Madison Blumer
- Keck Science Department, Scripps College, Claremont, CA 91711, USA
| | - Brendan J Pinto
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.,Milwaukee Public Museum, 800 W. Wells Street, Milwaukee, WI 53233, USA
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| |
Collapse
|
27
|
Burcea A, Popa GO, Florescu Gune IE, Gharbia S, Gaina G, Dudu A, Maereanu M, Hermenean A, Georgescu SE, Costache M. Gene expression involved in the sexual development of Best Beluga hybrid sturgeons. JOURNAL OF FISH BIOLOGY 2018; 93:1021-1026. [PMID: 30264488 DOI: 10.1111/jfb.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The scope of this study is to investigate the expression of dmrt1, foxl2, ar, star and sox9 genes in the context of the gonad development stage of 21 month-old Best Beluga individuals. No significant difference was observed between males and females but the cyp17a1 gene showed higher expression in male than in female gonads. The results suggest that during sampling the females were in perinucleolar stage and the males in early spermatogenesis stage which led to specific patterns of expression for the investigated genes.
Collapse
Affiliation(s)
- Alexandru Burcea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gina-Oana Popa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Iulia E Florescu Gune
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Sami Gharbia
- Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Andreea Dudu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Sergiu E Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
28
|
Höhn H. Michael Schmid (1948-2018): A Life Devoted to Science. Sex Dev 2018; 12:265-268. [PMID: 30376669 DOI: 10.1159/000494234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Höhn H. Michael Schmid (1948-2018): A Life Devoted to Science. Mol Syndromol 2018. [DOI: 10.1159/000494233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Höhn H. Michael Schmid (1948-2018): A Life Devoted to Science. Cytogenet Genome Res 2018; 156:1-4. [PMID: 30326464 DOI: 10.1159/000494232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
|
31
|
Guo L, Accorsi A, He S, Guerrero-Hernández C, Sivagnanam S, McKinney S, Gibson M, Sánchez Alvarado A. An adaptable chromosome preparation methodology for use in invertebrate research organisms. BMC Biol 2018; 16:25. [PMID: 29482548 PMCID: PMC5828064 DOI: 10.1186/s12915-018-0497-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background The ability to efficiently visualize and manipulate chromosomes is fundamental to understanding the genome architecture of organisms. Conventional chromosome preparation protocols developed for mammalian cells and those relying on species-specific conditions are not suitable for many invertebrates. Hence, a simple and inexpensive chromosome preparation protocol, adaptable to multiple invertebrate species, is needed. Results We optimized a chromosome preparation protocol and applied it to several planarian species (phylum Platyhelminthes), the freshwater apple snail Pomacea canaliculata (phylum Mollusca), and the starlet sea anemone Nematostella vectensis (phylum Cnidaria). We demonstrated that both mitotically active adult tissues and embryos can be used as sources of metaphase chromosomes, expanding the potential use of this technique to invertebrates lacking cell lines and/or with limited access to the complete life cycle. Simple hypotonic treatment with deionized water was sufficient for karyotyping; growing cells in culture was not necessary. The obtained karyotypes allowed the identification of differences in ploidy and chromosome architecture among otherwise morphologically indistinguishable organisms, as in the case of a mixed population of planarians collected in the wild. Furthermore, we showed that in all tested organisms representing three different phyla this protocol could be effectively coupled with downstream applications, such as chromosome fluorescent in situ hybridization. Conclusions Our simple and inexpensive chromosome preparation protocol can be readily adapted to new invertebrate research organisms to accelerate the discovery of novel genomic patterns across the branches of the tree of life.
Collapse
Affiliation(s)
- Longhua Guo
- University of California, Los Angeles, CA, USA
| | - Alice Accorsi
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Howard Hughes Medical Institute, Kansas City, MO, USA
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Matthew Gibson
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, USA. .,Howard Hughes Medical Institute, Kansas City, MO, USA.
| |
Collapse
|
32
|
Naqvi S, Bellott DW, Lin KS, Page DC. Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Res 2018; 28:474-483. [PMID: 29449410 PMCID: PMC5880238 DOI: 10.1101/gr.230433.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/06/2018] [Indexed: 02/02/2023]
Abstract
Mammalian X and Y Chromosomes evolved from an ordinary autosomal pair. Genetic decay of the Y led to X Chromosome inactivation (XCI) in females, but some Y-linked genes were retained during the course of sex chromosome evolution, and many X-linked genes did not become subject to XCI. We reconstructed gene-by-gene dosage sensitivities on the ancestral autosomes through phylogenetic analysis of microRNA (miRNA) target sites and compared these preexisting characteristics to the current status of Y-linked and X-linked genes in mammals. Preexisting heterogeneities in dosage sensitivity, manifesting as differences in the extent of miRNA-mediated repression, predicted either the retention of a Y homolog or the acquisition of XCI following Y gene decay. Analogous heterogeneities among avian Z-linked genes predicted either the retention of a W homolog or gene-specific dosage compensation following W gene decay. Genome-wide analyses of human copy number variation indicate that these heterogeneities consisted of sensitivity to both increases and decreases in dosage. We propose a model of XY/ZW evolution incorporating such preexisting dosage sensitivities in determining the evolutionary fates of individual genes. Our findings thus provide a more complete view of the role of dosage sensitivity in shaping the mammalian and avian sex chromosomes and reveal an important role for post-transcriptional regulatory sequences (miRNA target sites) in sex chromosome evolution.
Collapse
Affiliation(s)
- Sahin Naqvi
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Kathy S Lin
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
33
|
Putative Independent Evolutionary Reversals from Genotypic to Temperature-Dependent Sex Determination are Associated with Accelerated Evolution of Sex-Determining Genes in Turtles. J Mol Evol 2017; 86:11-26. [DOI: 10.1007/s00239-017-9820-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022]
|
34
|
Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 2017; 7:42213. [PMID: 28205594 PMCID: PMC5311979 DOI: 10.1038/srep42213] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
Chinese tongue sole is a marine fish with ZW sex determination. Genome sequencing suggested that the Z-linked dmrt1 is a putative male determination gene, but direct genetic evidence is still lacking. Here we show that TALEN of dmrt1 efficiently induced mutations of this gene. The ZZ dmrt1 mutant fish developed ovary-like testis, and the spermatogenesis was disrupted. The female-related genes foxl2 and cyp19a1a were significantly increased in the gonad of the ZZ dmrt1 mutant. Conversely, the male-related genes Sox9a and Amh were significantly decreased. The dmrt1 deficient ZZ fish grew much faster than ZZ male control. Notably, we obtained an intersex ZW fish with a testis on one side and an ovary on the other side. This fish was chimeric for a dmrt1 mutation in the ovary, and wild-type dmrt1 in the testis. Our data provide the first functional evidence that dmrt1 is a male determining gene in tongue sole.
Collapse
|
35
|
Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat Genet 2017; 49:387-394. [PMID: 28135246 PMCID: PMC5359078 DOI: 10.1038/ng.3778] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/29/2016] [Indexed: 12/14/2022]
Abstract
After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males ZZ, but in mammals females are XX and males XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly-expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction related genes on sex chromosomes may be specific to the male germ line.
Collapse
|
36
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
37
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
38
|
Yang X, Deng J, Zheng J, Xia L, Yang Z, Qu L, Chen S, Xu G, Jiang H, Clinton M, Yang N. A Window of MHM Demethylation Correlates with Key Events in Gonadal Differentiation in the Chicken. Sex Dev 2016; 10:152-8. [DOI: 10.1159/000447659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/19/2022] Open
|
39
|
Pan Q, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait JH, Schartl M, Guiguen Y. Vertebrate sex-determining genes play musical chairs. C R Biol 2016; 339:258-62. [PMID: 27291506 PMCID: PMC5393452 DOI: 10.1016/j.crvi.2016.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome.
Collapse
Affiliation(s)
- Qiaowei Pan
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France
| | | | - Sylvain Bertho
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France; University of Wuerzburg, Physiological Chemistry, Biocenter, 97074 Würzburg, Germany
| | - Amaury Herpin
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France
| | - Catherine Wilson
- University of Oregon, Institute of Neuroscience, Eugene, OR 97403, USA
| | | | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, 97074 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital, 97080 Würzburg, Germany; Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Yann Guiguen
- Inra, Fish Physiology and Genomics Laboratory, 35042 Rennes, France.
| |
Collapse
|
40
|
Leng XQ, Du HJ, Li CJ, Cao H. Molecular characterization and expression pattern of dmrt1 in the immature Chinese sturgeon Acipenser sinensis. JOURNAL OF FISH BIOLOGY 2016; 88:567-579. [PMID: 26706998 DOI: 10.1111/jfb.12852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
In this study, the cDNA of dmrt1 gene from the Chinese sturgeon Acipenser sinensis was isolated and its expression pattern was characterized in different tissues of immature A. sinensis. By real-time quantitative PCR (qrtPCR) analysis, the A. sinensis dmrt1 mRNA was detected mainly in gonad and with a higher level in the testis than the ovary, especially in 3 and 4 year-old samples. This indicated that the dmrt1 expression exhibited gradual testis specificity with development. The subcellular localization analysis indicated that the Dmrt1 protein exists only in germ cells and not in somatic cells. These results suggest that A. sinensis dmrt1 might be a highly specific sex differentiation gene for testis development and spermatogenesis.
Collapse
Affiliation(s)
- X Q Leng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Agriculture Ministry of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - H J Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - C J Li
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Agriculture Ministry of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - H Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| |
Collapse
|
41
|
Graves JAM. How Australian mammals contributed to our understanding of sex determination and sex chromosomes. AUST J ZOOL 2016. [DOI: 10.1071/zo16054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Marsupials and monotremes can be thought of as independent experiments in mammalian evolution. The discovery of the human male-determining gene, SRY, how it works, how it evolved and defined our sex chromosomes, well illustrates the value of comparing distantly related animals and the folly of relying on humans and mice for an understanding of the most fundamental aspects of mammalian biology. The 25th anniversary of the discovery of SRY seems a good time to review the contributions of Australian mammals to these discoveries.
The discovery of the mammalian sex determining gene, SRY, was a milestone in the history of human genetics. SRY opened up investigations into the pathway by which the genital ridge (bipotential gonad) becomes a testis. Studies of Australian mammals were important in the story of the discovery of SRY, not only in refuting the qualifications of the first candidate sex-determining gene, but also in confirming the ubiquity of SRY and raising questions as to how it works. Studies in marsupials also led to understanding of how SRY evolved from a gene on an autosome with functions in the brain and germ cells, and to identifying the ancestors of other genes on the human Y. The discovery that platypus have sex chromosomes homologous, not to the human XY, but to the bird ZW, dated the origin of the therian SRY and the XY chromosomes it defined. This led to important new models of how our sex chromosomes function, how they evolved, and what might befall this gene and the Y chromosome it defines.
Collapse
|
42
|
Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma 2015; 125:553-71. [DOI: 10.1007/s00412-015-0569-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
|
43
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
44
|
Kaneko H, Ijiri S, Kobayashi T, Izumi H, Kuramochi Y, Wang DS, Mizuno S, Nagahama Y. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 2015; 415:87-99. [PMID: 26265450 DOI: 10.1016/j.mce.2015.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
Abstract
The Nile tilapia, Oreochromis niloticus, is a gonochoristic teleost fish with an XX/XY genetic system and is an excellent model for gonadal sex differentiation. In the present study, we screened novel genes that were expressed predominantly in either XY or XX undifferentiated gonads during the critical period for differentiation of gonads into ovaries or testes using microarray screening. We focused on one of the isolated 12 candidate genes, #9475, which was an ortholog of gsdf (gonadal soma-derived factor), a member of the transforming growth factor-beta superfamily. #9475/gsdf showed sexual dimorphism in expression in XY gonads before any other testis differentiation-related genes identified in this species thus far. We also overexpressed the #9475/gsdf gene in XX tilapia, and XX tilapia bearing the #9475/gsdf gene showed normal testis development, which suggests that #9475/gsdf plays an important role in male determination and/or differentiation in tilapia.
Collapse
Affiliation(s)
- Hiroyo Kaneko
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| | - Shigeho Ijiri
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan; Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Tohru Kobayashi
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Hikari Izumi
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Yuki Kuramochi
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - De-Shou Wang
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| | - Shouta Mizuno
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan; South Ehime Fisheries Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
45
|
Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA. Z chromosome divergence, polymorphism and relative effective population size in a genus of lekking birds. Heredity (Edinb) 2015; 115:452-9. [PMID: 26014526 PMCID: PMC4611240 DOI: 10.1038/hdy.2015.46] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023] Open
Abstract
Sex chromosomes contribute disproportionately to species boundaries as they diverge faster than autosomes and often have reduced diversity. Their hemizygous nature contributes to faster divergence and reduced diversity, as do some types of selection. In birds, other factors (mating system and bottlenecks) can further decrease the effective population size of Z-linked loci and accelerate divergence (Fast-Z). We assessed Z-linked divergence and effective population sizes for two polygynous sage-grouse species and compared them to estimates from birds with various mating systems. We found lower diversity and higher FST for Z-linked loci than for autosomes, as expected. The π(Z)/π(A) ratio was 0.38 in Centrocercus minimus, 0.48 in Centrocercus urophasianus and 0.59 in a diverged, parapatric population of C. urophasianus, a broad range given the mating system among these groups is presumably equivalent. The full data set had unequal males and females across groups, so we compared an equally balanced reduced set of C. minimus and individuals pooled from both C. urophasianus subgroups recovering similar estimates: 0.54 for C. urophasianus and 0.38 for C. minimus. We provide further evidence that N(eZ)/N(eA) in birds is often lower than expected under random mating or monogamy. The lower ratio in C. minimus could be a consequence of stronger selection or drift acting on Z loci during speciation, as this species differs strongly from C. urophasianus in sexually selected characters with minimal mitochondrial divergence. As C. minimus also exhibited lower genomic diversity, it is possible that a more severe demographic history may contribute to its lower ratio.
Collapse
Affiliation(s)
- S J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - R S Cornman
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - K L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - J A Fike
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| |
Collapse
|
46
|
Tamschick S, Rozenblut-Kościsty B, Bonato L, Dufresnes C, Lymberakis P, Kloas W, Ogielska M, Stöck M. Sex Chromosome Conservation, DMRT1 Phylogeny and Gonad Morphology in Diploid Palearctic Green Toads ( Bufo viridis Subgroup). Cytogenet Genome Res 2015; 144:315-24. [DOI: 10.1159/000380841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
|
47
|
Wang JH, Miao L, Li MY, Guo XF, Pan N, Chen YY, Zhao L. Cloning the Dmrt1 and DmrtA2 genes of ayu (Plecoglossus altivelis) and mapping their expression in adult, larval, and embryonic stages. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2014; 35:99-107. [PMID: 24668652 DOI: 10.11813/j.issn.0254-5853.2014.2.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Dmrt family of genes are involved in sex differentiation in different species of invertebrates, and some vertebrates including human. In this study, we cloned the full-length cDNA of ayu (Plecoglossus altivelis) Dmrt1 and DmrtA2. Sequence and phylogenetic tree analyses showed ayu Dmrt1 showed highest similarity to that of Oncorhynchus mykiss while ayu DmrtA2 is most similar to that of Oryzias latipes. Fluorescence-based quantitative reverse transcription PCR (qRT-PCR) revealed the Dmrt1 was predominantly expressed in the testis. At the larval stages, Dmrt1 mRNA expression level was highest during 52-64 days post hatching (dph) and at the gastrula stage during embryonic development. DmrtA2, meanwhile, was specifically expressed in the ovary and was highly expressed in the female brain tissue, but not male brain tissue. During the larval stages, DmrtA2 expression remained high before day 34, and then fluctuated while generally decreasing. During embryonic development, DmrtA2 expression increased gradually and peaked at the hatching stage. Our data suggest that ayu Dmrt1 might participate in the differentiation and maintenance of testis while DmrtA2 may play a role in ovary-differentiation and mature-ovary maintenance. DmrtA2 might also participate in brain development.
Collapse
Affiliation(s)
| | | | | | | | - Na Pan
- Ningbo University, Ningbo 315211, China
| | | | | |
Collapse
|
48
|
Scheider J, Afonso-Grunz F, Hoffmeier K, Horres R, Groher F, Rycak L, Oehlmann J, Winter P. Gene expression of chicken gonads is sex- and side-specific. Sex Dev 2014; 8:178-91. [PMID: 24820130 DOI: 10.1159/000362259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
In chicken, the left and right female gonads undergo a completely different program during development. To learn more about the molecular factors underlying side-specific development and to identify potential sex- and side-specific genes in developing gonads, we separately performed next-generation sequencing-based deepSuperSAGE transcription profiling from left and right, female and male gonads of 19-day-old chicken embryos. A total of 836 transcript variants were significantly differentially expressed (p < 10(-5)) between combined male and female gonads. Left-right comparison revealed 1,056 and 822 differentially (p < 10(-5)) expressed transcript variants for male and female gonads, respectively, of which 72 are side-specific in both sexes. At least some of these may represent key players for lateral development in birds. Additionally, several genes with laterally differential expression in the ovaries seem to determine female gonads for growth or regression, whereas right-left differences in testes are mostly limited to the differentially expressed genes present in both sexes. With a few exceptions, side-specific genes are not located on the sex chromosomes. The large differences in lateral gene expression in the ovaries in almost all metabolic pathways suggest that the regressing right gonad might have undergone a change of function during evolution.
Collapse
Affiliation(s)
- Jessica Scheider
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt/M., Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Rosselló RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. eLife 2013; 2:e00036. [PMID: 24015354 PMCID: PMC3762186 DOI: 10.7554/elife.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/27/2013] [Indexed: 12/21/2022] Open
Abstract
Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001 Stem cells are ‘pluripotent’—in other words, they have the potential to become many other cell types. This ability makes them extremely valuable for research. They also hold substantial promise for medical applications, since they can be used to replace cells lost or damaged by disease or injury. Embryos represent a rich source of stem cells; however, obtaining these cells from human embryos raises obvious ethical and practical concerns, and they have also been difficult to isolate from many species. A recent discovery circumvented these issues for humans and several mammalian species commonly studied in the laboratory. This technique can turn cells from adult mammals into ‘induced pluripotent stem cells’, or iPSCs, by switching on four genes. Nevertheless, no analogous method has yet been established to create similar cell populations in non-mammalian organisms, which are also important models for human development and disease. Now, Rosselló et al. have shown that cells from both invertebrate and non-mammalian vertebrate species—including birds, fish and insects—can be reprogrammed into cells that closely resemble iPSCs. Intriguingly, these cells were created by switching on the same four genes that generate iPSCs in mammals, even though vertebrates and invertebrates are separated by around 550 million years of evolution. Rosselló et al. used a viral vector that carries the four stem-cell genes (from the mouse) into target cells from the different species. The genetically altered cells developed into iPSC-like cells with many of the characteristics of natural mammalian and bird stem cells. To confirm that the cells were pluripotent, Rossello et al. first showed that the cells could develop into primitive early embryos called embryoid bodies. For the vertebrate species tested, the embryoid bodies contained cells from each of the three main vertebrate embryo cell types. Secondly, iPSC-like cells from two organisms—chicks and zebrafish—formed various mature cell types when injected into developing chick or zebrafish embryos. These results have two important implications. They suggest that the genetic mechanisms by which cells can be reprogrammed into a stem-like state have been conserved through 550 million years of evolution; additionally, they demonstrate that stem-like cells can be generated from important experimental organisms, and provide an important tool for both biological and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.00036.002
Collapse
Affiliation(s)
- Ricardo Antonio Rosselló
- Department of Biochemistry , University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico ; Department of Neurobiology , Duke University Medical Center , Durham , United States ; Howard Hughes Medical Institute, Duke University Medical Center , Durham , United States
| | | | | | | | | | | |
Collapse
|