1
|
Tang A, Yokota T. Is Duchenne gene therapy a suitable treatment despite its immunogenic class effect? Expert Opin Drug Saf 2024:1-17. [PMID: 39720847 DOI: 10.1080/14740338.2024.2447072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle weakness and eventual death due to cardiomyopathy or respiratory complications. Currently, there is no cure for DMD, with standard treatments primarily focusing on symptom management. Using immunosuppressive measures and optimized vector designs allows for gene therapies to better address the genetic cause of the disease. AREAS COVERED This review evaluates the efficacy and safety of emerging DMD gene therapies as of 2024. It also discusses the potential of utrophin upregulation, gene editing, and truncated dystrophin as therapeutic strategies. It highlights safety concerns associated with these therapies, including adverse events and patient deaths. A comprehensive overview of developments covers topics such as CRISPR-Cas9 therapies, micro-dystrophin, and the potential delivery of full-length dystrophin. EXPERT OPINION The FDA's recent approval of delandistrogene moxeparvovec (Elevidys) underscores the promise of gene replacement therapies for DMD patients. Understanding the mechanisms behind the adverse effects and excluding patients with specific pathogenic variants may enhance the safety profiles of these therapies. CRISPR/Cas9 therapies, while promising, face significant regulatory and safety challenges that hinder their clinical application. Optimal DMD therapies should target both skeletal and cardiac muscles to be effective.
Collapse
Affiliation(s)
- Annie Tang
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Merberg D, Moreland R, Su Z, Li B, Crooker B, Palmieri K, Moore SW, Melber A, Boyanapalli R, Carey G, Makhija M. Combined miRNA transcriptome and proteome analysis of extracellular vesicles in urine and blood from the Pompe mouse model. Ann Med 2024; 56:2402503. [PMID: 39445404 PMCID: PMC11504521 DOI: 10.1080/07853890.2024.2402503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Acid α-glucosidase (GAA) is a lysosomal enzyme that hydrolyzes glycogen to glucose. Deficiency of GAA causes Pompe disease (PD), also known as glycogen storage disease type II. The resulting glycogen accumulation causes a spectrum of disease severity ranging from infantile-onset PD to adult-onset PD. Additional non-invasive biomarkers of disease severity are needed to monitor response to therapeutic interventions. METHODS We measured protein and miRNA abundance in exosomes from serum and urine from the PD mouse model (B6;129-GaaTm1Rabn/J), wild-type mice, and PD mice treated with a candidate gene therapy. RESULTS There were significant differences in the abundance of 113 miRNA in serum exosomes from Pompe versus healthy mice. Levels of miR-206, miR-133, miR-1a, miR-486, and other important regulators of muscle development and maintenance were altered in the Pompe samples. The serum and urine exosome proteomes of healthy and Pompe mice also differed broadly. Several of the dysregulated proteins are encoded by genes with potential target sites for affected miRNA. CONCLUSION Exosomes derived from urine or serum are a potential source of biomarkers for Pompe Disease. Further study of the differences in the miRNA transcriptome and proteome content of exosomes may yield new insights into disease mechanisms.
Collapse
Affiliation(s)
- David Merberg
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | - Rodney Moreland
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | - Zhenqiang Su
- Takeda Pharmaceutical Company Limited, Preclinical and Translational Sciences, Cambridge, MA, USA
| | - Bin Li
- Takeda Pharmaceutical Company Limited, Preclinical and Translational Sciences, Cambridge, MA, USA
| | - Bob Crooker
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | - Kathleen Palmieri
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | - Simon W. Moore
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | - Andrew Melber
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | - Ruby Boyanapalli
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | - Galen Carey
- Takeda Pharmaceutical Company Limited, Rare Disease Drug Discovery Unit, Cambridge, MA, USA
| | | |
Collapse
|
3
|
Artemyev V, Gubaeva A, Paremskaia AI, Dzhioeva AA, Deviatkin A, Feoktistova SG, Mityaeva O, Volchkov PY. Synthetic Promoters in Gene Therapy: Design Approaches, Features and Applications. Cells 2024; 13:1963. [PMID: 39682712 DOI: 10.3390/cells13231963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Gene therapy is a promising approach to the treatment of various inherited diseases, but its development is complicated by a number of limitations of the natural promoters used. The currently used strong ubiquitous natural promoters do not allow for the specificity of expression, while natural tissue-specific promoters have lowactivity. These limitations of natural promoters can be addressed by creating new synthetic promoters that achieve high levels of tissue-specific target gene expression. This review discusses recent advances in the development of synthetic promoters that provide a more precise regulation of gene expression. Approaches to the design of synthetic promoters are reviewed, including manual design and bioinformatic methods using machine learning. Examples of successful applications of synthetic promoters in the therapy of hereditary diseases and cancer are presented, as well as prospects for their clinical use.
Collapse
Affiliation(s)
- Valentin Artemyev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Anna Gubaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Anastasiia Iu Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Amina A Dzhioeva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Andrei Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Sofya G Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
| | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
| | - Pavel Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
- Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Pr., 27, 119991 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
4
|
Zhou Y, Zhang C, Xiao W, Herzog RW, Han R. Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice. Nat Commun 2024; 15:6141. [PMID: 39034316 PMCID: PMC11271493 DOI: 10.1038/s41467-024-50569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver micro-dystrophin (µDys), which does not provide full protection for striated muscles as it lacks many important functional domains of full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We split FL-dystrophin into three fragments linked to two orthogonal pairs of split intein, allowing efficient assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx4cv mice. Dystrophin-glycoprotein complex components are also restored at the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective cavin 4 localization and associated signaling in mdx4cv heart. Therefore, our data support the feasibility of a mutation-independent FL-dystrophin gene therapy for DMD, warranting further clinical development.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chen Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Han R, Zhou Y, Zhang C, Xiao W, Herzog R. Systemic Delivery of Full-Length Dystrophin in DMD Mice. RESEARCH SQUARE 2024:rs.3.rs-3867299. [PMID: 38746161 PMCID: PMC11092816 DOI: 10.21203/rs.3.rs-3867299/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver miniaturized dystrophin (micro-dystrophin or µDys), which does not provide full protection for striated muscles as it lacks many important functional domains within full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We rationally split FL-dystrophin into three fragments (N, M, and C) linked to two orthogonal pairs of split intein, allowing efficient, unidirectional assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx 4cv mice. Dystrophin-glycoprotein complex components are also restored in the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective ERK signaling in heart. The FL-dystrophin gene therapy therefore promises to offer superior protection for DMD.
Collapse
|
6
|
Zhang C, Liu D. Transcription Factor Binding Site in Promoter Determines the Pattern of Plasmid-Based Transgene Expression In Vivo. Pharmaceutics 2024; 16:544. [PMID: 38675205 PMCID: PMC11055139 DOI: 10.3390/pharmaceutics16040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the regulation of transgene expression is critical for the success of plasmid-based gene therapy and vaccine development. In this study, we used two sets of plasmid vectors containing secreted embryonic alkaline phosphatase or the mouse IL-10 gene as a reporter and investigated the role of promoter elements in regulating transgene expression in vivo. We demonstrated in mice that hydrodynamic transfer of plasmids with the CMV promoter resulted in a high level of reporter gene expression that declined rapidly over time. In contrast, when plasmids with albumin promoters were used, a lower but sustained gene expression pattern was observed. We also found that plasmids containing a shorter CMV promoter sequence with fewer transcription factor binding sites showed a decrease in the peak level of gene expression without changing the overall pattern of reporter gene expression. The replacement of regulatory elements in the CMV promoter with a single regulatory element of the albumin promoter changed the pattern of transient gene expression seen in the CMV promoter to a pattern of sustained gene expression identical to that of a full albumin promoter. ChIP analyses demonstrated an elevated binding of acetylated histones and TATA box-binding protein to the promoter carrying regulatory elements of the albumin promoter. These results suggest that the strength of a promoter is determined by the number of appropriate transcription factor binding sites, while gene expression persistence is determined by the presence of regulatory elements capable of recruiting epigenetic modifying complexes that make the promoter accessible for transcription. This study provides important insights into the mechanisms underlying gene expression regulation in vivo, which can be used to improve plasmid-based gene therapy and vaccine development.
Collapse
Affiliation(s)
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA;
| |
Collapse
|
7
|
Schmidheini L, Mathis N, Marquart KF, Rothgangl T, Kissling L, Böck D, Chanez C, Wang JP, Jinek M, Schwank G. Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility. Nat Chem Biol 2024; 20:333-343. [PMID: 37735239 PMCID: PMC7616171 DOI: 10.1038/s41589-023-01427-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
CRISPR-Cas9 genome engineering is a powerful technology for correcting genetic diseases. However, the targeting range of Cas9 proteins is limited by their requirement for a protospacer adjacent motif (PAM), and in vivo delivery is challenging due to their large size. Here, we use phage-assisted continuous directed evolution to broaden the PAM compatibility of Campylobacter jejuni Cas9 (CjCas9), the smallest Cas9 ortholog characterized to date. The identified variant, termed evoCjCas9, primarily recognizes N4AH and N5HA PAM sequences, which occur tenfold more frequently in the genome than the canonical N3VRYAC PAM site. Moreover, evoCjCas9 exhibits higher nuclease activity than wild-type CjCas9 on canonical PAMs, with editing rates comparable to commonly used PAM-relaxed SpCas9 variants. Combined with deaminases or reverse transcriptases, evoCjCas9 enables robust base and prime editing, with the small size of evoCjCas9 base editors allowing for tissue-specific installation of A-to-G or C-to-T transition mutations from single adeno-associated virus vector systems.
Collapse
Affiliation(s)
- Lukas Schmidheini
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Nicolas Mathis
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Kim Fabiano Marquart
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tanja Rothgangl
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lucas Kissling
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Christelle Chanez
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Schröder LC, Frank D, Müller OJ. Transcriptional Targeting Approaches in Cardiac Gene Transfer Using AAV Vectors. Pathogens 2023; 12:1301. [PMID: 38003766 PMCID: PMC10675517 DOI: 10.3390/pathogens12111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiac-targeted transgene delivery offers new treatment opportunities for cardiovascular diseases, which massively contribute to global mortality. Restricted gene transfer to cardiac tissue might protect extracardiac organs from potential side-effects. This could be mediated by using cis-regulatory elements, including promoters and enhancers that act on the transcriptional level. Here, we discuss examples of tissue-specific promoters for targeted transcription in myocytes, cardiomyocytes, and chamber-specific cardiomyocytes. Some promotors are induced at pathological states, suggesting a potential use as "induction-by-disease switches" in gene therapy. Recent developments have resulted in the identification of novel enhancer-elements that could further pave the way for future refinement of transcriptional targeting, for example, into the cardiac conduction system.
Collapse
Affiliation(s)
- Lena C. Schröder
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
| | - Derk Frank
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (L.C.S.); (D.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| |
Collapse
|
9
|
Stephenson AA, Nicolau S, Vetter TA, Dufresne GP, Frair EC, Sarff JE, Wheeler GL, Kelly BJ, White P, Flanigan KM. CRISPR-Cas9 homology-independent targeted integration of exons 1-19 restores full-length dystrophin in mice. Mol Ther Methods Clin Dev 2023; 30:486-499. [PMID: 37706184 PMCID: PMC10495553 DOI: 10.1016/j.omtm.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Anthony A. Stephenson
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Stefan Nicolau
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Gabrielle P. Dufresne
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Emma C. Frair
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Jessica E. Sarff
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Gregory L. Wheeler
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Benjamin J. Kelly
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
- The Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kevin M. Flanigan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
McKee KK, Yurchenco PD. Amelioration of muscle and nerve pathology of Lama2-related dystrophy by AAV9-laminin-αLN-linker protein. JCI Insight 2022; 7:158397. [PMID: 35639486 PMCID: PMC9310540 DOI: 10.1172/jci.insight.158397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
LAMA2 deficiency, resulting from a defective or absent laminin α2 subunit, is a common cause of congenital muscular dystrophy. It is characterized by muscle weakness from myofiber degeneration and neuropathy from Schwann cell amyelination. Previously it was shown that transgenic muscle-specific expression of αLNNd, a laminin γ1–binding linker protein that enables polymerization in defective laminins, selectively ameliorates the muscle abnormality in mouse disease models. Here, adeno-associated virus was used to deliver linker mini-genes to dystrophic dy2J/dy2J mice for expression of αLNNd in muscle, or αLNNdΔG2′, a shortened linker, in muscle, nerve, and other tissues. Linker and laminin α2 levels were higher in αLNNdΔG2′-treated mice. Both αLNNd- and αLNNdΔG2′-treated mice exhibited increased forelimb grip strength. Further, αLNNdΔG2′-treated mice achieved hind limb and all-limb grip strength levels approaching those of WT mice as well as ablation of hind limb paresis and contractures. This was accompanied by restoration of sciatic nerve axonal envelopment and myelination. Improvement of muscle histology was evident in the muscle-specific αLNNd-expressing mice but more extensive in the αLNNdΔG2′-expressing mice. The results reveal that an αLN linker mini-gene, driven by a ubiquitous promoter, is superior to muscle-specific delivery because of its higher expression that extends to the peripheral nerve. These studies support a potentially novel approach of somatic gene therapy.
Collapse
Affiliation(s)
- Karen K McKee
- Department of Pathology & Laboratory Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, United States of America
| | - Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, United States of America
| |
Collapse
|
11
|
Nguyen HX, Wu T, Needs D, Zhang H, Perelli RM, DeLuca S, Yang R, Pan M, Landstrom AP, Henriquez C, Bursac N. Engineered bacterial voltage-gated sodium channel platform for cardiac gene therapy. Nat Commun 2022; 13:620. [PMID: 35110560 PMCID: PMC8810800 DOI: 10.1038/s41467-022-28251-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
Therapies for cardiac arrhythmias could greatly benefit from approaches to enhance electrical excitability and action potential conduction in the heart by stably overexpressing mammalian voltage-gated sodium channels. However, the large size of these channels precludes their incorporation into therapeutic viral vectors. Here, we report a platform utilizing small-size, codon-optimized engineered prokaryotic sodium channels (BacNav) driven by muscle-specific promoters that significantly enhance excitability and conduction in rat and human cardiomyocytes in vitro and adult cardiac tissues from multiple species in silico. We also show that the expression of BacNav significantly reduces occurrence of conduction block and reentrant arrhythmias in fibrotic cardiac cultures. Moreover, functional BacNav channels are stably expressed in healthy mouse hearts six weeks following intravenous injection of self-complementary adeno-associated virus (scAAV) without causing any adverse effects on cardiac electrophysiology. The large diversity of prokaryotic sodium channels and experimental-computational platform reported in this study should facilitate the development and evaluation of BacNav-based gene therapies for cardiac conduction disorders.
Collapse
Affiliation(s)
- Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Daniel Needs
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hengtao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robin M Perelli
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Rachel Yang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Michael Pan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Craig Henriquez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Evaluation of the dystrophin carboxy-terminal domain for micro-dystrophin gene therapy in cardiac and skeletal muscles in the DMD mdx rat model. Gene Ther 2022; 29:520-535. [PMID: 35105949 DOI: 10.1038/s41434-022-00317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the gene encoding dystrophin. Gene therapy using micro-dystrophin (MD) transgenes and recombinant adeno-associated virus (rAAV) vectors hold great promise. To overcome the limited packaging capacity of rAAV vectors, most MD do not include dystrophin carboxy-terminal (CT) domain. Yet, the CT domain is known to recruit α1- and β1-syntrophins and α-dystrobrevin, a part of the dystrophin-associated protein complex (DAPC), which is a signaling and structural mediator of muscle cells. In this study, we explored the impact of inclusion of the dystrophin CT domain on ΔR4-23/ΔCT MD (MD1), in DMDmdx rats, which allows for relevant evaluations at muscular and cardiac levels. We showed by LC-MS/MS that MD1 expression is sufficient to restore the interactions at a physiological level of most DAPC partners in skeletal and cardiac muscles, and that inclusion of the CT domain increases the recruitment of some DAPC partners at supra-physiological levels. In parallel, we demonstrated that inclusion of the CT domain does not improve MD1 therapeutic efficacy on DMD muscle and cardiac pathologies. Our work highlights new evidences of the therapeutic potential of MD1 and strengthens the relevance of this candidate for gene therapy of DMD.
Collapse
|
13
|
Therapeutic potential of highly functional codon-optimized microutrophin for muscle-specific expression. Sci Rep 2022; 12:848. [PMID: 35039573 PMCID: PMC8764061 DOI: 10.1038/s41598-022-04892-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
High expectations have been set on gene therapy with an AAV-delivered shortened version of dystrophin (µDys) for Duchenne muscular dystrophy (DMD), with several drug candidates currently undergoing clinical trials. Safety concerns with this therapeutic approach include the immune response to introduced dystrophin antigens observed in some DMD patients. Recent reports highlighted microutrophin (µUtrn) as a less immunogenic functional dystrophin substitute for gene therapy. In the current study, we created a human codon-optimized µUtrn which was subjected to side-by-side characterization with previously reported mouse and human µUtrn sequences after rAAV9 intramuscular injections in mdx mice. Long-term studies with systemic delivery of rAAV9-µUtrn demonstrated robust transgene expression in muscles, with localization to the sarcolemma, functional improvement of muscle performance, decreased creatine kinase levels, and lower immunogenicity as compared to µDys. An extensive toxicity study in wild-type rats did not reveal adverse changes associated with high-dose rAAV9 administration and human codon-optimized µUtrn overexpression. Furthermore, we verified that muscle-specific promoters MHCK7 and SPc5-12 drive a sufficient level of rAAV9-µUtrn expression to ameliorate the dystrophic phenotype in mdx mice. Our results provide ground for taking human codon-optimized µUtrn combined with muscle-specific promoters into clinical development as safe and efficient gene therapy for DMD.
Collapse
|
14
|
Creisméas A, Gazaille C, Bourdon A, Lallemand MA, François V, Allais M, Ledevin M, Larcher T, Toumaniantz G, Lafoux A, Huchet C, Anegon I, Adjali O, Le Guiner C, Fraysse B. TRPC3, but not TRPC1, as a good therapeutic target for standalone or complementary treatment of DMD. J Transl Med 2021; 19:519. [PMID: 34930315 PMCID: PMC8686557 DOI: 10.1186/s12967-021-03191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked inherited disease caused by mutations in the gene encoding dystrophin that leads to a severe and ultimately life limiting muscle-wasting condition. Recombinant adeno-associated vector (rAAV)-based gene therapy is promising, but the size of the full-length dystrophin cDNA exceeds the packaging capacity of a rAAV. Alternative or complementary strategies that could treat DMD patients are thus needed. Intracellular calcium overload due to a sarcolemma permeability to calcium (SPCa) increase is an early and critical step of the DMD pathogenesis. We assessed herein whether TRPC1 and TRPC3 calcium channels may be involved in skeletal muscle SPCa alterations and could represent therapeutic targets to treat DMD. Methods All experiments were conducted in the DMDmdx rat, an animal model that closely reproduces the human DMD disease. We measured the cytosolic calcium concentration ([Ca2+]c) and SPCa in EDL (Extensor Digitorum Longus) muscle fibers from age-matched WT and DMDmdx rats of 1.5 to 7 months old. TRPC1 and TRPC3 expressions were measured in the EDL muscles at both the mRNA and protein levels, by RT-qPCR, western blot and immunocytofluorescence analysis. Results As expected from the malignant hyperthermia like episodes observed in several DMDmdx rats, calcium homeostasis alterations were confirmed by measurements of early increases in [Ca2+]c and SPCa in muscle fibers. TRPC3 and TRPC1 protein levels were increased in DMDmdx rats. This was observed as soon as 1.5 months of age for TRPC3 but only at 7 months of age for TRPC1. A slight but reliable shift of the TRPC3 apparent molecular weight was observed in DMDmdx rat muscles. Intracellular localization of both channels was not altered. We thus focused our attention on TRPC3. Application of Pyr10, a specific inhibitor of TRPC3, abolished the differences between SPCa values measured in WT and DMDmdx. Finally, we showed that a rAAV-microdystrophin based treatment induced a high microdystrophin expression but only partial prevention of calcium homeostasis alterations, skeletal muscle force and TRPC3 protein increase. Conclusions All together our results show that correcting TRPC3 channel expression and/or activity appear to be a promising approach as a single or as a rAAV-based complementary therapy to treat DMD.
Collapse
Affiliation(s)
- Anna Creisméas
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Claire Gazaille
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Audrey Bourdon
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Marc-Antoine Lallemand
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Virginie François
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Marine Allais
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | | | | | - Gilles Toumaniantz
- L'Institut du Thorax, Université de Nantes, CNRS, INSERM UMR 1087, Nantes, France
| | - Aude Lafoux
- Therassay Platform, Capacités, Université de Nantes, Nantes, France
| | - Corinne Huchet
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Ignacio Anegon
- INSERM, UMR 1064-Center for Research in Transplantation and Immunology, ITUN, CHU Nantes, Université de Nantes, Faculté de Médecine, Nantes, France
| | - Oumeya Adjali
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Caroline Le Guiner
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Bodvaël Fraysse
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France.
| |
Collapse
|
15
|
Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 2021; 131:143780. [PMID: 33393506 DOI: 10.1172/jci143780] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV) vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses against rAAVs and discusses potential strategies to circumvent these pathways.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Yukiko Maeda
- Horae Gene Therapy Center.,VIDE Program.,Department of Medicine
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology
| | | | - Phillip Wl Tai
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Malerba A, Sidoli C, Lu-Nguyen N, Herath S, Le Heron A, Abdul-Razak H, Jarmin S, VandenDriessche T, Chuah MK, Dickson G, Popplewell L. Dose-Dependent Microdystrophin Expression Enhancement in Cardiac Muscle by a Cardiac-Specific Regulatory Element. Hum Gene Ther 2021; 32:1138-1146. [PMID: 33765840 DOI: 10.1089/hum.2020.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1:5,000 live male births and is characterized by muscle wasting. By the age of 13 years, affected individuals are often wheelchair bound and suffer from respiratory and cardiac failure, which results in premature death. Although the administration of corticosteroids and ventilation can relieve the symptoms and extend the patients' lifespan, currently no cure exists for DMD. Among the different approaches under preclinical and clinical testing, gene therapy, using adeno-associated viral (AAV) vectors, is one of the most promising. In this study, we delivered intravenously AAV9 vectors expressing the microdystrophin MD1 (ΔR4-R23/ΔCT) under control of the synthetic muscle-specific promoter Spc5-12 and assessed the effect of adding a cardiac-specific cis-regulatory module (designated as CS-CRM4) on its expression profile in skeletal and cardiac muscles. Results show that Spc5-12 promoter, in combination with an AAV serotype that has high tropism for the heart, drives high MD1 expression levels in cardiac muscle in mdx mice. The additional regulatory element CS-CRM4 can further improve MD1 expression in cardiac muscles, but its effect is dose dependent and enhancement becomes evident only at lower vector doses.
Collapse
Affiliation(s)
- Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Chiara Sidoli
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Shan Herath
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Anita Le Heron
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Hayder Abdul-Razak
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Susan Jarmin
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
17
|
Johari YB, Mercer AC, Liu Y, Brown AJ, James DC. Design of synthetic promoters for controlled expression of therapeutic genes in retinal pigment epithelial cells. Biotechnol Bioeng 2021; 118:2001-2015. [PMID: 33580508 DOI: 10.1002/bit.27713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/10/2022]
Abstract
Age-related macular degeneration (AMD) associated with dysfunction of retinal pigment epithelial (RPE) cells is the most common cause of untreatable blindness. To advance gene therapy as a viable treatment for AMD there is a need for technologies that enable controlled, RPE-specific expression of therapeutic genes. Here we describe design, construction and testing of compact synthetic promoters with a pre-defined transcriptional activity and RPE cell specificity. Initial comparative informatic analyses of RPE and photoreceptor (PR) cell transcriptomic data identified conserved and overrepresented transcription factor regulatory elements (TFREs, 8-19 bp) specifically associated with transcriptionally active RPE genes. Both RPE-specific TFREs and those derived from the generically active cytomegalovirus-immediate early (CMV-IE) promoter were then screened in vitro to identify sequence elements able to control recombinant gene transcription in model induced pluripotent stem (iPS)-derived and primary human RPE cells. Two libraries of heterotypic synthetic promoters varying in predicted RPE specificity and transcriptional activity were designed de novo using combinations of up to 20 discrete TFREs in series (323-602 bp) and their transcriptional activity in model RPE cells was compared to that of the endogenous BEST1 promoter (661 bp, plus an engineered derivative) and the highly active generic CMV-IE promoter (650 bp). Synthetic promoters with a highpredicted specificity, comprised predominantly of endogenous TFREs exhibited a range of activities up to 8-fold that of the RPE-specific BEST1 gene promoter. Moreover, albeit at a lower predicted specificity, synthetic promoter transcriptional activity in model RPE cells was enhanced beyond that of the CMV-IE promoter when viral elements were utilized in combination with endogenous RPE-specific TFREs, with a reduction in promoter size of 15%. Taken together, while our data reveal an inverse relationship between synthetic promoter activity and cell-type specificity, cell context-specific control of recombinant gene transcriptional activity may be achievable.
Collapse
Affiliation(s)
- Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Andrew C Mercer
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ye Liu
- Research and Early Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Strings-Ufombah V, Malerba A, Kao SC, Harbaran S, Roth F, Cappellari O, Lu-Nguyen N, Takahashi K, Mukadam S, Kilfoil G, Kloth C, Roelvink P, Dickson G, Trollet C, Suhy D. BB-301: a silence and replace AAV-based vector for the treatment of oculopharyngeal muscular dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:67-78. [PMID: 33738139 PMCID: PMC7940701 DOI: 10.1016/j.omtn.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/14/2021] [Indexed: 11/08/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare autosomal dominant disease that results from an alanine expansion in the N-terminal domain of Poly-A Binding Protein Nuclear-1 (PABPN1). We have recently demonstrated that a two-vector gene therapy strategy significantly ameliorated the pathology in a mouse model of OPMD. This approach entailed intramuscular injection of two recombinant adeno-associated viruses (AAVs), one expressing three short hairpin RNAs (shRNAs) to silence both mutant and wild-type PABPN1 and one expressing a codon-optimized version of PABPN1 that is insensitive to RNA interference. Here we report the continued development of this therapeutic strategy by delivering “silence and replace” sequences in a single AAV vector named BB-301. This construct is composed of a modified AAV serotype 9 (AAV9) capsid that expresses a unique single bifunctional construct under the control of the muscle-specific Spc5-12 promoter for the co-expression of both the codon-optimized PABPN1 protein and two small inhibitory RNAs (siRNAs) against PABPN1 modeled into microRNA (miRNA) backbones. A single intramuscular injection of BB-301 results in robust inhibition of mutant PABPN1 and concomitant replacement of the codon-optimized PABPN1 protein. The treatment restores muscle strength and muscle weight to wild-type levels as well as improving other physiological hallmarks of the disease in a mouse model of OPMD.
Collapse
Affiliation(s)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | - Fanny Roth
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Ornella Cappellari
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | | | | | | | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Capucine Trollet
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - David Suhy
- Benitec Biopharma, Inc., Hayward, CA 94545, USA
| |
Collapse
|
19
|
Skopenkova VV, Egorova TV, Bardina MV. Muscle-Specific Promoters for Gene Therapy. Acta Naturae 2021; 13:47-58. [PMID: 33959386 PMCID: PMC8084301 DOI: 10.32607/actanaturae.11063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Many genetic diseases that are responsible for muscular disorders have been described to date. Gene replacement therapy is a state-of-the-art strategy used to treat such diseases. In this approach, the functional copy of a gene is delivered to the affected tissues using viral vectors. There is an urgent need for the design of short, regulatory sequences that would drive a high and robust expression of a therapeutic transgene in skeletal muscles, the diaphragm, and the heart, while exhibiting limited activity in non-target tissues. This review focuses on the development and improvement of muscle-specific promoters based on skeletal muscle α-actin, muscle creatine kinase, and desmin genes, as well as other genes expressed in muscles. The current approaches used to engineer synthetic muscle-specific promoters are described. Other elements of the viral vectors that contribute to tissue-specific expression are also discussed. A special feature of this review is the presence of up-to-date information on the clinical and preclinical trials of gene therapy drug candidates that utilize muscle-specific promoters.
Collapse
Affiliation(s)
- V. V. Skopenkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - T. V. Egorova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
| | - M. V. Bardina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
20
|
Kwon JB, Ettyreddy AR, Vankara A, Bohning JD, Devlin G, Hauschka SD, Asokan A, Gersbach CA. In Vivo Gene Editing of Muscle Stem Cells with Adeno-Associated Viral Vectors in a Mouse Model of Duchenne Muscular Dystrophy. Mol Ther Methods Clin Dev 2020; 19:320-329. [PMID: 33145368 PMCID: PMC7581966 DOI: 10.1016/j.omtm.2020.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022]
Abstract
Delivery of therapeutic transgenes with adeno-associated viral (AAV) vectors for treatment of myopathies has yielded encouraging results in animal models and early clinical studies. Although certain AAV serotypes efficiently target muscle fibers, transduction of the muscle stem cells, also known as satellite cells, is less studied. Here, we used a Pax7nGFP;Ai9 dual reporter mouse to quantify AAV transduction events in satellite cells. We assessed a panel of AAV serotypes for satellite cell tropism in the mdx mouse model of Duchenne muscular dystrophy and observed the highest satellite cell labeling with AAV9 following local or systemic administration. Subsequently, we used AAV9 to interrogate CRISPR/Cas9-mediated gene editing of satellite cells in the Pax7nGFP;mdx mouse. We quantified the level of gene editing using a Tn5 transposon-based method for unbiased sequencing of editing outcomes at the Dmd locus. We also found that muscle-specific promoters can drive transgene expression and gene editing in satellite cells. Lastly, to demonstrate the functionality of satellite cells edited at the Dmd locus by CRISPR in vivo, we performed a transplantation experiment and observed increased dystrophin-positive fibers in the recipient mouse. Collectively, our results confirm that satellite cells are transduced by AAV and can undergo gene editing to restore the dystrophin reading frame in the mdx mouse.
Collapse
Affiliation(s)
- Jennifer B. Kwon
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Adarsh R. Ettyreddy
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ashish Vankara
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Joel D. Bohning
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Garth Devlin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Aravind Asokan
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next Initiative, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A. Gersbach
- Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next Initiative, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
21
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
22
|
Ge L, Yang J, Gong X, Kang J, Zhang Y, Liu X, Quan F. Bovine CAPN3 core promoter initiates expression of foreign genes in skeletal muscle cells by MyoD transcriptional regulation. Int J Biochem Cell Biol 2020; 127:105837. [PMID: 32827763 DOI: 10.1016/j.biocel.2020.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/18/2022]
Abstract
Activating foreign genes in bovine skeletal muscle is necessary in the study of the role of related genes in skeletal muscle development and the effects on skeletal muscle formation, especially in the study of transgenic cattle. At this time, a skeletal muscle-specific promoter should be selected to initiate a functional foreign gene. Here, calpain3 (CAPN3) was found to be highly expressed in skeletal muscle and skeletal muscle cells by real-time PCR. Next, 5' deletion analysis of the bovine CAPN3 promoter was performed and showed that Q5(-495/+40) region was the core promoter of the bovine CAPN3. A key regulatory site (-465/-453) in CAPN3 core promoter was associated with the transcription factor, MyoD, which is a skeletal muscle-specific transcription factor. Furthermore, the mRNA and protein expression levels of MyoD and CAPN3 were positively correlated during skeletal muscle cell differentiation. The overexpression of MyoD enhanced the activity of the bovine CAPN3 core promoter. The core promoter Q5(-495/+40) could drive the exogenous gene EGFP and the fat-specific expression gene PPARγ in skeletal muscle cells. In summary, our study obtained a bovine skeletal muscle-specific promoter and provided a basis for studying the role of functional genes in the growth and development of skeletal muscle. It also provides a basis for studying the transcriptional regulation mechanism of CAPN3.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xutong Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
23
|
Muscle overexpression of Klf15 via an AAV8-Spc5-12 construct does not provide benefits in spinal muscular atrophy mice. Gene Ther 2020; 27:505-515. [PMID: 32313099 PMCID: PMC7674152 DOI: 10.1038/s41434-020-0146-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 01/31/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the survival motor neuron (SMN) gene. While there are currently two approved gene-based therapies for SMA, availability, high cost, and differences in patient response indicate that alternative treatment options are needed. Optimal therapeutic strategies will likely be a combination of SMN-dependent and -independent treatments aimed at alleviating symptoms in the central nervous system and peripheral muscles. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates key metabolic and ergogenic pathways in muscle. We have recently reported significant downregulation of Klf15 in muscle of presymptomatic SMA mice. Importantly, perinatal upregulation of Klf15 via transgenic and pharmacological methods resulted in improved disease phenotypes in SMA mice, including weight and survival. In the current study, we designed an adeno-associated virus serotype 8 (AAV8) vector to overexpress a codon-optimized Klf15 cDNA under the muscle-specific Spc5-12 promoter (AAV8-Klf15). Administration of AAV8-Klf15 to severe Taiwanese Smn−/−;SMN2 or intermediate Smn2B/− SMA mice significantly increased Klf15 expression in muscle. We also observed significant activity of the AAV8-Klf15 vector in liver and heart. AAV8-mediated Klf15 overexpression moderately improved survival in the Smn2B/− model but not in the Taiwanese mice. An inability to specifically induce Klf15 expression at physiological levels in a time- and tissue-dependent manner may have contributed to this limited efficacy. Thus, our work demonstrates that an AAV8-Spc5-12 vector induces high gene expression as early as P2 in several tissues including muscle, heart, and liver, but highlights the challenges of achieving meaningful vector-mediated transgene expression of Klf15.
Collapse
|
24
|
Liu Y, He Y, Wang Y, Liu M, Jiang M, Gao R, Wang G. Synthetic promoter for efficient and muscle-specific expression of exogenous genes. Plasmid 2019; 106:102441. [PMID: 31676335 DOI: 10.1016/j.plasmid.2019.102441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Synthetic promoters (SPs) have many advantages over their natural counterparts, especially with regard to transcriptional activity and tissue specificity. Here, we report a new strategy to construct SPs for efficient and muscle-specific gene expression. First, 19 nucleic acid motifs classified to 3 kinds of transcriptional regulatory elements were rationally selected. A recombinant promoter library was constructed by randomly assembling these motifs. Second, the transcriptional activities of ~1200 SPs were screened by intramuscular expression of several reporter genes in different cell lines for activity higher than that of the cytomegalovirus (CMV) promoter, with SP-301 finally identified as the strongest. A single intramuscular injection of mice with an SP-301 plasmid expressing mouse growth hormone releasing hormone accelerated mouse growth significantly over 24 days. Third, the muscle specificity of SP-301 was confirmed in transgenic mice. Finally, in comparison with the CMV promoter, SP-301 accelerated translocation and increased the level of plasmid in the nuclei of myoblast cells to a greater extent than in non-muscle cells. Altogether, the study has provided a more rational strategy to construct efficient and tissue-specific promoters, with the promoter SP-301 exhibiting promising potential for establishing an intramuscular gene expression system for therapeutic applications.
Collapse
Affiliation(s)
- Yili Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China; College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yutong He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yong Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingfeng Jiang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Rong Gao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Tulalamba W, Weinmann J, Pham QH, El Andari J, VandenDriessche T, Chuah MK, Grimm D. Distinct transduction of muscle tissue in mice after systemic delivery of AAVpo1 vectors. Gene Ther 2019; 27:170-179. [PMID: 31624368 DOI: 10.1038/s41434-019-0106-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The human musculature is a promising and pivotal target for human gene therapy, owing to numerous diseases that affect this tissue and that are often monogenic, making them amenable to treatment and potentially cure on the genetic level. Particularly attractive would be the possibility to deliver clinically relevant DNA to muscle tissue from a minimally invasive, intravenous vector delivery. To date, this aim has been approximated by the use of Adeno-associated viruses (AAV) of different serotypes (rh.74, 8, 9) that are effective, but unfortunately not specific to the muscle and hence not ideal for use in patients. Here, we have thus studied the muscle tropism and activity of another AAV serotype, AAVpo1, that was previously isolated from pigs and found to efficiently transduce muscle following direct intramuscular injection in mice. The new data reported here substantiate the usefulness of AAVpo1 for muscle gene therapies by showing, for the first time, its ability to robustly transduce all major muscle tissues, including heart and diaphragm, from peripheral infusion. Importantly, in stark contrast to AAV9 that forms the basis for ongoing clinical gene therapy trials in the muscle, AAVpo1 is nearly completely detargeted from the liver, making it a very attractive and potentially safer option.
Collapse
Affiliation(s)
- Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium.,Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Jonas Weinmann
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Birkendorfer Straße 65, 88400, Biberach an der Riß, Germany
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium. .,Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium.
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1050, Brussels, Belgium. .,Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium.
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, University of Heidelberg, 69120, Heidelberg, Germany. .,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
26
|
Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat Med 2019; 25:1505-1511. [PMID: 31591596 DOI: 10.1038/s41591-019-0594-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
The essential product of the Duchenne muscular dystrophy (DMD) gene is dystrophin1, a rod-like protein2 that protects striated myocytes from contraction-induced injury3,4. Dystrophin-related protein (or utrophin) retains most of the structural and protein binding elements of dystrophin5. Importantly, normal thymic expression in DMD patients6 should protect utrophin by central immunologic tolerance. We designed a codon-optimized, synthetic transgene encoding a miniaturized utrophin (µUtro), deliverable by adeno-associated virus (AAV) vectors. Here, we show that µUtro is a highly functional, non-immunogenic substitute for dystrophin, preventing the most deleterious histological and physiological aspects of muscular dystrophy in small and large animal models. Following systemic administration of an AAV-µUtro to neonatal dystrophin-deficient mdx mice, histological and biochemical markers of myonecrosis and regeneration are completely suppressed throughout growth to adult weight. In the dystrophin-deficient golden retriever model, µUtro non-toxically prevented myonecrosis, even in the most powerful muscles. In a stringent test of immunogenicity, focal expression of µUtro in the deletional-null German shorthaired pointer model produced no evidence of cell-mediated immunity, in contrast to the robust T cell response against similarly constructed µDystrophin (µDystro). These findings support a model in which utrophin-derived therapies might be used to treat clinical dystrophin deficiency, with a favorable immunologic profile and preserved function in the face of extreme miniaturization.
Collapse
|
27
|
Piekarowicz K, Bertrand AT, Azibani F, Beuvin M, Julien L, Machowska M, Bonne G, Rzepecki R. A Muscle Hybrid Promoter as a Novel Tool for Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:157-169. [PMID: 31660418 PMCID: PMC6807297 DOI: 10.1016/j.omtm.2019.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023]
Abstract
Gene therapy is a promising strategy to cure rare diseases. The lack of regulatory sequences ensuring specific and robust expression in skeletal and cardiac muscle is a substantial limitation of gene therapy efficiency targeting the muscle tissue. Here we describe a novel muscle hybrid (MH) promoter that is highly active in both skeletal and cardiac muscle cells. It has an easily exchangeable modular structure, including an intronic module that highly enhances the expression of the gene driven by it. In cultured myoblasts, myotubes, and cardiomyocytes, the MH promoter gives relatively stable expression as well as higher activity and protein levels than the standard CMV and desmin gene promoters or the previously developed synthetic or CKM-based promoters. Combined with AAV2/9, the MH promoter also provides a high in vivo expression level in skeletal muscle and the heart after both intramuscular and systemic delivery. It is much more efficient than the desmin-encoding gene promoter, and it maintains the same specificity. This novel promoter has potential for gene therapy in muscle cells. It can provide stable transgene expression, ensuring high levels of therapeutic protein, and limited side effects because of its specificity. This constitutes an improvement in the efficiency of genetic disease therapy.
Collapse
Affiliation(s)
- Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| | - Anne T Bertrand
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Feriel Azibani
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Maud Beuvin
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Laura Julien
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974, Center of Research in Myology, Institute of Myology, Paris 75 651, France
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| |
Collapse
|
28
|
Lo Scrudato M, Poulard K, Sourd C, Tomé S, Klein AF, Corre G, Huguet A, Furling D, Gourdon G, Buj-Bello A. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice. Mol Ther 2019; 27:1372-1388. [PMID: 31253581 PMCID: PMC6697452 DOI: 10.1016/j.ymthe.2019.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3' UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1. Here we investigated a gene-editing strategy using the CRISPR-Cas9 system from Staphylococcus aureus (Sa) to delete the CTG repeats in the human DMPK locus. Co-expression of SaCas9 and selected pairs of single-guide RNAs (sgRNAs) in cultured DM1 patient-derived muscle line cells carrying 2,600 CTG repeats resulted in targeted DNA deletion, ribonucleoprotein foci disappearance, and correction of splicing abnormalities in various transcripts. Furthermore, a single intramuscular injection of recombinant AAV vectors expressing CRISPR-SaCas9 components in the tibialis anterior muscle of DMSXL (myotonic dystrophy mouse line carrying the human DMPK gene with >1,000 CTG repeats) mice decreased the number of pathological RNA foci in myonuclei. These results establish the proof of concept that genome editing of a large trinucleotide expansion is feasible in muscle and may represent a useful strategy to be further developed for the treatment of myotonic dystrophy.
Collapse
Affiliation(s)
- Mirella Lo Scrudato
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Karine Poulard
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Célia Sourd
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Stéphanie Tomé
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Arnaud F Klein
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Guillaume Corre
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France
| | - Aline Huguet
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Denis Furling
- INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, 75013 Paris, France
| | - Geneviève Gourdon
- INSERM UMR 1163, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Ana Buj-Bello
- Genethon, INSERM UMR_S951, Univ Evry, Université Paris Saclay, 91000 Evry, France.
| |
Collapse
|
29
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
30
|
Bartolo L, Li Chung Tong S, Chappert P, Urbain D, Collaud F, Colella P, Richard I, Ronzitti G, Demengeot J, Gross DA, Mingozzi F, Davoust J. Dual muscle-liver transduction imposes immune tolerance for muscle transgene engraftment despite preexisting immunity. JCI Insight 2019; 4:127008. [PMID: 31167976 DOI: 10.1172/jci.insight.127008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Immune responses to therapeutic transgenes are a potential hurdle to treat monogenic muscle disorders. These responses result from the neutralizing activity of transgene-specific B cells and cytotoxic T cells recruited upon gene transfer. We explored here how dual muscle-liver expression of a foreign transgene allows muscle transgene engraftment after adenoassociated viral vector delivery. We found in particular that induction of transgene-specific tolerance is imposed by concurrent muscle and liver targeting, resulting in the absence of CD8+ T cell responses to the transgene. This tolerance can be temporally decoupled, because transgene engraftment can be achieved in muscle weeks after liver transduction. Importantly, transgene-specific CD8+ T cell tolerance can be established despite preexisting immunity to the transgene. Whenever preexisting, transgene-specific CD4+ and CD8+ memory T cell responses are present, dual muscle-liver transduction turns polyclonal, transgene-specific CD8+ T cells into typically exhausted T cells with high programmed cell death 1 (PD-1) expression and lack of IFN-γ production. Our results demonstrate that successful transduction of muscle tissue can be achieved through liver-mediated control of humoral and cytotoxic T cell responses, even in the presence of preexisting immunity to the muscle-associated transgene.
Collapse
Affiliation(s)
- Laurent Bartolo
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Stéphanie Li Chung Tong
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Pascal Chappert
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Dominique Urbain
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Fanny Collaud
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Pasqualina Colella
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Isabelle Richard
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Giuseppe Ronzitti
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | | | - David A Gross
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| | - Federico Mingozzi
- Integrare Research Unit UMR S951, Genethon, INSERM, Université Evry, Université Paris Saclay, École Pratique des Hautes Études, Evry, France
| | - Jean Davoust
- Institut Necker Enfants-Malades, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; INSERM, U1151, Paris, France; CNRS UMR 8253, Paris, France
| |
Collapse
|
31
|
Next-generation muscle-directed gene therapy by in silico vector design. Nat Commun 2019; 10:492. [PMID: 30700722 PMCID: PMC6353880 DOI: 10.1038/s41467-018-08283-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/28/2018] [Indexed: 01/10/2023] Open
Abstract
There is an urgent need to develop the next-generation vectors for gene therapy of muscle disorders, given the relatively modest advances in clinical trials. These vectors should express substantially higher levels of the therapeutic transgene, enabling the use of lower and safer vector doses. In the current study, we identify potent muscle-specific transcriptional cis-regulatory modules (CRMs), containing clusters of transcription factor binding sites, using a genome-wide data-mining strategy. These novel muscle-specific CRMs result in a substantial increase in muscle-specific gene transcription (up to 400-fold) when delivered using adeno-associated viral vectors in mice. Significantly higher and sustained human micro-dystrophin and follistatin expression levels are attained than when conventional promoters are used. This results in robust phenotypic correction in dystrophic mice, without triggering apoptosis or evoking an immune response. This multidisciplinary approach has potentially broad implications for augmenting the efficacy and safety of muscle-directed gene therapy. Adeno-associated viral vectors (AAV) are being developed for gene therapy of skeletal muscle, but it is a challenge to achieve robust gene expression. Here, the authors identify muscle-specific cisregulatory elements that lead to a substantial increase in micro-dystrophin and follistatin expression, resulting in a safe and sustainable rescue of the dystrophic phenotype in mouse models.
Collapse
|
32
|
Colella P, Sellier P, Costa Verdera H, Puzzo F, van Wittenberghe L, Guerchet N, Daniele N, Gjata B, Marmier S, Charles S, Simon Sola M, Ragone I, Leborgne C, Collaud F, Mingozzi F. AAV Gene Transfer with Tandem Promoter Design Prevents Anti-transgene Immunity and Provides Persistent Efficacy in Neonate Pompe Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:85-101. [PMID: 30581888 PMCID: PMC6299151 DOI: 10.1016/j.omtm.2018.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
Hepatocyte-restricted, AAV-mediated gene transfer is being used to provide sustained, tolerogenic transgene expression in gene therapy. However, given the episomal status of the AAV genome, this approach cannot be applied to pediatric disorders when hepatocyte proliferation may result in significant loss of therapeutic efficacy over time. In addition, many multi-systemic diseases require widespread expression of the therapeutic transgene that, when provided with ubiquitous or tissue-specific non-hepatic promoters, often results in anti-transgene immunity. Here we have developed tandem promoter monocistronic expression cassettes that, packaged in a single AAV, provide combined hepatic and extra-hepatic tissue-specific transgene expression and prevent anti-transgene immunity. We validated our approach in infantile Pompe disease, a prototype disease caused by lack of the ubiquitous enzyme acid-alpha-glucosidase (GAA), presenting multi-systemic manifestations and detrimental anti-GAA immunity. We showed that the use of efficient tandem promoters prevents immune responses to GAA following systemic AAV gene transfer in immunocompetent Gaa−/− mice. Then we demonstrated that neonatal gene therapy with either AAV8 or AAV9 in Gaa−/− mice resulted in persistent therapeutic efficacy when using a tandem liver-muscle promoter (LiMP) that provided high and persistent transgene expression in non-dividing extra-hepatic tissues. In conclusion, the tandem promoter design overcomes important limitations of AAV-mediated gene transfer and can be beneficial when treating pediatric conditions requiring persistent multi-systemic transgene expression and prevention of anti-transgene immunity.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Pauline Sellier
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France
| | - Helena Costa Verdera
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France
| | - Francesco Puzzo
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | | | - Nicolas Guerchet
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Nathalie Daniele
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Bernard Gjata
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Solenne Marmier
- University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France
| | - Severine Charles
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Marcelo Simon Sola
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Isabella Ragone
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Christian Leborgne
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fanny Collaud
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France
| | - Federico Mingozzi
- Genethon, INSERM U951 Integrare, University of Evry, Université Paris-Saclay, 91002, Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651, Paris, France.,Spark Therapeutics, Philadelphia, PA 19103, USA
| |
Collapse
|
33
|
Puzzo F, Colella P, Biferi MG, Bali D, Paulk NK, Vidal P, Collaud F, Simon-Sola M, Charles S, Hardet R, Leborgne C, Meliani A, Cohen-Tannoudji M, Astord S, Gjata B, Sellier P, van Wittenberghe L, Vignaud A, Boisgerault F, Barkats M, Laforet P, Kay MA, Koeberl DD, Ronzitti G, Mingozzi F. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci Transl Med 2018; 9:9/418/eaam6375. [PMID: 29187643 DOI: 10.1126/scitranslmed.aam6375] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/13/2017] [Indexed: 12/26/2022]
Abstract
Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa-/-) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa-/- mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector-mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease.
Collapse
Affiliation(s)
- Francesco Puzzo
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Maria G Biferi
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Deeksha Bali
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC 27710, USA
| | - Nicole K Paulk
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Patrice Vidal
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Marcelo Simon-Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Romain Hardet
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Christian Leborgne
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Amine Meliani
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | | | - Stephanie Astord
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Bernard Gjata
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Pauline Sellier
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | | | - Alban Vignaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Florence Boisgerault
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Martine Barkats
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Pascal Laforet
- Paris-Est Neuromuscular Center, Pitié-Salpêtrière Hospital and Raymond Poincaré Teaching Hospital, Garches, APHP, Paris, France
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics and Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France. .,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| |
Collapse
|
34
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
35
|
Chamberlain K, Riyad JM, Garnett T, Kohlbrenner E, Mookerjee A, Elmastour F, Benard L, Chen J, VandenDriessche T, Chuah MK, Marian AJ, Hajjar RJ, Gurha P, Weber T. A Calsequestrin Cis-Regulatory Motif Coupled to a Cardiac Troponin T Promoter Improves Cardiac Adeno-Associated Virus Serotype 9 Transduction Specificity. Hum Gene Ther 2018; 29:927-937. [PMID: 29641321 DOI: 10.1089/hum.2017.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adeno-associated virus serotype 9 (AAV9) is an efficient vector for gene transfer to the myocardium. However, the use of ubiquitous promoters, such as the cytomegalovirus (CMV) promoter, can result in expression of the transgene in organs other than the heart. This study tested if the efficiency and specificity of cardiac transcription from a chicken cardiac troponin T (TnT) promoter could be further increased by incorporating a cardiomyocyte-specific transcriptional cis-regulatory motif from human calsequestrin 2 (CS-CRM4) into the expression cassette (Enh.TnT). The efficiency of luciferase expression from the TnT and Enh.TnT constructs was compared to expression of luciferase under the control of the CMV promoter in both adult and neonatal mice. Overall, expression levels of luciferase in the heart were similar in mice injected with AAV9.TnT.Luc, AAV9.Enh.TnT.Luc and AAV9.CMV.Luc. In contrast, expression levels of luciferase activity in nontarget organs, including the liver and muscle, was lower in mice injected with the AAV9.TnT.Luc compared to AAV9.CMV.Luc and was negligible with AAV9.Enh.TnT. In neonates, in organs other than the heart, luciferase expression levels were too low to be quantified for all constructs. Taken together, the data show that the AAV9 Enh.TnT constructs drives high levels of expression of the transgene in the myocardium, with insignificant expression in other organs. These properties reduce the risks associated with the AAV9-mediated expression of the therapeutic protein of interest in nontarget organs. The excellent cardiac specificity should allow for the use of higher vector doses than are currently used, which might be essential to achieve the levels of transgene expression necessary for therapeutic benefits. Taken together, the findings suggest that the Enh.TnT transcription unit is a potentially attractive tool for clinical cardiac gene therapy in adults.
Collapse
Affiliation(s)
- Kyle Chamberlain
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Jalish M Riyad
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Tyrone Garnett
- 3 Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute, Houston, Texas
| | - Erik Kohlbrenner
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Ananda Mookerjee
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Firas Elmastour
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Ludovic Benard
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Jiqiu Chen
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Thierry VandenDriessche
- 4 Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium .,5 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| | - Marinee K Chuah
- 4 Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium .,5 Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| | - Ali J Marian
- 3 Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute, Houston, Texas
| | - Roger J Hajjar
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Priyatansh Gurha
- 3 Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute, Houston, Texas
| | - Thomas Weber
- 1 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,2 Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
36
|
Koo T, Lu-Nguyen NB, Malerba A, Kim E, Kim D, Cappellari O, Cho HY, Dickson G, Popplewell L, Kim JS. Functional Rescue of Dystrophin Deficiency in Mice Caused by Frameshift Mutations Using Campylobacter jejuni Cas9. Mol Ther 2018; 26:1529-1538. [PMID: 29730196 PMCID: PMC5986736 DOI: 10.1016/j.ymthe.2018.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle-wasting disease caused by mutations in the DMD gene. In 51% of DMD cases, a reading frame is disrupted because of deletion of several exons. Here, we show that CjCas9 derived from Campylobacter jejuni can be used as a gene-editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. Herein, we used Cas9 derived from S. pyogenes to generate Dmd knockout mice with a frameshift mutation in Dmd gene. Then, we expressed CjCas9, its single-guide RNA, and the EGFP gene in the tibialis anterior muscle of the Dmd knockout mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 cleaved the target site in the Dmd gene efficiently in vivo and induced small insertions or deletions at the target site. This treatment resulted in conversion of the disrupted Dmd reading frame from out of frame to in frame, leading to the expression of dystrophin in the sarcolemma. Importantly, muscle strength was enhanced in the CjCas9-treated muscles, without off-target mutations, indicating high efficiency and specificity of CjCas9. This work suggests that in vivo DMD frame correction, mediated by CjCas9, has great potential for the treatment of DMD and other neuromuscular diseases.
Collapse
Affiliation(s)
- Taeyoung Koo
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Basic Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ngoc B Lu-Nguyen
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Alberto Malerba
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Eunji Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Daesik Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ornella Cappellari
- Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Hee-Yeon Cho
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - George Dickson
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Basic Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
37
|
Benedetti S, Uno N, Hoshiya H, Ragazzi M, Ferrari G, Kazuki Y, Moyle LA, Tonlorenzi R, Lombardo A, Chaouch S, Mouly V, Moore M, Popplewell L, Kazuki K, Katoh M, Naldini L, Dickson G, Messina G, Oshimura M, Cossu G, Tedesco FS. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Mol Med 2018; 10:254-275. [PMID: 29242210 PMCID: PMC5801502 DOI: 10.15252/emmm.201607284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy.
Collapse
Affiliation(s)
- Sara Benedetti
- Department of Cell and Developmental Biology, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Hidetoshi Hoshiya
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rossana Tonlorenzi
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Soraya Chaouch
- AIM/AFM Center for Research in Myology, Sorbonne Universités, UPMC Univ. Paris 06, INSERM UMRS974, CNRS FRE3617, Paris, France
| | - Vincent Mouly
- AIM/AFM Center for Research in Myology, Sorbonne Universités, UPMC Univ. Paris 06, INSERM UMRS974, CNRS FRE3617, Paris, France
| | - Marc Moore
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Motonobu Katoh
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Luigi Naldini
- Department of Biosciences, University of Milan, Milan, Italy
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | | | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | | |
Collapse
|
38
|
Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 2017; 8:16105. [PMID: 28742067 PMCID: PMC5537486 DOI: 10.1038/ncomms16105] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/30/2017] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV–microdystrophin gene therapy in DMD patients. Duchenne muscular dystrophy is a progressive degenerative disease of muscles caused by mutations in the dystrophin gene. Here the authors use AAV vectors to deliver microdystrophin to dogs with muscular dystrophy, and show restoration of dystrophin expression and reduction of symptoms up to 26 months of age.
Collapse
|
39
|
Therapeutic advances in musculoskeletal AAV targeting approaches. Curr Opin Pharmacol 2017; 34:56-63. [PMID: 28743034 DOI: 10.1016/j.coph.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Abstract
The use of recombinant adeno-associated viruses (rAAVs) is highly prevalent in musculoskeletal gene therapies due to their versatility, high transduction efficiency, natural tropism and vector genome persistence for years. As the largest organ in the body, treatment of skeletal muscle for widespread and sufficient therapeutic gene expression is highly challenging. In addition to disease-specific hurdles, vector genome loss, off-target gene transfer and immune responses to treatment can diminish the overall benefit of rAAV therapies. A variety of approaches have been developed to overcome these challenges and improve musculoskeletal targeting of rAAVs. This review focuses on recent advancements and remaining obstacles in creating optimal rAAV-based therapies for musculoskeletal application.
Collapse
|
40
|
Abstract
Dysferlinopathy is an autosomal recessive muscular dystrophy characterized by the progressive loss of motility that is caused by mutations throughout the DYSF gene. There are currently no approved therapies that ameliorate or reverse dysferlinopathy. Gene delivery using adeno-associated vectors (AAVs) is a leading therapeutic strategy for genetic diseases; however, the large size of dysferlin cDNA (6.2 kB) precludes packaging into a single AAV capsid. Therefore, using 3D structural modeling and hypothesizing dysferlin C2 domain redundancy, a 30% smaller, dysferlin-like molecule amenable to single AAV vector packaging was engineered (termed Nano-Dysferlin). The intracellular distribution of Nano-Dysferlin was similar to wild-type dysferlin and neither demonstrated toxicity when overexpressed in dysferlin-deficient patient myoblasts. Intramuscular injection of AAV-Nano-Dysferlin in young dysferlin-deficient mice significantly improved muscle integrity and decreased muscle turnover 3 weeks after treatment, as determined by Evans blue dye uptake and central nucleated fibers, respectively. Systemically administered AAV-Nano-Dysferlin to young adult dysferlin-deficient mice restored motor function and improved muscle integrity nearly 8 months after a single injection. These preclinical data are the first report of a smaller dysferlin variant tailored for AAV single particle delivery that restores motor function and, therefore, represents an attractive candidate for the treatment of dysferlinopathy.
Collapse
|
41
|
Chamberlain JR, Chamberlain JS. Progress toward Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2017; 25:1125-1131. [PMID: 28416280 DOI: 10.1016/j.ymthe.2017.02.019] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) has been a major target for gene therapy development for nearly 30 years. DMD is among the most common genetic diseases, and isolation of the defective gene (DMD, or dystrophin) was a landmark discovery, as it was the first time a human disease gene had been cloned without knowledge of the protein product. Despite tremendous obstacles, including the enormous size of the gene and the large volume of muscle tissue in the human body, efforts to devise a treatment based on gene replacement have advanced steadily through the combined efforts of dozens of labs and patient advocacy groups. Progress in the development of DMD gene therapy has been well documented in Molecular Therapy over the past 20 years and will be reviewed here to highlight prospects for success in the imminent human clinical trials planned by several groups.
Collapse
Affiliation(s)
- Joel R Chamberlain
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey S Chamberlain
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA 98195, USA; Department of Neurology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Malerba A, Klein P, Bachtarzi H, Jarmin SA, Cordova G, Ferry A, Strings V, Espinoza MP, Mamchaoui K, Blumen SC, St Guily JL, Mouly V, Graham M, Butler-Browne G, Suhy DA, Trollet C, Dickson G. PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 2017; 8:14848. [PMID: 28361972 PMCID: PMC5380963 DOI: 10.1038/ncomms14848] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/07/2017] [Indexed: 01/14/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset muscle disorder characterized by ptosis, swallowing difficulties, proximal limb weakness and nuclear aggregates in skeletal muscles. OPMD is caused by a trinucleotide repeat expansion in the PABPN1 gene that results in an N-terminal expanded polyalanine tract in polyA-binding protein nuclear 1 (PABPN1). Here we show that the treatment of a mouse model of OPMD with an adeno-associated virus-based gene therapy combining complete knockdown of endogenous PABPN1 and its replacement by a wild-type PABPN1 substantially reduces the amount of insoluble aggregates, decreases muscle fibrosis, reverts muscle strength to the level of healthy muscles and normalizes the muscle transcriptome. The efficacy of the combined treatment is further confirmed in cells derived from OPMD patients. These results pave the way towards a gene replacement approach for OPMD treatment. Oculopharyngeal muscular dystrophy is caused by trinucleotide repeat expansions in the PABPN1 gene. Here the authors use AAV-based gene therapy to knockdown the mutant gene and replace it with a wild-type allele, and show effectiveness in mice and in patient cells.
Collapse
Affiliation(s)
- A Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| | - P Klein
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - H Bachtarzi
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| | - S A Jarmin
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| | - G Cordova
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - A Ferry
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
| | - V Strings
- Benitec Biopharma, 3940 Trust Way, Hayward, California 94545, USA
| | - M Polay Espinoza
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - K Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - S C Blumen
- Department of Neurology, Hillel Yaffe Medical Center, Hadera and Rappaport Faculty of Medicine, The Technion, 1 Efron Street, Haifa 31096, Israel
| | - J Lacau St Guily
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France.,Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and University Pierre-et-Marie-Curie, Paris VI, Tenon Hospital, Assistance Publique des Hopitaux de Paris, 75252 Paris, France
| | - V Mouly
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - M Graham
- Benitec Biopharma, 3940 Trust Way, Hayward, California 94545, USA
| | - G Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - D A Suhy
- Benitec Biopharma, 3940 Trust Way, Hayward, California 94545, USA
| | - C Trollet
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM U974, Institut de Myologie, CNRS FRE3617, 47 bd de l'Hôpital, 75013 Paris, France
| | - G Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX Surrey, UK
| |
Collapse
|
43
|
Hu Q, Tong H, Zhao D, Cao Y, Zhang W, Chang S, Yang Y, Yan Y. Generation of an efficient artificial promoter of bovine skeletal muscle α-actin gene (ACTA1) through addition of cis-acting element. Cell Mol Biol Lett 2016. [PMID: 26204400 DOI: 10.1515/cmble-2015-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The promoter of skeletal muscle α-actin gene (ACTA1) is highly muscle specific. The core of the bovine ACTA1 promoter extends from +29 to -233, about 262 base pairs (bp), which is sufficient to activate transcription in bovine muscle satellite cells. In this study, analysis by PCR site-specific mutagenesis showed that the cis-acting element SRE (serum response element binding factor) was processed as a transcriptional activator. In order to enhance the bovine ACTA1 promoter's activity, we used a strategy to modify it. We cloned a fragment containing three SREs from the promoter of ACTA1, and then one or two clones were linked upstream of the core promoter (262 bp) of ACTA1. One and two clones increased the activity of the ACTA1 promoter 3-fold and 10-fold, respectively, and maintained muscle tissue specificity. The modified promoter with two clones could increase the level of ACTA1 mRNA and protein 4-fold and 1.1-fold, respectively. Immunofluorescence results showed that green fluorescence of ACTA1 increased. Additionally, the number of total muscle microfilaments increased. These genetically engineered promoters might be useful for regulating gene expression in muscle cells and improving muscle mass in livestock.
Collapse
|
44
|
Nakamura-Takahashi A, Miyake K, Watanabe A, Hirai Y, Iijima O, Miyake N, Adachi K, Nitahara-Kasahara Y, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Shimada T, Okada T. Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary AAV8 vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15059. [PMID: 26904710 PMCID: PMC4739158 DOI: 10.1038/mtm.2015.59] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 01/18/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disease caused by genetic mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). This results in defects in bone and tooth mineralization. We recently demonstrated that TNALP-deficient (Akp2 (-/-) ) mice, which mimic the phenotype of the severe infantile form of HPP, can be treated by intravenous injection of a recombinant adeno-associated virus (rAAV) expressing bone-targeted TNALP with deca-aspartates at the C-terminus (TNALP-D10) driven by the tissue-nonspecific CAG promoter. To develop a safer and more clinically applicable transduction strategy for HPP gene therapy, we constructed a self-complementary type 8 AAV (scAAV8) vector that expresses TNALP-D10 via the muscle creatine kinase (MCK) promoter (scAAV8-MCK-TNALP-D10) and examined the efficacy of muscle-directed gene therapy. When scAAV8-MCK-TNALP-D10 was injected into the bilateral quadriceps of neonatal Akp2 (-/-) mice, the treated mice grew well and survived for more than 3 months, with a healthy appearance and normal locomotion. Improved bone architecture, but limited elongation of the long bone, was demonstrated on X-ray images. Micro-CT analysis showed hypomineralization and abnormal architecture of the trabecular bone in the epiphysis. These results suggest that rAAV-mediated, muscle-specific expression of TNALP-D10 represents a safe and practical option to treat the severe infantile form of HPP.
Collapse
Affiliation(s)
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Atsushi Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan; Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Osamu Iijima
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | | | - Hideaki Kinoshita
- Department of Dental Materials Science, Tokyo Dental College , Tokyo, Japan
| | - Taku Noguchi
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Jose Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| |
Collapse
|
45
|
Escobar H, Schöwel V, Spuler S, Marg A, Izsvák Z. Full-length Dysferlin Transfer by the Hyperactive Sleeping Beauty Transposase Restores Dysferlin-deficient Muscle. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e277. [PMID: 26784637 PMCID: PMC5012550 DOI: 10.1038/mtna.2015.52] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022]
Abstract
Dysferlin-deficient muscular dystrophy is a progressive disease characterized by muscle weakness and wasting for which there is no treatment. It is caused by mutations in DYSF, a large, multiexonic gene that forms a coding sequence of 6.2 kb. Sleeping Beauty (SB) transposon is a nonviral gene transfer vector, already used in clinical trials. The hyperactive SB system consists of a transposon DNA sequence and a transposase protein, SB100X, that can integrate DNA over 10 kb into the target genome. We constructed an SB transposon-based vector to deliver full-length human DYSF cDNA into dysferlin-deficient H2K A/J myoblasts. We demonstrate proper dysferlin expression as well as highly efficient engraftment (>1,100 donor-derived fibers) of the engineered myoblasts in the skeletal muscle of dysferlin- and immunodeficient B6.Cg-Dysf(prmd) Prkdc(scid)/J (Scid/BLA/J) mice. Nonviral gene delivery of full-length human dysferlin into muscle cells, along with a successful and efficient transplantation into skeletal muscle are important advances towards successful gene therapy of dysferlin-deficient muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Mobile DNA, Max Delbrück Center for Molecular Medicine of the Helmholtz Society, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité, Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine of the Helmholtz Society, Berlin, Germany
| |
Collapse
|
46
|
Brown AJ, James DC. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv 2015; 34:492-503. [PMID: 26721629 DOI: 10.1016/j.biotechadv.2015.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom.
| |
Collapse
|
47
|
Loperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, Nair N, Samara-Kuko E, Athanasopoulos T, Tedesco FS, Dickson G, Sampaolesi M, VandenDriessche T, Chuah MK. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res 2015; 44:744-60. [PMID: 26682797 PMCID: PMC4737162 DOI: 10.1093/nar/gkv1464] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/28/2015] [Indexed: 01/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.
Collapse
Affiliation(s)
- Mariana Loperfido
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Susan Jarmin
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Ilaria Perini
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Marc Moore
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium
| | - Takis Athanasopoulos
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | | | - George Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
48
|
Subang MC, Fatah R, Wu Y, Hannaman D, Rice J, Evans CF, Chernajovsky Y, Gould D. Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle. Curr Gene Ther 2015; 15:3-14. [PMID: 25545919 PMCID: PMC4443798 DOI: 10.2174/1566523214666141114204943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/16/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022]
Abstract
Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3'UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Gould
- Bone & Joint Research Unit, Queen Mary University of London, William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
49
|
Rincon MY, Sarcar S, Danso-Abeam D, Keyaerts M, Matrai J, Samara-Kuko E, Acosta-Sanchez A, Athanasopoulos T, Dickson G, Lahoutte T, De Bleser P, VandenDriessche T, Chuah MK. Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional Cis-regulatory motifs that enable efficient cardiac gene therapy. Mol Ther 2015; 23:43-52. [PMID: 25195597 PMCID: PMC4426801 DOI: 10.1038/mt.2014.178] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.
Collapse
Affiliation(s)
- Melvin Y Rincon
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Shilpita Sarcar
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Dina Danso-Abeam
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marleen Keyaerts
- Nuclear Medicine Department, UZ Brussel & In vivo Cellular and Molecular Imaging Lab, Free University of Brussels (VUB), Brussels, Belgium
| | - Janka Matrai
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Abel Acosta-Sanchez
- Vesalius Research Center, Flanders Institute of Biotechnology (VIB) & University of Leuven, Leuven, Belgium
| | | | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, UK
| | - Tony Lahoutte
- Nuclear Medicine Department, UZ Brussel & In vivo Cellular and Molecular Imaging Lab, Free University of Brussels (VUB), Brussels, Belgium
| | - Pieter De Bleser
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB) and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Mol Ther 2014; 22:1890-9. [PMID: 25048216 DOI: 10.1038/mt.2014.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276I(KI)) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276I(KI) mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective.
Collapse
|