1
|
Singh P, Selvarasu K, Ghosh-Roy A. Optimization of RNAi efficiency in PVD neuron of C. elegans. PLoS One 2024; 19:e0298766. [PMID: 38498505 PMCID: PMC10947639 DOI: 10.1371/journal.pone.0298766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
PVD neuron of C. elegans has become an attractive model for the study of dendrite development and regeneration due to its elaborate and stereotype dendrite morphology. RNA interference (RNAi) by feeding E. coli expressing dsRNA has been the basis of several genome wide screens performed using C. elegans. However, the feeding method often fails when it comes to knocking down genes in nervous system. In order to optimize the RNAi conditions for PVD neuron, we fed the worm strains with E. coli HT115 bacteria expressing dsRNA against mec-3, hpo-30, and tiam-1, whose loss of function are known to show dendrite morphology defects in PVD neuron. We found that RNAi of these genes in the available sensitive backgrounds including the one expresses sid-1 under unc-119 promoter, although resulted in reduction of dendrite branching, the phenotypes were significantly modest compared to the respective loss of function mutants. In order to enhance RNAi in PVD neurons, we generated a strain that expressed sid-1 under the promoter mec-3, which exhibits strong expression in PVD. When Pmec-3::sid-1 is expressed in either nre-1(-)lin-15b(-) or lin-15b(-) backgrounds, the higher order branching phenotype after RNAi of mec-3, hpo-30, and tiam-1 was significantly enhanced as compared to the genetic background alone. Moreover, knockdown of genes playing role in dendrite regeneration in the nre-1(-)lin-15b(-), Pmec-3-sid-1[+] background resulted in significant reduction in dendrite regeneration following laser injury. The extent of dendrite regrowth due to the RNAi of aff-1 or ced-10 in our optimized strain was comparable to that of aff-1 and ced-10 mutants. Essentially, our strain expressing sid-1 in PVD neuron, provides an RNAi optimized platform for high throughput screening of genes involved in PVD development, maintenance and regeneration.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Kavinila Selvarasu
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
2
|
Ye P, Fang Q, Hu X, Zou W, Huang M, Ke M, Li Y, Liu M, Cai X, Zhang C, Hua N, Al-Sheikh U, Liu X, Yu P, Jiang P, Pan PY, Luo J, Jiang LH, Xu S, Fang EF, Su H, Kang L, Yang W. TRPM2 as a conserved gatekeeper determines the vulnerability of DA neurons by mediating ROS sensing and calcium dyshomeostasis. Prog Neurobiol 2023; 231:102530. [PMID: 37739206 DOI: 10.1016/j.pneurobio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Different dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C. elegans resulted in selective death of ADE but not CEP neurons in aged worms. Mechanistically, TRPM2 activation mediates FZO-1/CED-9-dependent mitochondrial hyperfusion and mitochondrial permeability transition (MPT), leading to ADE death. In mice, TRPM2 knockout reduced vulnerable substantia nigra pars compacta (SNc) DA neuronal death induced by stress. Moreover, the TRPM2-mediated vulnerable DA neuronal death pathway is conserved from C. elegans to toxin-treated mice model and PD patient iPSC-derived DA neurons. The vulnerable SNc DA neuronal loss is the major symptom and cause of PD, and therefore the TRPM2-mediated pathway serves as a promising therapeutic target against PD.
Collapse
Affiliation(s)
- Peiwu Ye
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuyuan Fang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xupang Hu
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Miaodan Huang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Minjing Ke
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yunhao Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaobo Cai
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Congyi Zhang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ning Hua
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Xingyu Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Peiran Jiang
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jianhong Luo
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Sino-UK Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453000, China; University of Leeds, Leeds LS2 9JT, UK
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Huanxing Su
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lijun Kang
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
3
|
Bernstein HG, Smalla KH, Keilhoff G, Dobrowolny H, Kreutz MR, Steiner J. The many "Neurofaces" of Prohibitins 1 and 2: Crucial for the healthy brain, dysregulated in numerous brain disorders. J Chem Neuroanat 2023; 132:102321. [PMID: 37524128 DOI: 10.1016/j.jchemneu.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are nearly ubiquitously expressed. They are localized in mitochondria, cytosol and cell nuclei. In the healthy CNS, they occur in neurons and non-neuronal cells (oligodendrocytes, astrocytes, microglia, and endothelial cells) and fulfill pivotal functions in brain development and aging, the regulation of brain metabolism, maintenance of structural integrity, synapse formation, aminoacidergic neurotransmission and, probably, regulation of brain action of certain hypothalamic-pituitary hormones.With regard to the diseased brain there is increasing evidence that prohibitins are prominently involved in numerous major diseases of the CNS, which are summarized and discussed in the present review (brain tumors, neurotropic viruses, Alzheimer disease, Down syndrome, Fronto-temporal and vascular dementia, dementia with Lewy bodies, Parkinson disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis, stroke, alcohol use disorder, schizophrenia and autism). Unfortunately, there is no PHB-targeted therapy available for any of these diseases.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, RG Neuroplasticity, D-39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology, RG Neuroplastcity, D-39118 Magdeburg, Germany; University Medical Center Hamburg Eppendorf, Leibniz Group "Dendritic Organelles and Synaptic Function" ZMNH, Hamburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
4
|
A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity. Nat Commun 2023; 14:288. [PMID: 36653384 PMCID: PMC9849402 DOI: 10.1038/s41467-023-35952-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary restriction (DR) delays aging and the onset of age-associated diseases. However, it is yet to be determined whether and how restriction of specific nutrients promote longevity. Previous genome-wide screens isolated several Escherichia coli mutants that extended lifespan of Caenorhabditis elegans. Here, using 1H-NMR metabolite analyses and inter-species genetics, we demonstrate that E. coli mutants depleted of intracellular glucose extend C. elegans lifespans, serving as bona fide glucose-restricted (GR) diets. Unlike general DR, GR diets don't reduce the fecundity of animals, while still improving stress resistance and ameliorating neuro-degenerative pathologies of Aβ42. Interestingly, AAK-2a, a new AMPK isoform, is necessary and sufficient for GR-induced longevity. AAK-2a functions exclusively in neurons to modulate GR-mediated longevity via neuropeptide signaling. Last, we find that GR/AAK-2a prolongs longevity through PAQR-2/NHR-49/Δ9 desaturases by promoting membrane fluidity in peripheral tissues. Together, our studies identify the molecular mechanisms underlying prolonged longevity by glucose specific restriction in the context of whole animals.
Collapse
|
5
|
Wang L, Graziano B, Encalada N, Fernandez-Abascal J, Kaplan DH, Bianchi L. Glial regulators of ions and solutes required for specific chemosensory functions in Caenorhabditis elegans. iScience 2022; 25:105684. [PMID: 36567707 PMCID: PMC9772852 DOI: 10.1016/j.isci.2022.105684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Glia and accessory cells regulate the microenvironment around neurons and primary sensory cells. However, the impact of specific glial regulators of ions and solutes on functionally diverse primary cells is poorly understood. Here, we systemically investigate the requirement of ion channels and transporters enriched in Caenorhabditis elegans Amsh glia for the function of chemosensory neurons. Although Amsh glia ablated worms show reduced function of ASH, AWC, AWA, and ASE neurons, we show that the loss of glial enriched ion channels and transporters impacts these neurons differently, with nociceptor ASH being the most affected. Furthermore, our analysis underscores the importance of K+, Cl-, and nucleoside homeostasis in the Amphid sensory organ and uncovers the contribution of glial genes implicated in neurological disorders. Our findings build a unique fingerprint of each glial enriched ion channel and transporter and may provide insights into the function of supporting cells of mammalian sensory organs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Bianca Graziano
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Nicole Encalada
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Jesus Fernandez-Abascal
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Daryn H. Kaplan
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| |
Collapse
|
6
|
HDAC3 Knockdown Dysregulates Juvenile Hormone and Apoptosis-Related Genes in Helicoverpa armigera. Int J Mol Sci 2022; 23:ijms232314820. [PMID: 36499148 PMCID: PMC9740019 DOI: 10.3390/ijms232314820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Insect development requires genes to be expressed in strict spatiotemporal order. The dynamic regulation of genes involved in insect development is partly orchestrated by the histone acetylation-deacetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although histone deacetylase 3 (HDAC3) is required for mice during early embryonic development, its functions in Helicoverpa armigera (H. armigera) and its potential to be used as a target of insecticides remain unclear. We treated H. armigera with HDAC3 siRNA and RGFP966, a specific inhibitor, examining how the HDAC3 loss-of-function affects growth and development. HDAC3 siRNA and RGFP966 treatment increased mortality at each growth stage and altered metamorphosis, hampering pupation and causing abnormal wing development, reduced egg production, and reduced hatching rate. We believe that the misregulation of key hormone-related genes leads to abnormal pupa development in HDAC3 knockout insects. RNA-seq analysis identified 2788 differentially expressed genes (≥two-fold change; p ≤ 0.05) between siHDAC3- and siNC-treated larvae. Krüppel homolog 1 (Kr-h1), was differentially expressed in HDAC3 knockdown larvae. Pathway-enrichment analysis revealed the significant enrichment of genes involved in the Hippo, MAPK, and Wnt signaling pathways following HDAC3 knockdown. Histone H3K9 acetylation was increased in H. armigera after siHDAC3 treatment. In conclusion, HDAC3 knockdown dysregulated juvenile hormone (JH)-related and apoptosis-related genes in H. armigera. The results showed that the HDAC3 gene is a potential target for fighting H. armigera.
Collapse
|
7
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Thompson JW, Michel MFV, Phillips BT. Centrosomal Enrichment and Proteasomal Degradation of SYS-1/β-catenin Requires the Microtubule Motor Dynein. Mol Biol Cell 2022; 33:ar42. [PMID: 35196020 PMCID: PMC9282011 DOI: 10.1091/mbc.e22-02-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Caenorhabditis elegans Wnt/β-catenin asymmetry (WβA) pathway utilizes asymmetric regulation of SYS-1/β-catenin and POP-1/TCF coactivators. WβA differentially regulates gene expression during cell fate decisions, specifically by asymmetric localization of determinants in mother cells to produce daughters biased toward their appropriate cell fate. Despite the induction of asymmetry, β-catenin localizes symmetrically to mitotic centrosomes in both mammals and C. elegans. Owing to the mitosis-specific localization of SYS-1 to centrosomes and enrichment of SYS-1 at kinetochore microtubules when SYS-1 centrosomal loading is disrupted, we investigated active trafficking in SYS-1 centrosomal localization. Here, we demonstrate that trafficking by microtubule motor dynein is required to maintain SYS-1 centrosomal enrichment, by dynein RNA interference (RNAi)-mediated decreases in SYS-1 centrosomal enrichment and by temperature-sensitive allele of the dynein heavy chain. Conversely, we observe depletion of microtubules by nocodazole treatment or RNAi of dynein-proteasome adapter ECPS-1 exhibits increased centrosomal enrichment of SYS-1. Moreover, disruptions to SYS-1 or negative regulator microtubule trafficking are sufficient to significantly exacerbate SYS-1 dependent cell fate misspecifications. We propose a model whereby retrograde microtubule-mediated trafficking enables SYS-1 enrichment at centrosomes, enhancing its eventual proteasomal degradation. These studies support the link between centrosomal localization and enhancement of proteasomal degradation, particularly for proteins not generally considered “centrosomal.”
Collapse
Affiliation(s)
| | - Maria F Valdes Michel
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242-1324
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242-1324
| |
Collapse
|
10
|
Reprogramming the piRNA pathway for multiplexed and transgenerational gene silencing in C. elegans. Nat Methods 2022; 19:187-194. [PMID: 35115715 PMCID: PMC9798472 DOI: 10.1038/s41592-021-01369-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023]
Abstract
Single-guide RNAs can target exogenous CRISPR-Cas proteins to unique DNA locations, enabling genetic tools that are efficient, specific and scalable. Here we show that short synthetic guide Piwi-interacting RNAs (piRNAs) (21-nucleotide sg-piRNAs) expressed from extrachromosomal transgenes can, analogously, reprogram the endogenous piRNA pathway for gene-specific silencing in the hermaphrodite germline, sperm and embryos of Caenorhabditis elegans. piRNA-mediated interference ('piRNAi') is more efficient than RNAi and can be multiplexed, and auxin-mediated degradation of the piRNA-specific Argonaute PRG-1 allows conditional gene silencing. Target-specific silencing results in decreased messenger RNA levels, amplification of secondary small interfering RNAs and repressive chromatin modifications. Short (300 base pairs) piRNAi transgenes amplified from arrayed oligonucleotide pools also induce silencing, potentially making piRNAi highly scalable. We show that piRNAi can induce transgenerational epigenetic silencing of two endogenous genes (him-5 and him-8). Silencing is inherited for four to six generations after target-specific sg-piRNAs are lost, whereas depleting PRG-1 leads to essentially permanent epigenetic silencing.
Collapse
|
11
|
Garbrecht J, Laos T, Holzer E, Dillinger M, Dammermann A. An acentriolar centrosome at the C. elegans ciliary base. Curr Biol 2021; 31:2418-2428.e8. [PMID: 33798427 DOI: 10.1016/j.cub.2021.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023]
Abstract
In animal cells, the functions of the microtubule cytoskeleton are coordinated by centriole-based centrosomes via γ-tubulin complexes embedded in the pericentriolar material or PCM.1 PCM assembly has been best studied in the context of mitosis, where centriolar SPD-2 recruits PLK-1, which in turn phosphorylates key scaffolding components like SPD-5 and CNN to promote expansion of the PCM polymer.2-4 To what extent these mechanisms apply to centrosomes in interphase or in differentiated cells remains unclear.5 Here, we examine a novel type of centrosome found at the ciliary base of C. elegans sensory neurons, which we show plays important roles in neuronal morphogenesis, cellular trafficking, and ciliogenesis. These centrosomes display similar dynamic behavior to canonical, mitotic centrosomes, with a stable PCM scaffold and dynamically localized client proteins. Unusually, however, they are not organized by centrioles, which degenerate early in terminal differentiation.6 Yet, PCM not only persists but continues to grow with key scaffolding proteins including SPD-5 expressed under control of the RFX transcription factor DAF-19. This assembly occurs in the absence of the mitotic regulators SPD-2, AIR-1 and PLK-1, but requires tethering by PCMD-1, a protein which also plays a role in the initial, interphase recruitment of PCM in early embryos.7 These results argue for distinct mechanisms for mitotic and non-mitotic PCM assembly, with only the former requiring PLK-1 phosphorylation to drive rapid expansion of the scaffold polymer.
Collapse
Affiliation(s)
- Joachim Garbrecht
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna
| | - Triin Laos
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna
| | - Elisabeth Holzer
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Margarita Dillinger
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
12
|
Hintze M, Katsanos D, Shahrezaei V, Barkoulas M. Phenotypic Robustness of Epidermal Stem Cell Number in C. elegans Is Modulated by the Activity of the Conserved N-acetyltransferase nath-10/NAT10. Front Cell Dev Biol 2021; 9:640856. [PMID: 34084768 PMCID: PMC8168469 DOI: 10.3389/fcell.2021.640856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Individual cells and organisms experience perturbations from internal and external sources, yet manage to buffer these to produce consistent phenotypes, a property known as robustness. While phenotypic robustness has often been examined in unicellular organisms, it has not been sufficiently studied in multicellular animals. Here, we investigate phenotypic robustness in Caenorhabditis elegans seam cells. Seam cells are stem cell-like epithelial cells along the lateral edges of the animal, which go through asymmetric and symmetric divisions contributing cells to the hypodermis and neurons, while replenishing the stem cell reservoir. The terminal number of seam cells is almost invariant in the wild-type population, allowing the investigation of how developmental precision is achieved. We report here that a loss-of-function mutation in the highly conserved N-acetyltransferase nath-10/NAT10 increases seam cell number variance in the isogenic population. RNA-seq analysis revealed increased levels of mRNA transcript variability in nath-10 mutant populations, which may have an impact on the phenotypic variability observed. Furthermore, we found disruption of Wnt signaling upon perturbing nath-10 function, as evidenced by changes in POP-1/TCF nuclear distribution and ectopic activation of its GATA transcription factor target egl-18. These results highlight that NATH-10/NAT-10 can influence phenotypic variability partly through modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Dimitris Katsanos
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College, London, United Kingdom
| | | |
Collapse
|
13
|
Hagen J, Sarkies P, Selkirk ME. Lentiviral transduction facilitates RNA interference in the nematode parasite Nippostrongylus brasiliensis. PLoS Pathog 2021; 17:e1009286. [PMID: 33497411 PMCID: PMC7864396 DOI: 10.1371/journal.ppat.1009286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Animal-parasitic nematodes have thus far been largely refractory to genetic manipulation, and methods employed to effect RNA interference (RNAi) have been ineffective or inconsistent in most cases. We describe here a new approach for genetic manipulation of Nippostrongylus brasiliensis, a widely used laboratory model of gastrointestinal nematode infection. N. brasiliensis was successfully transduced with Vesicular Stomatitis Virus glycoprotein G (VSV-G)-pseudotyped lentivirus. The virus was taken up via the nematode intestine, RNA reverse transcribed into proviral DNA, and transgene transcripts produced stably in infective larvae, which resulted in expression of the reporter protein mCherry. Improved transgene expression was achieved by incorporating the C. elegans hlh11 promoter and the tbb2 3´-UTR into viral constructs. MicroRNA-adapted short hairpin RNAs delivered in this manner were processed correctly and resulted in partial knockdown of β-tubulin isotype-1 (tbb-iso-1) and secreted acetylcholinesterase B (ache-B). The system was further refined by lentiviral delivery of double stranded RNAs, which acted as a trigger for RNAi following processing and generation of 22G-RNAs. Virus-encoded sequences were detectable in F1 eggs and third stage larvae, demonstrating that proviral DNA entered the germline and was heritable. Lentiviral transduction thus provides a new means for genetic manipulation of parasitic nematodes, including gene silencing and expression of exogenous genes. The complex life cycle of parasitic nematodes makes them very difficult to manipulate genetically, and methods to delete or silence genes which are routinely used in other organisms are ineffective in most species of nematodes which infect animals. This has hindered attempts to understand the function of defined genes and proteins, and their roles in development and interaction of nematode parasites with their host. We show here that foreign genetic material can be introduced into a widely used laboratory model of intestinal nematode infection by using a viral vector. The vector was modified to improve transgene expression, and a reporter protein expressed by transduced nematode larvae in vitro. We subsequently utilised the viral vector to deliver double stranded RNA molecules to the larvae. These molecules were processed along known pathways, resulting in partial knockdown of two test genes. This system represents a new means of genetically manipulating nematode parasites, and will aid in understanding their complex biology, in addition to defining new targets for control of infection.
Collapse
Affiliation(s)
- Jana Hagen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Zheng QC, Jiang S, Wu YZ, Shang D, Zhang Y, Hu SB, Cheng X, Zhang C, Sun P, Gao Y, Song ZF, Li M. Dual-Targeting Nanoparticle-Mediated Gene Therapy Strategy for Hepatocellular Carcinoma by Delivering Small Interfering RNA. Front Bioeng Biotechnol 2020; 8:512. [PMID: 32587849 PMCID: PMC7297947 DOI: 10.3389/fbioe.2020.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
As a gene therapy strategy, RNA interference (RNAi) offers tremendous tumor therapy potential. However, its therapeutic efficacy is restricted by its inferior ability for targeted delivery and cellular uptake of small interfering RNA (siRNA). This study sought to develop a dual-ligand nanoparticle (NP) system loaded with siRNA to promote targeted delivery and therapeutic efficacy. We synthesized a dual receptor-targeted chitosan nanosystem (GCGA), whose target function was controlled by the ligands of galactose of lactobionic acid (LA) and glycyrrhetinic acid (GA). By loading siPAK1, an siRNA targeting P21-activated kinase 1 (PAK1), a molecular-targeted therapeutic dual-ligand NP (GCGA-siPAK1) was established. We investigated the synergistic effect of these two targeting units in hepatocellular carcinoma (HCC). In particular, GCGA-siPAK1 enhanced the NP targeting ability and promoted siPAK1 cell uptake. Subsequently, dramatic decreases in cell proliferation, invasion, and migration, with an apparent increase in cell apoptosis, were observed in treated cells. Furthermore, this dual-ligand NP gene delivery system demonstrated significant anti-tumor effects in tumor-bearing mice. Finally, we illuminated the molecular mechanism, whereby GCGA-siPAK1 promotes endogenous cell apoptosis through the PAK1/MEK/ERK pathway. Thus, the dual-target property effectively promotes the HCC therapeutic effect and provides a promising gene therapy strategy for clinical applications.
Collapse
Affiliation(s)
- Qi Chang Zheng
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Jiang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhe Wu
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Shang
- Department of Vascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shao Bo Hu
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zi Fang Song
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Rieckher M, Markaki M, Princz A, Schumacher B, Tavernarakis N. Maintenance of Proteostasis by P Body-Mediated Regulation of eIF4E Availability during Aging in Caenorhabditis elegans. Cell Rep 2020; 25:199-211.e6. [PMID: 30282029 PMCID: PMC6180348 DOI: 10.1016/j.celrep.2018.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022] Open
Abstract
Aging is accompanied by a pervasive collapse of proteostasis, while reducing general protein synthesis promotes longevity across taxa. Here, we show that the eIF4E isoform IFE-2 is increasingly sequestered in mRNA processing (P) bodies during aging and upon stress in Caenorhabditis elegans. Loss of the enhancer of mRNA decapping EDC-3 causes further entrapment of IFE-2 in P bodies and lowers protein synthesis rates in somatic tissues. Animals lacking EDC-3 are long lived and stress resistant, congruent with IFE-2-deficient mutants. Notably, neuron-specific expression of EDC-3 is sufficient to reverse lifespan extension, while sequestration of IFE-2 in neuronal P bodies counteracts age-related neuronal decline. The effects of mRNA decapping deficiency on stress resistance and longevity are orchestrated by a multimodal stress response involving the transcription factor SKN-1, which mediates lifespan extension upon reduced protein synthesis. Our findings elucidate a mechanism of proteostasis control during aging through P body-mediated regulation of protein synthesis in the soma.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece; Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, 50931 Cologne, Germany
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece
| | - Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, 50931 Cologne, Germany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece; Department of Basic Sciences, School of Medicine, University of Crete, Heraklion 71110, Greece.
| |
Collapse
|
16
|
Liu X, Zhang Y, Liu H, Jiao X, Zhang Q, Zhang S, Zhao ZK. RNA interference in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res 2019; 19:5462653. [PMID: 30985887 DOI: 10.1093/femsyr/foz031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/13/2019] [Indexed: 01/21/2023] Open
Abstract
The red yeast Rhodosporidium toruloides is an excellent microbial host for production of carotenoids, neutral lipids and valuable enzymes. In recent years, genetic tools for gene expression and gene disruption have been developed for this red yeast. However, methods remain limited in terms of fine-tuning gene expression. In this study, we first demonstrated successful implementation of RNA interference (RNAi) in R. toruloides NP11, which was applied to down-regulate the expression of autophagy related gene 8 (ATG8), and fatty acid synthase genes (FAS1 and FAS2), respectively. Compared with the control strain, RNAi-engineered strains showed a silencing efficiency ranging from 11% to 92%. The RNAi approach described here ensures selective inhibition of the target gene expression, and should expand our capacity in the genetic manipulation of R. toruloides for both fundamental research and advanced cell factory development.
Collapse
Affiliation(s)
- Xiangjian Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China.,Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongdi Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiang Jiao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Qi Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
17
|
Müthel S, Uyar B, He M, Krause A, Vitrinel B, Bulut S, Vasiljevic D, Marchal I, Kempa S, Akalin A, Tursun B. The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans. Aging Cell 2019; 18:e13012. [PMID: 31397537 PMCID: PMC6826145 DOI: 10.1111/acel.13012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN‐53 (RBBP4/7) associates with different chromatin‐regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN‐53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN‐53 die early because LIN‐53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin‐53 and sin‐3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin‐53 and sin‐3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN‐53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN‐53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved.
Collapse
Affiliation(s)
- Stefanie Müthel
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Bora Uyar
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Mei He
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Anne Krause
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Burcu Vitrinel
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Selman Bulut
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Djordje Vasiljevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Iris Marchal
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Stefan Kempa
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Altuna Akalin
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Baris Tursun
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| |
Collapse
|
18
|
Ravikumar S, Devanapally S, Jose AM. Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Res 2019; 47:10059-10071. [PMID: 31501873 PMCID: PMC6821342 DOI: 10.1093/nar/gkz748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Delivery of double-stranded RNA (dsRNA) into animals can silence genes of matching sequence in diverse cell types through mechanisms that have been collectively called RNA interference. In the nematode Caenorhabditis elegans, dsRNA from multiple sources can trigger the amplification of silencing signals. Amplification occurs through the production of small RNAs by two RNA-dependent RNA polymerases (RdRPs) that are thought to be tissue-specific - EGO-1 in the germline and RRF-1 in somatic cells. Here we demonstrate that EGO-1 can compensate for the lack of RRF-1 when dsRNA from neurons is used to silence genes in intestinal cells. However, the lineal origins of cells that can use EGO-1 varies. This variability could be because random sets of cells can either receive different amounts of dsRNA from the same source or use different RdRPs to perform the same function. Variability is masked in wild-type animals, which show extensive silencing by neuronal dsRNA. As a result, cells appear similarly functional despite underlying differences that vary from animal to animal. This functional mosaicism cautions against inferring uniformity of mechanism based on uniformity of outcome. We speculate that functional mosaicism could contribute to escape from targeted therapies and could allow developmental systems to drift over evolutionary time.
Collapse
Affiliation(s)
- Snusha Ravikumar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sindhuja Devanapally
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Porro C, Panaro MA, Lofrumento DD, Hasalla E, Trotta T. The multiple roles of exosomes in Parkinson's disease: an overview. Immunopharmacol Immunotoxicol 2019; 41:469-476. [PMID: 31405314 DOI: 10.1080/08923973.2019.1650371] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular vesicles (EVs) represent a relatively new field of research in neurodegenerative disease and they are thought to be one of the ways that neurodegenerative pathologies, such as Parkinson's Disease (PD), spread in the brain. EVs are membrane vesicles released from cells into the extracellular space and they are produced by all cells of the nervous tissue. The classification of the vesicle subtypes comprises exosomes, microvesicles/microparticles, apoptotic bodies. EVs change in number and content in response to environmental conditions and may function as shuttles for the delivery of cargo between cells. Recent data suggest that exosomes secreted by both activated microglia and neurons play an important role in α-synuclein (α-syn) spreading and increase of neuroinflammation, thus exacerbating neuronal dysfunction and disease progression. α-syn is a presynaptic protein secreted by neurons in small amounts, and it is the main component of Lewy bodies, one of the histopathological features of PD. Several factors have shown to induce and/or modulate α-syn structure and oligomerization in vitro. Under pathological conditions, progressive accumulation of α-syn and the formation of oligomers have been proposed to play a critical role in the pathogenesis of PD. This review gives an overview about the multiple roles of exosomes in PD, despite their role in the progression of neurodegeneration, exosomes could represent a specific drug delivery tool for a difficult target such as the brain, which poses an obstacle to most drugs and they could also represent new biomarkers to track the progression of PD.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari , Italy
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento , Lecce , Italy
| | - Elona Hasalla
- Department of Pre-Clinic Subjects, Faculty of Medical Sciences, University of Elbasan "Aleksander Xhuvani" , Elbasan , Albania
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| |
Collapse
|
20
|
Jagadeesan S, Hakkim A. RNAi Screening: Automated High-Throughput Liquid RNAi Screening in Caenorhabditis elegans. ACTA ACUST UNITED AC 2018; 124:e65. [PMID: 30204302 DOI: 10.1002/cpmb.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNAi is a powerful reverse genetics tool that has revolutionized genetic studies in model organisms. The bacteriovorous nematode Caenorhabditis elegans can be genetically manipulated by feeding it an Escherichia coli strain that expresses a double-stranded RNA (dsRNA) corresponding to a C. elegans gene, which leads to systemic silencing of the gene. This unit describes protocols for performing an automated high-throughput RNAi screen utilizing a full-genome C. elegans RNAi library. The protocols employ liquid-handling robotics and 96-well plates. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sakthimala Jagadeesan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Abdul Hakkim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Cooper JF, Van Raamsdonk JM. Modeling Parkinson's Disease in C. elegans. JOURNAL OF PARKINSON'S DISEASE 2018; 8:17-32. [PMID: 29480229 PMCID: PMC5836411 DOI: 10.3233/jpd-171258] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is an adult onset neurodegenerative disease that is characterized by selective degeneration of neurons primarily in the substantia nigra. At present, the pathogenesis of PD is incompletely understood and there are no neuroprotective treatments available. Accurate animal models of PD provide the opportunity to elucidate disease mechanisms and identify therapeutic targets. This review focuses on C. elegans models of PD, including both genetic and toxicant models. This microscopic worm offers several advantages for the study of PD including ease of genetic manipulation, ability to complete experiments rapidly, low cost, and ability to perform large scale screens for disease modifiers. A number of C. elegans models of PD have been generated including transgenic worms that express α-synuclein or LRRK2, and worms with deletions in PRKN/pdr-1, PINK1/pink-1, DJ-1/djr-1.1/djr-1.2 and ATP13A2/catp-6. These worms have been shown to exhibit multiple phenotypic deficits including the loss of dopamine neurons, disruption of dopamine-dependent behaviors, increased sensitivity to stress, age-dependent aggregation, and deficits in movement. As a result, these phenotypes can be used as outcome measures to gain insight into disease pathogenesis and to identify disease modifiers. In this way, C. elegans can be used as an experimental tool to elucidate mechanisms involved in PD and to find novel therapeutic targets that can subsequently be validated in other models.
Collapse
Affiliation(s)
- Jason F. Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M. Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
22
|
Raman P, Zaghab SM, Traver EC, Jose AM. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans. Nucleic Acids Res 2017; 45:8463-8473. [PMID: 28541563 PMCID: PMC5737277 DOI: 10.1093/nar/gkx484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates.
Collapse
Affiliation(s)
- Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Soriayah M Zaghab
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Edward C Traver
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
23
|
Miki TS, Carl SH, Großhans H. Two distinct transcription termination modes dictated by promoters. Genes Dev 2017; 31:1870-1879. [PMID: 29021241 PMCID: PMC5695088 DOI: 10.1101/gad.301093.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
In this study, Miki et al. performed a genome-wide investigation of RNA polymerase II transcription termination in XRN2-deficient Caenorhabditis elegans and observed two distinct modes of termination. Their findings indicate that different termination mechanisms may work with different configurations of Pol II complexes dictated by promoters. Transcription termination determines the ends of transcriptional units and thereby ensures the integrity of the transcriptome and faithful gene regulation. Studies in yeast and human cells have identified the exoribonuclease XRN2 as a key termination factor for protein-coding genes. Here we performed a genome-wide investigation of RNA polymerase II (Pol II) transcription termination in XRN2-deficient Caenorhabditis elegans and observed two distinct modes of termination. Although a subset of genes requires XRN2, termination of other genes appears both independent of, and refractory to, XRN2. XRN2 independence is not merely a consequence of failure to recruit XRN2, since XRN2 is present on—and promotes Pol II accumulation near the polyadenylation sites of—both gene classes. Unexpectedly, promoters instruct the choice of termination mode, but XRN2-independent termination additionally requires a compatible region downstream from the 3′ end cleavage site. Hence, different termination mechanisms may work with different configurations of Pol II complexes dictated by promoters.
Collapse
Affiliation(s)
- Takashi S Miki
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
24
|
Rapti G, Li C, Shan A, Lu Y, Shaham S. Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nat Neurosci 2017; 20:1350-1360. [PMID: 28846083 PMCID: PMC5614858 DOI: 10.1038/nn.4630] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a Chimaerin (CHIN-1)- Furin (KPC-1) double-mutant that severely disrupts assembly. CHIN-1 and KPC-1 function noncanonically, in glia and pioneer neurons, for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo (CELSR) in follower-axon navigation. Taken together, our studies reveal previously undescribed glial roles in pioneer-axon guidance, suggesting conserved principles of brain assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Chang Li
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Alan Shan
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
25
|
Bharadwaj PS, Hall SE. Endogenous RNAi Pathways Are Required in Neurons for Dauer Formation in Caenorhabditis elegans. Genetics 2017; 205:1503-1516. [PMID: 28122825 PMCID: PMC5378109 DOI: 10.1534/genetics.116.195438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022] Open
Abstract
Animals can adapt to unfavorable environments through changes in physiology or behavior. In the nematode, Caenorhabditis elegans, environmental conditions perceived early in development determine whether the animal enters either the reproductive cycle, or enters into an alternative diapause stage named dauer. Here, we show that endogenous RNAi pathways play a role in dauer formation in crowding (high pheromone), starvation, and high temperature conditions. Disruption of the Mutator proteins or the nuclear Argonaute CSR-1 result in differential dauer-deficient phenotypes that are dependent upon the experienced environmental stress. We provide evidence that the RNAi pathways function in chemosensory neurons for dauer formation, upstream of the TGF-β and insulin signaling pathways. In addition, we show that Mutator MUT-16 expression in a subset of individual pheromone-sensing neurons is sufficient for dauer formation in high pheromone conditions, but not in starvation or high temperature conditions. Furthermore, we also show that MUT-16 and CSR-1 are required for expression of a subset of G proteins with functions in the detection of pheromone components. Together, our data suggest a model where Mutator-amplified siRNAs that associate with the CSR-1 pathway promote expression of genes required for the detection and signaling of environmental conditions to regulate development and behavior in C. elegans This study highlights a mechanism whereby RNAi pathways mediate the link between environmental stress and adaptive phenotypic plasticity in animals.
Collapse
Affiliation(s)
| | - Sarah E Hall
- Department of Biology, Syracuse University, New York 13244
| |
Collapse
|
26
|
Abstract
Microinjection is the most frequently used tool for genetic transformation of the nematode Caenorhabditis elegans, facilitating the transgenic expression of genes, genome editing by the clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 system, or transcription of dsRNA for RNA intereference (RNAi). Exogenous DNA is delivered into the developing oocytes in the germline of adult hermaphrodites, which then generate transgenic animals among their offspring. In this protocol, we describe the microinjection procedure and the subsequent selection of transgenic progeny.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Crete, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Crete, Greece
| |
Collapse
|
27
|
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 2016; 18:24-40. [PMID: 27795562 DOI: 10.1038/nrg.2016.118] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.
Collapse
Affiliation(s)
- Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Matthew Gemberling
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 43 Ludwigstrasse, Bad Nauheim 61231, Germany
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21218, USA.,Howard Hughes Medical Institute, 725 North Wolfe Street, Baltimore, Maryland 21218, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Abstract
Short interfering RNAs (siRNAs) are as effective at targeting and silencing genes by RNA interference (RNAi) as long double-stranded RNAs (dsRNAs). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. siRNAs are also promising reagents for developing gene-specific therapeutics. Specifically, the inhibition of HIV-1 replication is particularly well-suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on recent advances in siRNA-based silencing technologies.
Collapse
Affiliation(s)
- Hiroshi Takaku
- Department of Life & Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, Chiba, Japan.
| |
Collapse
|
29
|
Feng J, Wang X, Liao Y, Feng J, Tang L. A novel conditional gene silencing method using a tumor-specific and heat-inducible siRNA system. J Ind Microbiol Biotechnol 2016; 43:761-770. [PMID: 27033537 DOI: 10.1007/s10295-016-1759-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/15/2016] [Indexed: 12/30/2022]
Abstract
RNAi technology is an invaluable tool for investigating gene function. However, the non-temporal and non-spatial control is the primary limitation, which leads to siRNA leakiness and off-target effects. In this study, we inserted three kinds of HSE into tumor specific promoter hTERT, which aims to construct a temperature-inducible and tumor-specific RNAi plasmid vector. In our system, the expression of mature siRNA is tightly controlled by the heat shock-inducible and tumor-specific promoters. From the expression level of RNA and protein, we determined the efficiency of the inducible siRNA system by targeting SNCG gene in HepG2 and MCF-7 cells. Results showed that the controllable siRNA system could be induced to initiate siRNA expression by heat-induce. The silencing effect of SNCG is on a relative low level (10 %) at 37 °C, while it is significantly increased to 50 or 60 % after heat inducing at 43 °C. This new conditional siRNA system provides a novel approach to drive the siRNA expression by heat-inducible and tumor-specific promoter.
Collapse
Affiliation(s)
- Jing Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yi Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
30
|
Gasser RB, Schwarz EM, Korhonen PK, Young ND. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. ADVANCES IN PARASITOLOGY 2016; 93:519-67. [PMID: 27238012 DOI: 10.1016/bs.apar.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis.
Collapse
Affiliation(s)
- R B Gasser
- The University of Melbourne, Parkville, VIC, Australia
| | - E M Schwarz
- The University of Melbourne, Parkville, VIC, Australia; Cornell University, Ithaca, NY, United States
| | - P K Korhonen
- The University of Melbourne, Parkville, VIC, Australia
| | - N D Young
- The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Goszczynski B, Captan VV, Danielson AM, Lancaster BR, McGhee JD. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway. Dev Biol 2016; 413:112-27. [PMID: 26963674 DOI: 10.1016/j.ydbio.2016.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
The Caenorhabditis elegans vitellogenin genes are transcribed in the intestine of adult hermaphrodites but not of males. A 44-bp region from the vit-2 gene promoter is able largely to reconstitute this tissue-, stage- and sex-specific-expression. This "enhancer" contains a binding site for the DM-domain factor MAB-3, the male-specific repressor of vitellogenesis, as well as an activator site that we show is the direct target of the intestinal GATA factor ELT-2. We further show that the enhancer is directly activated by the winged-helix/forkhead-factor FKH-9, (whose gene has been shown by others to be a direct target of DAF-16), by an unknown activator binding to the MAB-3 site, and by the full C. elegans TGF-β/Sma/Mab pathway acting within the intestine. The vit-2 gene has been shown by others to be repressed by the daf-2/daf-16 insulin signaling pathway, which so strongly influences aging and longevity in C. elegans. We show that the activity of the 44 bp vit-2 enhancer is abolished by loss of daf-2 but is restored by simultaneous loss of daf-16. DAF-2 acts from outside of the intestine but DAF-16 acts both from outside of the intestine and from within the intestine where it binds directly to the same non-canonical target site that interacts with FKH-9. Activity of the 44 bp vit-2 enhancer is also inhibited by loss of the germline, in a manner that is only weakly influenced by DAF-16 but that is strongly influenced by KRI-1, a key downstream effector in the pathway by which germline loss increases C. elegans lifespan. The complex behavior of this enhancer presumably allows vitellogenin gene transcription to adjust to demands of body size, germline proliferation and nutritional state but we suggest that the apparent involvement of this enhancer in aging and longevity "pathways" could be incidental.
Collapse
Affiliation(s)
- Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vasile V Captan
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alicia M Danielson
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brett R Lancaster
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Vella LJ, Hill AF, Cheng L. Focus on Extracellular Vesicles: Exosomes and Their Role in Protein Trafficking and Biomarker Potential in Alzheimer's and Parkinson's Disease. Int J Mol Sci 2016; 17:173. [PMID: 26861304 PMCID: PMC4783907 DOI: 10.3390/ijms17020173] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Growing evidence indicates that small extracellular vesicles, called exosomes, are prominent mediators of neurodegenerative diseases such as prion, Alzheimer's and Parkinson's disease. Exosomes contain neurodegenerative disease associated proteins such as the prion protein, β-amyloid and α-synuclein. Only demonstrated so far in vivo with prion disease, exosomes are hypothesised to also facilitate the spread of β-amyloid and α-synuclein from their cells of origin to the extracellular environment. In the current review, we will discuss the role of exosomes in Alzheimer's and Parkinson's disease including their possible contribution to disease propagation and pathology and highlight their utility as a diagnostic in neurodegenerative disease.
Collapse
Affiliation(s)
- Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
33
|
Cherra SJ, Jin Y. A Two-Immunoglobulin-Domain Transmembrane Protein Mediates an Epidermal-Neuronal Interaction to Maintain Synapse Density. Neuron 2016; 89:325-36. [PMID: 26777275 PMCID: PMC4871750 DOI: 10.1016/j.neuron.2015.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Abstract
Synaptic maintenance is essential for neural circuit function. In the C. elegans locomotor circuit, motor neurons are in direct contact with the epidermis. Here, we reveal a novel epidermal-neuronal interaction mediated by a two-immunoglobulin domain transmembrane protein, ZIG-10, that is necessary for maintaining cholinergic synapse density. ZIG-10 is localized at the cell surface of epidermis and cholinergic motor neurons, with high levels at areas adjacent to synapses. Loss of zig-10 increases the number of cholinergic excitatory synapses and exacerbates convulsion behavior in a seizure model. Mis-expression of zig-10 in GABAergic inhibitory neurons reduces GABAergic synapse number, dependent on the presence of ZIG-10 in the epidermis. Furthermore, ZIG-10 interacts with the tyrosine kinase SRC-2 to regulate the phagocytic activity of the epidermis to restrict cholinergic synapse number. Our studies demonstrate the highly specific roles of non-neuronal cells in modulating neural circuit function, through neuron-type-specific maintenance of synapse density.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Liao BY, Weng MP. Functionalities of expressed messenger RNAs revealed from mutant phenotypes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:416-27. [PMID: 26748449 DOI: 10.1002/wrna.1329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
Abstract
Total messenger RNAs mRNAs that are produced from a given gene under a certain set of conditions include both functional and nonfunctional transcripts. The high prevalence of nonfunctional mRNAs that have been detected in cells has raised questions regarding the functional implications of mRNA expression patterns and divergences. Phenotypes that result from the mutagenesis of protein-coding genes have provided the most straightforward descriptions of gene functions, and such data obtained from model organisms have facilitated investigations of the functionalities of expressed mRNAs. Mutant phenotype data from mouse tissues have revealed various attributes of functional mRNAs, including tissue-specificity, strength of expression, and evolutionary conservation. In addition, the role that mRNA expression evolution plays in driving morphological evolution has been revealed from studies designed to exploit morphological and physiological phenotypes of mouse mutants. Investigations into yeast essential genes (defined by an absence of colony growth after gene deletion) have further described gene regulatory strategies that reduce protein expression noise by mediating the rates of transcription and translation. In addition to the functional significance of expressed mRNAs as described in the abovementioned findings, the functionalities of other type of RNAs (i.e., noncoding RNAs) remain to be characterized with systematic mutations and phenotyping of the DNA regions that encode these RNA molecules. WIREs RNA 2016, 7:416-427. doi: 10.1002/wrna.1329 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China
| | - Meng-Pin Weng
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China
| |
Collapse
|
35
|
Chaudhari A, Pathakota GB, Annam PK. Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference. Methods Mol Biol 2016; 1404:225-240. [PMID: 27076302 DOI: 10.1007/978-1-4939-3389-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA vaccines present the aquaculture industry with an effective and economically viable method of controlling viral pathogens that drastically affect productivity. Since specific immune response is rudimentary in invertebrates, the presence of RNA interference (RNAi) pathway in shrimps provides a promising new approach to vaccination. Plasmid DNA vaccines that express short or long double stranded RNA in vivo have shown protection against viral diseases. The design, construction and considerations for preparing such vaccines are discussed.
Collapse
Affiliation(s)
- Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India.
| | - Gireesh-Babu Pathakota
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India
| | - Pavan-Kumar Annam
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India
| |
Collapse
|
36
|
Zhang Y, He Y, He L, Zong HY, Cai GB. Molecular cloning and characterization of a phospholipid hydroperoxide glutathione peroxidase gene from a blood fluke Schistosoma japonicum. Mol Biochem Parasitol 2015; 203:5-13. [PMID: 26484892 DOI: 10.1016/j.molbiopara.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a major antioxidant enzyme and plays critical roles in the protection of cells against oxidative stress by catalysing reduction of lipid hydroperoxides. A full-length cDNA sequence corresponding to GPx gene from Schistosoma japonicum (designated SjGPx) was isolated and characterized. SjGPx contained an in-frame TGA codon for selenocysteine (Sec) and a concurrent Sec insertion sequence in its 3'-untranslated region. Protein encoded by SjGPx demonstrated a primary structure characteristic to the PHGPx family, including preservation of catalytic domains and absence of the subunit interaction domains. Phylogenetic analysis revealed that the SjGPx was highly related to the other PHGPx-related members, and clustered into the trematode subclade II. Semi-quantitative reverse transcription PCR and western blotting showed that the SjGPx was mainly expressed in the female adults and eggs. RNA interference was employed to investigate the effects of knockdown of SjGPx. SjGPx expression level was significantly reduced on the 5th day post-RNAi. We observed a 53.86% reduction in total GPx activity and the eggs severely deformed. Oxidative stimulation of viable worms with H2O2 or paraquat resulted in 1.6- to 2.1-fold induction of the GPx activity. Our results revealed that the SjGPx protein is selenium-dependent PHGPx, which might actively participate in the detoxification of oxidative damage during egg production.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Genetics, Wuhan University School of Basic Medicial Sciences, Wuhan, China
| | - Yuan He
- Department of Medical Parasitology, Wuhan University School of Basic Medicial Sciences, Wuhan, China
| | - Li He
- Department of Medical Parasitology, Wuhan University School of Basic Medicial Sciences, Wuhan, China
| | - Hong-Ying Zong
- Department of Medical Parasitology, Wuhan University School of Basic Medicial Sciences, Wuhan, China
| | - Guo-Bin Cai
- Department of Medical Parasitology, Wuhan University School of Basic Medicial Sciences, Wuhan, China.
| |
Collapse
|
37
|
Expression and characterization of a phospholipid hydroperoxide glutathione peroxidase gene in Schistosoma japonicum. Parasitology 2015; 142:1595-604. [PMID: 26283515 DOI: 10.1017/s0031182015001055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a major antioxidant enzyme, which plays unique roles in the protection of cells against oxidative stress by catalysing reduction of lipid hydroperoxides. We isolated and characterized a full-length cDNA sequence encoding GPx gene from a blood fluke, Schistosoma japonicum (designated SjGPx), which contained an in-frame TGA codon for selenocysteine (Sec) and a concurrent Sec insertion sequence in its 3'-untranslated region. Protein encoded by SjGPx demonstrated a primary structure characteristic to the PHGPx family, including preservation of catalytic domains and absence of the subunit interaction domains. Semi-quantitative reverse transcription PCR and Western blotting showed that the SjGPx was mainly expressed in the female adults and eggs. RNA interference approach was employed to investigate the effects of knockdown of SjGPx. SjGPx expression level was significantly reduced on the 5th day post-RNAi. Significantly reduction in GPx enzyme activities, as well as obvious changes in morphology of intrauterine eggs followed the reduction in SjGPx transcript level. We observed a 63·04% reduction in GPx activity and the eggs severely deformed. Our results revealed that SjGPx protein might be involved in the provision of enzyme activity during egg production.
Collapse
|
38
|
Conte D, MacNeil LT, Walhout AJ, Mello CC. RNA Interference in Caenorhabditis elegans. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2015; 109:26.3.1-26.3.30. [PMID: 25559107 PMCID: PMC5396541 DOI: 10.1002/0471142727.mb2603s109] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNAi has become an essential tool in C. elegans research. This unit describes procedures for RNAi in C. elegans by microinjecting with dsRNA, feeding with bacteria expressing dsRNA, and soaking in dsRNA solution, as well as high-throughput methods for RNAi-based screens.
Collapse
Affiliation(s)
- Darryl Conte
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lesley T. MacNeil
- Programs in Systems Biology and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Albertha J.M. Walhout
- Programs in Systems Biology and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Craig C. Mello
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Howard Hughes Medical Institute
| |
Collapse
|
39
|
Cantacessi C, Hofmann A, Campbell BE, Gasser RB. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions. Methods Mol Biol 2015; 1247:437-474. [PMID: 25399114 DOI: 10.1007/978-1-4939-2004-4_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput molecular and computer technologies have become instrumental for systems biological explorations of pathogens, including parasites. For instance, investigations of the transcriptomes of different developmental stages of parasitic nematodes give insights into gene expression, regulation and function in a parasite, which is a significant step to understanding their biology, as well as interactions with their host(s) and disease. This chapter (1) gives a background on some key parasitic nematodes of socioeconomic importance, (2) describes sequencing and bioinformatic technologies for large-scale studies of the transcriptomes and genomes of these parasites, (3) provides some recent examples of applications and (4) emphasizes the prospects of fundamental biological explorations of parasites using these technologies for the development of new interventions to combat parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | |
Collapse
|
40
|
New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics. PLoS Negl Trop Dis 2014; 8:e3173. [PMID: 25275433 PMCID: PMC4183473 DOI: 10.1371/journal.pntd.0003173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/06/2014] [Indexed: 01/11/2023] Open
Abstract
Background The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1), Pb03 (PS2) and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis. Methodology/Principal Findings In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble) and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA) from a Gateway-adapted cassette (cALf) which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach. Conclusions/Significance We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research. Diverse eukaryotes, including various fungi, utilize RNA interference (RNAi) pathways to regulate genome-wide gene expression. Since the initial characterization of these pathways and the demonstration of its artificial induction in the filamentous ascomycete Neurospora crassa, RNAi has emerged as the most robust reverse-genetic technique to scrutinize the function of genes and has been increasingly adopted in high-throughput functional genomics in search of new insights into fungal pathobiology. Herein, we have developed appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes for the human-pathogen Paracoccidioides brasiliensis, which is phylogenetically related to Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum. Likewise these thermo-dimorphic fungi, P. brasiliensis infection in immunocompetent or immunocompromised individuals ensue in a life-threatening systemic mycosis known as Paracoccidioidomycosis.
Collapse
|
41
|
Li W, Jie Z, Li Z, Liu Y, Gan Q, Mao Y, Wang X. ERCC1 siRNA ameliorates drug resistance to cisplatin in gastric carcinoma cell lines. Mol Med Rep 2014; 9:2423-8. [PMID: 24699918 DOI: 10.3892/mmr.2014.2112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
The present study examined the effects of cisplatin (DDP) on gastric carcinoma cells by inhibiting the expression of excision repair cross-complementing 1 (ERCC1) using RNA interference (RNAi). mRNA and protein expression of ERCC1 were measured in various gastric carcinoma cell lines using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis. Cells were treated with different concentrations of DDP and the cell viability was measured using an MTT assay. The correlation between the expression of the ERCC1 gene and the resistance to DDP in the cells was determined. The specific ERCC1 small interfering RNA (siRNA) was synthesized and then transfected into SGC-7901/DDP cells. Alterations in intracellular ERCC1 mRNA expression and protein levels were detected using RT-PCR and western blot analysis, the number of apoptotic cells were measured using flow-cytometry and the cell viability was measured using an MTT assay. The gene expression of ERCC1 correlated with the resistance to DDP of the cells. mRNA expression of ERCC1 was significantly reduced 24 h following transfection of ERCC1 siRNA compared with the mock control group. In addition, the number of apoptotic cells was increased and cell viability was significantly decreased in the ERCC1 siRNA-transfected group compared with the mock control group, suggesting that the sensitivity of SGC-7901/DDP cells to DDP had significantly increased. Cells transfected with siRNA1, siRNA2 and siRNA3 were significantly more sensitive to DPP (161, 381 and 249%, respectively) compared with the mock controls (P<0.05). The results of the present study showed that drug resistance to DDP in gastric carcinoma is correlated with increased expression of ERCC1; therefore, inhibition of ERCC1 by siRNA may ameliorate resistance to DDP in gastric carcinoma.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Jiangxi Provincial Corps Hospital, Chinese People's Armed Police Force, Nanchang, Jiangxi 330003, P.R. China
| | - Zhigang Jie
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Quan Gan
- Department of General Surgery, Jiangxi Provincial Corps Hospital, Chinese People's Armed Police Force, Nanchang, Jiangxi 330003, P.R. China
| | - Yiqiu Mao
- Department of General Surgery, Jiangxi Provincial Corps Hospital, Chinese People's Armed Police Force, Nanchang, Jiangxi 330003, P.R. China
| | - Xuemin Wang
- Department of General Surgery, Jiangxi Provincial Corps Hospital, Chinese People's Armed Police Force, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|
42
|
Han Y, Fu Z, Hong Y, Zhang M, Han H, Lu K, Yang J, Li X, Lin J. Inhibitory effects and analysis of RNA interference on thioredoxin glutathione reductase expression in Schistosoma japonicum. J Parasitol 2014; 100:463-9. [PMID: 24628421 DOI: 10.1645/13-397.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Schistosomes infect around 280 million people worldwide. The worms survive in the veins of the final host, where thioredoxin glutathione reductase (TGR) activity helps the parasites to survive in the aerobic environment. In the present study, we synthesized 4 small interfering RNAs (siRNA S1, S2, S3, and S4) targeting the Schistosoma japonicum (Sj) TGR gene and used them to knockdown the TGR gene. The knockdown effects of the siRNAs on SjTGR, and the thioredoxin reductase (TrxR) activity of SjTGR, were evaluated in vitro. The results of transfection with the siRNAs via the soaking method in vitro were confirmed by flow cytometry. S2 siRNA at a final concentration of 200 nM partially inhibited the expression of SjTGR at both the transcript and protein levels in vitro. TrxR-activity was lower in worms in the S2 siRNA-treated group compared with the control groups. Further analysis revealed that purified recombinant SjTGR could remove oxygen free radicals but not H(2)O(2) directly, which may explain the incomplete effects of RNA interference on SjTGR. The results of this study indicate that SjTGR may play an important role in the clearance of oxygen free radicals and protection of S. japonicum parasites against oxidative damage.
Collapse
Affiliation(s)
- Yanhui Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sin O, Michels H, Nollen EAA. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1951-1959. [PMID: 24525026 DOI: 10.1016/j.bbadis.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 01/17/2023]
Abstract
Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be applied to "humanized" models of C. elegans for neurodegenerative diseases, enabling for example the identification of genes involved in protein aggregation, one of the hallmarks of these diseases. In this review, we will describe the genetic screens employed in C. elegans and how these can be used to understand molecular processes involved in neurodegenerative and other human diseases. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Olga Sin
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands; Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Helen Michels
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands
| | - Ellen A A Nollen
- University of Groningen, University Medical Centre Groningen, European Research Institute for the Biology of Aging, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
44
|
A pre- and co-knockdown of RNAseT enzyme, Eri-1, enhances the efficiency of RNAi induced gene silencing in Caenorhabditis elegans. PLoS One 2014; 9:e87635. [PMID: 24475317 PMCID: PMC3901743 DOI: 10.1371/journal.pone.0087635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/28/2013] [Indexed: 01/08/2023] Open
Abstract
Background The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown. Methodology/Principal Findings Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans. Conclusions/Significance Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains.
Collapse
|
45
|
Chen B, Monteiro A. A method for inducible gene over-expression and down-regulation in emerging model species using Pogostick. Methods Mol Biol 2014; 1101:249-266. [PMID: 24233785 DOI: 10.1007/978-1-62703-721-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nontraditional model species need new tools for the functional testing of genes, both conserved and lineage-specific genes. These tools should enable the exploration of gene function, either via knock-downs of endogenous genes or via over-expression and ectopic expression of transgenes. We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ-line transformation by the piggyBac transposable element. The vector currently uses the heat-shock promoter Hsp70 from Drosophila melanogaster to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. Here we introduce the main features of Pogostick and how candidate genes can be inserted into the vector for use in either over-expression or down-regulation experiments. In addition, we also test Pogostick in two insect species, D. melanogaster and the emerging model butterfly Bicyclus anynana. We over-express the fluorescent protein DsRed during the larval and pupal stages of D. melanogaster development, and down-regulate DsRed in a line constitutively expressing this gene in the eyes. We then test the over-expression of Ultrabithorax (Ubx) in B. anynana, and obtain sequences flanking the Pogostick genomic insertions. This new vector will allow emerging model species to enter the field of functional genetics with few hurdles.
Collapse
Affiliation(s)
- Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, P. R. China
| | | |
Collapse
|
46
|
Ghose P, Park EC, Tabakin A, Salazar-Vasquez N, Rongo C. Anoxia-reoxygenation regulates mitochondrial dynamics through the hypoxia response pathway, SKN-1/Nrf, and stomatin-like protein STL-1/SLP-2. PLoS Genet 2013; 9:e1004063. [PMID: 24385935 PMCID: PMC3873275 DOI: 10.1371/journal.pgen.1004063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/12/2013] [Indexed: 12/04/2022] Open
Abstract
Many aerobic organisms encounter oxygen-deprived environments and thus must have adaptive mechanisms to survive such stress. It is important to understand how mitochondria respond to oxygen deprivation given the critical role they play in using oxygen to generate cellular energy. Here we examine mitochondrial stress response in C. elegans, which adapt to extreme oxygen deprivation (anoxia, less than 0.1% oxygen) by entering into a reversible suspended animation state of locomotory arrest. We show that neuronal mitochondria undergo DRP-1-dependent fission in response to anoxia and undergo refusion upon reoxygenation. The hypoxia response pathway, including EGL-9 and HIF-1, is not required for anoxia-induced fission, but does regulate mitochondrial reconstitution during reoxygenation. Mutants for egl-9 exhibit a rapid refusion of mitochondria and a rapid behavioral recovery from suspended animation during reoxygenation; both phenotypes require HIF-1. Mitochondria are significantly larger in egl-9 mutants after reoxygenation, a phenotype similar to stress-induced mitochondria hyperfusion (SIMH). Anoxia results in mitochondrial oxidative stress, and the oxidative response factor SKN-1/Nrf is required for both rapid mitochondrial refusion and rapid behavioral recovery during reoxygenation. In response to anoxia, SKN-1 promotes the expression of the mitochondrial resident protein Stomatin-like 1 (STL-1), which helps facilitate mitochondrial dynamics following anoxia. Our results suggest the existence of a conserved anoxic stress response involving changes in mitochondrial fission and fusion. Oxygen deprivation plays a role in multiple human diseases ranging from heart attack, ischemic stroke, and traumatic injury. Aerobic organisms use oxygen to generate cellular energy in mitochondria; thus, oxygen deprivation results in energy depletion. Low oxygen can be catastrophic in tissues like the nervous system, which has high-energy demands and few glycolytic reserves. By contrast, other cells, including stem cells and cancerous cells within tumors, adapt and thrive in low oxygen. We are just beginning to understand how different organisms and even different cell types within the same organism respond to low oxygen conditions. The response of mitochondria to oxygen deprivation is particularly critical given their role in aerobic energy production. In addition, mitochondria actively injure cells during oxygen deprivation through the generation of reactive oxygen species, the disruption of calcium homeostasis, and the activation of cell death pathways. Here we use a genetic approach to show that mitochondria undergo fission during oxygen deprivation and refusion upon oxygen restoration. The hypoxia response pathway and the oxidative stress response pathway together modulate this response. We identify a new factor, stomatin-like protein, as a promoter of mitochondrial fusion in response to oxygen deprivation stress. Our findings uncover a new mechanism – regulated mitochondrial dynamics – by which cells adapt to oxygen deprivation stress.
Collapse
Affiliation(s)
- Piya Ghose
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- The Graduate Program in Neuroscience, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Eun Chan Park
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Alexandra Tabakin
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Nathaly Salazar-Vasquez
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- The Graduate Program in Genetics and Microbiology, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
47
|
A novel strategy for cell-autonomous gene knockdown in Caenorhabditis elegans defines a cell-specific function for the G-protein subunit GOA-1. Genetics 2013; 194:363-73. [PMID: 23525334 DOI: 10.1534/genetics.113.149724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed a novel knockdown strategy to examine cell-specific gene function in Caenorhabditis elegans. In this strategy a null mutation in any gene is replaced with a genetically stable transgene that contains a wild-type copy of the gene fused to a 3' tag that targets the mRNA transcript for degradation by the host nonsense-mediated decay (NMD) machinery. In NMD-defective animals, tagged transgene mRNA is expressed at levels similar to the endogenous gene it replaced and is translated into wild-type protein that fully rescues gene function. Cell-specific activation of NMD cell autonomously knocks down transgene expression in specific cell types without affecting its expression or function in other cells of the organism. To demonstrate the utility of this system, we replaced the goa-1 gene, encoding the pan-neuronally expressed G-protein subunit GOA-1, with a degradation-tagged transgene. We then knocked down expression of the transgene from only two neurons, the hermaphrodite-specific neurons (HSNs), and showed that GOA-1 acts cell autonomously in the HSNs to inhibit egg-laying behavior.
Collapse
|
48
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
49
|
Pittella F, Kataoka K. Polymeric Micelles for siRNA Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1007/978-1-4614-4744-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Abstract
A powerful approach to gain understanding of molecular machinery responsible for membrane trafficking is through inactivation of gene function by RNA interference (RNAi). RNAi-mediated gene silencing occurs when a double-stranded RNA is introduced into cells and targets a complementary mRNA for degradation. The subsequent lack of mRNA prevents the synthesis of the corresponding protein and ultimately causes depletion of a particular gene product from the cell. The effects of such depletion can then by analyzed by functional, morphological, and biochemical assays. RNAi-mediated knockdowns of numerous gene products in cultured cells of mammalian and other species origins have provided significant new insight into traffic regulation and represent standard approaches in current cell biology. However, RNAi in the multicellular nematode Caenorhabditis elegans model allows RNAi studies within the context of a whole organism, and thus provides an unprecedented opportunity to explore effects of specific trafficking regulators within the context of distinct developmental stages and diverse cell types. In addition, various transgenic C. elegans strains have been developed that express marker proteins tagged with fluorescent proteins to facilitate the analysis of trafficking within the secretory and endocytic pathways. This chapter provides a detailed description of a basic RNAi approach that can be used to analyze the function of any gene of interest in secretory and endosomal trafficking in C. elegans.
Collapse
|