1
|
Schramm E, Becker V, Palagi I, Müller M, Rösler T, Durak F, Ebering A, Karram K, von Stebut E, Schmeisser MJ, Waisman A. Constitutive expression of the deubiquitinating enzyme CYLD does not affect microglia phenotype or function in homeostasis and neuroinflammation. J Mol Med (Berl) 2024; 102:1381-1393. [PMID: 39302418 DOI: 10.1007/s00109-024-02489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The deubiquitinating enzyme CYLD negatively regulates NF-κB signaling by removing activating ubiquitin chains from several members of the NF-κB pathway. Thereby, CYLD is critical for the maintenance and differentiation of various immune cells. Despite the importance of the NF-κB pathway in microglia regulation, the role of CYLD in microglia has not been investigated so far. In this study, we investigated whether CYLD in microglia can protect against neuroinflammation using a newly generated conditional mouse strain (Rosa26-Cyld-tdTomato) that allows cell type-specific CYLD overexpression. Here, we show that overexpression of CYLD in microglia did not alter microglia numbers or microglia morphology in different brain regions. Additionally, CYLD overexpression did not modify the microglial response to LPS-induced neuroinflammation or the disease severity in experimental autoimmune encephalomyelitis (EAE). Finally, also immune cell infiltration into the CNS during EAE and under steady state conditions remained unaffected by microglial CYLD overexpression. Our findings suggest that CYLD overexpression does not alter microglial function, and thus does not represent a viable therapeutic strategy in neuroinflammatory conditions. This study highlights the complexity of ubiquitin-mediated signaling in neuroinflammation and the need for cell-type-specific investigations. The Rosa26-Cyld-tdTomato mouse model offers a valuable tool for studying CYLD's role across various tissues and cell types. KEY MESSAGES: Novel mouse strain for cell type-specific overexpression of the deubiquitinating enzyme CYLD. CYLD overexpression in microglia did not alter microglia numbers or morphology in the steady state. CYLD overexpression in microglia did not protect mice from LPS-induced neuroinflammation or EAE. CYLD overexpression in microglia did not influence their gene expression during neuroinflammation.
Collapse
Affiliation(s)
- Eva Schramm
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Vanessa Becker
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ilaria Palagi
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Melanie Müller
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thomas Rösler
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Feyza Durak
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Anna Ebering
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | | | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Huang H, He W, Wang Y, Pan C, Cao Q, Zhao A, Zeng Q, Wang S, Li M. A novel missense pathogenic variant in the CYLD gene in a Chinese family with multiple familial trichoepithelioma. Int J Dermatol 2024; 63:e265-e267. [PMID: 38780099 DOI: 10.1111/ijd.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Haisheng Huang
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
- Department of Dermatology, Anhui University of Science and Technology First Affiliated Hospital, Anhu, China
| | - Wei He
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
- Department of Dermatology, Anhui University of Science and Technology First Affiliated Hospital, Anhu, China
| | - Yumeng Wang
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| | - Qiaoyu Cao
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| | - Anqi Zhao
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| | - Qin Zeng
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
- Department of Dermatology, Anhui University of Science and Technology First Affiliated Hospital, Anhu, China
| | - Shucui Wang
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
- Department of Dermatology, Anhui University of Science and Technology First Affiliated Hospital, Anhu, China
| | - Ming Li
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Rinotas V, Iliaki K, Pavlidi L, Meletakos T, Mosialos G, Armaka M. Cyld restrains the hyperactivation of synovial fibroblasts in inflammatory arthritis by regulating the TAK1/IKK2 signaling axis. Cell Death Dis 2024; 15:584. [PMID: 39122678 PMCID: PMC11316070 DOI: 10.1038/s41419-024-06966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
TNF is a potent cytokine known for its involvement in physiology and pathology. In Rheumatoid Arthritis (RA), persistent TNF signals cause aberrant activation of synovial fibroblasts (SFs), the resident cells crucially involved in the inflammatory and destructive responses of the affected synovial membrane. However, the molecular switches that control the pathogenic activation of SFs remain poorly defined. Cyld is a major component of deubiquitination (DUB) machinery regulating the signaling responses towards survival/inflammation and programmed necrosis that induced by cytokines, growth factors and microbial products. Herein, we follow functional genetic approaches to understand how Cyld affects arthritogenic TNF signaling in SFs. We demonstrate that in spontaneous and induced RA models, SF-Cyld DUB deficiency deteriorates arthritic phenotypes due to increased levels of chemokines, adhesion receptors and bone-degrading enzymes generated by mutant SFs. Mechanistically, Cyld serves to restrict the TNF-induced hyperactivation of SFs by limiting Tak1-mediated signaling, and, therefore, leading to supervised NF-κB and JNK activity. However, Cyld is not critically involved in the regulation of TNF-induced death of SFs. Our results identify SF-Cyld as a regulator of TNF-mediated arthritis and inform the signaling landscape underpinning the SF responses.
Collapse
Affiliation(s)
- Vagelis Rinotas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - Kalliopi Iliaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - Lydia Pavlidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - Theodore Meletakos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) "Alexander Fleming", Vari, Greece.
| |
Collapse
|
4
|
Li JA, He Y, Yang B, Mokrani A, Li Y, Tan C, Li Q, Liu S. Whole-genome DNA methylation profiling revealed epigenetic regulation of NF-κB signaling pathway involved in response to Vibrio alginolyticus infection in the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109705. [PMID: 38885801 DOI: 10.1016/j.fsi.2024.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.
Collapse
Affiliation(s)
- Jian-An Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yameng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ahmed Mokrani
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Chao Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan National Laboratory, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan National Laboratory, Qingdao, 266237, China.
| |
Collapse
|
5
|
Zhuang Y, Fischer JB, Nishanth G, Schlüter D. Cross-regulation of Listeria monocytogenes and the host ubiquitin system in listeriosis. Eur J Cell Biol 2024; 103:151401. [PMID: 38442571 DOI: 10.1016/j.ejcb.2024.151401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
The facultative intracellular bacterium Listeria (L.) monocytogenes may cause severe diseases in humans and animals. The control of listeriosis/L. monocytogenes requires the concerted action of cells of the innate and adaptive immune systems. In this regard, cell-intrinsic immunity of infected cells, activated by the immune responses, is crucial for the control and elimination intracellular L. monocytogenes. Both the immune response against L. monocytogenes and cell intrinsic pathogen control are critically regulated by post-translational modifications exerted by the host ubiquitin system and ubiquitin-like modifiers (Ubls). In this review, we discuss our current understanding of the role of the ubiquitin system and Ubls in listeriosis, as well as future directions of research.
Collapse
Affiliation(s)
- Yuan Zhuang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany.
| | - Johanna B Fischer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| |
Collapse
|
6
|
Roy AS, Feroz T, Islam MK, Munim MA, Supti DA, Antora NJ, Al Reza H, Gosh S, Bahadur NM, Alam MR, Hossain MS. A computational approach for structural and functional analyses of disease-associated mutations in the human CYLD gene. Genomics Inform 2024; 22:4. [PMID: 38907316 PMCID: PMC11184958 DOI: 10.1186/s44342-024-00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/26/2023] [Indexed: 06/23/2024] Open
Abstract
Tumor suppressor cylindromatosis protein (CYLD) regulates NF-κB and JNK signaling pathways by cleaving K63-linked poly-ubiquitin chain from its substrate molecules and thus preventing the progression of tumorigenesis and metastasis of the cancer cells. Mutations in CYLD can cause aberrant structure and abnormal functionality leading to tumor formation. In this study, we utilized several computational tools such as PANTHER, PROVEAN, PredictSNP, PolyPhen-2, PhD-SNP, PON-P2, and SIFT to find out deleterious nsSNPs. We also highlighted the damaging impact of those deleterious nsSNPs on the structure and function of the CYLD utilizing ConSurf, I-Mutant, SDM, Phyre2, HOPE, Swiss-PdbViewer, and Mutation 3D. We shortlisted 18 high-risk nsSNPs from a total of 446 nsSNPs recorded in the NCBI database. Based on the conservation profile, stability status, and structural impact analysis, we finalized 13 nsSNPs. Molecular docking analysis and molecular dynamic simulation concluded the study with the findings of two significant nsSNPs (R830K, H827R) which have a remarkable impact on binding affinity, RMSD, RMSF, radius of gyration, and hydrogen bond formation during CYLD-ubiquitin interaction. The principal component analysis compared native and two mutants R830K and H827R of CYLD that signify structural and energy profile fluctuations during molecular dynamic (MD) simulation. Finally, the protein-protein interaction network showed CYLD interacts with 20 proteins involved in several biological pathways that mutations can impair. Considering all these in silico analyses, our study recommended conducting large-scale association studies of nsSNPs of CYLD with cancer as well as designing precise medications against diseases associated with these polymorphisms.
Collapse
Affiliation(s)
- Arpita Singha Roy
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Tasmiah Feroz
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Kobirul Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Adnan Munim
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Dilara Akhter Supti
- Department of Food Technology & Nutrition Sciences, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Nusrat Jahan Antora
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Supriya Gosh
- Department of Food Technology & Nutrition Sciences, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology & Nutrition Sciences, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
7
|
Wei J, Lv L, Wang T, Gu W, Luo Y, Feng H. Recent Progress in Innate Immune Responses to Enterovirus A71 and Viral Evasion Strategies. Int J Mol Sci 2024; 25:5688. [PMID: 38891876 PMCID: PMC11172324 DOI: 10.3390/ijms25115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.
Collapse
Affiliation(s)
- Jialong Wei
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Linxi Lv
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Tian Wang
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Yang Luo
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
- Institute of Precision Medicine, Chongqing University, Chongqing 400044, China
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| |
Collapse
|
8
|
Gu Y, Wu S, Fan J, Meng Z, Gao G, Liu T, Wang Q, Xia H, Wang X, Wu K. CYLD regulates cell ferroptosis through Hippo/YAP signaling in prostate cancer progression. Cell Death Dis 2024; 15:79. [PMID: 38246916 PMCID: PMC10800345 DOI: 10.1038/s41419-024-06464-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Prostate cancer (PCa) is one of the most common malignancy in men. However, the molecular mechanism of its pathogenesis has not yet been elucidated. In this study, we demonstrated that CYLD, a novel deubiquitinating enzyme, impeded PCa development and progression via tumor suppression. First, we found that CYLD was downregulated in PCa tissues, and its expression was inversely correlated with pathological grade and clinical stage. Moreover, we discovered that CYLD inhibited tumor cell proliferation and enhanced the sensitivity to cell ferroptosis in PCa in vitro and in vivo, respectively. Mechanistically, we demonstrated that CYLD suppressed the ubiquitination of YAP protein, then promoted ACSL4 and TFRC mRNA transcription. Then, we demonstrated that CYLD could enhance the sensitivity of PCa xenografts to ferroptosis in vivo. Furthermore, we discovered for the first time that there was a positive correlation between CYLD expression and ACSL4 or TFRC expression in human PCa specimens. The results of this study suggested that CYLD acted as a tumor suppressor gene in PCa and promoted cell ferroptosis through Hippo/YAP signaling.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, 710061, P. R. China
| | - Shiqi Wu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Junjie Fan
- Department of Urology, Baoji Central Hospital, Baoji, 721008, P. R. China
| | - Zeji Meng
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Guoqiang Gao
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tianjie Liu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qi Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huayu Xia
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| |
Collapse
|
9
|
Zhou G, Wang S. YTHDC2 Retards Cell Proliferation and Triggers Apoptosis in Papillary Thyroid Cancer by Regulating CYLD-Mediated Inactivation of Akt Signaling. Appl Biochem Biotechnol 2024; 196:588-603. [PMID: 37162682 DOI: 10.1007/s12010-023-04540-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
N6-Methyladenosine (m6A) mRNA methylation modification is regarded as an important mechanism involved in diverse physiological processes. YT521-B homology (YTH) domain family members are associated with the tumorigenesis of several cancers. However, the role of YTHDC2 in papillary thyroid cancer (PTC) progression remains unknown. Results showed that YTHDC1, YTHDF1, YTHDF2, and YTHDF3 showed no observable difference in thyroid cancer samples. YTHDC2 was significantly downregulated in thyroid cancer samples and cells. YTHDC2 inhibited cell proliferation in PTC cells. YTHDC2 elicited apoptosis in PTC cells, as demonstrated by the elevated expression of pro-apoptotic factors cl-caspase-3/caspase-3 and Bcl-2-associated (Bax), and the reduced anti-apoptotic B cell lymphoma-2 (Bcl-2) expression. There was a positive correlation between YTHDC2 and cylindromatosis (CYLD) expression based on GEPIA database. YTHDC2 increased CYLD expression in PTC cells. CYLD knockdown abolished the effects of YTHDC2 on PTC cell proliferation and apoptosis. Additionally, YTHDC2 inactivated the protein kinase B (Akt) pathway by increasing CYLD in PTC cells. Overall, YTHDC2 inhibited cell proliferation and induced apoptosis in PTC cells by regulating CYLD-mediated inactivation of Akt pathway.
Collapse
Affiliation(s)
- Guangying Zhou
- Department of Thyroid and Breast Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China
| | - Shasha Wang
- Department of Radiotherapy, the 960Th Hospital of Chinese PLA, No. 25 Shifan Road, Jinan, 250031, China.
| |
Collapse
|
10
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Li J, Liu S, Li S. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery. Cell Commun Signal 2023; 21:340. [PMID: 38017534 PMCID: PMC10685518 DOI: 10.1186/s12964-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 11/30/2023] Open
Abstract
Linear ubiquitination is a distinct type of ubiquitination that involves attaching a head-to-tail polyubiquitin chain to a substrate protein. Early studies found that linear ubiquitin chains are essential for the TNFα- and IL-1-mediated NF-κB signaling pathways. However, recent studies have discovered at least sixteen linear ubiquitination substrates, which exhibit a broader activity than expected and mediate many other signaling pathways beyond NF-κB signaling. Dysregulation of linear ubiquitination in these pathways has been linked to many types of cancers, such as lymphoma, liver cancer, and breast cancer. Since the discovery of linear ubiquitin, extensive effort has been made to delineate the molecular mechanisms of how dysregulation of linear ubiquitination causes tumorigenesis and cancer development. In this review, we highlight newly discovered linear ubiquitination-mediated signaling pathways, recent advances in the role of linear ubiquitin in different types of cancers, and the development of linear ubiquitin inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Jack Li
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
13
|
Kervarrec T, Sohier P, Pissaloux D, de la Fouchardiere A, Cribier B, Battistella M, Macagno N. Genetics of adnexal tumors: An update. Ann Dermatol Venereol 2023; 150:202-207. [PMID: 37270318 DOI: 10.1016/j.annder.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 06/05/2023]
Abstract
Cutaneous adnexal tumors form a vast heterogeneous group that include frequent entities that are mostly benign, as well as rare tumors that are occasionally malignant. In contrast to cutaneous tumors arising from the interfollicular epidermis that develop as a result of accumulation of UV-induced DNA damage (basal cell carcinoma, squamous cell carcinoma), the oncogenesis of adnexal tumors is related to a broad spectrum of genetic mechanisms (e.g., point mutation, fusion genes, viral integration, etc.). In this setting, specific and recurrent genetic alterations have been progressively reported, and these allow better classification of these entities. For certain of them, immunohistochemical tools are now available, enabling precise integrated histological and molecular diagnosis since certain entities are linked to well-defined alterations. In this context, we aim in this review to summarize the main molecular tools currently available for the classification of adnexal tumors.
Collapse
Affiliation(s)
- T Kervarrec
- CARADERM Network, Lille, France; Department of Pathology, University Hospital Center of Tours, Tours, France.
| | - P Sohier
- CARADERM Network, Lille, France; Department of Pathology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, AP-HP Centre - University of Paris Cité, Paris, France; Faculty of Medicine, University of Paris Cité, Paris, France
| | - D Pissaloux
- Department of Pathology, Centre Léon Bérard, Lyon, France
| | | | - B Cribier
- CARADERM Network, Lille, France; Dermatology Clinic, University Hospital of Strasbourg, Hôpital Civil, Strasbourg, France
| | - M Battistella
- CARADERM Network, Lille, France; Department of Pathology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, AP-HP Centre - Paris 7, Paris, France
| | - N Macagno
- CARADERM Network, Lille, France; Department of Pathology, AP-HM, University Hospital of la Timone, Marseille, France; University of Aix-Marseille, INSERM U1251, MMG, Marseille, France
| |
Collapse
|
14
|
Hihara M, Kouchi Y, Takao T, Fujita M, Kakudo N. Morpheaform basal cell carcinoma of the nasal ala associated with multiple familial trichoepithelioma reconstructed by anterolateral thigh flap: a case report. Case Reports Plast Surg Hand Surg 2023; 10:2242494. [PMID: 37547271 PMCID: PMC10399488 DOI: 10.1080/23320885.2023.2242494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The right nasal ala had been destroyed and was diagnosed as morpheaform basal cell carcinoma associated with multiple familial trichoepithelioma (Brooke-Spiegler syndrome). After extended resection, the right buccal and nasal ala defect was reconstructed with a flow-through type anterolateral thigh (ALT) flap, which achieved good functional and cosmetic results.
Collapse
Affiliation(s)
- Masakatsu Hihara
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Yuuki Kouchi
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Tsugumi Takao
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Maako Fujita
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
15
|
Carman LE, Samulevich ML, Aneskievich BJ. Repressive Control of Keratinocyte Cytoplasmic Inflammatory Signaling. Int J Mol Sci 2023; 24:11943. [PMID: 37569318 PMCID: PMC10419196 DOI: 10.3390/ijms241511943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The overactivity of keratinocyte cytoplasmic signaling contributes to several cutaneous inflammatory and immune pathologies. An important emerging complement to proteins responsible for this overactivity is signal repression brought about by several proteins and protein complexes with the native role of limiting inflammation. The signaling repression by these proteins distinguishes them from transmembrane receptors, kinases, and inflammasomes, which drive inflammation. For these proteins, defects or deficiencies, whether naturally arising or in experimentally engineered skin inflammation models, have clearly linked them to maintaining keratinocytes in a non-activated state or returning cells to a post-inflamed state after a signaling event. Thus, together, these proteins help to resolve acute inflammatory responses or limit the development of chronic cutaneous inflammatory disease. We present here an integrated set of demonstrated or potentially inflammation-repressive proteins or protein complexes (linear ubiquitin chain assembly complex [LUBAC], cylindromatosis lysine 63 deubiquitinase [CYLD], tumor necrosis factor alpha-induced protein 3-interacting protein 1 [TNIP1], A20, and OTULIN) for a comprehensive view of cytoplasmic signaling highlighting protein players repressing inflammation as the needed counterpoints to signal activators and amplifiers. Ebb and flow of players on both sides of this inflammation equation would be of physiological advantage to allow acute response to damage or pathogens and yet guard against chronic inflammatory disease. Further investigation of the players responsible for repressing cytoplasmic signaling would be foundational to developing new chemical-entity pharmacologics to stabilize or enhance their function when clinical intervention is needed to restore balance.
Collapse
Affiliation(s)
- Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
16
|
Liu SC, Wang CI, Liu TT, Tsang NM, Sui YH, Juang JL. A 3-gene signature comprising CDH4, STAT4 and EBV-encoded LMP1 for early diagnosis and predicting disease progression of nasopharyngeal carcinoma. Discov Oncol 2023; 14:119. [PMID: 37393410 DOI: 10.1007/s12672-023-00735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma is highly metastatic but difficult to detect in its early stages. It is critical to develop a simple and highly efficient molecular diagnostic method for early detection of NPC in clinical biopsies. METHODS The transcriptomic data of primary NPC cell strains were used as a discovery tool. Linear regression approach was used to define signatures distinctive between early and late stage of NPC. Expressions of candidates were validated with an independent set of biopsies (n = 39). Leave-one-out cross-validation technique was employed to estimate the prediction accuracy on stage classification. The clinical relevance of marker genes was verified using NPC bulk RNA sequencing data and IHC analysis. RESULTS Three genes comprising CDH4, STAT4, and CYLD were found to have a significant differentiating power to separate NPC from normal nasopharyngeal samples and predicting disease malignancy. IHC analyses showed stronger CDH4, STAT4, and CYLD immunoreactivity in adjacent basal epithelium compared with that in tumor cells (p < 0.001). EBV-encoded LMP1 was exclusively expressed in NPC tumors. Using an independent set of biopsies, we showed that a model combining CDH4, STAT4, and LMP1 had a 92.86% of diagnostic accuracy, whereas a combination of STAT4 and LMP1 had a 70.59% accuracy for predicting advanced disease. Mechanistic studies suggested that promoter methylation, loss of DNA allele, and LMP1 contributed to the suppressive expression of CDH4, CYLD, and STAT4, respectively. CONCLUSION A model combining CDH4 and STAT4 and LMP1 was proposed to be a feasible model for diagnosing NPC and predicting late stage of NPC.
Collapse
Affiliation(s)
- Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, 300, Zhongda Rd., Jhongli Dist., Taoyuan City, 320317, Taiwan.
| | - Chun-I Wang
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Tung Liu
- Department of Biomedical Sciences and Engineering, National Central University, 300, Zhongda Rd., Jhongli Dist., Taoyuan City, 320317, Taiwan
| | - Ngan-Ming Tsang
- Department of Radiation Oncology, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, Taiwan
| | - Yun-Hua Sui
- Department of Biomedical Sciences and Engineering, National Central University, 300, Zhongda Rd., Jhongli Dist., Taoyuan City, 320317, Taiwan
| | - Jyh-Lyh Juang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 35053, Miaoli County, Taiwan.
| |
Collapse
|
17
|
Huang Y, Zhang W, Yu Z, Su H, Zeng B, Piao J, Wang J, Wu J. A Tumor Suppressive Role of CYLD as a Novel Potential DUB of Aurora B in Cervical Cancer. Clin Med Insights Oncol 2023; 17:11795549231180832. [PMID: 37359274 PMCID: PMC10288423 DOI: 10.1177/11795549231180832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Background Cervical cancer is a common leading cause of cancer related to women death worldwide. Cylindromatosis (CYLD) is known as an important tumor suppressor in various human cancers, and a deubiquitination enzyme (DUB) as well. Previously, we identified Skp2 as an E3 ligase of Aurora B ubiquitination, but the DUB of Aurora B still remains unknown. Methods Aurora B ubiquitination site is identified through in vivo ubiquitination assay. Activity of Aurora B and CENPA was detected by immunoblotting (IB) and immunofluorescence (IF) assay. Protein-to-protein interaction was investigated by immunoprecipitation (IP). Cell chromosome dynamics was monitored by live-cell time-lapse Imaging. Cancer cell proliferation, colony formation, apoptosis, and cell invasion and migration assays were also performed. Protein level was checked by immunohistochemical (IHC) staining in clinical cervical cancer samples. Results We identified Lysine 115 (K115) as the main Aurora B ubiquitination site for Skp2. We could also detect an interaction of Aurora B with the DUB CYLD. We found that CYLD promoted deubiquitination of Aurora B, and regulated Aurora B activity and function as well. Compared with control, we found it took more time for the cells to finish cell mitosis with CYLD over-expression. Furthermore, we found that CYLD deficiency promoted cervical cancer cell proliferation, colony formation, cell migration and invasion, and inhibited apoptosis instead, whereas it is just opposite with CYLD over-expression. In clinical cervical cancer samples, we showed a negative correlation of CYLD expression with Aurora B activation and histological cancer cell invasion. Furthermore, there was less CYLD abundance and higher Aurora B activity in advanced cancer samples compared with early stage. Conclusions Our findings uncover CYLD as a novel potential DUB of Aurora B, which inhibits Aurora B activation and its subsequent function in cell mitosis, and also provide more evidence for its tumor suppressor function in cervical cancer.
Collapse
Affiliation(s)
- Yufan Huang
- Department of Medical Oncology, Affiliated Cancer Hospital & Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Wei Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Yu
- Department of Medical Oncology, Affiliated Cancer Hospital & Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Hongkai Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Zeng
- Department of Otorhinolaryngology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Jinsong Piao
- Department of Medical Oncology, Affiliated Cancer Hospital & Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Wu
- Department of Medical Oncology, Affiliated Cancer Hospital & Cancer Center of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Sweeney RA, Goebeler M, Flentje M, Klement RJ. Brooke-Spiegler syndrome: radiotherapy as the last resort? Strahlenther Onkol 2023; 199:595-600. [PMID: 37103530 DOI: 10.1007/s00066-023-02077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/12/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE To describe the case of successful radiotherapeutic treatment of a woman suffering from Brooke-Spiegler syndrome who had multiple disfiguring cylindromas on the entire scalp and further tumors on the trunk. METHODS After decades of treatment with conventional therapies including surgery and topically applied salicylic acid, the 73-year-old woman agreed to undergo radiotherapeutic treatment. She received 60 Gy to the scalp and 36 Gy to painful nodules in the lumbar spine region. RESULTS Over a follow-up period of 14 and 11 years, respectively, the scalp nodules almost completely regressed, while the lumbar nodules became painless and considerably smaller. Apart from alopecia, no late adverse effects of treatment remain. CONCLUSION This case should remind us of the potential role that radiotherapy could play in treating Brooke-Spiegler syndrome. The required dose for treatment of such extensive disease is still a matter of debate due to the scarcity of radiotherapeutic experience. This case demonstrates that for scalp tumors, 30 × 2 Gy can result in long-term tumor control, while other dose prescriptions may be adequate for tumors in other locations.
Collapse
Affiliation(s)
- Reinhart A Sweeney
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Michael Flentje
- Department of Radiotherapy and Radiation Oncology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| |
Collapse
|
19
|
Cao Y, Zhang X, Hu M, Yang S, Li X, Han R, Zhou J, Li D, Liu D. CYLD inhibits osteoclastogenesis to ameliorate alveolar bone loss in mice with periodontitis. J Cell Physiol 2023; 238:1036-1045. [PMID: 36922748 DOI: 10.1002/jcp.30990] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Periodontitis is a chronic immune inflammatory disease that can lead to the destruction and loss of the tooth-supporting apparatus. During this process, the balance between bone absorption mediated by osteoclasts and bone formation mediated by osteoblasts is damaged. Consistent with previous studies, we observed that depletion of cylindromatosis (CYLD) resulted in an osteoporotic bone phenotype. However, the effect of CYLD deficiency on periodontitis is undetermined. Here, we investigated whether CYLD affects periodontal tissue homeostasis in experimental periodontitis in Cyld knockout (KO) mice, and we explored the underlying mechanisms. Interestingly, we discovered significant alveolar bone density loss and severely reduced alveolar bone height in Cyld KO mice with experimentally induced periodontitis. We observed increased osteoclast number and activity in both the femurs and alveolar bones, accompanied by the downregulation of osteogenesis genes and upregulation of osteoclastogenesis genes of alveolar bones in ligatured Cyld KO mice. Taken together, our findings demonstrate that the deletion of CYLD in mice plays a vital role in the pathogenesis of periodontal bone loss and suggest that CYLD might exert an ameliorative effect on periodontal inflammatory responses.
Collapse
Affiliation(s)
- Yuxin Cao
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
| | - Xinming Zhang
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
| | - Meilin Hu
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
| | - Song Yang
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyan Li
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
| | - Ruohui Han
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
| |
Collapse
|
20
|
Clinical significance of cylindromatosis expression in primary hepatocellular carcinoma. Arab J Gastroenterol 2023; 24:58-64. [PMID: 36720665 DOI: 10.1016/j.ajg.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND STUDY AIM There is currently a lack of sensitive biomarkers for the diagnosis of hepatocellular carcinoma (HCC). Low expression of cylindromatosis (CYLD), a tumor suppressor gene that encodes a deubiquitinase, is associated with the development of HCC. The present study, therefore, aimed to determine the clinical utility of measuring CYLD expression in the early diagnosis of HCC. PATIENTS AND METHODS The present study comprised 257 patients from the Affiliated Hospital of Qingdao University including 90 patients with HCC, 41 patients with liver cirrhosis (LC), 46 patients with hepatitis B (HB), and 80 healthy controls. qPCR was used to measure the amounts of CYLD mRNA in stored blood samples. The sensitivity and specificity of CYLD mRNA in diagnosing HCC was analyzed using receiver operator characteristic (ROC) curves. We also obtained HCC data from the Oncomine database to further verify our results. RESULTS The relative levels of CYLD mRNA in peripheral blood from patients with HCC (median, 0.060; interquartile range [IQR], 0.019-0.260) was significantly lower than in blood from patients with LC (median, 3.732; IQR, 0.648-14.573), HB (median, 0.419; IQR, 0.255-1.809) and healthy controls (median, 1.262; IQR, 0.279-3.537; P < 0.05). CYLD mRNA levels in peripheral blood were significantly higher in patients with LC compared to healthy controls and patients with HB. Oncomine data demonstrated that CYLD mRNA expression levels in HCC tissues were significantly lower than in normal liver tissues. ROC analysis demonstrated that the combined use of peripheral blood levels of CYLD and AFP had the greatest diagnostic accuracy for HCC (area under the curve (AUC), 0.897; 95 % confidence interval [CI], 0.853-0.942). CYLD had utility as a supplementary marker to AFP for diagnosing HCC. CONCLUSION Circulating levels of CYLD mRNA are significantly decreased in patients with HCC, indicating CYLD may have utility as a biomarker of HCC. Combined measurement of CYLD mRNA and AFP protein had the greatest diagnostic accuracy.
Collapse
|
21
|
Low JY, Ko M, Hanratty B, Patel RA, Bhamidipati A, Heaphy CM, Sayar E, Lee JK, Li S, De Marzo AM, Nelson WG, Gupta A, Yegnasubramanian S, Ha G, Epstein JI, Haffner MC. Genomic Characterization of Prostatic Basal Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:4-10. [PMID: 36309102 PMCID: PMC9768679 DOI: 10.1016/j.ajpath.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.
Collapse
Affiliation(s)
- Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Akshay Bhamidipati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M Heaphy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Shan Li
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gavin Ha
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jonathan I Epstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
22
|
Tan SY, Jiang JX, Huang HX, Mo XP, Feng JR, Chen Y, Yang L, Long C. Neural mechanism underlies CYLD modulation of morphology and synaptic function of medium spiny neurons in dorsolateral striatum. Front Mol Neurosci 2023; 16:1107355. [PMID: 36846565 PMCID: PMC9945542 DOI: 10.3389/fnmol.2023.1107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Although the deubiquitinase cylindromatosis (CYLD), an abundant protein in the postsynaptic density fraction, plays a crucial role in mediating the synaptic activity of the striatum, the precise molecular mechanism remains largely unclear. Here, using a Cyld-knockout mouse model, we demonstrate that CYLD regulates dorsolateral striatum (DLS) neuronal morphology, firing activity, excitatory synaptic transmission, and plasticity of striatal medium spiny neurons via, likely, interaction with glutamate receptor 1 (GluA1) and glutamate receptor 2 (GluA2), two key subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). CYLD deficiency reduces levels of GluA1 and GluA2 surface protein and increases K63-linked ubiquitination, resulting in functional impairments both in AMPAR-mediated excitatory postsynaptic currents and in AMPAR-dependent long-term depression. The results demonstrate a functional association of CYLD with AMPAR activity, which strengthens our understanding of the role of CYLD in striatal neuronal activity.
Collapse
Affiliation(s)
- Shu-Yi Tan
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin-Xiang Jiang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Xian Huang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiu-Ping Mo
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jing-Ru Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
23
|
Zhang X, Zhao Y, Zhang X, Shen G, Li W, Wang Q. Deubiquitinase cylindromatosis (CYLD) regulates antibacterial immunity and apoptosis in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108454. [PMID: 36442704 DOI: 10.1016/j.fsi.2022.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Ubiquitination and deubiquitination of target proteins is an important mechanism for cells to rapidly respond to changes in the external environment. The deubiquitinase, cylindromatosis (CYLD), is a tumor suppressor protein. CYLD from Drosophila melanogaster participates in the antimicrobial immune response. In vertebrates, CYLD also regulates bacterial-induced apoptosis. However, whether CYLD can regulate the bacterial-induced innate immune response in crustaceans is unknown. In the present study, we reported the identification and cloning of CYLD in Chinese mitten crab, Eriocheir sinensis. Quantitative real-time reverse transcription polymerase chain reaction analysis showed that EsCYLD was widely expressed in all the examined tissues and was upregulated in the hemolymph after Vibrio parahaemolyticus challenge. Knockdown of EsCYLD in hemocytes promoted the cytoplasm-to-nucleus translocation of transcription factor Relish under V. parahaemolyticus stimulation and increased the expression of corresponding antimicrobial peptides. In vivo, silencing of EsCYLD promoted the removal of bacteria from the crabs and enhanced their survival. In addition, interfering with EsCYLD expression inhibited apoptosis of crab hemocytes caused by V. parahaemolyticus stimulation. In summary, our findings revealed that EsCYLD negatively regulates the nuclear translocation of Relish to affect the expression of corresponding antimicrobial peptides and regulates the apoptosis of crab hemocytes, thus indirectly participating in the innate immunity of E. sinensis.
Collapse
Affiliation(s)
- Xiaona Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuehong Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoli Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
24
|
Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. Clin Exp Immunol 2022; 210:114-127. [PMID: 36165533 PMCID: PMC9750831 DOI: 10.1093/cei/uxac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.
Collapse
Affiliation(s)
- Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
26
|
Kanemaru A, Shinriki S, Kai M, Tsurekawa K, Ozeki K, Uchino S, Suenaga N, Yonemaru K, Miyake S, Masuda T, Kariya R, Okada S, Takeshita H, Seki Y, Yano H, Komohara Y, Yoshida R, Nakayama H, Li JD, Saito H, Jono H. Potential use of EGFR-targeted molecular therapies for tumor suppressor CYLD-negative and poor prognosis oral squamous cell carcinoma with chemoresistance. Cancer Cell Int 2022; 22:358. [PMID: 36376983 PMCID: PMC9664721 DOI: 10.1186/s12935-022-02781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor suppressor CYLD dysfunction by loss of its expression, triggers malignant transformation, especially drug resistance and tumor invasion/metastasis. Although loss of CYLD expression is significantly associated with poor prognosis in a large variety of tumors, no clinically-effective treatment for CYLD-negative cancer patients is available. METHODS We focused on oral squamous cell carcinoma (OSCC), and sought to develop novel therapeutic agents for CYLD-negative cancer patients with poor prognosis. CYLD-knockdown OSCC cells by using CYLD-specific siRNA, were used to elucidate and determine the efficacy of novel drug candidates by evaluating cell viability and epithelial-mesenchymal transition (EMT)-like change. Therapeutic effects of candidate drug on cell line-derived xenograft (CDX) model and usefulness of CYLD as a novel biomarker using patient-derived xenograft (PDX) model were further investigated. RESULTS CYLD-knockdown OSCC cells were resistant for all currently-available cytotoxic chemotherapeutic agents for OSCC, such as, cisplatin, 5-FU, carboplatin, docetaxel, and paclitaxel. By using comprehensive proteome analysis approach, we identified epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, played key roles in CYLD-knockdown OSCC cells. Indeed, cell survival rate in the cisplatin-resistant CYLD-knockdown OSCC cells was markedly inhibited by treatment with clinically available EGFR tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib. In addition, gefitinib was significantly effective for not only cell survival, but also EMT-like changes through inhibiting transforming growth factor-β (TGF-β) signaling in CYLD-knockdown OSCC cells. Thereby, overall survival of CYLD-knockdown CDX models was significantly prolonged by gefitinib treatment. Moreover, we found that CYLD expression was significantly associated with gefitinib response by using PDX models. CONCLUSIONS Our results first revealed that EGFR-targeted molecular therapies, such as EGFR-TKIs, could have potential to be novel therapeutic agents for the CYLD-negative OSCC patients with poor prognosis.
Collapse
Affiliation(s)
- Ayumi Kanemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mimi Kai
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanae Tsurekawa
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kazuya Ozeki
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shota Uchino
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Naoki Suenaga
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kou Yonemaru
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Shunsuke Miyake
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe honmachi, Chuo-Ku, Kumamoto, 862-0973, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hisashi Takeshita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Seki
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
27
|
The resurrection of RIP kinase 1 as an early cell death checkpoint regulator-a potential target for therapy in the necroptosis era. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1401-1411. [PMID: 36171264 PMCID: PMC9534832 DOI: 10.1038/s12276-022-00847-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Receptor-interacting serine threonine protein kinase 1 (RIPK1) has emerged as a central molecular switch in controlling the balance between cell survival and cell death. The pro-survival role of RIPK1 in maintaining cell survival is achieved via its ability to induce NF-κB-dependent expression of anti-apoptotic genes. However, recent advances have identified the pro-death function of RIPK1: posttranslational modifications of RIPK1 in the tumor necrosis factor receptor 1 (TNFR1)-associated complex-I, in the cytosolic complex-IIb or in necrosomes regulate the cytotoxic potential of RIPK1, forming an early cell death checkpoint. Since the kinase activity of RIPK1 is indispensable in RIPK3- and MLKL-mediated necroptosis induction, while it is dispensable in apoptosis, a better understanding of this early cell death checkpoint via RIPK1 might lead to new insights into the molecular mechanisms controlling both apoptotic and necroptotic modes of cell death and help develop novel therapeutic approaches for cancer. Here, we present an emerging view of the regulatory mechanisms for RIPK1 activity, especially with respect to the early cell death checkpoint. We also discuss the impact of dysregulated RIPK1 activity in pathophysiological settings and highlight its therapeutic potential in treating human diseases. Improved understanding of the molecular mechanisms that allow a protein to control the balance between cell survival or early death could reveal new approaches to treating conditions including chronic inflammatory disease and cancer. Gang Min Hur and colleagues at Chungnam National University in Daejeon, South Korea, with Han-Ming Shen at the University of Macau in China, review emerging evidence about how the protein called receptor-interacting serine/threonine-protein kinase 1 (RIPK1) influences whether cells move towards death or survival at a key ‘checkpoint’ in cell development. Cells can undergo a natural process of programmed cell death called apoptosis, die abnormally in a disease process called necroptosis, or survive. RIPK1 appears able to influence which path is chosen depending on which genes it regulates and which proteins it interacts with. Many details are still unclear, and need further investigation.
Collapse
|
28
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
29
|
Papadatou V, Tologkos S, Tsolou A, Deftereou TE, Liberis A, Trypsianis G, Alexiadis T, Georgiadi K, Alexiadi CA, Nikolaidou C, Lambropoulou M. CYLD expression in endometrial carcinoma and correlation with clinicohistopathological parameters. Taiwan J Obstet Gynecol 2022; 61:596-600. [PMID: 35779906 DOI: 10.1016/j.tjog.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Endometrial cancer is a threat to women health worldwide. Cylindromatosis (CYLD) enzyme is a tumour suppressor, considered an effective prognostic marker in various malignancies, but its role in endometrial carcinoma is not fully elucidated. Here, we sought to estimate the prognostic value of CYLD expression in endometrial carcinoma. MATERIALS AND METHODS CYLD levels were immunohistochemically evaluated in 65 patients with endometrial carcinoma and inferential statistics were applied. RESULTS Low or negative CYLD expression significantly correlates with older ages, non-endometrioid and invasive carcinomas, tumours with moderate or poor differentiation and advanced stages. Moreover, non-endometrioid and invasive carcinomas are independent risk factors for weaker CYLD expression. Kaplan-Meier analysis illustrated that negative or low CYLD expression is statistically significantly associated with increased death risk, compared to moderate or high expression. CONCLUSION This study demonstrates for the first time a clear correlation between CYLD expression and clinicohistopathological parameters of endometrial carcinoma patients, suggesting its use as a potential prognostic/predictive marker for Endometrial Carcinoma.
Collapse
Affiliation(s)
- Vasiliki Papadatou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stylianos Tologkos
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Avgi Tsolou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Theodora-Eleftheria Deftereou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasios Liberis
- Second Department of Obstetrics & Gynecology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Grigorios Trypsianis
- Medical Statistics, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllos Alexiadis
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kyriaki Georgiadi
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina-Angelika Alexiadi
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Nikolaidou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; Hippokration General Hospital, Thessaloniki, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
30
|
Spaan AN, Neehus AL, Laplantine E, Staels F, Ogishi M, Seeleuthner Y, Rapaport F, Lacey KA, Van Nieuwenhove E, Chrabieh M, Hum D, Migaud M, Izmiryan A, Lorenzo L, Kochetkov T, Heesterbeek DAC, Bardoel BW, DuMont AL, Dobbs K, Chardonnet S, Heissel S, Baslan T, Zhang P, Yang R, Bogunovic D, Wunderink HF, Haas PJA, Molina H, Van Buggenhout G, Lyonnet S, Notarangelo LD, Seppänen MRJ, Weil R, Seminario G, Gomez-Tello H, Wouters C, Mesdaghi M, Shahrooei M, Bossuyt X, Sag E, Topaloglu R, Ozen S, Leavis HL, van Eijk MMJ, Bezrodnik L, Blancas Galicia L, Hovnanian A, Nassif A, Bader-Meunier B, Neven B, Meyts I, Schrijvers R, Puel A, Bustamante J, Aksentijevich I, Kastner DL, Torres VJ, Humblet-Baron S, Liston A, Abel L, Boisson B, Casanova JL. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science 2022; 376:eabm6380. [PMID: 35587511 PMCID: PMC9233084 DOI: 10.1126/science.abm6380] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.
Collapse
Affiliation(s)
- András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Emmanuel Laplantine
- Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, CNRS ERL8255, Sorbonne University, 75724 Paris, France
- Institut de Recherche St. Louis, Hôpital St. Louis, INSERM U944, CNRS U7212, Paris Cité University, 75010 Paris, France
| | - Frederik Staels
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Erika Van Nieuwenhove
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Araksya Izmiryan
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Genetic Skin Diseases, INSERM U1163, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Tatiana Kochetkov
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Dani A C Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Ashley L DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20852, USA
| | - Solenne Chardonnet
- Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, UMS Production et Analyse de données en Sciences de la vie et en Santé, PASS, INSERM, Sorbonne University, 75013 Paris, France
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Dusan Bogunovic
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Herman F Wunderink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Pieter-Jan A Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Griet Van Buggenhout
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Stanislas Lyonnet
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory Embryology and Genetics of Malformations, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20852, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, 00260 Helsinki, Finland
| | - Robert Weil
- Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, CNRS ERL8255, Sorbonne University, 75724 Paris, France
| | - Gisela Seminario
- Center for Clinical Immunology, Immunology Group Children's Hospital Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | - Héctor Gomez-Tello
- Immunology Department, Poblano Children's Hospital, 72190 Puebla, Mexico
| | - Carine Wouters
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Mehrnaz Mesdaghi
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, 15468-155514 Tehran, Iran
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, 15468-155514 Ahvaz, Iran
| | - Xavier Bossuyt
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Erdal Sag
- Department of Pediatric Rheumatology, Hacettepe University, 06230 Ankara, Turkey
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, 06230 Ankara, Turkey
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Maarten M J van Eijk
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Liliana Bezrodnik
- Center for Clinical Immunology, Immunology Group Children's Hospital Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
| | | | - Alain Hovnanian
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Genetic Skin Diseases, INSERM U1163, 75015 Paris, France
- Department of Genetics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Aude Nassif
- Centre Médical, Institut Pasteur, 75724 Paris, France
| | - Brigitte Bader-Meunier
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Bénédicte Neven
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmunity, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stéphanie Humblet-Baron
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Adrian Liston
- Laboratory for Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Brain and Disease Research, Leuven 3000, Belgium
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
31
|
Zajicek AS, Ruan H, Dai H, Skolfield MC, Phillips HL, Burnette WJ, Javidfar B, Sun SC, Akbarian S, Yao WD. Cylindromatosis drives synapse pruning and weakening by promoting macroautophagy through Akt-mTOR signaling. Mol Psychiatry 2022; 27:2414-2424. [PMID: 35449295 PMCID: PMC9278694 DOI: 10.1038/s41380-022-01571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
The lysine-63 deubiquitinase cylindromatosis (CYLD) is long recognized as a tumor suppressor in immunity and inflammation, and its loss-of-function mutations lead to familial cylindromatosis. However, recent studies reveal that CYLD is enriched in mammalian brain postsynaptic densities, and a gain-of-function mutation causes frontotemporal dementia (FTD), suggesting critical roles at excitatory synapses. Here we report that CYLD drives synapse elimination and weakening by acting on the Akt-mTOR-autophagy axis. Mice lacking CYLD display abnormal sociability, anxiety- and depression-like behaviors, and cognitive inflexibility. These behavioral impairments are accompanied by excessive synapse numbers, increased postsynaptic efficacy, augmented synaptic summation, and impaired NMDA receptor-dependent hippocampal long-term depression (LTD). Exogenous expression of CYLD results in removal of established dendritic spines from mature neurons in a deubiquitinase activity-dependent manner. In search of underlying molecular mechanisms, we find that CYLD knockout mice display marked overactivation of Akt and mTOR and reduced autophagic flux, and conversely, CYLD overexpression potently suppresses Akt and mTOR activity and promotes autophagy. Consequently, abrogating the Akt-mTOR-autophagy signaling pathway abolishes CYLD-induced spine loss, whereas enhancing autophagy in vivo by the mTOR inhibitor rapamycin rescues the synaptic pruning and LTD deficits in mutant mice. Our findings establish CYLD, via Akt-mTOR signaling, as a synaptic autophagy activator that exerts critical modulations on synapse maintenance, function, and plasticity.
Collapse
Affiliation(s)
- Alexis S Zajicek
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hongyu Ruan
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Huihui Dai
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mary C Skolfield
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah L Phillips
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Wendi J Burnette
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Behnam Javidfar
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Harvard Medical School, New England Primate Research Center, Southborough, MA, USA.
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
32
|
Pirooznia SK, Wang H, Panicker N, Kumar M, Neifert S, Dar MA, Lau E, Kang BG, Redding-Ochoa J, Troncoso JC, Dawson VL, Dawson TM. Deubiquitinase CYLD acts as a negative regulator of dopamine neuron survival in Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabh1824. [PMID: 35363524 PMCID: PMC10938605 DOI: 10.1126/sciadv.abh1824] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Mutations in PINK1 and parkin highlight the mitochondrial axis of Parkinson's disease (PD) pathogenesis. PINK1/parkin regulation of the transcriptional repressor PARIS bears direct relevance to dopamine neuron survival through augmentation of PGC-1α-dependent mitochondrial biogenesis. Notably, knockout of PARIS attenuates dopaminergic neurodegeneration in mouse models, indicating that interventions that prevent dopaminergic accumulation of PARIS could have therapeutic potential in PD. To this end, we have identified the deubiquitinase cylindromatosis (CYLD) to be a regulator of PARIS protein stability and proteasomal degradation via the PINK1/parkin pathway. Knockdown of CYLD in multiple models of PINK1 or parkin inactivation attenuates PARIS accumulation by modulating its ubiquitination levels and relieving its repressive effect on PGC-1α to promote mitochondrial biogenesis. Together, our studies identify CYLD as a negative regulator of dopamine neuron survival, and inhibition of CYLD may potentially be beneficial in PD by lowering PARIS levels and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sheila K. Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manoj Kumar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohamad Aasif Dar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan Lau
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C. Troncoso
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Li H, Roy M, Liang L, Cao W, Hu B, Li Y, Xiao X, Wang H, Ye M, Sun S, Zhang B, Liu J. Deubiquitylase USP12 induces pro-survival autophagy and bortezomib resistance in multiple myeloma by stabilizing HMGB1. Oncogene 2022; 41:1298-1308. [PMID: 34997217 DOI: 10.1038/s41388-021-02167-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
Abstract
Despite the establishment of novel therapeutic interventions, multiple myeloma (MM) remains invariably incurable due to development of drug resistance and subsequent relapse, which are attributed to activation of oncogenic pathways such as autophagy. Deubiquitinating enzymes (DUBs) are promising targets to overcome resistance to proteasome inhibitor-based treatment. Ubiquitin-specific protease-12 (USP12) is a DUB with a known prognostic value in several cancers. We found that USP12 protein levels were significantly higher in myeloma patient samples than in non-cancerous human samples. Depletion of USP12 suppressed cell growth and clonogenicity and inhibited autophagy. Mechanistic studies showed that USP12 interacted with, deubiquitylated and stabilized the critical autophagy mediator HMGB1 (high mobility group box-1) protein. Knockdown of USP12 decreased the level of HMGB1 and suppressed HMGB1-mediated autophagy in MM. Furthermore, basal autophagy activity associated with USP12/HMGB1 was elevated in bortezomib (BTZ)-resistant MM cell lines. USP12 depletion, concomitant with a reduced expression of HMGB1, suppressed autophagy and increased the sensitivity of resistant cells to BTZ. Collectively, our findings have identified an important role of the deubiquitylase USP12 in pro-survival autophagy and resultant BTZ resistance in MM by stabilizing HMGB1, suggesting that the USP12/HMGB1 axis might be pursued as a potential diagnostic and therapeutic target in human MM.
Collapse
Affiliation(s)
- Hui Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, 410082, China
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mridul Roy
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, 410082, China
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Long Liang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenjie Cao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Bin Hu
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Yanan Li
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan, 410082, China.
| | - Shuming Sun
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
34
|
Shanazarov N, Benberin V, Zinchenko S, Nalgieva F, Muratov N, Isahanova B, Tashpulatov T. Possibilities of Photodynamic Therapy in the Treatment of Multiple Cylindroma of the Scalp: The Clinical Case Study. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2022. [DOI: 10.29333/ejgm/11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Recent Advances on Immunohistochemistry and Molecular Biology for the Diagnosis of Adnexal Sweat Gland Tumors. Cancers (Basel) 2022; 14:cancers14030476. [PMID: 35158743 PMCID: PMC8833812 DOI: 10.3390/cancers14030476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cutaneous sweat gland tumors form an extremely diverse and heterogeneous group of neoplasms that show histological differentiation to the sweat apparatus. Due to their rarity, wide diagnostic range, and significant morphological overlap between entities, their accurate diagnosis remains challenging for pathologists. Until recently, little was known about the molecular pathogenesis of adnexal tumors. Recent findings have revealed a wide range of gene fusions and other oncogenic factors that can be used for diagnostic purposes and, for some, can be detected by immunohistochemistry. Among other organs containing exocrine glands, such as salivary glands, breasts, and bronchi, most of these biomarkers have been reported in homologous neoplasms that share morphological features with their cutaneous counterparts. This review aims to describe these recent molecular and immunohistochemical biomarkers in the field of sweat gland tumors. Abstract Cutaneous sweat gland tumors are a subset of adnexal neoplasms that derive or differentiate into the sweat apparatus. Their great diversity, rarity, and complex terminology make their pathological diagnosis challenging. Recent findings have revealed a wide spectrum of oncogenic drivers, several of which are of diagnostic interest for pathologists. Most of these molecular alterations are represented by gene fusions, which are shared with other homologous neoplasms occurring in organs containing exocrine glands, such as salivary and breast glands, which show similarities to the sweat apparatus. This review aims to provide a synthesis of the most recent immunohistochemical and molecular markers used for the diagnosis of sweat gland tumors and to highlight their relationship with similar tumors in other organs. It will cover adenoid cystic carcinoma (NFIB, MYB, and MYBL1 fusion), cutaneous mixed tumor (PLAG1 fusion), cylindroma and spiradenoma and their carcinomas thereof (NF-κB activation through CYLD inactivation or ALKP1 hotspot mutation), hidradenoma and hidradenocarcinoma (MAML2 fusion), myoepithelioma (EWSR1 and FUS fusion), poroma and porocarcinoma (YAP1, MAML2, and NUTM1 fusion), secretory carcinoma (ETV6, NTRK3 fusion), tubular adenoma and syringo-cystadenoma papilliferum (HRAS and BRAF activating mutations). Sweat gland tumors for which there are no known molecular abnormalities will also be briefly discussed, as well as potential future developments.
Collapse
|
36
|
Shen Y, Boulton APR, Yellon RL, Cook MC. Skin manifestations of inborn errors of NF-κB. Front Pediatr 2022; 10:1098426. [PMID: 36733767 PMCID: PMC9888762 DOI: 10.3389/fped.2022.1098426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
More than 400 single gene defects have been identified as inborn errors of immunity, including many arising from genes encoding proteins that affect NF-κB activity. We summarise the skin phenotypes in this subset of disorders and provide an overview of pathogenic mechanisms. NF-κB acts cell-intrinsically in basal epithelial cells during differentiation of skin appendages, influences keratinocyte proliferation and survival, and both responses to and amplification of inflammation, particularly TNF. Skin phenotypes include ectodermal dysplasia, reduction and hyperproliferation of keratinocytes, and aberrant recruitment of inflammatory cells, which often occur in combination. Phenotypes conferred by these rare monogenic syndromes often resemble those observed with more common defects. This includes oral and perineal ulceration and pustular skin disease as occurs with Behcet's disease, hyperkeratosis with microabscess formation similar to psoriasis, and atopic dermatitis. Thus, these genotype-phenotype relations provide diagnostic clues for this subset of IEIs, and also provide insights into mechanisms of more common forms of skin disease.
Collapse
Affiliation(s)
- Yitong Shen
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Anne P R Boulton
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Robert L Yellon
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Matthew C Cook
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom.,Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, and Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
37
|
Plotzke JM, Adams DJ, Harms PW. Molecular pathology of skin adnexal tumours. Histopathology 2022; 80:166-183. [PMID: 34197659 DOI: 10.1111/his.14441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
AIMS Tumours of the cutaneous adnexa arise from, or differentiate towards, structures in normal skin such as hair follicles, sweat ducts/glands, sebaceous glands or a combination of these elements. This class of neoplasms includes benign tumours and highly aggressive carcinomas. Adnexal tumours often present as solitary sporadic lesions, but can herald the presence of an inherited tumour syndrome such as Muir-Torre syndrome, Cowden syndrome or CYLD cutaneous syndrome. In contrast to squamous cell carcinoma and basal cell carcinoma, molecular changes in adnexal neoplasia have been poorly characterised and there are few published reviews on the current state of knowledge. METHODS AND RESULTS We reviewed findings in peer-reviewed literature on molecular investigations of cutaneous adnexal tumours published to June 2021. CONCLUSIONS Recent discoveries have revealed diverse oncogenic drivers and tumour suppressor alterations in this class of tumours, implicating pathways including Ras/MAPK, PI3K, YAP/TAZ, beta-catenin and nuclear factor kappa B (NF-κB). These observations have identified novel markers, such as NUT for poroma and porocarcinoma and PLAG1 for mixed tumours. Here, we provide a comprehensive overview and update of the molecular findings associated with adnexal tumours of the skin.
Collapse
Affiliation(s)
- Jaclyn M Plotzke
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Front Microbiol 2021; 12:805223. [PMID: 34966378 PMCID: PMC8710732 DOI: 10.3389/fmicb.2021.805223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.
Collapse
Affiliation(s)
- Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
39
|
The Tumour Suppressor CYLD Is Required for Clathrin-Mediated Endocytosis of EGFR and Cetuximab-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 14:cancers14010173. [PMID: 35008337 PMCID: PMC8750287 DOI: 10.3390/cancers14010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and is a target for the therapeutic antibody cetuximab (CTX). However, because only some patients have a significant clinical response to CTX, identification of its predictive biomarkers and potentiation of CTX-based therapies are important. We have recently reported a frequent downregulation of cylindromatosis (CYLD) in primary HNSCC, which led to increased cell invasion and cisplatin resistance. Here, we show that CYLD located mainly in lipid rafts was required for clathrin-mediated endocytosis (CME) and degradation of the EGFR induced by EGF and CTX in HNSCC cells. The N-terminus containing the first cytoskeleton-associated protein-glycine domain of CYLD was responsible for this regulation. Loss of CYLD restricted EGFR to lipid rafts, which suppressed CTX-induced apoptosis without impeding CTX's inhibitory activity against downstream signalling pathways. Disruption of the lipid rafts with cholesterol-removing agents overcame this resistance by restoring CME and the degradation of EGFR. Regulation of EGFR trafficking by CYLD is thus critical for the antitumour activity of CTX. Our findings suggest the usefulness of a combination of cholesterol-lowering drugs with anti-EGFR antibody therapy in HNSCC.
Collapse
|
40
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
The K63 deubiquitinase CYLD modulates autism-like behaviors and hippocampal plasticity by regulating autophagy and mTOR signaling. Proc Natl Acad Sci U S A 2021; 118:2110755118. [PMID: 34782467 DOI: 10.1073/pnas.2110755118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron spine numbers. By providing evidence that CYLD can modulate mechanistic target of rapamycin (mTOR) signaling and autophagy at the synapse, we propose that synaptic K63-linked ubiquitination processes could be fundamental in understanding the pathomechanisms underlying autism spectrum disorder.
Collapse
|
42
|
Nagy N, Dubois A, Szell M, Rajan N. Genetic Testing in CYLD Cutaneous Syndrome: An Update. APPLICATION OF CLINICAL GENETICS 2021; 14:427-444. [PMID: 34744449 PMCID: PMC8566010 DOI: 10.2147/tacg.s288274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
CYLD cutaneous syndrome (CCS) is an inclusive label for the inherited skin adnexal tumour syndromes Brooke–Spiegler Syndrome (BSS-OMIM 605041), familial cylindromatosis (FC – OMIM 132700) and multiple familial trichoepitheliomas (MFT-OMIM 601606). All three syndromes arise due to germline pathogenic variants in CYLD, a tumour suppressor gene (OMIM 605018). CCS is transmitted in an autosomal dominant pattern, and has variable expressivity, both of the three syndromic phenotypes, and of the severity of tumour burden. Age-related penetrance figures are not precisely reported. The first tumours typically appear during puberty and progressively accumulate through adulthood. Penetrance is typically high, with equal numbers of males and females affected. Genetic testing is important for confirmation of the clinical diagnosis, genetic counselling and family planning, including preimplantation diagnosis. Additionally, identified CCS patients may be eligible for future clinical trials of non-surgical pre-emptive interventions that aim to prevent tumour growth. In this update, we review the clinical presentations of germline and mosaic CCS. An overview of the germline pathogenic variant spectrum of patients with CCS reveals more than 100 single nucleotide variants and small insertions and deletions in coding exons, most frequently resulting in predicted truncation. In addition, a minority of patients have large deletions involving the CYLD gene, intronic pathogenic variants that affect splicing, or inversions. We discuss germline and somatic testing approaches. Somatic testing of tumour tissue, relevant in mosaic CCS, can reveal recurrently detected pathogenic variants when two or more tumours are tested. This can influence genetic testing of children, who may inherit this as a germline variant, and inform genetic counselling and prenatal diagnosis. Finally, we discuss testing technologies that are currently used, their benefits and limitations, and future directions for genetic testing in CCS.
Collapse
Affiliation(s)
- Nikoletta Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary.,Dermatological Research Group of the Eotvos Lorand Research Network, University of Szeged, Szeged, Hungary
| | - Anna Dubois
- Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Marta Szell
- Department of Medical Genetics, University of Szeged, Szeged, Hungary.,Dermatological Research Group of the Eotvos Lorand Research Network, University of Szeged, Szeged, Hungary
| | - Neil Rajan
- Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
43
|
Fuseya Y, Iwai K. Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase. Cells 2021; 10:cells10102706. [PMID: 34685685 PMCID: PMC8534859 DOI: 10.3390/cells10102706] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.
Collapse
|
44
|
Elliott PR, Leske D, Wagstaff J, Schlicher L, Berridge G, Maslen S, Timmermann F, Ma B, Fischer R, Freund SMV, Komander D, Gyrd-Hansen M. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Cell Rep 2021; 37:109777. [PMID: 34610306 PMCID: PMC8511506 DOI: 10.1016/j.celrep.2021.109777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Non-degradative ubiquitin chains and phosphorylation events govern signaling responses by innate immune receptors. The deubiquitinase CYLD in complex with SPATA2 is recruited to receptor signaling complexes by the ubiquitin ligase LUBAC and regulates Met1- and Lys63-linked polyubiquitin and receptor signaling outcomes. Here, we investigate the molecular determinants of CYLD activity. We reveal that two CAP-Gly domains in CYLD are ubiquitin-binding domains and demonstrate a requirement of CAP-Gly3 for CYLD activity and regulation of immune receptor signaling. Moreover, we identify a phosphorylation switch outside of the catalytic USP domain, which activates CYLD toward Lys63-linked polyubiquitin. The phosphorylated residue Ser568 is a novel tumor necrosis factor (TNF)-regulated phosphorylation site in CYLD and works in concert with Ser418 to enable CYLD-mediated deubiquitination and immune receptor signaling. We propose that phosphorylated CYLD, together with SPATA2 and LUBAC, functions as a ubiquitin-editing complex that balances Lys63- and Met1-linked polyubiquitin at receptor signaling complexes to promote LUBAC signaling.
Collapse
Affiliation(s)
- Paul R Elliott
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Derek Leske
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jane Wagstaff
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lisa Schlicher
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Georgina Berridge
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Sarah Maslen
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Frederik Timmermann
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Biao Ma
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Stefan M V Freund
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne VIC 3000, Australia.
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Off-Roosevelt Drive, Oxford OX3 7DQ, UK; LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
45
|
Zhu G, Herlyn M, Yang X. TRIM15 and CYLD regulate ERK activation via lysine-63-linked polyubiquitination. Nat Cell Biol 2021; 23:978-991. [PMID: 34497368 PMCID: PMC8440396 DOI: 10.1038/s41556-021-00732-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
The extracellular signal-regulated kinases ERK1 and ERK2 represent the foremost mitogenic pathway in mammalian cells, and their dysregulation drives tumorigenesis and confers therapeutic resistance. ERK1/2 are known to be activated by MAPK/ERK kinase (MEK)-mediated phosphorylation. Here we show that ERK1/2 are also modified by Lys63-linked polyubiquitin chains. We identify the tripartite motif-containing protein TRIM15 as a ubiquitin ligase, and the tumor suppressor CYLD as a deubiquitinase, for ERKs. TRIM15 and CYLD regulate ERK ubiquitination at defined lysine residues via mutually exclusive interactions as well as opposing activities. K63-linked polyubiquitination enhances ERK interaction with and activation by MEK. Down-regulation of TRIM15 inhibits growth of both drug-responsive and -resistant melanomas. Moreover, high TRIM15 expression and low CYLD expression are associated with poor prognosis of melanoma patients. These findings define a role of Lys63-linked polyubiquitination in the ERK signaling pathway and suggest a potential target for cancer therapy.
Collapse
Affiliation(s)
- Guixin Zhu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Xiaolu Yang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Cook S, Bajwa D, Hollestein L, Husain A, Rajan N. A 5-year retrospective review of skin adnexal tumours received at a tertiary dermatopathology service: Implications for linked genetic diagnoses. Br J Dermatol 2021; 186:167-173. [PMID: 34388263 DOI: 10.1111/bjd.20701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Skin adnexal tumours (SATs) comprise a diverse range of neoplasms, which are difficult to diagnose clinically. They present in paediatric and adult populations, and may be indicative of an underlying genetic syndrome. There is a lack of recent data on the presentation of these tumours in clinical practice in European populations. OBJECTIVE To characterise the clinical and pathological features of SATs received at a single tertiary centre over a 5-year period. METHODS A retrospective health record audit of SATs received at the Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, during the period November 2012 to October 2017. RESULTS 107144 skin cases were received during the audit period. 1615 cases of SATs from 1359 patients were included; 1570 (97.2%) were benign and 45 (2.8%) were malignant. Overall, the average age at presentation was 55 years (range 11 months - 97 years) and the male to female ratio was 0.77:1. Sweat gland and hair follicle SATs were most frequently excised; in adults the most frequent tumour was hidrocystoma, and in children, pilomatrixoma. Pre-biopsy diagnosis was correct 28% of the time. Benign SATs are often markers of an associated genetic condition, warranting improved discrimination of sporadic from genetically related SATs. CONCLUSIONS SATs are difficult to diagnose clinically, and clinicopathological correlation may help enhance selection of genetically related SATs from sporadic cases. These data have implications for clinical and dermatopathological training provision, the development of reporting standards, and genetic assessment of selected patients.
Collapse
Affiliation(s)
- S Cook
- Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - D Bajwa
- Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - L Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Department of Research, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, the Netherlands
| | - A Husain
- Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - N Rajan
- Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
Rapid in vitro quantification of TDP-43 and FUS mislocalisation for screening of gene variants implicated in frontotemporal dementia and amyotrophic lateral sclerosis. Sci Rep 2021; 11:14881. [PMID: 34290285 PMCID: PMC8295343 DOI: 10.1038/s41598-021-94225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022] Open
Abstract
Identified genetic mutations cause 20% of frontotemporal dementia (FTD) and 5-10% of amyotrophic lateral sclerosis (ALS) cases: however, for the remainder of patients the origin of disease is uncertain. The overlap in genetic, clinical and pathological presentation of FTD and ALS suggests these two diseases are related. Post-mortem, ~ 95% of ALS and ~ 50% of FTD patients show redistribution of the nuclear protein TDP-43 to the cytoplasm within affected neurons, while ~ 5% ALS and ~ 10% FTD show mislocalisation of FUS protein. We exploited these neuropathological features to develop an unbiased method for the in vitro quantification of cytoplasmic TDP-43 and FUS. Utilising fluorescently-tagged cDNA constructs and immunocytochemistry, the fluorescence intensity of TDP-43 or FUS was measured in the nucleus and cytoplasm of cells, using the freely available software CellProfiler. Significant increases in the amount of cytoplasmic TDP-43 and FUS were detectable in cells expressing known FTD/ALS-causative TARDBP and FUS gene mutations. Pharmacological intervention with the apoptosis inducer staurosporine and mutation in a secondary gene (CYLD) also induced measurable cytoplasmic mislocalisation of endogenous FUS and TDP-43, respectively. These findings validate this methodology as a novel in vitro technique for the quantification of TDP-43 or FUS mislocalisation that can be used for initial prioritisation of predicted FTD/ALS-causative mutations.
Collapse
|
48
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
49
|
Hile G, Harms PW. Update on Molecular Genetic Alterations of Cutaneous Adnexal Neoplasms. Surg Pathol Clin 2021; 14:251-272. [PMID: 34023104 DOI: 10.1016/j.path.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cutaneous adnexal tumors recapitulate follicular, sweat gland, and/or sebaceous epithelia, and range from benign tumors to aggressive carcinomas. Adnexal tumors can be hallmarks for inherited tumor syndromes. Oncogenic drivers of adnexal neoplasms modulate intracellular pathways including mitogen-activated protein kinase, phosphoinositide-3-kinase, Wnt/β-catenin, Hedgehog, nuclear factor κB, and Hippo intracellular signaling pathways, representing potential therapeutic targets. Malignant progression can be associated with tumor suppressor loss, especially TP53. Molecular alterations drive expression of specific diagnostic markers, such as CDX2 and LEF1 in pilomatricomas/pilomatrical carcinomas, and NUT in poromas/porocarcinomas. In these ways, improved understanding of molecular alterations promises to advance diagnostic, prognostic, and therapeutic possibilities for adnexal tumors.
Collapse
Affiliation(s)
- Grace Hile
- Department of Dermatology, University of Michigan, 1910 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5314, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, 1910 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5314, USA; Department of Pathology, University of Michigan, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109 - 2800, USA.
| |
Collapse
|
50
|
Danis J, Kelemen E, Rajan N, Nagy N, Széll M, Ádám É. TRAF3 and NBR1 both influence the effect of the disease-causing CYLD(Arg936X) mutation on NF-κB activity. Exp Dermatol 2021; 30:1705-1710. [PMID: 33999445 DOI: 10.1111/exd.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 12/01/2022]
Abstract
Recently described Hungarian and Anglo-Saxon pedigrees that are affected by CYLD cutaneous syndrome (syn: Brooke-Spiegler syndrome (BSS)) carry the same disease-causing mutation (c.2806C>T, p.Arg936X) of the cylindromatosis (CYLD) gene but exhibit striking phenotypic differences. Using whole exome sequencing, missense genetic variants of the TRAF3 and NBR1 genes were identified in the affected family members of the Hungarian pedigree that are not present in the Anglo-Saxon pedigree. This suggested that the affected proteins (TRAF3 and NBR1) are putative phenotype-modifying factors. An in vitro experimental system was set up to clarify how wild type and mutant TRAF3 and NBR1 modify the effect of CYLD on the NF-κB signal transduction pathway. Our study revealed that the combined expression of mutant CYLD(Arg936X) with TRAF3 and NBR1 caused increased NF-κB activity, regardless of the presence or absence of mutations in TRAF3 and NBR1. We concluded that increased expression levels of these proteins further strengthen the effect of the CYLD(Arg936X) mutation on NF-κB activity in HEK293 cells and may explain the phenotype-modifying effect of these genes in CYLD cutaneous syndrome. These results raise the potential that detecting the levels of TRAF3 and NBR1 might help explaining phenotypic differences and prognosis of CCS.
Collapse
Affiliation(s)
- Judit Danis
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, Szeged, Hungary.,HCEMM-USZ Skin Research Group, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Evelyn Kelemen
- Department of Medical Genetics, University of Szeged, Szeged, Hungary.,Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Neil Rajan
- Translational and Clinical Research Institute, Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Nikoletta Nagy
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Éva Ádám
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|