1
|
Dwijayanti A, Yeoh JW, Zhang C, Poh CL, Lautier T. Optimizing HMG-CoA Synthase Expression for Enhanced Limonene Production in Escherichia coli through Temporal Transcription Modulation Using Optogenetics. ACS Synth Biol 2024; 13:3621-3634. [PMID: 39498890 DOI: 10.1021/acssynbio.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Overexpression of a single enzyme in a multigene heterologous pathway may be out of balance with the other enzymes in the pathway, leading to accumulated toxic intermediates, imbalanced carbon flux, reduced productivity of the pathway, or an inhibited growth phenotype. Therefore, optimal, balanced, and synchronized expression levels of enzymes in a particular metabolic pathway is critical to maximize production of desired compounds while maintaining cell fitness in a growing culture. Furthermore, the optimal intracellular concentration of an enzyme is determined by the expression strength, specific timing/duration, and degradation rate of the enzyme. Here, we modulated the intracellular concentration of a key enzyme, namely HMG-CoA synthase (HMGS), in the heterologous mevalonate pathway by tuning its expression level and period of transcription to enhance limonene production in Escherichia coli. Facilitated by the tuned blue-light inducible BLADE/pBad system, we observed that limonene production was highest (160 mg/L) with an intermediate transcription level of HMGS from moderate light illumination (41 au, 150 s ON/150 s OFF) throughout the growth. Owing to the easy penetration and removal of blue-light illumination from the growing culture which is hard to obtain using conventional chemical-based induction, we further explored different induction patterns of HMGS under strong light illumination (2047 au, 300 s ON) for different durations along the growth phases. We identified a specific timing of HMGS expression in the log phase (3-9 h) that led to optimal limonene production (200 mg/L). This is further supported by a mathematical model that predicts several periods of blue-light illumination (3-9 h, 0-9 h, 3-12 h, 0-12 h) to achieve an optimal expression level of HMGS that maximizes limonene production and maintains cell fitness. Compared to moderate and prolonged transcription (41 au, 150 s ON/150 s OFF, 0-73 h), strong but time-limited transcription (2047 au, 300 s ON, 3-9 h) of HMGS could maintain its optimal intracellular concentration and further increased limonene production up to 92% (250 mg/L) in the longer incubation (up to 73 h) without impacting cell fitness. This work has provided new insight into the "right amount" and "just-in-time" expression of a critical metabolite enzyme in the upper module of the mevalonate pathway using optogenetics. This study would complement previous findings in modulating HMGS expression and potentially be applicable to heterologous production of other terpenoids in E. coli.
Collapse
Affiliation(s)
- Ari Dwijayanti
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore
| | - Jing Wui Yeoh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Thomas Lautier
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France
| |
Collapse
|
2
|
Zhang N, Li X, Zhou Q, Zhang Y, Lv B, Hu B, Li C. Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae. Metab Eng 2024; 83:172-182. [PMID: 38648878 DOI: 10.1016/j.ymben.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microbial bioengineering is a growing field for producing plant natural products (PNPs) in recent decades, using heterologous metabolic pathways in host cells. Once heterologous metabolic pathways have been introduced into host cells, traditional metabolic engineering techniques are employed to enhance the productivity and yield of PNP biosynthetic routes, as well as to manage competing pathways. The advent of computational biology has marked the beginning of a novel epoch in strain design through in silico methods. These methods utilize genome-scale metabolic models (GEMs) and flux optimization algorithms to facilitate rational design across the entire cellular metabolic network. However, the implementation of in silico strategies can often result in an uneven distribution of metabolic fluxes due to the rigid knocking out of endogenous genes, which can impede cell growth and ultimately impact the accumulation of target products. In this study, we creatively utilized synthetic biology to refine in silico strain design for efficient PNPs production. OptKnock simulation was performed on the GEM of Saccharomyces cerevisiae OA07, an engineered strain for oleanolic acid (OA) bioproduction that has been reported previously. The simulation predicted that the single deletion of fol1, fol2, fol3, abz1, and abz2, or a combined knockout of hfd1, ald2 and ald3 could improve its OA production. Consequently, strains EK1∼EK7 were constructed and cultivated. EK3 (OA07△fol3), EK5 (OA07△abz1), and EK6 (OA07△abz2) had significantly higher OA titers in a batch cultivation compared to the original strain OA07. However, these increases were less pronounced in the fed-batch mode, indicating that gene deletion did not support sustainable OA production. To address this, we designed a negative feedback circuit regulated by malonyl-CoA, a growth-associated intermediate whose synthesis served as a bypass to OA synthesis, at fol3, abz1, abz2, and at acetyl-CoA carboxylase-encoding gene acc1, to dynamically and autonomously regulate the expression of these genes in OA07. The constructed strains R_3A, R_5A and R_6A had significantly higher OA titers than the initial strain and the responding gene-knockout mutants in either batch or fed-batch culture modes. Among them, strain R_3A stand out with the highest OA titer reported to date. Its OA titer doubled that of the initial strain in the flask-level fed-batch cultivation, and achieved at 1.23 ± 0.04 g L-1 in 96 h in the fermenter-level fed-batch mode. This indicated that the integration of optimization algorithm and synthetic biology approaches was efficiently rational for PNP-producing strain design.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Xiaohan Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Qiang Zhou
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Ying Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102401, PR China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
3
|
Song J, Zhuang M, Fang Y, Hu X, Wang X. Self-regulated efficient production of L-threonine via an artificial quorum sensing system in engineered Escherichia coli. Microbiol Res 2024; 284:127720. [PMID: 38640767 DOI: 10.1016/j.micres.2024.127720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Imbalance in carbon flux distribution is one of the most important factors affecting the further increase in the yield of high value-added natural products in microbial metabolic engineering. Meanwhile, the most common inducible expression systems are difficult to achieve industrial-scale production due to the addition of high-cost or toxic inducers during the fermentation process. Quorum sensing system, as a typical model for density-dependent induction of gene expression, has been widely applied in synthetic biology. However, there are currently few reports for efficient production of microbial natural products by using quorum sensing system to self-regulate carbon flux distribution. Here, we designed an artificial quorum sensing system to achieve efficient production of L-threonine in engineered Escherichia coli by altering the carbon flux distribution of the central metabolic pathways at specific periods. Under the combination of switch module and production module, the system was applied to divide the microbial fermentation process into two stages including growth and production, and improve the production of L-threonine by self-inducing the expression of pyruvate carboxylase and threonine extracellular transporter protease after a sufficient amount of cell growth. The final strain TWF106/pST1011, pST1042pr could produce 118.2 g/L L-threonine with a yield of 0.57 g/g glucose and a productivity of 2.46 g/(L· h). The establishment of this system has important guidance and application value for the production of other high value-added chemicals in microorganisms by self-regulation.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Miaomiao Zhuang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Hou R, Shan M, Liu X, Yao M, Yang K, Wang Y, Sui Z, Liang Z, Zhang Y, Zhang L. Proteomic analysis reveals that the co-ordination of cytosolic and mitochondrial pathways is beneficial for sabinene biosynthesis in engineered Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300710. [PMID: 38581096 DOI: 10.1002/biot.202300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/08/2024]
Abstract
Reconstruction and optimization of biosynthetic pathways can help to overproduce target chemicals in microbial cell factories based on genetic engineering. However, the perturbation of biosynthetic pathways on cellular metabolism is not well investigated and profiling the engineered microbes remains challenging. The rapid development of omics tools has the potential to characterize the engineered microbial cell factory. Here, we performed label-free quantitative proteomic analysis and metabolomic analysis of engineered sabinene overproducing Saccharomyces cerevisiae strains. Combined metabolic analysis andproteomic analysis of targeted mevalonate (MVA) pathway showed that co-ordination of cytosolic and mitochondrial pathways had balanced metabolism, and genome integration of biosynthetic genes had higher sabinene production with less MVA enzymes. Furthermore, comparative proteomic analysis showed that compartmentalized mitochondria pathway had perturbation on central cellular metabolism. This study provided an omics analysis example for characterizing engineered cell factory, which can guide future regulation of the cellular metabolism and maintaining optimal protein expression levels for the synthesis of target products.
Collapse
Affiliation(s)
- Rui Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengying Shan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Xinxin Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
5
|
Bauer J, Klamt S. OptMSP: A toolbox for designing optimal multi-stage (bio)processes. J Biotechnol 2024; 383:94-102. [PMID: 38325658 DOI: 10.1016/j.jbiotec.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
One central goal of bioprocess engineering is to maximize the production of specific chemicals using microbial cell factories. Many bioprocesses are one-stage (batch) processes (OSPs), in which growth and product synthesis are coupled. However, OSPs often exhibit low volumetric productivities due to the competition for substrate for biomass and product synthesis implying trade-offs between biomass and product yields. Two-stage or, more generally, multi-stage processes (MSPs) offer the potential to tackle this trade-off for improved efficiency of bioprocesses, for example, by separating growth and production. MSPs have recently gained much attention, also because of a rapidly growing toolbox for the dynamic control of metabolic fluxes. Despite these promising advancements, computational tools specifically tailored for the optimal design of MSPs in the field of biotechnology are still lacking. Here, we present OptMSP, a new Python-based toolbox for identifying optimal MSPs maximizing a user-defined process metrics (such as volumetric productivity, yield, and titer or combinations thereof) under given constraints. In contrast to other methods, our framework starts with a set of well-defined modules representing relevant stages or sub-processes. Experimentally determined parameters (such as growth rates, substrate uptake and product formation rates) are used to build suitable ODE models describing the dynamic behavior of each module. OptMSP finds then the optimal combination of those modules, which, together with the optimal switching time points, maximize a given objective function. We demonstrate the applicability and relevance of the approach with three different case studies, including the example of lactate production by E. coli in a batch setup, where an aerobic growth phase can be combined with anaerobic production phases with or without growth and with or without enhanced ATP turnover.
Collapse
Affiliation(s)
- Jasmin Bauer
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany.
| |
Collapse
|
6
|
Zou Y, Zhang J, Wang J, Gong X, Jiang T, Yan Y. A self-regulated network for dynamically balancing multiple precursors in complex biosynthetic pathways. Metab Eng 2024; 82:69-78. [PMID: 38316239 PMCID: PMC10947840 DOI: 10.1016/j.ymben.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Microbial synthesis has emerged as a promising and sustainable alternative to traditional chemical synthesis and plant extraction. However, the competition between synthetic pathways and central metabolic pathways for cellular resources may impair final production efficiency. Moreover, when the synthesis of target product requires multiple precursors from the same node, the conflicts of carbon flux have further negative impacts on yields. In this study, a self-regulated network was developed to relieve the competition of precursors in complex synthetic pathways. Using 4-hydroxycoumarin (4-HC) synthetic pathway as a proof of concept, we employed an intermediate as a trigger to dynamically rewire the metabolic flux of pyruvate and control the expression levels of genes in 4-HC synthetic pathway, achieving self-regulation of multiple precursors and enhanced titer. Transcriptomic analysis results additionally demonstrated that the gene transcriptional levels of both pyruvate kinase PykF and synthetic pathway enzyme SdgA dynamically changed according to the intermediate concentrations. Overall, our work established a self-regulated network to dynamically balance the metabolic flux of two precursors in 4-HC biosynthesis, providing insight into balancing biosynthetic pathways where multiple precursors compete and interfere with each other.
Collapse
Affiliation(s)
- Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Ni C, Prather KLJ. Consistent biosynthesis of D-glycerate from variable mixed substrates. Metab Eng 2024; 82:41-48. [PMID: 38185463 DOI: 10.1016/j.ymben.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The use of waste streams and other renewable feedstocks in microbial biosynthesis has long been a goal for metabolic engineers. Microbes can utilize the substrate mixtures found in waste streams, though they are more technically challenging to convert to useful products compared to the single substrates of standard practice. It is difficult to achieve consistent biosynthesis in the face of the temporally changing nature of waste streams. Furthermore, the expression of all the enzymes necessary to convert mixed substrates into a product likely presents significant metabolic burden, which already plagues processes that utilize a single substrate. We developed an approach to utilize mixed feedstocks for production by activating expression of each biosynthetic pathway in the presence of its substrate. This expression control was used for two novel pathways that converted two substrates, galacturonate and gluconate, into a single product, D-glycerate. A production strain harboring both pathway plasmids produced 1.8 ± 0.3 and 1.64 ± 0.09 g L-1 of D-glycerate from galacturonate and gluconate alone, respectively. Fermentations that were fed a mixture of the two substrates, at different ratios, resulted in product titers between 1.48 ± 0.03 and 1.8 ± 0.1 g L-1. All fermentations were fed a total of 10 g L-1 substrate and there was no statistically significant difference in D-glycerate titer from the single or mixed substrate fermentations. We thus demonstrated consistent D-glycerate biosynthesis from single and mixed substrates as an example of robust conversion of complex feedstocks.
Collapse
Affiliation(s)
- Cynthia Ni
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Ma Y, Ye JW, Lin Y, Yi X, Wang X, Wang H, Huang R, Wu F, Wu Q, Liu X, Chen GQ. Flux optimization using multiple promoters in Halomonas bluephagenesis as a model chassis of the next generation industrial biotechnology. Metab Eng 2024; 81:249-261. [PMID: 38159902 DOI: 10.1016/j.ymben.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/16/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Predictability and robustness are challenges for bioproduction because of the unstable intracellular synthetic activities. With the deeper understanding of the gene expression process, fine-tuning has become a meaningful tool for biosynthesis optimization. This study characterized several gene expression elements and constructed a multiple inducible system that responds to ten different small chemical inducers in halophile bacterium Halomonas bluephagenesis. Genome insertion of regulators was conducted for the purpose of gene cluster stabilization and regulatory plasmid simplification. Additionally, dynamic ranges of the multiple inducible systems were tuned by promoter sequence mutations to achieve diverse scopes for high-resolution gene expression control. The multiple inducible system was successfully employed to precisely control chromoprotein expression, lycopene and poly-3-hydroxybutyrate (PHB) biosynthesis, resulting in colorful bacterial pictures, optimized cell growth, lycopene and PHB accumulation. This study demonstrates a desirable approach for fine-tuning of rational and efficient gene expressions, displaying the significance for metabolic pathway optimization.
Collapse
Affiliation(s)
- Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xuan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruiyan Huang
- Garrison Forest School, Owings Mills, MD, 21117, USA
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Beijing, 101309, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
9
|
Jiang T, Li C, Teng Y, Zhang J, Logan DA, Yan Y. Dynamic Metabolic Control: From the Perspective of Regulation Logic. SYNTHETIC BIOLOGY AND ENGINEERING 2023; 1:10012. [PMID: 38572077 PMCID: PMC10986841 DOI: 10.35534/sbe.2023.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Establishing microbial cell factories has become a sustainable and increasingly promising approach for the synthesis of valuable chemicals. However, introducing heterologous pathways into these cell factories can disrupt the endogenous cellular metabolism, leading to suboptimal production performance. To address this challenge, dynamic pathway regulation has been developed and proven effective in improving microbial biosynthesis. In this review, we summarized typical dynamic regulation strategies based on their control logic. The applicable scenarios for each control logic were highlighted and perspectives for future research direction in this area were discussed.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Diana Alexis Logan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Guo L, Liu M, Bi Y, Qi Q, Xian M, Zhao G. Using a synthetic machinery to improve carbon yield with acetylphosphate as the core. Nat Commun 2023; 14:5286. [PMID: 37648707 PMCID: PMC10468489 DOI: 10.1038/s41467-023-41135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In microbial cell factory, CO2 release during acetyl-CoA production from pyruvate significantly decreases the carbon atom economy. Here, we construct and optimize a synthetic carbon conserving pathway named as Sedoheptulose-1,7-bisphosphatase Cycle with Trifunctional PhosphoKetolase (SCTPK) in Escherichia coli. This cycle relies on a generalist phosphoketolase Xfspk and converts glucose into the stoichiometric amounts of acetylphosphate (AcP). Furthermore, genetic circuits responding to AcP positively or negatively are created. Together with SCTPK, they constitute a gene-metabolic oscillator that regulates Xfspk and enzymes converting AcP into valuable chemicals in response to intracellular AcP level autonomously, allocating metabolic flux rationally and improving the carbon atom economy of bioconversion process. Using this synthetic machinery, mevalonate is produced with a yield higher than its native theoretical yield, and the highest titer and yield of 3-hydroxypropionate via malonyl-CoA pathway are achieved. This study provides a strategy for improving the carbon yield of microbial cell factories.
Collapse
Affiliation(s)
- Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yujia Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
11
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Wang YH, Zhang RR, Yin Y, Tan GF, Wang GL, Liu H, Zhuang J, Zhang J, Zhuang FY, Xiong AS. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J Adv Res 2023; 46:31-47. [PMID: 35753652 PMCID: PMC10105081 DOI: 10.1016/j.jare.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Zhang
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin 130118, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, Canada
| | - Fei-Yun Zhuang
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
13
|
Zhou GJ, Zhang F. Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors. BIOSENSORS 2023; 13:428. [PMID: 37185503 PMCID: PMC10136082 DOI: 10.3390/bios13040428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Transcription factor (TF)-based biosensors are widely used for the detection of metabolites and the regulation of cellular pathways in response to metabolites. Several challenges hinder the direct application of TF-based sensors to new hosts or metabolic pathways, which often requires extensive tuning to achieve the optimal performance. These tuning strategies can involve transcriptional or translational control depending on the parameter of interest. In this review, we highlight recent strategies for engineering TF-based biosensors to obtain the desired performance and discuss additional design considerations that may influence a biosensor's performance. We also examine applications of these sensors and suggest important areas for further work to continue the advancement of small-molecule biosensors.
Collapse
Affiliation(s)
- Gloria J. Zhou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
14
|
Xu K, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Autoinduction AND Gate Inhibits Cell Lysis to Enhance Protein Production in Bacillus subtilis Controlled by Population Density and Cell Physiological State. ACS Synth Biol 2023; 12:842-851. [PMID: 36881491 DOI: 10.1021/acssynbio.2c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The extracellular protease-deficient strain Bacillus subtilis WB600 is commonly used as a chassis cell for the production of industrial proteins. However, B. subtilis WB600 exhibits an increased susceptibility to cell lysis and a reduction in biomass. Inhibition of cell lysis by knocking out lytic genes will impair physiological function. Here, we dynamically inhibited cell lysis in B. subtilis WB600 to balance the impairment of physiological function with the accumulation of biomass. First, the inducible protein degradation systems (IPDSs) were constructed and used to investigate the effects of inhibiting cell lysis on biomass, cell morphology, and protein production at different times (using pullulanase as a test). The highest pullulanase activity was obtained at 20 h of inhibiting cell lysis, 184.8 U/mL, which was 44% higher than the activity of B. subtilis WB600. Then, to avoid addition of inducers, we introduced orthogonal quorum sensing and constructed autoinduction protein degradation systems (AIPDSs). The optimized AIPDS showed similar pullulanase activity to the optimal IPDS (20 h), 181.3 U/mL. Next, we constructed dual-signal input autoinduction protein degradation systems (DSI-AIPDSs) via AND gate to further address two deficiencies of AIPDS, one-time activation and damage to new cells. These DSI-AIPDSs were controlled by quorum sensing and stationary phase promoters that respond to population density and single-cell physiological state, respectively. Finally, the OD600 and pullulanase activity of the strain with optimal DSI-AIPDS were 51% and 115% higher than those of B. subtilis WB600 in pullulanase production, respectively. We provided a B. subtilis chassis strain with considerable potential for biomass accumulation and enhanced protein production.
Collapse
Affiliation(s)
- Kuidong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd., Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Batianis C, van Rosmalen RP, Major M, van Ee C, Kasiotakis A, Weusthuis RA, Martins Dos Santos VAP. A tunable metabolic valve for precise growth control and increased product formation in Pseudomonas putida. Metab Eng 2023; 75:47-57. [PMID: 36244546 DOI: 10.1016/j.ymben.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Metabolic engineering of microorganisms aims to design strains capable of producing valuable compounds under relevant industrial conditions and in an economically competitive manner. From this perspective, and beyond the need for a catalyst, biomass is essentially a cost-intensive, abundant by-product of a microbial conversion. Yet, few broadly applicable strategies focus on the optimal balance between product and biomass formation. Here, we present a genetic control module that can be used to precisely modulate growth of the industrial bacterial chassis Pseudomonas putida KT2440. The strategy is based on the controllable expression of the key metabolic enzyme complex pyruvate dehydrogenase (PDH) which functions as a metabolic valve. By tuning the PDH activity, we accurately controlled biomass formation, resulting in six distinct growth rates with parallel overproduction of excess pyruvate. We deployed this strategy to identify optimal growth patterns that improved the production yield of 2-ketoisovalerate and lycopene by 2.5- and 1.38-fold, respectively. This ability to dynamically steer fluxes to balance growth and production substantially enhances the potential of this remarkable microbial chassis for a wide range of industrial applications.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Rik P van Rosmalen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Monika Major
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Cheyenne van Ee
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Alexandros Kasiotakis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands; Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; LifeGlimmer GmbH, Berlin, Germany.
| |
Collapse
|
16
|
Volk MJ, Tran VG, Tan SI, Mishra S, Fatma Z, Boob A, Li H, Xue P, Martin TA, Zhao H. Metabolic Engineering: Methodologies and Applications. Chem Rev 2022; 123:5521-5570. [PMID: 36584306 DOI: 10.1021/acs.chemrev.2c00403] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.
Collapse
Affiliation(s)
- Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aashutosh Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hongxiang Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa A Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Jiang T, Li C, Zou Y, Zhang J, Gan Q, Yan Y. Establishing an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system for improved pathway performance. Metab Eng 2022; 74:1-10. [PMID: 36041638 PMCID: PMC10947494 DOI: 10.1016/j.ymben.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Endogenous metabolic pathways in microbial cells are usually precisely controlled by sophisticated regulation networks. However, the lack of such regulations when introducing heterologous pathways in microbial hosts often causes unbalanced enzyme expression and carbon flux distribution, hindering the construction of highly efficient microbial biosynthesis systems. Here, using naringenin as the target compound, we developed an Autonomous Cascaded Artificial Dynamic (AutoCAD) regulation system to automatically coordinate the pathway expression and redirect carbon fluxes for enhanced naringenin production. The AutoCAD regulation system, consisting of both intermediate-based feedforward and product-based feedback control genetic circuits, resulted in a 16.5-fold increase in naringenin titer compared with the static control. Fed-batch fermentation using the strain with AutoCAD regulation further enhanced the naringenin titer to 277.2 mg/L. The AutoCAD regulation system, with intermediate-based feedforward control and product-triggered feedback control, provides a new paradigm of developing complicated cascade dynamic control to engineer heterologous pathways.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yusong Zou
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
18
|
Liu D, Sica MS, Mao J, Chao LFI, Siewers V. A p-Coumaroyl-CoA Biosensor for Dynamic Regulation of Naringenin Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:3228-3238. [PMID: 36137537 PMCID: PMC9594313 DOI: 10.1021/acssynbio.2c00111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In vivo biosensors that can convert metabolite concentrations into measurable output signals are valuable tools for high-throughput screening and dynamic pathway control in the field of metabolic engineering. Here, we present a novel biosensor in Saccharomyces cerevisiae that is responsive to p-coumaroyl-CoA, a central precursor of many flavonoids. The sensor is based on the transcriptional repressor CouR from Rhodopseudomonas palustris and was applied in combination with a previously developed malonyl-CoA biosensor for dual regulation of p-coumaroyl-CoA synthesis within the naringenin production pathway. Using this approach, we obtained a naringenin titer of 47.3 mg/L upon external precursor feeding, representing a 15-fold increase over the nonregulated system.
Collapse
|
19
|
Li L, Deng A, Liu S, Wang J, Shi R, Wang T, Cui D, Bai H, Zhang Y, Wen T. A Universal Method for Developing Autoinduction Expression Systems Using AHL-Mediated Quorum-Sensing Circuits. ACS Synth Biol 2022; 11:3114-3119. [PMID: 36000977 DOI: 10.1021/acssynbio.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A major challenge in engineering microorganisms for the desirable product is maintaining the rational balance between cell growth and production. Quorum sensing (QS)-based dynamic regulations provide a pathway-independent genetic control technology to rebalance metabolic flux for biomass and product synthesis. However, the lack of a universal method for screening QS elements and the complex design of autoinduction circuits limit their applications in metabolic engineering. Here, we developed a universal method for simple and rapid screening and evaluating various QS systems from Gram-negative bacteria, and the largest library containing 195 combinations of receiving device/signal molecules was constructed and evaluated in Escherichia coli. A simple logical circuit with different inducer synthesis rates was established to dynamically regulate gene expression levels, leading to efficient protein expression and product synthesis. The system was further applied in Pseudomonas putida, which indicated it could be widely accommodated in other microorganisms. Therefore, the method could be used in diverse Gram-negative strains for the desired biosynthesis.
Collapse
Affiliation(s)
- Lai Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyue Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ruilin Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tiantian Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Zhao M, Li Y, Wang F, Ren Y, Wei D. A CRISPRi mediated self-inducible system for dynamic regulation of TCA cycle and improvement of itaconic acid production in Escherichia coli. Synth Syst Biotechnol 2022; 7:982-988. [PMID: 35782485 PMCID: PMC9213231 DOI: 10.1016/j.synbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Itaconic acid (ITA), an effective alternative fossil fuel, derives from the bypass pathway of the tricarboxylic acid (TCA) cycle. Therefore, the imbalance of metabolic flux between TCA cycle and ITA biosynthetic pathway seriously limits the production of ITA. The optimization of flux distribution between biomass and production has the potential to the productivity of ITA. Based on the previously constructed strain Escherichia coli MG1655 Δ1-SAS-3 (ITA titer: 1.87 g/L), a CRISPRi-mediated self-inducible system (CiMS), which contained a responsive module based on the ITA biosensor YpItcR/P ccl and a regulative CRISPRi-mediated interferential module, was developed to regulate the flux of the TCA cycle and to enhance the capacity of the strain to produce ITA. First, a higher ITA-yielding strain, Δ4-P rmd -SAS-3 (ITA titer: 3.20 g/L), derived from Δ1-SAS-3, was constructed by replacing the promoter P J23100 , for the expression of ITA synthesis genes, with P rmd and knocking out the three bypass genes poxB, pflB, and ldhA. Subsequently, the CiMS was used to inhibit the expression of key genes icd, pykA, and sucCD to dynamically balance the metabolic flux between TCA cycle and ITA biosynthetic pathway during the ITA production stage. The constructed strain Δ4-P rmd -SAS-3 under the dynamic regulation of the CiMS, showed a 23% increase in the ITA titer, which reached 3.93 g/L. This study indicated that CiMS was a practical strategy to dynamically and precisely regulated the metabolic flux in microbial cell factories.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yuting Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhong Ren
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Gu P, Ma Q, Zhao S, Gao J, Li C, Zhou H, Jiang S, Li Q. Application of quorum sensing system in microbial synthesis of valuable chemicals: a mini-review. World J Microbiol Biotechnol 2022; 38:192. [PMID: 35978255 DOI: 10.1007/s11274-022-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
With advantages of low substrates cost, high optical purity of end products and environmentally friendly fermentation process, microbial production of valuable chemicals grow rapidly. Compared with static microbial strain engineering strategies, such as gene deletion, overexpression and mutation, dynamic pathway regulation is a new approach that balances cellular growth and chemical production. Quorum sensing is a natural microbial communication system responsible for cell-density-related cell behaviors. Accordingly, quorum sensing systems can be employed to achieve dynamic regulation in microorganisms without the need for manual intervention or the use of chemical inducers. In this review, natural quorum sensing systems are firstly summarized. Then, recent progress in using quorum sensing circuits in the field of metabolic engineering is highlighted. The current application challenges of quorum sensing systems and future perspectives in microbial synthesis of chemicals are also discussed.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qianqian Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Changtao Li
- RZBC GROUP CO., LTD., Rizhao, 276800, Shandong, China
| | - Hao Zhou
- RZBC GROUP CO., LTD., Rizhao, 276800, Shandong, China
| | | | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
22
|
Mitra S, Dhar R, Sen R. Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnol Adv 2022; 60:108023. [PMID: 35872292 DOI: 10.1016/j.biotechadv.2022.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Non-ribosomal peptides have gained significant attention as secondary metabolites of high commercial importance. This group houses a diverse range of bioactive compounds, ranging from biosurfactants to antimicrobial and cytotoxic agents. However, low yield of synthesis by bacteria and excessive losses during purification hinders the industrial-scale production of non-ribosomal peptides, and subsequently limits their widespread applicability. While isolation of efficient producer strains and optimization of bioprocesses have been extensively used to enhance yield, further improvement can be made by optimization of the microbial strain using the tools and techniques of metabolic engineering, synthetic biology, systems biology, and adaptive laboratory evolution. These techniques, which directly target the genome of producer strains, aim to redirect carbon and nitrogen fluxes of the metabolic network towards the desired product, bypass the feedback inhibition and repression mechanisms that limit the maximum productivity of the strain, and even extend the substrate range of the cell for synthesis of the target product. The present review takes a comprehensive look into the biosynthesis of bacterial NRPs, how the same is regulated by the cell, and dives deep into the strategies that have been undertaken for enhancing the yield of NRPs, while also providing a perspective on other potential strategies that can allow for further yield improvement. Furthermore, this review provides the reader with a holistic perspective on the design of cellular factories of NRP production, starting from general techniques performed in the laboratory to the computational techniques that help a biochemical engineer model and subsequently strategize the architectural plan.
Collapse
Affiliation(s)
- Sayak Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
23
|
Dynamic control of 4-hydroxyisoleucine biosynthesis by multi-biosensor in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2022; 106:5105-5121. [DOI: 10.1007/s00253-022-12034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
24
|
Gong X, Zhang R, Wang J, Yan Y. Engineering of a TrpR-Based Biosensor for Altered Dynamic Range and Ligand Preference. ACS Synth Biol 2022; 11:2175-2183. [PMID: 35594503 PMCID: PMC10947557 DOI: 10.1021/acssynbio.2c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcriptional factors play a crucial role in regulating cellular functions. Understanding and altering the dynamic behavior of the transcriptional factor-based biosensors will expand our knowledge in investigating biomolecular interactions and facilitating biosynthetic applications. In this study, we characterized and engineered a TrpR-based tryptophan repressor system in Escherichia coli. We found that the reconstructed TrpR1-PtrpO1 biosensor system exhibited low basal expression and narrow dynamic range in the presence of tryptophan or its analogue 5-hydroxytryptophan (5-HTP). Given the application potential of the biosensor, we introduced engineering approaches in multiple levels to optimize its dynamic behavior. First, the I57 and V58 residues in the ligand-binding pocket were rationally mutated in search of variants with altered ligand specificity. Two TrpR1 variants, V58E and V58K, successfully acquired ligand preference toward tryptophan and 5-HTP, respectively. The biosensor-induced expression levels were increased up to 10-fold with those variants. Furthermore, to pursue broader operational range, we tuned the regulator-operator binding affinity by mutating the binding box of TrpR1. Collectively, we demonstrated that the biosynthesis-significant biosensor TrpR1-PtrpO1 can be engineered to acquire extended dynamic ranges and improved ligand preference. The engineered biosensor variants with remarkable dynamic behavior can serve as key genetic elements in high-throughput screening and dynamic regulation in biosynthetic scenarios.
Collapse
Affiliation(s)
- Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metab Eng 2022; 70:67-78. [PMID: 35033655 PMCID: PMC8844098 DOI: 10.1016/j.ymben.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 01/03/2023]
Abstract
Dynamic regulation has been proved efficient in controlling gene expression at transcriptional, translational, and post-translational level. However, the dynamic regulation at gene replication level has been rarely explored so far. In this study, we established dynamic regulation at gene copy level through engineering controllable plasmid replication to dynamically control the gene expression. Prototypic genetic circuits with different control logic were applied to enable diversified dynamic behaviors of gene copy. To explore the applicability of this strategy, the dynamic gene copy control was employed in regulating the biosynthesis of p-coumaric acid, which resulted in an up to 78% increase in p-coumaric acid titer to 1.69 g/L in shake flasks. These results indicated the great potential of applying dynamic gene copy control for engineering biosynthesis of valuable compounds in metabolic engineering.
Collapse
|
26
|
Liu Y, Wang Z, Cui Z, Qi Q, Hou J. Progress and perspectives for microbial production of farnesene. BIORESOURCE TECHNOLOGY 2022; 347:126682. [PMID: 35007732 DOI: 10.1016/j.biortech.2022.126682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Farnesene is increasingly used in industry, agriculture, and other fields due to its unique and excellent properties, necessitating its efficient synthesis. Microbial synthesis is an ideal farnesene production method. Recently, researchers have used several strategies to optimize the production performance of microorganisms. This review summarized these strategies, including regulation of farnesene synthesis pathways, and proposed some emerging tools and methods in stain engineering. Meanwhile, new farnesene biosynthetic pathways and effective farnesene production from cheap or waste substrates were emphatically introduced. Finally, future farnesene biosynthesis challenges were discussed.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
27
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
28
|
Sasaki Y, Yoshikuni Y. Metabolic engineering for valorization of macroalgae biomass. Metab Eng 2022; 71:42-61. [PMID: 35077903 DOI: 10.1016/j.ymben.2022.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
Marine macroalgae have huge potential as feedstocks for production of a wide spectrum of chemicals used in biofuels, biomaterials, and bioactive compounds. Harnessing macroalgae in these ways could promote wellbeing for people while mitigating climate change and environmental destruction linked to use of fossil fuels. Microorganisms play pivotal roles in converting macroalgae into valuable products, and metabolic engineering technologies have been developed to extend their native capabilities. This review showcases current achievements in engineering the metabolisms of various microbial chassis to convert red, green, and brown macroalgae into bioproducts. Unique features of macroalgae, such as seasonal variation in carbohydrate content and salinity, provide the next challenges to advancing macroalgae-based biorefineries. Three emerging engineering strategies are discussed here: (1) designing dynamic control of metabolic pathways, (2) engineering strains of halophilic (salt-tolerant) microbes, and (3) developing microbial consortia for conversion. This review illuminates opportunities for future research communities by elucidating current approaches to engineering microbes so they can become cell factories for the utilization of macroalgae feedstocks.
Collapse
Affiliation(s)
- Yusuke Sasaki
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
29
|
Li C, Jiang T, Li M, Zou Y, Yan Y. Fine-tuning gene expression for improved biosynthesis of natural products: From transcriptional to post-translational regulation. Biotechnol Adv 2022; 54:107853. [PMID: 34637919 PMCID: PMC8724446 DOI: 10.1016/j.biotechadv.2021.107853] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
Microbial production of natural compounds has attracted extensive attention due to their high value in pharmaceutical, cosmetic, and food industries. Constructing efficient microbial cell factories for biosynthesis of natural products requires the fine-tuning of gene expressions to minimize the accumulation of toxic metabolites, reduce the competition between cell growth and product generation, as well as achieve the balance of redox or co-factors. In this review, we focus on recent advances in fine-tuning gene expression at the DNA, RNA, and protein levels to improve the microbial biosynthesis of natural products. Commonly used regulatory toolsets in each level are discussed, and perspectives for future direction in this area are provided.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Michelle Li
- North Oconee High School, Bogart, GA 30622, USA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
30
|
Improved production of the non-native cofactor F 420 in Escherichia coli. Sci Rep 2021; 11:21774. [PMID: 34741069 PMCID: PMC8571402 DOI: 10.1038/s41598-021-01224-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The deazaflavin cofactor F420 is a low-potential, two-electron redox cofactor produced by some Archaea and Eubacteria that is involved in methanogenesis and methanotrophy, antibiotic biosynthesis, and xenobiotic metabolism. However, it is not produced by bacterial strains commonly used for industrial biocatalysis or recombinant protein production, such as Escherichia coli, limiting our ability to exploit it as an enzymatic cofactor and produce it in high yield. Here we have utilized a genome-scale metabolic model of E. coli and constraint-based metabolic modelling of cofactor F420 biosynthesis to optimize F420 production in E. coli. This analysis identified phospho-enol pyruvate (PEP) as a limiting precursor for F420 biosynthesis, explaining carbon source-dependent differences in productivity. PEP availability was improved by using gluconeogenic carbon sources and overexpression of PEP synthase. By improving PEP availability, we were able to achieve a ~ 40-fold increase in the space–time yield of F420 compared with the widely used recombinant Mycobacterium smegmatis expression system. This study establishes E. coli as an industrial F420-production system and will allow the recombinant in vivo use of F420-dependent enzymes for biocatalysis and protein engineering applications.
Collapse
|
31
|
Dynamic metabolic engineering of Escherichia coli improves fermentation for the production of pyruvate and its derivatives. J Biosci Bioeng 2021; 133:56-63. [PMID: 34674961 DOI: 10.1016/j.jbiosc.2021.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
Pyruvate is a key intermediate that is involved in various synthetic metabolic pathways for microbial chemical and fuel production. It is widely used in the food, chemical, and pharmaceutical industries. However, the microbial production of pyruvate and its derivatives compete with microbial cell growth, as pyruvate is an important metabolic intermediate that serves as a hub for various endogenous metabolic pathways, including gluconeogenesis, amino acid synthesis, TCA cycle, and fatty acid biosynthesis. To achieve a more efficient bioprocess for the production of pyruvate and its derivatives, it is necessary to reduce the metabolic imbalance between cell growth and target chemical production. For this purpose, we devised a dynamic metabolic engineering strategy within an Escherichia coli model, in which a metabolic toggle switch (MTS) was employed to redirect metabolic flux from the endogenous pathway toward the target synthetic pathway. Through a combination of TCA cycle interruption through MTS and reduction of pyruvate consumption in endogenous pathways, we achieved a drastic improvement (163 mM, 26-fold) in pyruvate production. In addition, we demonstrated the redirection of metabolic flux from excess pyruvate toward isobutanol production. The final isobutanol production titer of the strain harboring MTS was 26% improved compared with that of the control strain.
Collapse
|
32
|
Zhu Y, Li Y, Xu Y, Zhang J, Ma L, Qi Q, Wang Q. Development of bifunctional biosensors for sensing and dynamic control of glycolysis flux in metabolic engineering. Metab Eng 2021; 68:142-151. [PMID: 34610458 DOI: 10.1016/j.ymben.2021.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022]
Abstract
Glycolysis is the primary metabolic pathway in all living organisms. Maintaining the balance of glycolysis flux and biosynthetic pathways is the crucial matter involved in the microbial cell factory. Few regulation systems can address the issue of metabolic flux imbalance in glycolysis. Here, we designed and constructed a bifunctional glycolysis flux biosensor that can dynamically regulate glycolysis flux for overproduction of desired biochemicals. A series of positive-and negative-response biosensors were created and modified for varied thresholds and dynamic ranges. These engineered glycolysis flux biosensors were verified to be able to characterize in vivo fructose-1,6-diphosphate concentration. Subsequently, the biosensors were applied for fine-tuning glycolysis flux to effectively balance the biosynthesis of two chemicals: mevalonate and N-acetylglucosamine. A glycolysis flux-dynamically controlled Escherichia coli strain achieved a 111.3 g/L mevalonate titer in a 1L fermenter.
Collapse
Affiliation(s)
- Yuan Zhu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Li
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ya Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Linlin Ma
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
33
|
Zhang J, Pang Q, Wang Q, Qi Q, Wang Q. Modular tuning engineering and versatile applications of genetically encoded biosensors. Crit Rev Biotechnol 2021; 42:1010-1027. [PMID: 34615431 DOI: 10.1080/07388551.2021.1982858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Genetically encoded biosensors have a diverse range of detectable signals and potential applications in many fields, including metabolism control and high-throughput screening. Their ability to be used in situ with minimal interference to the bioprocess of interest could revolutionize synthetic biology and microbial cell factories. The performance and functions of these biosensors have been extensively studied and have been rapidly improved. We review here current biosensor tuning strategies and attempt to unravel how to obtain ideal biosensor functions through experimental adjustments. Strategies for expanding the biosensor input signals that increases the number of detectable compounds have also been summarized. Finally, different output signals and their practical requirements for biotechnology and biomedical applications and environmental safety concerns have been analyzed. This in-depth review of the responses and regulation mechanisms of genetically encoded biosensors will assist to improve their design and optimization in various application scenarios.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingxiao Pang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qi Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
34
|
Shabestary K, Hernández HP, Miao R, Ljungqvist E, Hallman O, Sporre E, Branco Dos Santos F, Hudson EP. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metab Eng 2021; 68:131-141. [PMID: 34601120 DOI: 10.1016/j.ymben.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 01/23/2023]
Abstract
Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.
Collapse
Affiliation(s)
- Kiyan Shabestary
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Pineda Hernández
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Rui Miao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Ljungqvist
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Hallman
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Emil Sporre
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
35
|
Soma Y, Takahashi M, Fujiwara Y, Tomiyasu N, Goto M, Hanai T, Izumi Y, Bamba T. Quantitative metabolomics for dynamic metabolic engineering using stable isotope labeled internal standards mixture (SILIS). J Biosci Bioeng 2021; 133:46-55. [PMID: 34620543 DOI: 10.1016/j.jbiosc.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The production of chemicals and fuels from renewable resources using engineered microbes is an attractive alternative for current fossil-dependent industries. Metabolic engineering has contributed to pathway engineering for the production of chemicals and fuels by various microorganisms. Recently, dynamic metabolic engineering harnessing synthetic biological tools has become a next-generation strategy in this field. The dynamic regulation of metabolic flux during fermentation optimizes metabolic states according to each fermentation stage such as cell growth phase and compound production phase. However, it is necessary to repeat the evaluation and redesign of the dynamic regulation system to achieve the practical use of engineered microbes. In this study, we performed quantitative metabolome analysis to investigate the effects of dynamic metabolic flux regulation on engineered Escherichia coli for γ-amino butyrate (GABA) fermentation. We prepared a stable isotope-labeled internal standard mixture (SILIS) for the stable isotope dilution method (SIDM), a mass spectrometry-based quantitative metabolome analysis method. We found multiple candidate bottlenecks for GABA production. Some metabolic reactions in the GABA production pathway should be engineered for further improvement in the direct GABA fermentation with dynamic metabolic engineering strategy.
Collapse
Affiliation(s)
- Yuki Soma
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuri Fujiwara
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriyuki Tomiyasu
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Maiko Goto
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taizo Hanai
- Laboratory for Synthetic Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, W5-729, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
36
|
Zou Y, Li C, Zhang R, Jiang T, Liu N, Wang J, Wang X, Yan Y. Exploring the Tunability and Dynamic Properties of MarR-PmarO Sensor System in Escherichia coli. ACS Synth Biol 2021; 10:2076-2086. [PMID: 34319697 DOI: 10.1021/acssynbio.1c00245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcriptional factor-based biosensors (TFBs) have been widely used in dynamic pathway control or high-throughput screening. Here, we systematically explored the tunability of a salicylic acid responsive regulator MarR from Escherichia coli aiming to explore its engineering potential. The effect of endogenous MarR in E. coli on the MarR-PmarO biosensor system was investigated. Furthermore, to investigate the function of marO binding boxes in this biosensor system, a series of hybrid promoters were constructed by placing the marO binding boxes in the strong constitutive pL promoter. The engineered hybrid promoters became responsive to MarR and salicylic acid. To further study the influence of each nucleotide in the marO box on MarR binding, we employed dynamic modeling to simulate the interaction and binding energy between each nucleotide in the marO boxes with the corresponding residues on MarR. Guided by the results of the simulation, we introduced mutations to key positions on the hybrid promoters and investigated corresponding dynamic performance. Two promoter variants I12AII4T and I12AII14T that exhibited improved responsive strengths and shifted dynamic ranges were obtained, which can be beneficial for future metabolic engineering research.
Collapse
Affiliation(s)
- Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Chenyi Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Ruihua Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Ning Liu
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
37
|
Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli. Nat Commun 2021; 12:4929. [PMID: 34389727 PMCID: PMC8363753 DOI: 10.1038/s41467-021-25142-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/21/2021] [Indexed: 01/24/2023] Open
Abstract
Synthetic metabolic pathways are a burden for engineered bacteria, but the underlying mechanisms often remain elusive. Here we show that the misregulated activity of the transcription factor Cra is responsible for the growth burden of glycerol overproducing E. coli. Glycerol production decreases the concentration of fructose-1,6-bisphoshate (FBP), which then activates Cra resulting in the downregulation of glycolytic enzymes and upregulation of gluconeogenesis enzymes. Because cells grow on glucose, the improper activation of gluconeogenesis and the concomitant inhibition of glycolysis likely impairs growth at higher induction of the glycerol pathway. We solve this misregulation by engineering a Cra-binding site in the promoter controlling the expression of the rate limiting enzyme of the glycerol pathway to maintain FBP levels sufficiently high. We show the broad applicability of this approach by engineering Cra-dependent regulation into a set of constitutive and inducible promoters, and use one of them to overproduce carotenoids in E. coli. Synthetic pathways represent a metabolic burden on host cells. Here the authors engineer Cra-binding sites to prevent misregulation in glycerol and carotenoid overproducing E. coli strains.
Collapse
|
38
|
Zhao P, Tian P. Biosynthesis pathways and strategies for improving 3-hydroxypropionic acid production in bacteria. World J Microbiol Biotechnol 2021; 37:117. [PMID: 34128152 DOI: 10.1007/s11274-021-03091-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
3-Hydroxypropionic acid (3-HP) represents an economically important platform compound from which a panel of bulk chemicals can be derived. Compared with petroleum-dependent chemical synthesis, bioproduction of 3-HP has attracted more attention due to utilization of renewable biomass. This review outlines bacterial production of 3-HP, covering aspects of host strains (e.g., Escherichia coli and Klebsiella pneumoniae), metabolic pathways, key enzymes, and hurdles hindering high-level production. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, we come up with protocols to overcome the hurdles constraining 3-HP production. The protocols range from rewiring of metabolic networks, alleviation of metabolite toxicity, to dynamic control of cell size and density. Especially, this review highlights the substantial contribution of microbial growth to 3-HP production, as we recognize the synchronization between cell growth and 3-HP formation. Accordingly, we summarize the following growth-promoting strategies: (i) optimization of fermentation conditions; (ii) construction of gene circuits to alleviate feedback inhibition; (iii) recruitment of RNA polymerases to overexpress key enzymes which in turn boost cell growth and 3-HP production. Lastly, we propose metabolic engineering approaches to simplify downstream separation and purification. Overall, this review aims to portray a picture of bacterial production of 3-HP.
Collapse
Affiliation(s)
- Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
39
|
Abstract
Metabolic engineering reprograms cells to synthesize value-added products. In doing so, endogenous genes are altered and heterologous genes can be introduced to achieve the necessary enzymatic reactions. Dynamic regulation of metabolic flux is a powerful control scheme to alleviate and overcome the competing cellular objectives that arise from the introduction of these production pathways. This review explores dynamic regulation strategies that have demonstrated significant production benefits by targeting the metabolic node corresponding to a specific challenge. We summarize the stimulus-responsive control circuits employed in these strategies that determine the criterion for actuating a dynamic response and then examine the points of control that couple the stimulus-responsive circuit to a shift in metabolic flux.
Collapse
Affiliation(s)
- Cynthia Ni
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Christina V Dinh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
40
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
41
|
Glasscock CJ, Biggs BW, Lazar JT, Arnold JH, Burdette LA, Valdes A, Kang MK, Tullman-Ercek D, Tyo KEJ, Lucks JB. Dynamic Control of Gene Expression with Riboregulated Switchable Feedback Promoters. ACS Synth Biol 2021; 10:1199-1213. [PMID: 33834762 DOI: 10.1021/acssynbio.1c00015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One major challenge in synthetic biology is the deleterious impacts of cellular stress caused by expression of heterologous pathways, sensors, and circuits. Feedback control and dynamic regulation are broadly proposed strategies to mitigate this cellular stress by optimizing gene expression levels temporally and in response to biological cues. While a variety of approaches for feedback implementation exist, they are often complex and cannot be easily manipulated. Here, we report a strategy that uses RNA transcriptional regulators to integrate additional layers of control over the output of natural and engineered feedback responsive circuits. Called riboregulated switchable feedback promoters (rSFPs), these gene expression cassettes can be modularly activated using multiple mechanisms, from manual induction to autonomous quorum sensing, allowing control over the timing, magnitude, and autonomy of expression. We develop rSFPs in Escherichia coli to regulate multiple feedback networks and apply them to control the output of two metabolic pathways. We envision that rSFPs will become a valuable tool for flexible and dynamic control of gene expression in metabolic engineering, biological therapeutic production, and many other applications.
Collapse
Affiliation(s)
- Cameron J. Glasscock
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bradley W. Biggs
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - John T. Lazar
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jack H. Arnold
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lisa A. Burdette
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Aliki Valdes
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Min-Kyoung Kang
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Keith E. J. Tyo
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Julius B. Lucks
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Dacquay LC, McMillen DR. Improving the design of an oxidative stress sensing biosensor in yeast. FEMS Yeast Res 2021; 21:6232160. [PMID: 33864457 PMCID: PMC8088429 DOI: 10.1093/femsyr/foab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transcription factor (TF)-based biosensors have proven useful for increasing biomanufacturing yields, large-scale functional screening, and in environmental monitoring. Most yeast TF-based biosensors are built from natural promoters, resulting in large DNA parts retaining considerable homology to the host genome, which can complicate biological engineering efforts. There is a need to explore smaller, synthetic biosensors to expand the options for regulating gene expression in yeast. Here, we present a systematic approach to improving the design of an existing oxidative stress sensing biosensor in Saccharomyces cerevisiae based on the Yap1 transcription factor. Starting from a synthetic core promoter, we optimized the activity of a Yap1-dependent promoter through rational modification of a minimalist Yap1 upstream activating sequence. Our novel promoter achieves dynamic ranges of activation surpassing those of the previously engineered Yap1-dependent promoter, while reducing it to only 171 base pairs. We demonstrate that coupling the promoter to a positive-feedback-regulated TF further improves the biosensor by increasing its dynamic range of activation and reducing its limit of detection. We have illustrated the robustness and transferability of the biosensor by reproducing its activity in an unconventional probiotic yeast strain, Saccharomyces boulardii. Our findings can provide guidance in the general process of TF-based biosensor design.
Collapse
Affiliation(s)
- Louis C Dacquay
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada
| | - David R McMillen
- Dept of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga ON L5L 1C6, Canada.,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto ON M5S 3H6, Canada
| |
Collapse
|
43
|
Park S, Cho SW, Lee Y, Choi M, Yang J, Lee H, Seo SW. Engineering Vibrio sp. SP1 for the production of carotenoids directly from brown macroalgae. Comput Struct Biotechnol J 2021; 19:1531-1540. [PMID: 33815690 PMCID: PMC7994440 DOI: 10.1016/j.csbj.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
Macroalgae is regarded as a promising third-generation marine biomass that can be utilized as a sustainable feedstock for bio-industry due to the high sugar level and absence of lignin. Alginate, composed of 1,4-linked D-mannuronate (M) and L-guluronate (G), is one of the major carbohydrates in brown macroalgae. It is difficult to be assimilated by most industrial microorganisms. Therefore, developing engineered microorganisms that can utilize alginate as a feedstock in order to produce natural products from marine biomass is critical. In this study, we isolated, characterized, and sequenced Vibrio sp. SP1 which rapidly grows using alginate as a sole carbon source. We further engineered this strain by introducing genes encoding enzymes under the control of synthetic expression cassettes to produce lycopene and β-carotene which are attractive phytochemicals owing to the antioxidant property. We confirmed that the engineered Vibrio sp. SP1 could successfully produce 2.13 ± 0.37 mg L-1 of lycopene, 2.98 ± 0.43 mg L-1 of β -carotene, respectively, from 10 g L-1 of alginate as a sole carbon source. Furthermore, our engineered strain could directly convert 60 g L-1 of brown macroalgae Sargassum fusiforme into 1.23 ± 0.21 mg L-1 of lycopene without any pretreatment which had been vitally required for the previous productions. As the first demonstrated strain to produce high-value product from Sargassum, Vibrio sp. SP1 is evaluated to be a desirable platform for the brown macroalgae-based biorefinery.
Collapse
Affiliation(s)
- Sungwoo Park
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Sung Won Cho
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yungyu Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Mincheol Choi
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jina Yang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hojun Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Bio-MAX Institute Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
44
|
Switching metabolic flux by engineering tryptophan operon-assisted CRISPR interference system in Klebsiella pneumoniae. Metab Eng 2021; 65:30-41. [PMID: 33684594 DOI: 10.1016/j.ymben.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 01/17/2023]
Abstract
One grand challenge for bioproduction of desired metabolites is how to coordinate cell growth and product synthesis. Here we report that a tryptophan operon-assisted CRISPR interference (CRISPRi) system can switch glycerol oxidation and reduction pathways in Klebsiella pneumoniae, whereby the oxidation pathway provides energy to sustain growth, and the reduction pathway generates 1,3-propanediol and 3-hydroxypropionic acid (3-HP), two economically important chemicals. Reverse transcription and quantitative PCR (RT-qPCR) showed that this CRISPRi-dependent switch affected the expression of glycerol metabolism-related genes and in turn improved 3-HP production. In shake-flask cultivation, the strain coexpressing dCas9-sgRNA and PuuC (an aldehyde dehydrogenase native to K. pneumoniae for 3-HP biosynthesis) produced 3.6 g/L 3-HP, which was 1.62 times that of the strain only overexpressing PuuC. In a 5 L bioreactor, this CRISPRi strain produced 58.9 g/L 3-HP. When circulation feeding was implemented to alleviate metabolic stress, biomass was substantially improved and 88.8 g/L 3-HP was produced. These results indicated that this CRISPRi-dependent switch can efficiently reconcile biomass formation and 3-HP biosynthesis. Furthermore, this is the first report of coupling CRISPRi system with trp operon, and this architecture holds huge potential in regulating gene expression and allocating metabolic flux.
Collapse
|
45
|
Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli. Microb Cell Fact 2021; 20:32. [PMID: 33531004 PMCID: PMC7852082 DOI: 10.1186/s12934-021-01526-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Natural glycolysis encounters the decarboxylation of glucose partial oxidation product pyruvate into acetyl-CoA, where one-third of the carbon is lost at CO2. We previously constructed a carbon saving pathway, EP-bifido pathway by combining Embden-Meyerhof-Parnas Pathway, Pentose Phosphate Pathway and "bifid shunt", to generate high yield acetyl-CoA from glucose. However, the carbon conversion rate and reducing power of this pathway was not optimal, the flux ratio of EMP pathway and pentose phosphate pathway (PPP) needs to be precisely and dynamically adjusted to improve the production of mevalonate (MVA). RESULT Here, we finely tuned the glycolytic flux ratio in two ways. First, we enhanced PPP flux for NADPH supply by replacing the promoter of zwf on the genome with a set of different strength promoters. Compared with the previous EP-bifido strains, the zwf-modified strains showed obvious differences in NADPH, NADH, and ATP synthesis levels. Among them, strain BP10BF accumulated 11.2 g/L of MVA after 72 h of fermentation and the molar conversion rate from glucose reached 62.2%. Second, pfkA was finely down-regulated by the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system. The MVA yield of the regulated strain BiB1F was 8.53 g/L, and the conversion rate from glucose reached 68.7%. CONCLUSION This is the highest MVA conversion rate reported in shaken flask fermentation. The CRISPRi and promoter fine-tuning provided an effective strategy for metabolic flux redistribution in many metabolic pathways and promotes the chemicals production.
Collapse
|
46
|
Xiong B, Zhu Y, Tian D, Jiang S, Fan X, Ma Q, Wu H, Xie X. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli. Biotechnol Bioeng 2021; 118:1393-1404. [PMID: 33399214 DOI: 10.1002/bit.27665] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
Microbial production of l-tryptophan (l-trp) has received considerable attention because of its diverse applications in food additives and pharmaceuticals. Overexpression of rate-limiting enzymes and blockage of competing pathways can effectively promote microbial production of l-trp. However, the biosynthetic process remains suboptimal due to imbalanced flux distribution between central carbon and tryptophan metabolism, presenting a major challenge to further improvement of l-trp yield. In this study, we redistributed central carbon metabolism to improve phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) pools in an l-trp producing strain of Escherichia coli for efficient l-trp synthesis. To do this, a phosphoketolase from Bifidobacterium adolescentis was introduced to strengthen E4P formation, and the l-trp titer and yield increased to 10.8 g/L and 0.148 g/g glucose, respectively. Next, the phosphotransferase system was substituted with PEP-independent glucose transport, meditated by a glucose facilitator from Zymomonas mobilis and native glucokinase. This modification improved l-trp yield to 0.164 g/g glucose, concomitant with 58% and 40% decreases of acetate and lactate accumulation, respectively. Then, to channel more central carbon flux to the tryptophan biosynthetic pathway, several metabolic engineering strategies were applied to rewire the PEP-pyruvate-oxaloacetate node. Finally, the constructed strain SX11 produced 41.7 g/L l-trp with an overall yield of 0.227 g/g glucose after 40 h fed-batch fermentation in 5-L bioreactor. This is the highest overall yield of l-trp ever reported from a rationally engineered strain. Our results suggest the flux redistribution of central carbon metabolism to maintain sufficient supply of PEP and E4P is a promising strategy for efficient l-trp biosynthesis, and this strategy would likely also increase the production of other aromatic amino acids and derivatives.
Collapse
Affiliation(s)
- Bo Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yongduo Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Daoguang Tian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaoguang Fan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Heyun Wu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science & Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
47
|
Hartline CJ, Schmitz AC, Han Y, Zhang F. Dynamic control in metabolic engineering: Theories, tools, and applications. Metab Eng 2021; 63:126-140. [PMID: 32927059 PMCID: PMC8015268 DOI: 10.1016/j.ymben.2020.08.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Metabolic engineering has allowed the production of a diverse number of valuable chemicals using microbial organisms. Many biological challenges for improving bio-production exist which limit performance and slow the commercialization of metabolically engineered systems. Dynamic metabolic engineering is a rapidly developing field that seeks to address these challenges through the design of genetically encoded metabolic control systems which allow cells to autonomously adjust their flux in response to their external and internal metabolic state. This review first discusses theoretical works which provide mechanistic insights and design choices for dynamic control systems including two-stage, continuous, and population behavior control strategies. Next, we summarize molecular mechanisms for various sensors and actuators which enable dynamic metabolic control in microbial systems. Finally, important applications of dynamic control to the production of several metabolite products are highlighted, including fatty acids, aromatics, and terpene compounds. Altogether, this review provides a comprehensive overview of the progress, advances, and prospects in the design of dynamic control systems for improved titer, rate, and yield metrics in metabolic engineering.
Collapse
Affiliation(s)
- Christopher J Hartline
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Alexander C Schmitz
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yichao Han
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
48
|
Noh MH, Cha S, Kim M, Jung GY. Recent Advances in Microbial Cell Growth Regulation Strategies for Metabolic Engineering. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Otero-Muras I, Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metab Eng 2020; 63:61-80. [PMID: 33316374 DOI: 10.1016/j.ymben.2020.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Metabolic engineering involves the engineering and optimization of processes from single-cell to fermentation in order to increase production of valuable chemicals for health, food, energy, materials and others. A systems approach to metabolic engineering has gained traction in recent years thanks to advances in strain engineering, leading to an accelerated scaling from rapid prototyping to industrial production. Metabolic engineering is nowadays on track towards a truly manufacturing technology, with reduced times from conception to production enabled by automated protocols for DNA assembly of metabolic pathways in engineered producer strains. In this review, we discuss how the success of the metabolic engineering pipeline often relies on retrobiosynthetic protocols able to identify promising production routes and dynamic regulation strategies through automated biodesign algorithms, which are subsequently assembled as embedded integrated genetic circuits in the host strain. Those approaches are orchestrated by an experimental design strategy that provides optimal scheduling planning of the DNA assembly, rapid prototyping and, ultimately, brings forward an accelerated Design-Build-Test-Learn cycle and the overall optimization of the biomanufacturing process. Achieving such a vision will address the increasingly compelling demand in our society for delivering valuable biomolecules in an affordable, inclusive and sustainable bioeconomy.
Collapse
Affiliation(s)
- Irene Otero-Muras
- BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council, Vigo, 36208, Spain.
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (ai2), Universitat Politècnica de València, 46022, Spain.
| |
Collapse
|
50
|
Biosynthesis of myo-inositol in Escherichia coli by engineering myo-inositol-1-phosphate pathway. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|