1
|
Tang JT, Qin YL, Zhao WJ, Tu Y, Sun DJ. Abrocitinib alleviates the symptoms of Netherton syndrome and is well tolerated. J DERMATOL TREAT 2025; 36:2447883. [PMID: 40159127 DOI: 10.1080/09546634.2024.2447883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/12/2024] [Indexed: 04/02/2025]
Abstract
PURPOSE To investigate the potential genetic basis of Netherton syndrome (NS) through first- and second-generation DNA sequencing techniques. Additionally, we evaluated the therapeutic efficacy of Abrocitinib in NS patients. MATERIALS AND METHODS We conducted whole-exome sequencing analysis on a pedigree comprising one affected individual with NS. Subsequently, the identified patient was treated with Abrocitinib, and clinical improvements in cutaneous manifestations were systematically assessed. RESULTS Genetic analysis revealed that the patient harbored compound heterozygous mutations in the SPINK5 gene, including a missense mutation in exon 26 (c.2475G > T, p.Trp825Cys). Following six months of Abrocitinib therapy, the patient exhibited marked improvement in skin rash and overall disease severity. CONCLUSIONS Our findings suggest that SPINK5 missense mutations may contribute to the pathogenesis of NS. Furthermore, Abrocitinib demonstrates promising therapeutic potential in the management of NS, warranting further investigation in larger clinical cohorts.
Collapse
Affiliation(s)
- Jun-Ting Tang
- Department of Dermatology and Venerology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Liang Qin
- Department of Dermatology and Venerology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei-Jia Zhao
- Department of Dermatology and Venerology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology and Venerology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dong-Jie Sun
- Department of Dermatology and Venerology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Shimomura Y. Molecular Basis of Hereditary Hair Diseases. Keio J Med 2025; 74:27-36. [PMID: 37407443 DOI: 10.2302/kjm.2023-0007-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The hair follicle is an appendage of the skin that undergoes hair cycles throughout life. Recently, numerous genes expressed in the hair follicles have been identified, and variants in some of these genes are now known to underlie hereditary hair diseases in humans. Hereditary hair diseases are classified into non-syndromic and syndromic forms. In the Japanese population, the non-syndromic form of autosomal recessive woolly hair, which is caused by founder pathogenic variants in the lipase H (LIPH) gene, is the most prevalent hereditary hair disease. In addition, other types of hereditary hair diseases are known in Japan, such as Marie-Unna hereditary hypotrichosis, hypohidrotic ectodermal dysplasia, and tricho-rhino-phalangeal syndrome. To ensure correct diagnoses and appropriate patient care, dermatologists must understand the characteristics of each hair disorder. Elucidation of the molecular basis of hereditary hair diseases can directly tell us which genes are crucial for morphogenesis and development of hair follicles in humans. Therefore, continuation of "wet laboratory" research for these diseases remains important. To date, several syndromic forms of hereditary hair diseases have been approved as designated intractable diseases in Japan. As part of our efforts in the Project for Research on Intractable Diseases through the Ministry of Health, Labour, and Welfare of Japan, we anticipate that more hereditary hair diseases be recognized as designated intractable diseases in the future, which will be to the benefit of the affected individuals.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
3
|
Xu M, Shi Y, Lin L, Wang L, Zhu X, Xiong J, Yin J, Qi Q, Yang W. The role of SPINK5 mutation distribution in phenotypes of Netherton syndrome. Front Genet 2025; 16:1475054. [PMID: 39931731 PMCID: PMC11808037 DOI: 10.3389/fgene.2025.1475054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Objective Netherton syndrome (NS) is a rare hereditary dermatosis, and the correlation between genotype and phenotype in this disease warrants further investigation. This study aimed to explore the genotype-phenotype correlation in NS. Methods We collect cases from our clinic and relevant literature. After rigorous screening, we included 162 patients with NS-associated symptoms and SPINK5 mutations. We characterized the distribution and mutation types of allele variants. Logistic regression was employed to analyze the correlation between the location of these variants and phenotypes. Additionally, the association between the homozygous condition of variants and death during infancy was analyzed using the Chi-square test. Results Among 162 patients, we identified 324 allele variants, comprising 75 different mutations. Of these, 73 patients carried heterozygous variants, while 89 patients had homozygous variants. We observed that patients with variants or homozygous variants located in the 5' half of the gene were more likely to experience failure to thrive (P < 0.05). Similarly, variants or homozygous variants located outside DomainR-5 were also associated with an increased risk of failure to thrive (P < 0.05). Furthermore, variants in domain regions were significantly correlated with the presence of ichthyosis linearis circumflexa (P < 0.01). Patients with homozygous fatal variants (c.153delT, c.1431-12G>A, c.1111C>T, c. 1887 + 1G>A, and c. 995delT) had a higher likelihood of mortality during infancy (P < 0.001). Conclusion Our study provides valuable insights into the genotype-phenotype correlation in Netherton syndrome, enhancing our understanding of the disease and potentially informing the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Min Xu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yujie Shi
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Lin
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianzhong Zhu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinglin Xiong
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Yin
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Qi
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenlin Yang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Gutiérrez-Cerrajero C, González-Sarmiento R, Hernández-Martín Á. ICHTHYOSIS: Clinical and molecular update. Part 2: Syndromic ichthyosis. Diagnostic and therapeutic approach of ichthyosis. ACTAS DERMO-SIFILIOGRAFICAS 2025:S0001-7310(24)01061-5. [PMID: 39755146 DOI: 10.1016/j.ad.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 01/06/2025] Open
Abstract
Syndromic ichthyoses are a group of disorders whose genetic alterations impact both epidermal and non-epidermal tissues. Therefore, patients present symptoms in other organs. Most are extraordinary and, in some, ichthyosiform desquamation has been poorly described. Their patterns of inheritance are diverse; their extracutaneous clinical signs, heterogeneous; and the skin symptoms, highly variable, which hinders a proper clinical classification. Ichthyosis diagnosis starts with proper anamnesis, detailed physical examination, and detection of associated analytic and/or histologic findings. Genetic testing is indispensable, not only for diagnostic certainty, but also because understanding the molecular substrate for each patient is the first step towards finding an individualized therapeutic regimen. While it will almost invariably involve facilitating desquamation and maintaining skin hydration using topical exfoliants and emollients, recently, replacement therapies aiming at substituting the proteins and lipids specifically altered in each patient are being developed and gene therapy approaches with the ultimate goal of curing the disease are being assessed. In part 2 of this review, we'll be updating the clinical and genetic findings of syndromic entities, ichthyosis diagnosis and treatment.
Collapse
Affiliation(s)
- C Gutiérrez-Cerrajero
- Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Salamanca, España; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | - R González-Sarmiento
- Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Salamanca, España; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | | |
Collapse
|
5
|
Takegami T, Yonekura S, Nakajima S, Kabashima K. Successful treatment of dupilumab-resistant scaly erythroderma in Netherton syndrome with baricitinib: A case report. J Dermatol 2024; 51:e410-e411. [PMID: 38967333 DOI: 10.1111/1346-8138.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Affiliation(s)
- Tomoya Takegami
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Yonekura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Discovery for Inflammatory Skin Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
6
|
Nouwen AE, Ragamin A, Knol MJ, Ott H, Weibel L, Has C, Hovnanian A, Paller AS, Bodemer C, Dalm VA, Pasmans SG, Schappin R. Developing a Core Outcome Set for Netherton Syndrome: An International Multi-Stakeholder e-Delphi Consensus Study. Dermatology 2024; 241:35-48. [PMID: 39496226 PMCID: PMC11793099 DOI: 10.1159/000542215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/07/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION Netherton syndrome (NS; OMIM#256500) is a rare and severe disorder of epidermal maturation and keratinization caused by pathogenic variants in the serine protease inhibitor Kazal type 5 (SPINK5), leading to severe skin barrier impairment. Although effective treatment is crucial for NS patients, there is a lack of knowledge on what the best treatment options are for these patients. Large heterogeneity in reported outcomes and measurement instruments hinders accurate comparison of treatment results across studies and the development of a treatment guideline. Therefore, we aimed to develop a core outcome set (COS) for NS that can be used in clinical care and research. METHODS This study was performed in accordance with the recommendations of the Core Outcome Measures in Effectiveness Trials (COMET) initiative. After identification of outcomes through a literature search and classification based on the International Classification of Functioning and taxonomies published by the COMET initiative, discussion groups were organized at the 2nd International Netherton Congress 2022 to finalize the provisional outcome list. Through a 2-round e-Delphi, 41 stakeholders (patients and family members, professionals, and representatives of industry) from 14 countries rated the importance of the outcomes using a 9-point Likert scale. An online consensus meeting attended by 14 stakeholders finalized the COS. RESULTS The COS for NS comprised 21 outcomes in 10 domains. These included four "skin" outcomes, two "sensation" outcomes, two "side-effects of treatment" outcomes, one "vitality" outcome, one "emotional functioning" outcome, two "physical development" outcomes, two "nutrition" outcomes, two "infections" outcomes, two "allergies" outcomes, and three "assessment results" outcomes. CONCLUSION In this study, consensus was reached on 21 outcomes to be included in the COS for NS. The selection of outcomes in the COS underlines that NS not only affects the skin but is a disease requiring a broad multidisciplinary approach in clinical care and research. International implementation of this COS will lead to more uniform reporting, thereby enabling comparison of study results, which may facilitate future treatment guideline development. The next step is to further conceptually define the outcomes and reach consensus on how to measure these. INTRODUCTION Netherton syndrome (NS; OMIM#256500) is a rare and severe disorder of epidermal maturation and keratinization caused by pathogenic variants in the serine protease inhibitor Kazal type 5 (SPINK5), leading to severe skin barrier impairment. Although effective treatment is crucial for NS patients, there is a lack of knowledge on what the best treatment options are for these patients. Large heterogeneity in reported outcomes and measurement instruments hinders accurate comparison of treatment results across studies and the development of a treatment guideline. Therefore, we aimed to develop a core outcome set (COS) for NS that can be used in clinical care and research. METHODS This study was performed in accordance with the recommendations of the Core Outcome Measures in Effectiveness Trials (COMET) initiative. After identification of outcomes through a literature search and classification based on the International Classification of Functioning and taxonomies published by the COMET initiative, discussion groups were organized at the 2nd International Netherton Congress 2022 to finalize the provisional outcome list. Through a 2-round e-Delphi, 41 stakeholders (patients and family members, professionals, and representatives of industry) from 14 countries rated the importance of the outcomes using a 9-point Likert scale. An online consensus meeting attended by 14 stakeholders finalized the COS. RESULTS The COS for NS comprised 21 outcomes in 10 domains. These included four "skin" outcomes, two "sensation" outcomes, two "side-effects of treatment" outcomes, one "vitality" outcome, one "emotional functioning" outcome, two "physical development" outcomes, two "nutrition" outcomes, two "infections" outcomes, two "allergies" outcomes, and three "assessment results" outcomes. CONCLUSION In this study, consensus was reached on 21 outcomes to be included in the COS for NS. The selection of outcomes in the COS underlines that NS not only affects the skin but is a disease requiring a broad multidisciplinary approach in clinical care and research. International implementation of this COS will lead to more uniform reporting, thereby enabling comparison of study results, which may facilitate future treatment guideline development. The next step is to further conceptually define the outcomes and reach consensus on how to measure these.
Collapse
Affiliation(s)
- Anouk E.M. Nouwen
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aviël Ragamin
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria J. Knol
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hagen Ott
- Department of Paediatric Dermatology, Auf der Bult Children’s Hospital, Hannover, Germany
| | - Lisa Weibel
- Pediatric Skin Center, Department of Dermatology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alain Hovnanian
- INSERM, UMR 1163, Laboratory of Genetic Skin Diseases, Institut Imagine, Université Paris Cité, Paris, France
- Department of Genomic Medicine of Rare Diseases, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Amy S. Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christine Bodemer
- Department of Dermatology, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
| | - Virgil A.S.H. Dalm
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Suzanne G.M.A. Pasmans
- Department of Dermatology-Center of Pediatric Dermatology/Center of Rare Skin Diseases, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Renske Schappin
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - on behalf of all Netherton Syndrome Core Outcomes Research Evaluation (NSCORE) stakeholders
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Paediatric Dermatology, Auf der Bult Children’s Hospital, Hannover, Germany
- Pediatric Skin Center, Department of Dermatology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- INSERM, UMR 1163, Laboratory of Genetic Skin Diseases, Institut Imagine, Université Paris Cité, Paris, France
- Department of Genomic Medicine of Rare Diseases, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Dermatology-Center of Pediatric Dermatology/Center of Rare Skin Diseases, Erasmus University Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Nouwen AEM, Zaeck LM, Schappin R, Geers D, Gommers L, Bogers S, Dik WA, Pasmans SGMA, GeurtsvanKessel CH, de Vries RD, Dalm VASH. Polysaccharide, Conjugate, and mRNA-based Vaccines are Immunogenic in Patients with Netherton Syndrome. J Clin Immunol 2024; 45:36. [PMID: 39476295 PMCID: PMC11525285 DOI: 10.1007/s10875-024-01828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Netherton syndrome (NS) is a rare, severe genetic skin disorder, currently classified as an inborn error of immunity (IEI) due to previously reported immune dysregulation. We recently reported the results of an immunological evaluation showing no evidence for a relevant B- and/or T-cell mediated immunodeficiency, but immune responses after vaccination were not evaluated in that study. Therefore, we evaluated immune responses to three vaccine platforms in adult NS patients to further investigate the presence of a clinically relevant B- and/or T-cell immunodeficiency. METHODS Vaccination responses in eight adult NS patients were assessed in a cross-sectional study performed between January and August 2022. Clinical patient data were retrospectively retrieved from electronic patient files. Immune responses to a polysaccharide Streptococcus pneumoniae vaccine (PPV23) and conjugate Haemophilus influenzae type b vaccine (ActHiB) were measured. SARS-CoV-2-specific (functional) antibody and T-cell responses following booster vaccination with an mRNA-based COVID-19 vaccine were compared to controls. RESULTS None of the included patients suffered from recurrent and/or severe infections that could be attributed to a B- and/or T-cell immunodeficiency. ActHiB induced immune responses were normal in 7/7 NS patients. PPV23 induced responses were absent in 1/7, diminished in 2/7, and normal in 4/7 patients. Levels of SARS-CoV-2-specific binding and neutralizing antibodies after mRNA-based COVID-19 booster vaccination in NS patients were comparable to controls. SARS-CoV-2-specific CD4 + T-cell responses were detectable in all NS patients. In contrast, SARS-CoV-2-specific CD8 + T-cell responses were detectable in only 2/6 NS patients. T-cell responses to a positive control antigen pool were comparable to controls. CONCLUSIONS Vaccine-induced immune responses were detectable after polysaccharide, conjugate and mRNA-based vaccination in our cohort of NS patients. A spectrum of responsiveness to vaccine challenges was found, with the ranges of vaccine responses overlapping those demonstrated in healthy control populations.
Collapse
Affiliation(s)
- Anouk E M Nouwen
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca M Zaeck
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Renske Schappin
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Suzanne G M A Pasmans
- Department of Dermatology-Center of Pediatric Dermatology/Center of Rare Skin Diseases, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands.
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Tang X, Li M. The role of the skin in the atopic march. Int Immunol 2024; 36:567-577. [PMID: 39271155 DOI: 10.1093/intimm/dxae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic diseases, including atopic dermatitis (AD), food allergy (FA), asthma, and allergic rhinitis (AR) are closely related to inflammatory diseases involving different body sites (i.e. the skin, airway, and digestive tract) with characteristic features including specific IgE to allergens (so-called "atopy") and Th2 cell-mediated inflammation. It has been recognized that AD often precedes the development of other atopic diseases. The progression from AD during infancy to FA or asthma/AR in later childhood is referred to as the "atopic march" (AM). Clinical, genetic, and experimental studies have provided evidence that allergen sensitization occurring through AD skin could be the origin of the AM. Here, we provide an updated review focusing on the role of the skin in the AM, from genetic mutations and environmental factors associated with epidermal barrier dysfunction in AD and the AM to immunological mechanisms for skin sensitization, particularly recent progress on the function of key cytokines produced by epidermal keratinocytes or by immune cells infiltrating the skin during AD. We also highlight the importance of developing strategies that target AD skin to prevent and attenuate the AM.
Collapse
Affiliation(s)
- Xin Tang
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, Illkirch 67404, France
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40000, People's Republic of China
| | - Mei Li
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
9
|
Hino R, Chiba Y, Maruya Y, Tadano M, Otake S, Hoshikawa S, Sasahara Y, Saito K. Case Report: Dental treatment under general anesthesia and dental management of a child with congenital ichthyosis. FRONTIERS IN DENTAL MEDICINE 2024; 5:1481658. [PMID: 39917683 PMCID: PMC11797887 DOI: 10.3389/fdmed.2024.1481658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025] Open
Abstract
Congenital ichthyosis is a disease in which the stratum corneum on the surface of the skin becomes thick from the time of the fetus and the barrier function of the skin is impaired. Congenital ichthyosis is a genetic disorder that causes ectodermal abnormalities and sometimes affects skin, nails, and tooth enamel. Therefore, some patients require special care in their daily life and during dental treatments. Here, the authors report a case of congenital ichthyosis that developed into severe dental caries at two years and nine months of age. The authors performed whole-exome sequencing in his peripheral blood and found that the patient had compound heterozygous mutations in ALOX12B gene (c.159C>G and c.1579G>A), which is responsible for autosomal recessive congenital ichthyosis-2 (MIM#2421000). Mutation of c.159C>G is a nonsense mutation that has never been reported, therefore novel symptoms might have found. The patients exhibited severe caries by hypoplastic teeth. Here, the authors report the treatment of dental caries in a patient with congenital ichthyosis under general anesthesia and its oral management until mixed dentition.
Collapse
Affiliation(s)
- Ryoko Hino
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuriko Maruya
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Manami Tadano
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinji Otake
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Seira Hoshikawa
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
10
|
Kline SN, Saito Y, Archer NK. Staphylococcus aureus Proteases: Orchestrators of Skin Inflammation. DNA Cell Biol 2024; 43:483-491. [PMID: 38957987 PMCID: PMC11535466 DOI: 10.1089/dna.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Skin homeostasis relies on a delicate balance between host proteases and protease inhibitors along with those secreted from microbial communities, as disruption to this harmony contributes to the pathogenesis of inflammatory skin disorders, including atopic dermatitis and Netherton's syndrome. In addition to being a prominent cause of skin and soft tissue infections, the gram-positive bacterium Staphylococcus aureus is a key player in inflammatory skin conditions due to its array of 10 secreted proteases. Herein we review how S. aureus proteases augment the development of inflammation in skin disorders. These mechanisms include degradation of skin barrier integrity, immune dysregulation and pruritis, and impairment of host defenses. Delineating the diverse roles of S. aureus proteases has the potential to reveal novel therapeutic strategies, such as inhibitors of proteases or their cognate target, as well as neutralizing vaccines to alleviate the burden of inflammatory skin disorders in patients.
Collapse
Affiliation(s)
- Sabrina N. Kline
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yoshine Saito
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Keller J, O' Siorain JR, Kündig TM, Mellett M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem Soc Trans 2024; 52:1591-1604. [PMID: 38940747 DOI: 10.1042/bst20230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - James R O' Siorain
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
13
|
James AE, Abdalgani M, Khoury P, Freeman AF, Milner JD. T H2-driven manifestations of inborn errors of immunity. J Allergy Clin Immunol 2024; 154:245-254. [PMID: 38761995 DOI: 10.1016/j.jaci.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monogenic lesions in pathways critical for effector functions responsible for immune surveillance, protection against autoinflammation, and appropriate responses to allergens and microorganisms underlie the pathophysiology of inborn errors of immunity (IEI). Variants in cytokine production, cytokine signaling, epithelial barrier function, antigen presentation, receptor signaling, and cellular processes and metabolism can drive autoimmunity, immunodeficiency, and/or allergic inflammation. Identification of these variants has improved our understanding of the role that many of these proteins play in skewing toward TH2-related allergic inflammation. Early-onset or atypical atopic disease, often in conjunction with immunodeficiency and/or autoimmunity, should raise suspicion for an IEI. This becomes a diagnostic dilemma if the initial clinical presentation is solely allergic inflammation, especially when the prevalence of allergic diseases is becoming more common. Genetic sequencing is necessary for IEI diagnosis and is helpful for early recognition and implementation of targeted treatment, if available. Although genetic evaluation is not feasible for all patients with atopy, identifying atopic patients with molecular immune abnormalities may be helpful for diagnostic, therapeutic, and prognostic purposes. In this review, we focus on IEI associated with TH2-driven allergic manifestations and classify them on the basis of the affected molecular pathways and predominant clinical manifestations.
Collapse
Affiliation(s)
- Alyssa E James
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manar Abdalgani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paneez Khoury
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
14
|
Ehrhardt B, Angstmann H, Höschler B, Kovacevic D, Hammer B, Roeder T, Rabe KF, Wagner C, Uliczka K, Krauss-Etschmann S. Airway specific deregulation of asthma-related serpins impairs tracheal architecture and oxygenation in D. melanogaster. Sci Rep 2024; 14:16567. [PMID: 39019933 PMCID: PMC11255251 DOI: 10.1038/s41598-024-66752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Hanna Angstmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Beate Höschler
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Hammer
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Kiel, Germany
| | - Christina Wagner
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Karin Uliczka
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 1, 23845, Borstel, Germany.
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
15
|
Wilkerson A, Yuksel S, Acharya R, Butovich IA. Physiological Effects of Soat1 Inactivation on Homeostasis of the Mouse Ocular Surface. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 38953847 PMCID: PMC11221616 DOI: 10.1167/iovs.65.8.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose Soat1/SOAT1 have been previously reported to be critical for the biosynthesis of cholesteryl esters (CEs) in the mouse Meibomian glands (MGs) as the loss of function led to an arrest of CE production and a substantial accumulation of nonesterified cholesterol in the meibum, causing an increase in its melting temperature. The purpose of this study was to further investigate the role of Soat1 in meibogenesis and ocular surface physiology. Methods The mouse ocular features of knockout Soat1-/- and wild type (WT) mice were studied using various ophthalmic and histological techniques, mouse lipidomes were monitored using liquid chromatography/mass spectrometry, whereas their transcriptomes were compared to characterize the effects of the mutation on the gene expression profiles in the MG and cornea. Results Soat1-/- mice displayed increased tear production and severe corneal abnormalities, such as corneal thinning, (neo)vascularization, ulceration, and opacification that progressed with aging. Transcriptomic analyses led to identification of a range of significantly disrupted pathways, which included general and specific lipid metabolism-related pathways, keratinization, angiogenesis/(neo)vascularization, muscle contraction, and several other pathways. In addition, histological and histochemical experiments revealed morphological changes in the MG, cornea, and conjunctiva in Soat1-/- mice. Notably, the mRNA microarray expression level of Soat1 in WT MGs (log2 17.5) was 1000 × of that in the mouse cornea (log2 7.5). Conclusions These findings suggest a direct involvement of Soat1/SOAT1 in MGs in maintaining ocular surface homeostasis, in general, and corneal health, specifically.
Collapse
Affiliation(s)
- Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Seher Yuksel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Riya Acharya
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Igor A. Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
16
|
Martins D, Pinoteau MA, Leger R. Development of a back-titration assay to quantitate functional lympho-epithelial Kazal-type inhibitors (LEKTI) in skin samples. Anal Biochem 2024; 690:115524. [PMID: 38556114 DOI: 10.1016/j.ab.2024.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The lympho-epithelial Kazal-type inhibitors (LEKTI) are key to control skin turnover, and their absence causes Netherton syndrome. For clinical sample testing of LEKTI-based therapies, a robust analytical method to measure LEKTI-like activity in skin is required. This work reports on the development of a back-titration method to determine incremental LEKTI-like activity in skin samples. The method meets the analytical requirements for study sample testing, and reliable quantification can be achieved with negligible skin matrix interference. This assay does not provide analyte identity, but it can be used to measure treatment-driven increments of LEKTI-like activity within the skin epidermis.
Collapse
Affiliation(s)
- Dorival Martins
- Azitra Inc, 21 Business Park Drive, Branford, CT, 06405, USA.
| | | | - Roger Leger
- Azitra Inc, 21 Business Park Drive, Branford, CT, 06405, USA
| |
Collapse
|
17
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
18
|
Huang Y, Zhou W, Liu S, Zeng D, Zhou W. Association between polymorphisms and atopic dermatitis susceptibility: A systematic review and meta-analysis. Gene 2024; 913:148397. [PMID: 38513928 DOI: 10.1016/j.gene.2024.148397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
AIM Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease that is closely linked to genetic factors. Previous studies have revealed numerous single nucleotide polymorphisms (SNPs) that been related to susceptibility to AD; however, the results are conflicting. Therefore, a meta-analysis was conducted to assess the associations of these polymorphisms and AD risk. MATERIAL AND METHODS PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure databases were retrieved to identify eligible studies, with selected polymorphisms being reported in a minimum of three separate studies. The Newcastle-Ottawa Scale (NOS) was used to evaluate study quality. Review Manager 5.3 and STATA 14.0 were used to perform the meta-analysis. RESULTS After screening, 64 studies involving 13 genes (24 SNPs) were selected for inclusion in the meta-analysis. Nine SNPs were positively correlated with AD susceptibility [filaggrin (FLG) R501X, FLG 2282del4, chromosome 11q13.5 rs7927894, interleukin (IL)-17A rs2275913, IL-18 -137 G/C, Toll-like receptor 2 (TLR2) rs5743708, TLR2 A-16934 T, serine protease inhibitor Kazal type-5 (SPINK5) Asn368Ser, interferon-γ (IFN-γ) T874A] and one was negatively associated with AD susceptibility (IL-4 -1098 T/G). The 14 remaining SNPs were not significantly associated with AD susceptibility. CONCLUSIONS Nine SNPs that may be risk factors and one SNP that may be a protective factor for AD were identified, providing a reference for AD prediction, prevention, and therapy.
Collapse
Affiliation(s)
- Yunxia Huang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Allergy, Chongqing General Hospital, Chongqing 400014, China
| | - Wei Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing 400014, China
| | - Shunan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Allergy, Chongqing General Hospital, Chongqing 400014, China
| | - Dan Zeng
- Department of Allergy, Chongqing General Hospital, Chongqing 400014, China
| | - Weikang Zhou
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Allergy, Chongqing General Hospital, Chongqing 400014, China.
| |
Collapse
|
19
|
Temboonnark P, Daengsuwan T. Netherton Syndrome in Thai Children: A Report of Two Cases With a Literature Review. Cureus 2024; 16:e62718. [PMID: 39036217 PMCID: PMC11259522 DOI: 10.7759/cureus.62718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/23/2024] Open
Abstract
Netherton syndrome (NS) is a severe autosomal recessive disorder characterized by the triad of congenital ichthyosiform erythroderma, trichorrhexis invaginata, and atopic diathesis. We report two cases that experienced severe congenital exfoliative dermatitis, recurrent infections, and allergic conditions. Examinations of hair under the light microscope revealed trichorrhexis invaginata. Whole exome sequencing identified homologous pathogenic mutations of SPINK5. Optimal skincare and proper nutritional support could improve patients' quality of life.
Collapse
Affiliation(s)
- Panipak Temboonnark
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, THA
- College of Medicine, Rangsit University, Bangkok, THA
| | - Tassalapa Daengsuwan
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, THA
- College of Medicine, Rangsit University, Bangkok, THA
| |
Collapse
|
20
|
Salici NS, Ozcanli A, Rasulova G, Basak AN, Tekgul S, Vural S. Successful infliximab treatment in siblings with Netherton syndrome: Unveiling a novel SPINK5 gene variant and literature review. Australas J Dermatol 2024; 65:e45-e49. [PMID: 38419182 DOI: 10.1111/ajd.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/15/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Netherton syndrome (NS) is a rare autosomal recessive genodermatosis. In this article, we present two siblings with NS who harbour a novel variant in the SPINK5 gene and were treated with infliximab infusions. Both patients exhibited the characteristic clinical triad of NS, and their whole exome sequencing analysis revealed a homozygous variant, c.1820+53G>A, in the SPINK5 gene. Notably, this is the first documented instance of homozygosity for this particular variant. Despite the absence of a specific treatment, both patients achieved total clearance of the skin lesions, and a significant decrease in total IgE levels was documented.
Collapse
Affiliation(s)
- Nazmiye Selin Salici
- Department of Dermatology and Venereology, Koç University School of Medicine, Zeytinburnu, Turkey
| | - Adil Ozcanli
- Department of Dermatology and Venereology, Koç University School of Medicine, Zeytinburnu, Turkey
| | - Gunel Rasulova
- Department of Dermatology and Venereology, Koç University School of Medicine, Zeytinburnu, Turkey
| | - Ayse Nazli Basak
- Neurodegeneration Research Laboratory, Suna and Inan Kıraç Foundation, KUTTAM, Koç University School of Medicine, Zeytinburnu, Turkey
| | - Seyma Tekgul
- Neurodegeneration Research Laboratory, Suna and Inan Kıraç Foundation, KUTTAM, Koç University School of Medicine, Zeytinburnu, Turkey
| | - Secil Vural
- Department of Dermatology and Venereology, Koç University School of Medicine, Zeytinburnu, Turkey
| |
Collapse
|
21
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
22
|
Kostova P, Petrova G, Shahid M, Papochieva V, Miteva D, Yordanova I, Drenovska K, Bradinova I, Janniger CK, Schwartz RA, Vassileva S. Netherton syndrome-A therapeutic challenge in childhood. Clin Case Rep 2024; 12:e8770. [PMID: 38634098 PMCID: PMC11021628 DOI: 10.1002/ccr3.8770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Key Clinical Message High-dose intravenous immunoglobulin exhibits great potential in the treatment of Netherton syndrome. Abstract Netherton syndrome (NS) is a rare autosomal recessive genodermatosis (OMIM #256500) characterized by superficial scaling, atopic manifestations, and multisystemic complications. It is caused by loss-of-function mutations in the SPINK5 gene, which encode a key kallikrein protease inhibitor. There are two subtypes of the syndrome that differ in clinical presentation and immune profile: ichthyosiform erythroderma and ichthyosis linearis circumflexa. NS is a multisystemic disease with numerous extracutaneous manifestations. Current therapy for patients with NS is mainly supportive, as there is no curative or specific treatment, especially for children with NS, but targeted therapies are being developed. We describe an 8-year-old boy with genetically proven NS treated with intravenous immunoglobulin for recurrent skin and systemic infections from infancy, growth retardation, and associated erythroderma. Under this therapy, his skin status, infectious exacerbations, and quality of life all improved. Knowledge of the cytokine-mediated pathogenesis of NS and the development of new biologic drugs open new possibilities for NS patients. However, the different therapeutic options have been applied in a limited number of cases, and variable responses have been shown. Randomized controlled trials with a sufficient number of patients stratified and treated according to their specific immune profile and clinical phenotype are needed to evaluate the safety and efficacy of treatment options for patients with NS.
Collapse
Affiliation(s)
- Polina Kostova
- Pediatric DepartmentMedical UniversitySofiaBulgaria
- Pediatric Clinic, UMHAT AlexandrovskaSofiaBulgaria
| | - Guergana Petrova
- Pediatric DepartmentMedical UniversitySofiaBulgaria
- Pediatric Clinic, UMHAT AlexandrovskaSofiaBulgaria
| | - Martin Shahid
- Department of Dermatology and VenereologyMedical UniversitySofiaBulgaria
- Dermatology Clinic UMHAT AlexandrovskaSofiaBulgaria
| | | | - Dimitrinka Miteva
- Pediatric DepartmentMedical UniversitySofiaBulgaria
- Pediatric Clinic, UMHAT AlexandrovskaSofiaBulgaria
| | - Ivelina Yordanova
- Department of Dermatology, Venereology and Allergology, Faculty of MedicineMedical University PlevenPlevenBulgaria
| | - Kossara Drenovska
- Department of Dermatology and VenereologyMedical UniversitySofiaBulgaria
- Dermatology Clinic UMHAT AlexandrovskaSofiaBulgaria
| | - Irena Bradinova
- National Genetic LaboratoryMedical University Sofia, University Hospital of Obstetrics and Gynecology “Maichin dom”SofiaBulgaria
| | - Camila K. Janniger
- Dermatology and PediatricsRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Robert A. Schwartz
- Dermatology, Pediatrics and PathologyRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Snejina Vassileva
- Department of Dermatology and VenereologyMedical UniversitySofiaBulgaria
- Dermatology Clinic UMHAT AlexandrovskaSofiaBulgaria
| |
Collapse
|
23
|
Sato E, Imayoshi H, Tsutsui Y, Shimizu H, Imafuku S. Mature IL-36γ Induces Stratum Corneum Exfoliation in Generalized Pustular Psoriasis by Suppressing Corneodesmosin. J Invest Dermatol 2024; 144:764-773.e4. [PMID: 37827276 DOI: 10.1016/j.jid.2023.09.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Loss-of-function sequence variations in the IL36RN gene encoding IL-36 receptor antagonist cause familial generalized pustular psoriasis, which begins shortly after birth and is difficult to treat, and its effects on the epidermis are unclear. This study investigated the involvement of IL-36 receptor agonists in the epidermal formation of generalized pustular psoriasis. We found that the IL-36 receptor agonists, especially mature IL-36γ, stimulated IL-8 and pro-IL-36γ production in the epidermis while downregulating the genes encoding epidermal cornified envelope-related proteins, for example, corneodesmosin. IL-36 receptor antagonist and monoclonal anti-IL-36γ antibodies counteracted the effect of mature IL-36γ on corneodesmosin in keratinocytes in a dose-dependent manner. In the epidermis of patients with generalized pustular psoriasis with IL36RN loss-of-function sequence variations, pro-IL-36γ was overproduced in the epidermis, and corneodesmosin protein expression was markedly decreased in the region of giant subcorneal pustules (Kogoj's spongiform pustules), with high neutrophil infiltration. IL-8 induced by mature IL-36γ stimulated the infiltration of several neutrophils in the epidermis. The newly produced pro-IL-36γ is cleaved to the mature form by neutrophil proteases. This newly produced mature IL-36γ was predicted to further suppress the gene expression of corneodesmosin, leading to significant stratum corneum exfoliation and formation of the pustules. Overall, our results elucidate the mechanism underlying the formation of Kogoj's spongiform pustules in generalized pustular psoriasis.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Hiroko Imayoshi
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yuki Tsutsui
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroki Shimizu
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
24
|
Peled A, Sprecher E. Proteolytic and Antiproteolytic Activity in the Skin: Gluing the Pieces Together. J Invest Dermatol 2024; 144:466-473. [PMID: 37865898 DOI: 10.1016/j.jid.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 10/23/2023]
Abstract
Epidermal differentiation is ultimately aimed at the formation of a functional barrier capable of protecting the organism from the environment while preventing loss of biologically vital elements. Epidermal differentiation entails a delicately regulated process of cell-cell junction formation and dissolution to enable upward cell migration and desquamation. Over the past two decades, the deciphering of the genetic basis of a number of inherited conditions has delineated the pivotal role played in this process by a series of proteases and protease inhibitors, including serpins, cathepsins, and cystatins, suggesting novel avenues for therapeutic intervention in both rare and common disorders of cornification.
Collapse
Affiliation(s)
- Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Kline SN, Orlando NA, Lee AJ, Wu MJ, Zhang J, Youn C, Feller LE, Pontaza C, Dikeman D, Limjunyawong N, Williams KL, Wang Y, Cihakova D, Jacobsen EA, Durum SK, Garza LA, Dong X, Archer NK. Staphylococcus aureus proteases trigger eosinophil-mediated skin inflammation. Proc Natl Acad Sci U S A 2024; 121:e2309243121. [PMID: 38289950 PMCID: PMC10861893 DOI: 10.1073/pnas.2309243121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Sabrina N. Kline
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nicholas A. Orlando
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Alex J. Lee
- Department of Oncology, Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Meng-Jen Wu
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Jing Zhang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Christine Youn
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Laine E. Feller
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Cristina Pontaza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Nathachit Limjunyawong
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok10700, Thailand
| | - Kaitlin L. Williams
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Yu Wang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Daniela Cihakova
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ85259
| | - Scott K. Durum
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD21702
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Xinzhong Dong
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD21287
| |
Collapse
|
26
|
Petrova E, López-Gay JM, Fahrner M, Leturcq F, de Villartay JP, Barbieux C, Gonschorek P, Tsoi LC, Gudjonsson JE, Schilling O, Hovnanian A. Comparative analyses of Netherton syndrome patients and Spink5 conditional knock-out mice uncover disease-relevant pathways. Commun Biol 2024; 7:152. [PMID: 38316920 PMCID: PMC10844249 DOI: 10.1038/s42003-024-05780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Netherton syndrome (NS) is a rare skin disease caused by loss-of-function mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) gene. Disease severity and the lack of efficacious treatments call for a better understanding of NS mechanisms. Here we describe a novel and viable, Spink5 conditional knock-out (cKO) mouse model, allowing to study NS progression. By combining transcriptomics and proteomics, we determine a disease molecular profile common to mouse models and NS patients. Spink5 cKO mice and NS patients share skin barrier and inflammation signatures defined by up-regulation and increased activity of proteases, IL-17, IL-36, and IL-20 family cytokine signaling. Systemic inflammation in Spink5 cKO mice correlates with disease severity and is associated with thymic atrophy and enlargement of lymph nodes and spleen. This systemic inflammation phenotype is marked by neutrophils and IL-17/IL-22 signaling, does not involve primary T cell immunodeficiency and is independent of bacterial infection. By comparing skin transcriptomes and proteomes, we uncover several putative substrates of tissue kallikrein-related proteases (KLKs), demonstrating that KLKs can proteolytically regulate IL-36 pro-inflammatory cytokines. Our study thus provides a conserved molecular framework for NS and reveals a KLK/IL-36 signaling axis, adding new insights into the disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Evgeniya Petrova
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
| | - Jesús María López-Gay
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, F-75248, Cedex 05, France
- Sorbonne University, UPMC University Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Florent Leturcq
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Jean-Pierre de Villartay
- Imagine Institute, Laboratory "Genome Dynamics in the Immune System", INSERM UMR 11635, Paris, France
| | - Claire Barbieux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Patrick Gonschorek
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
- Department of Genomic Medicine of rare diseases, Necker Hospital for Sick Children, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
- University of Paris Cité, Paris, France.
| |
Collapse
|
27
|
Ahmad F, Alam MA, Ansari AW, Jochebeth A, Leo R, Al-Abdulla MN, Al-Khawaga S, AlHammadi A, Al-Malki A, Al Naama K, Ahmad A, Buddenkotte J, Steinhoff M. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J Invest Dermatol 2024; 144:206-224. [PMID: 38189700 DOI: 10.1016/j.jid.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36β, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Wahid Ansari
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Al Naama
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Medical School, Qatar University, Doha, Qatar; Weill Cornell Medicine, Weill Cornell University, New York, New York, USA; Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
28
|
Kovacheva K, Kamburova Z, Vasilev P, Yordanova I. Netherton Syndrome with a Novel Likely Pathogenic Variant c.420del (p.Ser141ProfsTer5) in SPINK5 Gene: A Case Report. Case Rep Dermatol 2024; 16:47. [PMID: 38406644 PMCID: PMC10890808 DOI: 10.1159/000536083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Netherton syndrome (NS) is a rare autosomal recessive genodermatosis in the group of congenital ichthyosis. The clinical manifestations of the syndrome vary from a very mild clinical manifestation occurring with the picture of ichthyosis linearis circumflexa to exfoliative erythroderma. It can be fatal in the first days of a newborn's life due to dehydration, hypothermia, weight loss, respiratory infections, and sepsis. A specific anomaly of the hair trichorrexis invaginata is considered pathognomonic for the syndrome. Genetic testing of SPINK5 gene is key to confirming the diagnosis and starting early treatment. Case Presentation We present a case report of NS in a 6-year-old boy who suffered from generalized erythroderma and desquamation of the skin from birth. The patient has atopic diathesis, recurrent skin infections, increased levels of IgE, and delayed physical development. Two genetic variants in SPINK5 gene with clinical significance were identified. The first detected variant is a nonsense mutation, predicted to cause loss of normal protein function either by protein truncation or by nonsense-mediated mRNA decay. The second variant is a likely pathogenic frameshift mutation that truncates the protein in 5 amino acids. The child was treated with acitretin, without satisfactory effect. Conclusion The genetic variant we have described correlates with a severe clinical phenotype of NS. The second genetic variant of the SPINK5 gene, inherited from the father in our case, is novel and has never been published in the literature.
Collapse
Affiliation(s)
- Katya Kovacheva
- Department of Medical Genetics, Faculty of Pharmacy, Medical University, Pleven, Bulgaria
| | - Zornitza Kamburova
- Department of Medical Genetics, Faculty of Pharmacy, Medical University, Pleven, Bulgaria
| | - Preslav Vasilev
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University, Pleven, Bulgaria
| | - Ivelina Yordanova
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University, Pleven, Bulgaria
| |
Collapse
|
29
|
Di Nora A, Consentino M, Messina G, Timpanaro T, Smilari P, Pavone P. Severe Hypernatremia as Presentation of Netherton Syndrome. Glob Med Genet 2023; 10:335-338. [PMID: 38025195 PMCID: PMC10665120 DOI: 10.1055/s-0043-1776983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Netherton syndrome is a rare, multisystem, autosomal recessive genodermatosis characterized by a triad of manifestations: congenital ichthyosis, immune dysregulation, and scalp anomalies. We report the case of a 1-month-old male infant evaluated for failure to thrive and feeding difficulties. At birth, the infant was admitted to intensive care for severe hypernatremia (natremia 186 mg/dL). Upon entering the ward, the general conditions were poor. He presented with diffuse erythrodermia. A dermatological evaluation showed evidence of "invaginated trichuriasis," a typical sign of Netherton syndrome. Netherton syndrome is caused by a genetic mutation causing loss of function of the SPINK5 gene it encodes for the LEKTI protein, normally expressed in epithelia. Loss of LEKTI induces severe skin barrier defect. The history of the disease is characterized by serious potential complications in the first months of life, such as the risk of hypernatremic dehydration induced by high skin permeability, recurrent and/or severe infections, and growth retardation.
Collapse
Affiliation(s)
- A. Di Nora
- Department of Clinical and Experimental Medicine, University of Catania, Catania CT, Italy
| | - M.C. Consentino
- Department of Clinical and Experimental Medicine, University of Catania, Catania CT, Italy
| | - G. Messina
- Department of Clinical and Experimental Medicine, University of Catania, Catania CT, Italy
| | - T. Timpanaro
- Department of Clinical and Experimental Medicine, University of Catania, Catania CT, Italy
| | - P. Smilari
- Department of Clinical and Experimental Medicine, University of Catania, Catania CT, Italy
| | - P. Pavone
- Department of Clinical and Experimental Medicine, University of Catania, Catania CT, Italy
| |
Collapse
|
30
|
Cagdas D, Ayasun R, Gulseren D, Sanal O, Tezcan I. Cutaneous Findings in Inborn Errors of Immunity: An Immunologist's Perspective. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3030-3039. [PMID: 37391021 DOI: 10.1016/j.jaip.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Cutaneous manifestations are common in patients with inborn errors of immunity (IEI)/primary immunodeficiency and could be due to infections, immune dysregulation, or lymphoproliferative/malign diseases. Immunologists accept some as warning signs for underlying IEI. Herein, we include noninfectious/infectious cutaneous manifestations that we come across in rare IEI cases in our clinic and provide a comprehensive literature review. For several skin diseases, the diagnosis is challenging and differential diagnosis is necessary. Detailed disease history and examination play a vital role in reaching a diagnosis, especially if there is a potential underlying IEI. A skin biopsy is sometimes necessary, especially if we need to rule out inflammatory, infectious, lymphoproliferative, and malignant conditions. Specific and immunohistochemical stainings are particularly important when diagnosing granuloma, amyloidosis, malignancies, and infections like human herpes virus-6, human herpes virus-8, human papillomavirus, and orf. Elucidation of mechanisms of IEIs has improved our understanding of their relation to cutaneous findings. In challenging cases, the immunological evaluation may lead the approach when there is a specific primary immunodeficiency diagnosis or at least help to reduce the number of differential diagnoses. Conversely, the response to therapy may provide conclusive evidence for some conditions. This review raises awareness of concomitant lesions and expands the scope of the differential diagnosis of IEI and the spectrum of skin disease therapy by highlighting frequent forms of IEI-associated cutaneous manifestations. The manifestations given here will guide clinicians to plan for alternative use of diverse therapeutics in a multidisciplinary way for skin diseases.
Collapse
Affiliation(s)
- Deniz Cagdas
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Ruveyda Ayasun
- Depatment of Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Duygu Gulseren
- Department of Dermatology, Hacettepe University Medical School, Ankara, Turkey
| | - Ozden Sanal
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Ihsan Dogramaci Children's Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey; Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Tamagawa-Mineoka R. Toll-like receptors: their roles in pathomechanisms of atopic dermatitis. Front Immunol 2023; 14:1239244. [PMID: 37731494 PMCID: PMC10508237 DOI: 10.3389/fimmu.2023.1239244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The skin functions as a physical barrier and represents the first line of the innate immune system. There is increasing evidence that toll-like receptors (TLRs) are involved in the pathomechanisms of not only infectious diseases, but also non-infectious inflammatory diseases. Interestingly, it has been demonstrated that TLRs recognize both exogenous threats, e.g. bacteria and viruses, and endogenous danger signals related to inflammation, cell necrosis, or tissue damage. Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease, which is associated with impaired skin barrier function, increased skin irritability to non-specific stimuli, and percutaneous sensitization. The impairment of skin barrier function in AD allows various stimuli, such as potential allergens and pathogens, to penetrate the skin and activate the innate immune system, including TLR signaling, which can lead to the development of adaptive immune reactions. In this review, I summarize the current understanding of the roles of TLR signaling in the pathogenesis of AD, with special emphasis on skin barrier function and inflammation.
Collapse
Affiliation(s)
- Risa Tamagawa-Mineoka
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Kalló G, Bertalan PM, Márton I, Kiss C, Csősz É. Salivary Chemical Barrier Proteins in Oral Squamous Cell Carcinoma-Alterations in the Defense Mechanism of the Oral Cavity. Int J Mol Sci 2023; 24:13657. [PMID: 37686462 PMCID: PMC10487546 DOI: 10.3390/ijms241713657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most frequent types of head and neck cancer. Despite the genetic and environmental risk factors, OSCC is also associated with microbial infections and/or dysbiosis. The secreted saliva serves as the chemical barrier of the oral cavity and, since OSCC can alter the protein composition of saliva, our aim was to analyze the effect of OSCC on the salivary chemical barrier proteins. Publicly available datasets regarding the analysis of salivary proteins from patients with OSCC and controls were collected and examined in order to identify differentially expressed chemical barrier proteins. Network analysis and gene ontology (GO) classification of the differentially expressed chemical barrier proteins were performed as well. One hundred and twenty-seven proteins showing different expression pattern between the OSCC and control groups were found. Protein-protein interaction networks of up- and down-regulated proteins were constructed and analyzed. The main hub proteins (IL-6, IL-1B, IL-8, TNF, APOA1, APOA2, APOB, APOC3, APOE, and HP) were identified and the enriched GO terms were examined. Our study highlighted the importance of the chemical barrier of saliva in the development of OSCC.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Petra Magdolna Bertalan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ildikó Márton
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
33
|
Shim J, Chen J, Carrasco-Triguero M, Fischer SK. Overcoming Soluble Target Interference in Measurement of Total Bispecific Therapeutic Antibody Concentrations. AAPS J 2023; 25:82. [PMID: 37594571 DOI: 10.1208/s12248-023-00848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
The measurement of therapeutic drug concentrations is used to assess drug exposure and the relationship between therapeutic pharmacokinetics (PK) and pharmacodynamics (PD), which help determine the optimal dose for patients. Ligand binding assays (LBAs) are often the method of choice for evaluation of drug concentration and use either the therapeutic target protein or antibodies to the therapeutic as capture and/or detection reagents. Due to the bivalency of antibody therapeutics, heterogeneous states of the drug/target complex can exist in the presence of soluble targets which can complicate measurement of unbound drug. In the case of bispecific antibodies, measurement of drug can be even more complicated and depend upon the levels of both targets to each arm. Measuring the total drug allows for PKPD modeling prediction of human dose projections in addition to overcoming challenges associated with measuring free drug for bispecific antibodies. Here, we present a study in which a sandwich ELISA format was used to measure total anti-KLK5/KLK7 antibody concentrations. This assay utilized a non-blocking anti-idiotype (ID) antibody to one arm of the antibody for capture and an antibody to target bound to the other arm of the antibody for detection. Our qualified assay showed acceptable precision, accuracy, dilutional linearity, and reproducibility and enabled detection of a total bispecific antibody at high levels of two targets. To confirm that our assay was detecting total drug, a subset of samples was evaluated in a generic total LC-MS/MS assay.
Collapse
Affiliation(s)
- Jeongsup Shim
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Jessica Chen
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Montserrat Carrasco-Triguero
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Saloumeh K Fischer
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
34
|
Maasch JRMA, Torres MDT, Melo MCR, de la Fuente-Nunez C. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe 2023; 31:1260-1274.e6. [PMID: 37516110 PMCID: PMC11625410 DOI: 10.1016/j.chom.2023.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
Molecular de-extinction could offer avenues for drug discovery by reintroducing bioactive molecules that are no longer encoded by extant organisms. To prospect for antimicrobial peptides encrypted within extinct and extant human proteins, we introduce the panCleave random forest model for proteome-wide cleavage site prediction. Our model outperformed multiple protease-specific cleavage site classifiers for three modern human caspases, despite its pan-protease design. Antimicrobial activity was observed in vitro for modern and archaic protein fragments identified with panCleave. Lead peptides showed resistance to proteolysis and exhibited variable membrane permeabilization. Additionally, representative modern and archaic protein fragments showed anti-infective efficacy against A. baumannii in both a skin abscess infection model and a preclinical murine thigh infection model. These results suggest that machine-learning-based encrypted peptide prospection can identify stable, nontoxic peptide antibiotics. Moreover, we establish molecular de-extinction through paleoproteome mining as a framework for antibacterial drug discovery.
Collapse
Affiliation(s)
- Jacqueline R M A Maasch
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo C R Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Butala S, Mazereeuw-Hautier J, Paller AS. Ichthyosis: presentation and management. Curr Opin Pediatr 2023; 35:467-474. [PMID: 37345742 DOI: 10.1097/mop.0000000000001264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
PURPOSE OF REVIEW This review focuses on the presentation and management of ichthyoses and highlights recent advances in treatment that hold promise for better targeted therapy. RECENT FINDINGS The ichthyoses are a group of rare genetic diseases with a wide phenotypic spectrum, characterized most often by generalized hyperkeratosis and scaling with variable erythema. The highly visible scaling and frequent itch contribute to decreased quality of life. Management for ichthyosis focuses on symptomatic relief and scale reduction with emollients, keratolytics, and retinoids. Recent advances in immune profiling and genotype-phenotype mapping have increased understanding of ichthyosis and shifted focus to pathogenesis-based targeted therapies with emerging biologics, small molecular inhibitors, and gene therapy. SUMMARY This article discusses clinical assessment and genotyping to make the diagnosis of specific forms of ichthyosis, provides guidance for management, and reviews new treatment options with systemic agents.
Collapse
Affiliation(s)
- Sneha Butala
- Department of Pediatrics, Yale New Haven Health - Bridgeport Site, Bridgeport, Connecticut; Pediatric Healthcare Associates, Shelton, Connecticut, USA
| | - Juliette Mazereeuw-Hautier
- Centre for Rare Skin Diseases, Dermatology Department, Larrey Hospital, Paul Sabatier University, Toulouse, France
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
36
|
Cai H, Tao X, Shim J, Bauer RN, Bremer M, Bu W, LaMar J, Basile R, Dere E, Nguyen T, Laing S, Chan P, Yi T, Koerber JT, Sperinde G, Stefanich E. Mini-PBPK-Based Population Model and Covariate Analysis to Assess the Complex Pharmacokinetics and Pharmacodynamics of RO7449135, an Anti-KLK5/KLK7 Bispecific Antibody in Cynomolgus Monkeys. AAPS J 2023; 25:64. [PMID: 37353723 DOI: 10.1208/s12248-023-00829-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
RO7449135, an anti-kallikrein (KLK)5/KLK7 bispecific antibody, is in development as a potential therapy against Netherton's syndrome (NS). In cynomolgus monkey studies, RO7449135 bound to KLK5 and KLK7, causing considerable accumulation of total KLKs, but with non-dose-proportional increase. To understand the complex PKPD, a population model with covariate analysis was developed accounting for target binding in skin and migration of bound targets from skin to blood. The covariate analysis suggested the animal batch as the categorical covariate impacting the different KLK5 synthesis rates between the repeat-dose study and single-dose study, and the dose as continuous covariate impacting the internalization rate of the binary and ternary complexes containing KLK7. To comprehend the mechanism underlying, we hypothesized that inhibition of KLK5 by RO7449135 prevented its cleavage of the pro-enzyme of KLK7 (pro-KLK7) and altered the proportion between pro-KLK7 and KLK7. Besides the pro-KLK7, RO7449135 can interact with other proteins like LEKTI through KLK7 connection in a dose-dependent manner. The different high-order complexes formed by RO7449135 interacting with pro-KLK7 or LEKTI-like proteins can be subject to faster internalization rate. Accounting for the dose and animal batch as covariates, the model-predicted free target suppression is well aligned with the visual target engagement check. The population PKPD model with covariate analysis provides the scientific input for the complex PKPD analysis, successfully predicts the target suppression in cynomolgus monkeys, and thereby can be used for the human dose projection of RO7449135.
Collapse
Affiliation(s)
- Hao Cai
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Xun Tao
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jeongsup Shim
- BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Rebecca N Bauer
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Meire Bremer
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wei Bu
- BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jason LaMar
- BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Rachel Basile
- BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Edward Dere
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tien Nguyen
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Steven Laing
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Pamela Chan
- Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tangsheng Yi
- Discovery Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - James T Koerber
- Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Gizette Sperinde
- BioAnalytical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Stefanich
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
37
|
Moltrasio C, Romagnuolo M, Riva D, Colavito D, Ferrucci SM, Marzano AV, Tadini G, Brena M. Netherton Syndrome Caused by Heterozygous Frameshift Mutation Combined with Homozygous c.1258A>G Polymorphism in SPINK5 Gene. Genes (Basel) 2023; 14:genes14051080. [PMID: 37239440 DOI: 10.3390/genes14051080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Netherton syndrome (NS) is a rare autosomal recessive disorder caused by SPINK5 mutations, resulting in a deficiency in its processed protein LEKTI. It is clinically characterized by the triad of congenital ichthyosis, atopic diathesis, and hair shaft abnormalities. The SPINK5 (NM_006846.4): c.1258A>G polymorphism (rs2303067) shows a significant association with atopy and atopic dermatitis (AD), which share several clinical features with NS. We describe an NS patient, initially misdiagnosed with severe AD, who carried the heterozygous frameshift (null) mutation (NM_006846.4): c.957_960dup combined with homozygous rs2303067 in the SPINK5 gene. Histopathological examination confirmed the diagnosis, whereas an immunohistochemical study showed normal epidermal expression of LEKTI, despite the genetic findings. Our results corroborate the hypothesis that haploinsufficiency of SPINK5, in the presence of a SPINK5 null heterozygous mutation in combination with homozygous SPINK5 rs2303067 polymorphism, can be causative of an NS phenotype, impairing the function of LEKTI despite its normal expression. Due to the clinical overlap between NS and AD, we suggest performing SPINK5 genetic testing to search for the SPINK5 (NM_006846.4): c.1258A>G polymorphism (rs2303067) and ensure a correct diagnosis, mainly in doubtful cases.
Collapse
Affiliation(s)
- Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maurizio Romagnuolo
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Davide Riva
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Davide Colavito
- Research & Innovation S.R.L. (R&I Genetics), 35127 Padova, Italy
| | - Silvia Mariel Ferrucci
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gianluca Tadini
- Pediatric Dermatology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Brena
- Pediatric Dermatology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
38
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
39
|
Netherton Syndrome, a Rare Genetic Disorder—Case Report. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2023. [DOI: 10.1007/s44229-023-00026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractNetherton syndrome is a rare genetic disorder inherited in an autosomal recessive pattern. Mutations in the serine protease inhibitor Kazal-type 5 (SPINK5) gene are responsible for this disorder. Netherton syndrome can have multisystemic effects primarily involving the hair, skin and immune system. Currently, no definitive treatment has been reported beyond supportive care. Herein, we report the case of a newborn delivered in our facility with erythematous skin with peeling rash, respiratory distress and suspected early onset sepsis. In the neonatal intensive care unit, the newborn was managed with continuous positive airway pressure support, initial antibiotics and supportive treatment. Diagnosis was established after a skin biopsy, hair sample showing a characteristic bamboo stick appearance and elevated immunoglobulin E levels.
Collapse
|
40
|
Gong Z, Dai S, Jiang X, Lee M, Zhu X, Wang H, Lin Z. Variants in KLK11, affecting signal peptide cleavage of kallikrein-related peptidase 11, cause an autosomal-dominant cornification disorder. Br J Dermatol 2023; 188:100-111. [PMID: 36689511 DOI: 10.1093/bjd/ljac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Mendelian disorders of cornification (MeDOC) are a group of heterogeneous genodermatoses with different genetic bases. The pathogenesis of a substantial group of MeDOC remains to be elucidated. OBJECTIVES To identify a new causative gene and the pathogenesis of a previously undescribed autosomal-dominant cornification disorder. METHODS Whole-exome sequencing was performed in three families with the novel cornification disorder to identify the disease-causing variants. As the variants were located around the signal peptide (SP) cleavage site of a kallikrein-related peptidase, SP cleavage, subcellular localization and extracellular secretion of the variants were evaluated in eukaryotic overexpression systems by Western blotting or immunocytochemistry. Then the trypsin-like and chymotrypsin-like proteolytic activity of the peptidase and degradation of its catalytic substrate were assayed using the patients' stratum corneum (SC) samples. The morphology of the lamellar bodies and corneodesmosomes (CDs) in the patients' SC was ultrastructurally examined. A mouse model harbouring the equivalent variant was constructed and evaluated histologically. RESULTS We identified two heterozygous variants affecting Gly50 in kallikrein-related peptidase (KLK)11 in a familial case and two sporadic cases with the new disorder, which is characterized by early-onset ichthyosiform erythroderma or erythrokeratoderma. KLK11 belongs to the family of kallikrein-related peptidases participating in skin desquamation by decomposing CDs, a process essential for shedding of the SC. In vitro experiments demonstrated that the variants perturbed the SP cleavage of KLK11, leading to subcellular mislocalization and impaired extracellular secretion of the KLK11 Gly50Glu variant. Both trypsin-like and chymotrypsin-like proteolytic activities were significantly decreased in the patients' SC samples. Reduced proteolysis of desmoglein 1 and delayed degeneration of CDs were detected in patients' SC, indicating delayed skin desquamation. Consistently, the patients showed a thickened, dense SC, indicating abnormal skin desquamation. Mice harbouring the homozygous c.131G>A (p.Gly44Glu) Klk11 variant, which is equivalent to KLK11 c.149G>A (p.Gly50Glu) in humans, exhibited hyperkeratosis and abnormal desquamation, partially recapitulating the phenotype. CONCLUSIONS We provide evidence that variants at Gly50 affecting the SP cleavage of KLK11 cause a new autosomal-dominant cornification disorder with abnormal desquamation. Our findings highlight the essential role of KLKs in maintaining homeostasis of skin keratinization and desquamation.
Collapse
Affiliation(s)
- Zhuoqing Gong
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Shangzhi Dai
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xingyuan Jiang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Mingyang Lee
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xuejun Zhu
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Huijun Wang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361026, China
| |
Collapse
|
41
|
Gutiérrez-Cerrajero C, Sprecher E, Paller AS, Akiyama M, Mazereeuw-Hautier J, Hernández-Martín A, González-Sarmiento R. Ichthyosis. Nat Rev Dis Primers 2023; 9:2. [PMID: 36658199 DOI: 10.1038/s41572-022-00412-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.
Collapse
Affiliation(s)
- Carlos Gutiérrez-Cerrajero
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy S Paller
- Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Rogelio González-Sarmiento
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
42
|
Multiplex Proteomic Evaluation in Inborn Errors with Deregulated IgE Response. Biomedicines 2023; 11:biomedicines11010202. [PMID: 36672710 PMCID: PMC9855860 DOI: 10.3390/biomedicines11010202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
(1) Background: Atopic dermatitis constitutes one of the most common inflammatory skin manifestations of the pediatric population. The onset of many inborn errors occurs early in life with an AD-like picture associated with a deregulated IgE response. The availability of proteomic tests for the simultaneous evaluation of hundreds of molecules allows for more precise diagnosis in these cases. (2) Methods: Comparative genomic hybridization microarray (Array-CGH) analysis and specific IgE evaluation by using allergenic microarray (ISAC) and microarray (ALEX2) systems were performed. (3) Results: Proteomic investigations that use multiplex methods have proven to be extremely useful to diagnose the sensitization profile in inborn errors with deregulated IgE synthesis. Four patients with rare diseases, such as recessive X-linked ichthyosis (RXLI, OMIM 308100), Comel-Netherton syndrome (NS, OMIM256500), monosomy 1p36 syndrome (OMIM: 607872), and a microduplication of Xp11.4 associated with extremely high levels of IgE: 7.710 kU/L, 5.300 kU/L, 1.826 kU/L, and 10.430 kU/L, respectively, were evaluated by micro- and macroarray multiplex methods. Polyreactivity to both environmental and food allergens was observed in all cases, including the first described case of association of X-chromosome microduplication and HIE. (4) Conclusions: Extensive use of proteomic diagnostics should be included among the procedures to be implemented in inborn errors with hyper-IgE.
Collapse
|
43
|
Giancotta C, Colantoni N, Pacillo L, Santilli V, Amodio D, Manno EC, Cotugno N, Rotulo GA, Rivalta B, Finocchi A, Cancrini C, Diociaiuti A, El Hachem M, Zangari P. Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement. Front Pediatr 2023; 11:1129249. [PMID: 37033173 PMCID: PMC10073443 DOI: 10.3389/fped.2023.1129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. Several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. Current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. Compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism.
Collapse
Affiliation(s)
- Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicole Colantoni
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Correspondence: Paola Zangari
| |
Collapse
|
44
|
Martin-García C, Godoy E, Cabrera A, Cañueto J, Muñoz-Bellido FJ, Perez-Pazos J, Dávila I. Report of two sisters with Netherton syndrome successfully treated with dupilumab and review of the literature. Int J Immunopathol Pharmacol 2023; 37:3946320231172881. [PMID: 37200480 DOI: 10.1177/03946320231172881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Different monoclonal antibodies have been used for the treatment of Netherton's syndrome (NS); secukinumab (anti-IL17A), infliximab (anti-TNF-α), ustekinumab (anti p40 subunit of IL-12 and IL-23), omalizumab (anti-IgE), and dupilumab (anti-IL4 and IL13). We report two sisters with severe NS who were treated with omalizumab in one and with secukinumab in the other. In view of the therapeutic failure, treatment with dupilumab was started in both sisters. The data were analyzed 16 weeks after starting treatment with dupilumab. Treatment response was assessed using the Severity Scoring Atopic Dermatitis (SCORAD); Eczema Area and Severity Index (EASI); Pruritus Numeric Rating Scale (NSR); Netherton Area Severity Assessment (NASA) and Dermatology Life Quality Index Ichthyosis. All scores were reduced after 16 weeks of treatment with dupilumab in both patients. She maintains improvement after 18 months and 12 months of treatment, respectively. No severe adverse events were reported. Treatment with dupilumab in two sisters with NS and atopic diseases produced a marked cutaneous improvement after a failed attempt with omalizumab and secukinumab. Further studies are needed to determine which biologic therapy is the most effective in NS.
Collapse
Affiliation(s)
- Cristina Martin-García
- Allergy Service, Hospital Universitario de Salamanca, Spain
- Departamento de Ciencias Biomédicas y del Diagnóstico, Facultad de Medicina, Universidad de Salamanca, Spain
- Instituto de Investigación Biosanitaria (IBSAL), Salamanca, Spain
| | - Elena Godoy
- Dermatology Service, Hospital Universitario de Salamanca, Spain
| | | | - Javier Cañueto
- Dermatology Service, Hospital Universitario de Salamanca, Spain
| | - Francisco J Muñoz-Bellido
- Allergy Service, Hospital Universitario de Salamanca, Spain
- Departamento de Ciencias Biomédicas y del Diagnóstico, Facultad de Medicina, Universidad de Salamanca, Spain
- Instituto de Investigación Biosanitaria (IBSAL), Salamanca, Spain
| | | | - Ignacio Dávila
- Allergy Service, Hospital Universitario de Salamanca, Spain
- Departamento de Ciencias Biomédicas y del Diagnóstico, Facultad de Medicina, Universidad de Salamanca, Spain
- Instituto de Investigación Biosanitaria (IBSAL), Salamanca, Spain
| |
Collapse
|
45
|
Kataria S, Dabas P, Saraswathy KN, Sachdeva MP, Jain S. Investigating the morphology and genetics of scalp and facial hair characteristics for phenotype prediction. Sci Justice 2023; 63:135-148. [PMID: 36631178 DOI: 10.1016/j.scijus.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Microscopic traits and ultrastructure of hair such as cross-sectional shape, pigmentation, curvature, and internal structure help determine the level of variations between and across human populations. Apart from cosmetics and anthropological applications, such as determining species, somatic origin (body area), and biogeographic ancestry, the evidential value of hair has increased with rapid progression in the area of forensic DNA phenotyping (FDP). Individuals differ in the features of their scalp hair (greying, shape, colour, balding, thickness, and density) and facial hair (eyebrow thickness, monobrow, and beard thickness) features. Scalp and facial hair characteristics are genetically controlled and lead to visible inter-individual variations within and among populations of various ethnic origins. Hence, these characteristics can be exploited and made more inclusive in FDP, thereby leading to more comprehensive, accurate, and robust prediction models for forensic purposes. The present article focuses on understanding the genetics of scalp and facial hair characteristics with the goal to develop a more inclusive approach to better understand hair biology by integrating hair microscopy with genetics for genotype-phenotype correlation research.
Collapse
Affiliation(s)
- Suraj Kataria
- Department of Anthropology, University of Delhi, India.
| | - Prashita Dabas
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India.
| | | | - M P Sachdeva
- Department of Anthropology, University of Delhi, India.
| | - Sonal Jain
- Department of Anthropology, University of Delhi, India.
| |
Collapse
|
46
|
Pampalakis G. Αnti-KLK5/KLK7 Antibody-based Strategies for the Treatment of Epidermal Diseases. Curr Pharm Des 2023; 29:2354-2357. [PMID: 37987118 DOI: 10.2174/0113816128258924231011103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/25/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Georgios Pampalakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
47
|
Chavarria-Smith J, Chiu CPC, Jackman JK, Yin J, Zhang J, Hackney JA, Lin WY, Tyagi T, Sun Y, Tao J, Dunlap D, Morton WD, Ghodge SV, Maun HR, Li H, Hernandez-Barry H, Loyet KM, Chen E, Liu J, Tam C, Yaspan BL, Cai H, Balazs M, Arron JR, Li J, Wittwer AJ, Pappu R, Austin CD, Lee WP, Lazarus RA, Sudhamsu J, Koerber JT, Yi T. Dual antibody inhibition of KLK5 and KLK7 for Netherton syndrome and atopic dermatitis. Sci Transl Med 2022; 14:eabp9159. [PMID: 36516271 DOI: 10.1126/scitranslmed.abp9159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene. Imbalance of proteolytic activity caused by a deficiency of LEKTI leads to excessive desquamation due to increased activities of KLK5, KLK7, and KLK14 and results in Netherton syndrome (NS), a debilitating condition with an unmet clinical need. Increased activity of KLKs may also be pathological in other dermatoses such as atopic dermatitis (AD). Here, we describe the discovery of inhibitory antibodies against murine KLK5 and KLK7 that could compensate for the deficiency of LEKTI in NS. These antibodies are protective in mouse models of NS and AD and, when combined, promote improved skin barrier integrity and reduced inflammation. To translate these findings, we engineered a humanized bispecific antibody capable of potent inhibition of human KLK5 and KLK7. A crystal structure of KLK5 bound to the inhibitory Fab revealed that the antibody binds distal to its active site and uses a relatively unappreciated allosteric inhibition mechanism. Treatment with the bispecific anti-KLK5/7 antibody represents a promising therapy for clinical development in NS and other inflammatory dermatoses.
Collapse
Affiliation(s)
- Joseph Chavarria-Smith
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cecilia P C Chiu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Yu Lin
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tulika Tyagi
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yonglian Sun
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet Tao
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Debra Dunlap
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William D Morton
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Swapnil V Ghodge
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Henry R Maun
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hong Li
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hilda Hernandez-Barry
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily Chen
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Cai
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mercedesz Balazs
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jing Li
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Arthur J Wittwer
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Rajita Pappu
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert A Lazarus
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
48
|
Samuelov L, Shehadeh W, Sarig O, Gat A, Matz H, Sprecher E. Ustekinumab therapy for Netherton syndrome. J Dermatol 2022; 50:494-499. [PMID: 36419401 DOI: 10.1111/1346-8138.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Netherton syndrome (NS) is a rare disorder of cornification associated with high morbidity. It is caused by bi-allelic mutations in SPINK5 encoding the serine protease inhibitor LEKTI. Previous studies have shown Th17 skewing with IL-23 upregulation in NS, raising the possibility that targeting these inflammatory pathways may alleviate disease manifestations. We ascertained the therapeutic efficacy of six doses of ustekinumab administered to three patients with NS over a period of 13 months using the Ichthyosis Area and Severity Index (IASI), the Dermatology Life Quality Index (DLQI), a visual analogue scale (VAS) for itch and the peak-pruritus numeric rating scale (PP-NRS). Histopathology analysis including CD3, CD4, CD8 and interleukin 17 (IL-17) immunostaining, was performed at baseline and 4 weeks following the last ustekinumab dose. Total IASI scores were reduced by 28% in two patients at week 16 with sustained response by week 56. No consistent improvement in DLQI, VAS for itch and PP-NRS scores was observed. The inflammatory infiltrate and the degree of acanthosis were slightly reduced at week 56 as compared to baseline. No significant change in immunostaining of the various inflammatory markers was observed at week 56. In conclusion, this case series did not demonstrate a significant therapeutic effect of ustekinumab in NS.
Collapse
Affiliation(s)
- Liat Samuelov
- Division of Dermatology Tel Aviv Sourasky Medical Center Tel Aviv Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Waseem Shehadeh
- Division of Dermatology Tel Aviv Sourasky Medical Center Tel Aviv Israel
| | - Ofer Sarig
- Division of Dermatology Tel Aviv Sourasky Medical Center Tel Aviv Israel
| | - Andrea Gat
- Department of Pathology Tel Aviv Sourasky Medical Center Tel Aviv Israel
| | - Hagit Matz
- Division of Dermatology Tel Aviv Sourasky Medical Center Tel Aviv Israel
| | - Eli Sprecher
- Division of Dermatology Tel Aviv Sourasky Medical Center Tel Aviv Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
49
|
Espinoza JL, Dupont CL. VEBA: a modular end-to-end suite for in silico recovery, clustering, and analysis of prokaryotic, microeukaryotic, and viral genomes from metagenomes. BMC Bioinformatics 2022; 23:419. [PMID: 36224545 PMCID: PMC9554839 DOI: 10.1186/s12859-022-04973-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND With the advent of metagenomics, the importance of microorganisms and how their interactions are relevant to ecosystem resilience, sustainability, and human health has become evident. Cataloging and preserving biodiversity is paramount not only for the Earth's natural systems but also for discovering solutions to challenges that we face as a growing civilization. Metagenomics pertains to the in silico study of all microorganisms within an ecological community in situ, however, many software suites recover only prokaryotes and have limited to no support for viruses and eukaryotes. RESULTS In this study, we introduce the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite developed to recover genomes from all domains. To our knowledge, VEBA is the first end-to-end metagenomics suite that can directly recover, quality assess, and classify prokaryotic, eukaryotic, and viral genomes from metagenomes. VEBA implements a novel iterative binning procedure and hybrid sample-specific/multi-sample framework that yields more genomes than any existing methodology alone. VEBA includes a consensus microeukaryotic database containing proteins from existing databases to optimize microeukaryotic gene modeling and taxonomic classification. VEBA also provides a unique clustering-based dereplication strategy allowing for sample-specific genomes and genes to be directly compared across non-overlapping biological samples. Finally, VEBA is the only pipeline that automates the detection of candidate phyla radiation bacteria and implements the appropriate genome quality assessments. VEBA's capabilities are demonstrated by reanalyzing 3 existing public datasets which recovered a total of 948 MAGs (458 prokaryotic, 8 eukaryotic, and 482 viral) including several uncharacterized organisms and organisms with no public genome representatives. CONCLUSIONS The VEBA software suite allows for the in silico recovery of microorganisms from all domains of life by integrating cutting edge algorithms in novel ways. VEBA fully integrates both end-to-end and task-specific metagenomic analysis in a modular architecture that minimizes dependencies and maximizes productivity. The contributions of VEBA to the metagenomics community includes seamless end-to-end metagenomics analysis but also provides users with the flexibility to perform specific analytical tasks. VEBA allows for the automation of several metagenomics steps and shows that new information can be recovered from existing datasets.
Collapse
Affiliation(s)
- Josh L. Espinoza
- Department of Environment and Sustainability, J. Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA 92037 USA
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037 USA
| | - Chris L. Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, 4120 Capricorn Ln, La Jolla, CA 92037 USA
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037 USA
| |
Collapse
|
50
|
Tham KC, Lefferdink R, Duan K, Lim SS, Wong XFCC, Ibler E, Wu B, Abu-Zayed H, Rangel SM, Del Duca E, Chowdhury M, Chima M, Kim HJ, Lee B, Guttman-Yassky E, Paller AS, Common JEA. Distinct skin microbiome community structures in congenital ichthyosis. Br J Dermatol 2022; 187:557-570. [PMID: 35633118 PMCID: PMC10234690 DOI: 10.1111/bjd.21687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/28/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The ichthyoses are rare genetic keratinizing disorders that share the characteristics of an impaired epidermal barrier and increased risk of microbial infections. Although ichthyotic diseases share a T helper (Th) 17 cell immune signature, including increased expression of antimicrobial peptides, the skin microbiota of ichthyoses is virtually unexplored. OBJECTIVES To analyse the metagenome profile of skin microbiome for major congenital ichthyosis subtypes. METHODS Body site-matched skin surface samples were collected from the scalp, upper arm and upper buttocks of 16 healthy control participants and 22 adult patients with congenital forms of ichthyosis for whole metagenomics sequencing analysis. RESULTS Taxonomic profiling showed significant shifts in bacteria and fungi abundance and sporadic viral increases across ichthyosis subtypes. Cutibacterium acnes and Malassezia were significantly reduced across body sites, consistent with skin barrier disruption and depletion of lipids. Microbial richness was reduced, with specific increases in Staphylococcus and Corynebacterium genera, as well as shifts in fungal species, including Malassezia. Malassezia globosa was reduced at all body sites, whereas M. sympodialis was reduced in the ichthyotic upper arm and upper buttocks. Malassezia slooffiae, by contrast, was strikingly increased at all body sites in participants with congenital ichthyosiform erythroderma (CIE) and lamellar ichthyosis (LI). A previously undescribed Trichophyton species was also detected as sporadically colonizing the skin of patients with CIE, LI and epidermolytic ichthyosis subtypes. CONCLUSIONS The ichthyosis skin microbiome is significantly altered from healthy skin with specific changes predominating among ichthyosis subtypes. Skewing towards the Th17 pathway may represent a response to the altered microbial colonization in ichthyosis. What is already known about this topic? The skin microbiome of congenital ichthyoses is largely unexplored. Microbes play an important role in pathogenesis, as infections are common. The relative abundances of staphylococci and corynebacteria is increased in the cutaneous microbiome of patients with Netherton syndrome, but extension of these abundances to all congenital ichthyoses is unexplored. What does this study add? A common skin microbiome signature was observed across congenital ichthyoses. Distinct microbiome features were associated with ichthyosis subtypes. Changes in microbiome may contribute to T helper 17 cell immune polarization. What is the translational message? These data provide the basis for comparison of the microbiome with lipidomic and transcriptomic alterations in these forms of ichthyosis and consideration of correcting the dysbiosis as a therapeutic intervention.
Collapse
Affiliation(s)
- Khek-Chian Tham
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| | - Rachel Lefferdink
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, #03 Immunos, Singapore, 138648, Singapore
| | - Seong Soo Lim
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| | - X F Colin C Wong
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| | - Erin Ibler
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benedict Wu
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hajar Abu-Zayed
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ester Del Duca
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Mashkura Chowdhury
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Margot Chima
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Hee Jee Kim
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, #03 Immunos, Singapore, 138648, Singapore
| | | | - Amy S Paller
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John E A Common
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-10 Immunos, Singapore, 138648, Singapore
| |
Collapse
|