1
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
2
|
Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DH, Liu X, Smyth GK, Alexander WS, Majewski IJ, McCormack MP. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med 2023; 220:e20212383. [PMID: 36920307 PMCID: PMC10037042 DOI: 10.1084/jem.20212383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cell competition has recently emerged as an important tumor suppressor mechanism in the thymus that inhibits autonomous thymic maintenance. Here, we show that the oncogenic transcription factor Lmo2 causes autonomous thymic maintenance in transgenic mice by inhibiting early T cell differentiation. This autonomous thymic maintenance results in the development of self-renewing preleukemic stem cells (pre-LSCs) and subsequent leukemogenesis, both of which are profoundly inhibited by restoration of thymic competition or expression of the antiapoptotic factor BCL2. Genomic analyses revealed the presence of Notch1 mutations in pre-LSCs before subsequent loss of tumor suppressors promotes the transition to overt leukemogenesis. These studies demonstrate a critical role for impaired cell competition in the development of pre-LSCs in a transgenic mouse model of T cell acute lymphoblastic leukemia (T-ALL), implying that this process plays a role in the ontogeny of human T-ALL.
Collapse
Affiliation(s)
- Hesham D. Abdulla
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Raed Alserihi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- College of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Christoffer Flensburg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel H.D. Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Warren S. Alexander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ian J. Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Matthew P. McCormack
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- iCamuno Biotherapeutics, Melbourne, Australia
| |
Collapse
|
3
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
4
|
Ratiu JJ, Barclay WE, Lin E, Wang Q, Wellford S, Mehta N, Harnois MJ, DiPalma D, Roy S, Contreras AV, Shinohara ML, Wiest D, Zhuang Y. Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes. Nat Commun 2022; 13:5901. [PMID: 36202870 PMCID: PMC9537144 DOI: 10.1038/s41467-022-33610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/22/2022] [Indexed: 01/05/2023] Open
Abstract
Production of a functional peripheral T cell compartment typically involves massive expansion of the bone marrow progenitors that seed the thymus. There are two main phases of expansion during T cell development, following T lineage commitment of double-negative (DN) 2 cells and after successful rearrangement and selection for functional TCRβ chains in DN3 thymocytes, which promotes the transition of DN4 cells to the DP stage. The signals driving the expansion of DN2 thymocytes are well studied. However, factors regulating the proliferation and survival of DN4 cells remain poorly understood. Here, we uncover an unexpected link between the transcription factor Zfp335 and control of cGAS/STING-dependent cell death in post-β-selection DN4 thymocytes. Zfp335 controls survival by sustaining expression of Ankle2, which suppresses cGAS/STING-dependent cell death. Together, this study identifies Zfp335 as a key transcription factor regulating the survival of proliferating post-β-selection thymocytes and demonstrates a key role for the cGAS/STING pathway in driving apoptosis of developing T cells.
Collapse
Affiliation(s)
- Jeremy J Ratiu
- Duke University, Department of Immunology, Durham, NC, 27710, USA.
| | | | - Elliot Lin
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | - Qun Wang
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | | | - Naren Mehta
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | | | - Devon DiPalma
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | - Sumedha Roy
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| | - Alejandra V Contreras
- Fox Chase Cancer Center, Blood Cell Development and Function Program, Philadelphia, PA, 19111, USA
| | - Mari L Shinohara
- Duke University, Department of Immunology, Durham, NC, 27710, USA
- Duke University, Department of Molecular Genetics and Microbiology, Durham, NC, 27710, USA
| | - David Wiest
- Fox Chase Cancer Center, Blood Cell Development and Function Program, Philadelphia, PA, 19111, USA
| | - Yuan Zhuang
- Duke University, Department of Immunology, Durham, NC, 27710, USA
| |
Collapse
|
5
|
Latchmansingh KA, Wang X, Verdun RE, Marques-Piubelli ML, Vega F, You MJ, Chapman J, Lossos IS. LMO2 expression is frequent in T-lymphoblastic leukemia and correlates with survival, regardless of T-cell stage. Mod Pathol 2022; 35:1220-1226. [PMID: 35322192 PMCID: PMC9427670 DOI: 10.1038/s41379-022-01063-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
T- lymphoblastic leukemia/lymphoma (T-LL) is an aggressive malignancy of immature T-cells with poor overall survival (OS) and in need of new therapies. LIM-domain only 2 (LMO2) is a critical regulator of hematopoietic cell development that can be overexpressed in T-LL due to chromosomal abnormalities. Deregulated LMO2 expression contributes to T-LL development by inducing block of T-cell differentiation and continuous thymocyte self-renewal. However, LMO2 expression and its biologic significance in T-LL remain largely unknown. We analyzed LMO2 expression in 100 initial and follow-up biopsies of T-LL from 67 patients, including 31 (46%) early precursor T-cell (ETP)-ALL, 26 (39%) cortical and 10 (15%) medullary type. LMO2 expression was present in 50 (74.6%) initial biopsies with an average of 87% positive tumor cells (range 30-100%). LMO2 expression in ETP, medullary and cortical T-LLs was not statistically different. In patients with biopsies after initial therapy, LMO2 expression was stable. LMO2 expression was associated with longer OS (p = 0.048) regardless of T-lymphoblast stage or other clinicopathologic features. These findings indicate that LMO2 is a promising new prognostic marker that could predict patients' outcomes and potentially be targeted for novel chemotherapy, i.e. PARP1/2 inhibitors, which have been shown to enhance chemotherapy sensitivity in LMO2 expressing diffuse large B cell lymphoma (DLBCL) tumors by decreasing DNA repair efficiency.
Collapse
Affiliation(s)
- Kerri-Ann Latchmansingh
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Miami/Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Xiaoqiong Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramiro E. Verdun
- Department of Medicine, Division of Hematology, University of Miami / Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Chapman
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Miami/Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| | - Izidore S. Lossos
- Department of Medicine, Division of Hematology, University of Miami / Sylvester Comprehensive Cancer Center & Jackson Memorial Hospital, Miami, FL, USA
| |
Collapse
|
6
|
Transcriptome-wide subtyping of pediatric and adult T cell acute lymphoblastic leukemia in an international study of 707 cases. Proc Natl Acad Sci U S A 2022; 119:e2120787119. [PMID: 35385357 PMCID: PMC9169777 DOI: 10.1073/pnas.2120787119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We provide transcriptomic insights into differences between pediatric and adult T cell acute lymphoblastic leukemia (T-ALL) patients through an international collaborative effort integrating RNA-sequencing data of 707 patients. Ten subtypes were identified, each characterized by distinct gene mutation profiles and dysregulated expression signatures of leukemogenic factors, and associated with T cell development stages. Adult T-ALL tends to have characteristics of early T cell precursor ALL, mostly corresponding to the mixed phenotype acute leukemia, whereas pediatric T-ALL shows a wide spectrum of aberrant molecular features, from early T cell precursor to mature T cell compartments. Our findings have important implications for disease mechanism of T-ALL that differs between pediatric and adult patients, facilitating further refined targeted therapy. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1–G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1–G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7–G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9–G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.
Collapse
|
7
|
Veiga DFT, Tremblay M, Gerby B, Herblot S, Haman A, Gendron P, Lemieux S, Zúñiga-Pflücker JC, Hébert J, Cohen JP, Hoang T. Monoallelic Heb/Tcf12 Deletion Reduces the Requirement for NOTCH1 Hyperactivation in T-Cell Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:867443. [PMID: 35401501 PMCID: PMC8987207 DOI: 10.3389/fimmu.2022.867443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Early T-cell development is precisely controlled by E proteins, that indistinguishably include HEB/TCF12 and E2A/TCF3 transcription factors, together with NOTCH1 and pre-T cell receptor (TCR) signalling. Importantly, perturbations of early T-cell regulatory networks are implicated in leukemogenesis. NOTCH1 gain of function mutations invariably lead to T-cell acute lymphoblastic leukemia (T-ALL), whereas inhibition of E proteins accelerates leukemogenesis. Thus, NOTCH1, pre-TCR, E2A and HEB functions are intertwined, but how these pathways contribute individually or synergistically to leukemogenesis remain to be documented. To directly address these questions, we leveraged Cd3e-deficient mice in which pre-TCR signaling and progression through β-selection is abrogated to dissect and decouple the roles of pre-TCR, NOTCH1, E2A and HEB in SCL/TAL1-induced T-ALL, via the use of Notch1 gain of function transgenic (Notch1ICtg) and Tcf12+/- or Tcf3+/- heterozygote mice. As a result, we now provide evidence that both HEB and E2A restrain cell proliferation at the β-selection checkpoint while the clonal expansion of SCL-LMO1-induced pre-leukemic stem cells in T-ALL is uniquely dependent on Tcf12 gene dosage. At the molecular level, HEB protein levels are decreased via proteasomal degradation at the leukemic stage, pointing to a reversible loss of function mechanism. Moreover, in SCL-LMO1-induced T-ALL, loss of one Tcf12 allele is sufficient to bypass pre-TCR signaling which is required for Notch1 gain of function mutations and for progression to T-ALL. In contrast, Tcf12 monoallelic deletion does not accelerate Notch1IC-induced T-ALL, indicating that Tcf12 and Notch1 operate in the same pathway. Finally, we identify a tumor suppressor gene set downstream of HEB, exhibiting significantly lower expression levels in pediatric T-ALL compared to B-ALL and brain cancer samples, the three most frequent pediatric cancers. In summary, our results indicate a tumor suppressor function of HEB/TCF12 in T-ALL to mitigate cell proliferation controlled by NOTCH1 in pre-leukemic stem cells and prevent NOTCH1-driven progression to T-ALL.
Collapse
Affiliation(s)
- Diogo F. T. Veiga
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Mathieu Tremblay
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
| | - Bastien Gerby
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1037, Université Toulouse III Paul Sabatier (UPS), Toulouse, France
| | - Sabine Herblot
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
| | - André Haman
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
| | - Patrick Gendron
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
| | - Sébastien Lemieux
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | | | - Josée Hébert
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Joseph Paul Cohen
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada
- Université de Montréal, Montreal, QC, Canada
| | - Trang Hoang
- Department of Pharmacology and Physiology, Université de Montréal, Institute for Research in Immunology and Cancer, QC, Canada
- *Correspondence: Trang Hoang,
| |
Collapse
|
8
|
Fregona V, Bayet M, Gerby B. Oncogene-Induced Reprogramming in Acute Lymphoblastic Leukemia: Towards Targeted Therapy of Leukemia-Initiating Cells. Cancers (Basel) 2021; 13:cancers13215511. [PMID: 34771671 PMCID: PMC8582707 DOI: 10.3390/cancers13215511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is a heterogeneous disease characterized by a diversity of genetic alterations, following a sophisticated and controversial organization. In this review, we present and discuss the concepts exploring the cellular, molecular and functional heterogeneity of leukemic cells. We also review the emerging evidence indicating that cell plasticity and oncogene-induced reprogramming should be considered at the biological and clinical levels as critical mechanisms for identifying and targeting leukemia-initiating cells. Abstract Our understanding of the hierarchical structure of acute leukemia has yet to be fully translated into therapeutic approaches. Indeed, chemotherapy still has to take into account the possibility that leukemia-initiating cells may have a distinct chemosensitivity profile compared to the bulk of the tumor, and therefore are spared by the current treatment, causing the relapse of the disease. Therefore, the identification of the cell-of-origin of leukemia remains a longstanding question and an exciting challenge in cancer research of the last few decades. With a particular focus on acute lymphoblastic leukemia, we present in this review the previous and current concepts exploring the phenotypic, genetic and functional heterogeneity in patients. We also discuss the benefits of using engineered mouse models to explore the early steps of leukemia development and to identify the biological mechanisms driving the emergence of leukemia-initiating cells. Finally, we describe the major prospects for the discovery of new therapeutic strategies that specifically target their aberrant stem cell-like functions.
Collapse
|
9
|
LIM domain only 1: an oncogenic transcription cofactor contributing to the tumorigenesis of multiple cancer types. Chin Med J (Engl) 2021; 134:1017-1030. [PMID: 33870932 PMCID: PMC8116020 DOI: 10.1097/cm9.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
ABSTRACT The LIM domain only 1 (LMO1) gene belongs to the LMO family of genes that encodes a group of transcriptional cofactors. This group of transcriptional cofactors regulates gene transcription by acting as a key "connector" or "scaffold" in transcription complexes. All LMOs, including LMO1, are important players in the process of tumorigenesis. Unique biological features of LMO1 distinct from other LMO members, such as its tissue-specific expression patterns, interacting proteins, and transcriptional targets, have been increasingly recognized. Studies indicated that LMO1 plays a critical oncogenic role in various types of cancers, including T-cell acute lymphoblastic leukemia, neuroblastoma, gastric cancer, lung cancer, and prostate cancer. The molecular mechanisms underlying such functions of LMO1 have also been investigated, but they are currently far from being fully elucidated. Here, we focus on reviewing the current findings on the role of LMO1 in tumorigenesis, the mechanisms of its oncogenic action, and the mechanisms that drive its aberrant activation in cancers. We also briefly review its roles in the development process and non-cancer diseases. Finally, we discuss the remaining questions and future investigations required for promoting the translation of laboratory findings to clinical applications, including cancer diagnosis and treatment.
Collapse
|
10
|
Ldb1 is required for Lmo2 oncogene-induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia. Blood 2021; 135:2252-2265. [PMID: 32181817 DOI: 10.1182/blood.2019000794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL. Our results identify a critical requirement for Ldb1 in Lmo2-induced thymocyte self-renewal and thymocyte radiation resistance and for the transition of preleukemic thymocytes to overt T-ALL. Moreover, Ldb1 was also required for acquisition of the aberrant preleukemic ETP gene expression signature in immature Lmo2 transgenic thymocytes. Co-binding of Ldb1 and Lmo2 was detected at the promoters of key upregulated T-ALL driver genes (Hhex, Lyl1, and Nfe2) in preleukemic Lmo2 transgenic thymocytes, and binding of both Ldb1 and Lmo2 at these sites was reduced following Cre-mediated deletion of Ldb1. Together, these results identify a key role for Ldb1, a nonproto-oncogene, in T-ALL and support a model in which Lmo2-induced T-ALL results from failure to downregulate Ldb1/Lmo2-nucleated transcription complexes which normally function to enforce self-renewal in bone marrow hematopoietic progenitors.
Collapse
|
11
|
Meyer A, Herkt S, Kunze-Schumacher H, Kohrs N, Ringleb J, Schneider L, Kuvardina ON, Oellerich T, Häupl B, Krueger A, Seifried E, Bonig H, Lausen J. The transcription factor TAL1 and miR-17-92 create a regulatory loop in hematopoiesis. Sci Rep 2020; 10:21438. [PMID: 33293632 PMCID: PMC7722897 DOI: 10.1038/s41598-020-78629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.
Collapse
Affiliation(s)
- Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nicole Kohrs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Julia Ringleb
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, 98195, USA
| | - Joern Lausen
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany. .,Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
12
|
Milton-Harris L, Jeeves M, Walker SA, Ward SE, Mancini EJ. Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2. Oncotarget 2020; 11:1737-1748. [PMID: 32477463 PMCID: PMC7233811 DOI: 10.18632/oncotarget.27580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs.
Collapse
Affiliation(s)
- Leanne Milton-Harris
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Sarah A Walker
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Erika J Mancini
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
13
|
Abstract
The search for oncogenic mutations in haematological malignancies has largely focused on coding sequence variants. These variants have been critical in understanding these complex cancers in greater detail, ultimately leading to better disease monitoring, subtyping and prognostication. In contrast, the search for oncogenic variants in the noncoding genome has proven to be challenging given the vastness of the search space, the intrinsic difficulty in assessing the impact of variants that do not code for functional proteins, and our still primitive understanding of the function harboured by large parts of the noncoding genome. Recent studies have broken ground on this quest, identifying somatically acquired and recurrent mutations in the noncoding genome that activate the expression of proto-oncogenes. In this Review, we explore some of the best-characterised examples of noncoding mutations in haematological malignancies, and highlight how a significant majority of these variants impinge on gene regulation through the formation of aberrant enhancers and promoters. We delve into the challenges faced by those that embark on a search for noncoding driver mutations, and provide a framework distilled from studies that have successfully identified such variants to overcome some of the most salient hurdles. Finally, we discuss the current therapeutic strategies being explored to target the oncogenic mechanism supported by recurrent noncoding variants. We postulate that the continued discovery and functional characterisation of somatic variants in the noncoding genome will not only advance our understanding of haematological malignancies, but offer novel therapeutic avenues and provide important insights into transcriptional regulation on a broader scale. Summary: This Review highlights the challenging but rewarding search for somatic mutations in the noncoding genome, and how such variants nucleate aberrant enhancers and promoters that drive the expression of proto-oncogenes.
Collapse
Affiliation(s)
- Sunniyat Rahman
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
14
|
Koniaeva E, Stahlhut M, Lange L, Sauer MG, Kustikova OS, Schambach A. Conditional Immortalization of Lymphoid Progenitors via Tetracycline-Regulated LMO2 Expression. Hum Gene Ther 2019; 31:183-198. [PMID: 31760808 DOI: 10.1089/hum.2019.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conditional immortalization of hematopoietic progenitors through lentiviral expression of selected transcription factors in hematopoietic stem and progenitor cells provides a promising tool to study stem cell and leukemia biology. In this study, to generate conditionally immortalized lymphoid progenitor (ciLP) cell lines, murine hematopoietic progenitor cells were transduced with an inducible lentiviral "all-in-one" vector expressing LMO2 under doxycycline (DOX) stimulation and the reverse tetracycline-regulated transactivator (rtTA3). For selection of LMO2-expressing ciLPs (LMO2-ciLPs) and longitudinal manipulation in T cell differentiation lymphoid conditions, we developed a robust approach based on coculture with OP9-DL1 stromal cells and improved cytokine conditions allowing a controlled balance between cell proliferation and differentiation in vitro. LMO2-ciLP cell lines with the highest proliferation, vector copy number, and similar insertion pattern were selected for LMO2 "on/off" in vitro study. LMO2 expression under DOX induction resulted in a double negative (DN) 2 differentiation arrest and a propagation of CD44+CD25- myeloid cell population characterized by lymphoid and myeloid phenotypes, respectively. Both DN2 and CD44+CD25- myeloid cell subpopulations expressed c-KIT, suggesting that LMO2-ciLPs were similar to uncommitted progenitors under DOX supplementation. DOX removal resulted in cessation of ectopic LMO2 expression and LMO2-ciLPs continued T cell lymphoid differentiation accompanied by c-KIT downregulation and interleukin 7 receptor expression. Switching off LMO2 expression was accompanied by increased Notch signaling and significant reduction of the CD44+CD25- myeloid cell population under T cell differentiation lymphoid conditions. Although vector insertions in cooperation with LMO2 expression could influence the fate of LMO2-ciLPs and additional experiments are required to evaluate it, our approach provides a promising tool to investigate mechanisms underlying stem cell, leukemia, and lymphocyte biology, leading to novel approaches for disease modeling and therapy evaluation.
Collapse
Affiliation(s)
- Ekaterina Koniaeva
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Olga S Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Mastelic-Gavillet B, Vono M, Gonzalez-Dias P, Ferreira FM, Cardozo L, Lambert PH, Nakaya HI, Siegrist CA. Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. Front Immunol 2019; 10:1845. [PMID: 31456798 PMCID: PMC6700230 DOI: 10.3389/fimmu.2019.01845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
T follicular helper (Tfh) cells have emerged as a critical limiting factor for controlling the magnitude of neonatal germinal center (GC) reactions and primary vaccine antibody responses. We compared the functional attributes of neonatal and adult Tfh cells at the transcriptomic level and demonstrated that the Tfh cell program is well-initiated in neonates although the Tfh gene-expression pattern (i.e., CXCR5, IL-21, BCL6, TBK1, STAT4, ASCL2, and c-MAF) is largely underrepresented as compared to adult Tfh cells. Importantly, we identified a TH2-bias of neonatal Tfh cells, with preferential differentiation toward short-lived pre-Tfh effector cells. Remarkably, adjuvantation with CpG-ODNs redirect neonatal pre-Tfh cells toward committed GC-Tfh cells, as illustrated by increased expression of Tfh signature genes and reduced expression of TH2-related genes.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Vono
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Patrícia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, School of Medicine, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Lucas Cardozo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paul-Henri Lambert
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claire-Anne Siegrist
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis. Blood 2019; 134:1159-1175. [PMID: 31366618 DOI: 10.1182/blood.2019000095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.
Collapse
|
17
|
Pais H, Ruggero K, Zhang J, Al-Assar O, Bery N, Bhuller R, Weston V, Kearns PR, Mecucci C, Miller A, Rabbitts TH. Surfaceome interrogation using an RNA-seq approach highlights leukemia initiating cell biomarkers in an LMO2 T cell transgenic model. Sci Rep 2019; 9:5760. [PMID: 30962539 PMCID: PMC6453905 DOI: 10.1038/s41598-019-42214-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022] Open
Abstract
The surfaceome is critical because surface proteins provide a gateway for internal signals and transfer of molecules into cells, and surfaceome differences can influence therapy response. We have used a surfaceome analysis method, based on comparing RNA-seq data between normal and abnormal cells (Surfaceome DataBase Mining or Surfaceome DBM), to identify sets of upregulated cell surface protein mRNAs in an LMO2-mediated T-ALL mouse model and corroborated by protein detection using antibodies. In this model the leukemia initiating cells (LICs) comprise pre-leukaemic, differentiation inhibited thymocytes allowing us to provide a profile of the LIC surfaceome in which GPR56, CD53 and CD59a are co-expressed with CD25. Implementation of cell surface interaction assays demonstrates fluid interaction of surface proteins and CD25 is only internalized when co-localized with other proteins. The Surfaceome DBM approach to analyse cancer cell surfaceomes is a way to find targetable surface biomarkers for clinical conditions where RNA-seq data from normal and abnormal cell are available.
Collapse
Affiliation(s)
- Helio Pais
- Trivago GmbH, Bennigsen-Platz 1, 40474, Düsseldorf, Germany
| | - Katia Ruggero
- Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), Gran Via de L'Hospitalet, 199, Barcelona, Spain
| | - Jing Zhang
- MRC Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK
| | - Osama Al-Assar
- The Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Nicolas Bery
- MRC Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK
| | - Ravneet Bhuller
- MRC Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK
| | - Victoria Weston
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, B15 2TT, UK
| | - Pamela R Kearns
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, B15 2TT, UK
| | | | - Ami Miller
- MRC Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK
| | - Terence H Rabbitts
- MRC Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
18
|
Restricted cell cycle is essential for clonal evolution and therapeutic resistance of pre-leukemic stem cells. Nat Commun 2018; 9:3535. [PMID: 30166543 PMCID: PMC6117297 DOI: 10.1038/s41467-018-06021-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023] Open
Abstract
Pre-leukemic stem cells (pre-LSCs) give rise to leukemic stem cells through acquisition of additional gene mutations and are an important source of relapse following chemotherapy. We postulated that cell-cycle kinetics of pre-LSCs may be an important determinant of clonal evolution and therapeutic resistance. Using a doxycycline-inducible H2B-GFP transgene in a mouse model of T-cell acute lymphoblastic leukemia to study cell cycle in vivo, we show that self-renewal, clonal evolution and therapeutic resistance are limited to a rare population of pre-LSCs with restricted cell cycle. We show that proliferative pre-LSCs are unable to return to a cell cycle-restricted state. Cell cycle-restricted pre-LSCs have activation of p53 and its downstream cell-cycle inhibitor p21. Furthermore, absence of p21 leads to proliferation of pre-LSCs, with clonal extinction through loss of asymmetric cell division and terminal differentiation. Thus, inducing proliferation of pre-LSCs represents a promising strategy to increase cure rates for acute leukemia.
Collapse
|
19
|
Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol 2018; 109:5-17. [PMID: 30145780 DOI: 10.1007/s12185-018-2518-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
TAL1/SCL is a prime example of an oncogenic transcription factor that is abnormally expressed in acute leukemia due to the replacement of regulator elements. This gene has also been recognized as an essential regulator of hematopoiesis. TAL1 expression is strictly regulated in a lineage- and stage-specific manner. Such precise control is crucial for the switching of the transcriptional program. The misexpression of TAL1 in immature thymocytes leads to a widespread series of orchestrated downstream events that affect several different cellular machineries, resulting in a lethal consequence, namely T-cell acute lymphoblastic leukemia (T-ALL). In this article, we will discuss the transcriptional regulatory network and downstream target genes, including protein-coding genes and non-coding RNAs, controlled by TAL1 in normal hematopoiesis and T-cell leukemogenesis.
Collapse
Affiliation(s)
- Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
20
|
Identification of novel lncRNAs regulated by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia 2018; 32:2138-2151. [PMID: 29654272 DOI: 10.1038/s41375-018-0110-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/05/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 and its regulatory partners (GATA3, RUNX1, and MYB) positively regulate each other and coordinately regulate the expression of their downstream target genes in T-ALL cells. However, long non-coding RNAs (lncRNAs) regulated by these factors are largely unknown. Here we established a bioinformatics pipeline and analyzed RNA-seq datasets with deep coverage to identify lncRNAs regulated by TAL1 in T-ALL cells. Our analysis predicted 57 putative lncRNAs that are activated by TAL1. Many of these transcripts were regulated by GATA3, RUNX1, and MYB in a coordinated manner. We identified two novel transcripts that were activated in multiple T-ALL cell samples but were downregulated in normal thymocytes. One transcript near the ARID5B gene locus was specifically expressed in TAL1-positive T-ALL cases. The other transcript located between the FAM49A and MYCN gene locus was also expressed in normal hematopoietic stem cells and T-cell progenitor cells. In addition, we identified a subset of lncRNAs that were negatively regulated by TAL1 and positively regulated by E-proteins in T-ALL cells. This included a known lncRNA (lnc-OAZ3-2:7) located near the RORC gene, which was expressed in normal thymocytes but repressed in TAL1-positive T-ALL cells.
Collapse
|
21
|
Leong WZ, Tan SH, Ngoc PCT, Amanda S, Yam AWY, Liau WS, Gong Z, Lawton LN, Tenen DG, Sanda T. ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis. Genes Dev 2018; 31:2343-2360. [PMID: 29326336 PMCID: PMC5795782 DOI: 10.1101/gad.302646.117] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Leong et al. identified ARID5B as a collaborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B positively regulates the expression of TAL1 and its regulatory partners and also activates the expression of the oncogene MYC. The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lymphoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a collaborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2–4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active transcription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression. ARID5B positively regulates the expression of TAL1 and its regulatory partners. ARID5B also activates the expression of the oncogene MYC. Importantly, ARID5B is required for the survival and growth of T-ALL cells, and forced expression of ARID5B in immature thymocytes results in thymus retention, differentiation arrest, radioresistance, and tumor formation in zebrafish. Our results indicate that ARID5B reinforces the oncogenic transcriptional program by positively regulating the TAL1-induced regulatory circuit and MYC in T-ALL, thereby contributing to T-cell leukemogenesis.
Collapse
Affiliation(s)
- Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Phuong Cao Thi Ngoc
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Alice Wei Yee Yam
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Wei-Siang Liau
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Lee N Lawton
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.,Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| |
Collapse
|
22
|
Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, Fielding A, Tan SH, Sanda T, Weintraub AS, Li B, Shen S, Zhang J, Mansour MR, Young RA, Look AT. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia 2017; 31:2057-2064. [PMID: 28260788 PMCID: PMC5629363 DOI: 10.1038/leu.2017.75] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/27/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Oncogenic driver mutations are those that provide a proliferative or survival advantage to neoplastic cells, resulting in clonal selection. Although most cancer-causing mutations have been detected in the protein-coding regions of the cancer genome; driver mutations have recently also been discovered within noncoding genomic sequences. Thus, a current challenge is to gain precise understanding of how these unique genomic elements function in cancer pathogenesis, while clarifying mechanisms of gene regulation and identifying new targets for therapeutic intervention. Here we report a C-to-T single nucleotide transition that occurs as a somatic mutation in noncoding sequences 4 kb upstream of the transcriptional start site of the LMO1 oncogene in primary samples from patients with T-cell acute lymphoblastic leukaemia. This single nucleotide alteration conforms to an APOBEC-like cytidine deaminase mutational signature, and generates a new binding site for the MYB transcription factor, leading to the formation of an aberrant transcriptional enhancer complex that drives high levels of expression of the LMO1 oncogene. Since APOBEC-signature mutations are common in a broad spectrum of human cancers, we suggest that noncoding nucleotide transitions such as the one described here may activate potent oncogenic enhancers not only in T-lymphoid cells but in other cell lineages as well.
Collapse
Affiliation(s)
- Z Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - A Berezovskaya
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Y Liu
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - T Leon
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - A Fielding
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - S H Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - T Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - A S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - B Li
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Shen
- Department of Hematology and Oncology, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - M R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - R A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Children’s Hospital, Boston, MA, USA
| |
Collapse
|
23
|
Sanda T, Leong WZ. TAL1 as a master oncogenic transcription factor in T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53:7-15. [PMID: 28652130 DOI: 10.1016/j.exphem.2017.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/11/2017] [Indexed: 11/29/2022]
Abstract
In hematopoietic cell development, the transcriptional program is strictly regulated in a lineage- and stage-specific manner that requires a number of transcription factors to work in a cascade or in a loop, in addition to interactions with nonhematopoietic cells in the microenvironment. Disruption of the transcriptional program alters the cellular state and may predispose cells to the acquisition of genetic abnormalities. Early studies have shown that proteins that promote cell differentiation often serve as tumor suppressors, whereas inhibitors of those proteins act as oncogenes in the context of acute leukemia. A prime example is T-cell acute lymphoblastic leukemia (T-ALL), a malignant disorder characterized by clonal proliferation of immature stage thymocytes. Although a relatively small number of genetic abnormalities are observed in T-ALL, these abnormalities are crucial for leukemogenesis. Many oncogenes and tumor suppressors in T-ALL are transcription factors that are required for normal hematopoiesis. The transformation process in T-ALL is efficient and orchestrated; the oncogene disrupts the transcriptional program directing T-cell differentiation and also uses its native ability as a master transcription factor in hematopoiesis. This imbalance in the transcriptional program is a primary determinant underlying the molecular pathogenesis of T-ALL. In this review, we focus on the oncogenic transcription factor TAL1 and the tumor-suppressor E-proteins and discuss the malignant cell state, the transcriptional circuit, and the consequence of molecular abnormalities in T-ALL.
Collapse
Affiliation(s)
- Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
24
|
Rahman S, Magnussen M, León TE, Farah N, Li Z, Abraham BJ, Alapi KZ, Mitchell RJ, Naughton T, Fielding AK, Pizzey A, Bustraan S, Allen C, Popa T, Pike-Overzet K, Garcia-Perez L, Gale RE, Linch DC, Staal FJT, Young RA, Look AT, Mansour MR. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia. Blood 2017; 129:3221-3226. [PMID: 28270453 PMCID: PMC5472898 DOI: 10.1182/blood-2016-09-742148] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/22/2017] [Indexed: 01/17/2023] Open
Abstract
Somatic mutations within noncoding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines in addition to 3.7% of pediatric (6 of 160) and 5.5% of adult (9 of 163) T-ALL patient samples. The majority of indels harbor putative de novo MYB, ETS1, or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provides important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy-induced T-ALL, suggesting that such events occur at preferential sites in the noncoding genome.
Collapse
Affiliation(s)
- Sunniyat Rahman
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Michael Magnussen
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Theresa E León
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Nadine Farah
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Zhaodong Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | - Krisztina Z Alapi
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Rachel J Mitchell
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Tom Naughton
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Adele K Fielding
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Arnold Pizzey
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Sophia Bustraan
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Christopher Allen
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Teodora Popa
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Karin Pike-Overzet
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Garcia-Perez
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosemary E Gale
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - David C Linch
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Frank J T Staal
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA; and
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Children's Hospital, Boston, MA
| | - Marc R Mansour
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| |
Collapse
|
25
|
SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 2017; 129:2051-2060. [DOI: 10.1182/blood-2016-12-754051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Abstract
SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL’s activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL’s regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.
Collapse
|
26
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Leukemia 2016; 31:1798-1807. [PMID: 28028313 PMCID: PMC5529293 DOI: 10.1038/leu.2016.392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL), a malignant disorder resulting from leukemic transformation of thymus T-cell precursors. TAL1 is normally expressed in hematopoietic stem cells (HSCs) but is silenced in immature thymocytes. We hypothesize that TAL1 contributes to leukemogenesis by activating genes that are normally repressed in immature thymocytes. Herein, we identified a novel TAL1-regulated super-enhancer controlling the GIMAP locus, which resides within an insulated chromosomal locus in T-ALL cells. The GIMAP genes are expressed in HSCs and mature T-cells but are downregulated during the immature stage of thymocyte differentiation. The GIMAP enhancer is activated by TAL1, RUNX1 and GATA3 in human T-ALL cells but is repressed by E-proteins. Overexpression of human GIMAP genes in immature thymocytes alone does not induce tumorigenesis but accelerates leukemia development in zebrafish. Our results demonstrate that aberrant activation of the GIMAP enhancer contributes to T-cell leukemogenesis.
Collapse
|
28
|
Gerby B, Veiga DFT, Krosl J, Nourreddine S, Ouellette J, Haman A, Lavoie G, Fares I, Tremblay M, Litalien V, Ottoni E, Kosic M, Geoffrion D, Ryan J, Maddox PS, Chagraoui J, Marinier A, Hébert J, Sauvageau G, Kwok BH, Roux PP, Hoang T. High-throughput screening in niche-based assay identifies compounds to target preleukemic stem cells. J Clin Invest 2016; 126:4569-4584. [PMID: 27797342 DOI: 10.1172/jci86489] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022] Open
Abstract
Current chemotherapies for T cell acute lymphoblastic leukemia (T-ALL) efficiently reduce tumor mass. Nonetheless, disease relapse attributed to survival of preleukemic stem cells (pre-LSCs) is associated with poor prognosis. Herein, we provide direct evidence that pre-LSCs are much less chemosensitive to existing chemotherapy drugs than leukemic blasts because of a distinctive lower proliferative state. Improving therapies for T-ALL requires the development of strategies to target pre-LSCs that are absolutely dependent on their microenvironment. Therefore, we designed a robust protocol for high-throughput screening of compounds that target primary pre-LSCs maintained in a niche-like environment, on stromal cells that were engineered for optimal NOTCH1 activation. The multiparametric readout takes into account the intrinsic complexity of primary cells in order to specifically monitor pre-LSCs, which were induced here by the SCL/TAL1 and LMO1 oncogenes. We screened a targeted library of compounds and determined that the estrogen derivative 2-methoxyestradiol (2-ME2) disrupted both cell-autonomous and non-cell-autonomous pathways. Specifically, 2-ME2 abrogated pre-LSC viability and self-renewal activity in vivo by inhibiting translation of MYC, a downstream effector of NOTCH1, and preventing SCL/TAL1 activity. In contrast, normal hematopoietic stem/progenitor cells remained functional. These results illustrate how recapitulating tissue-like properties of primary cells in high-throughput screening is a promising avenue for innovation in cancer chemotherapy.
Collapse
|
29
|
MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia. Sci Rep 2016; 6:31894. [PMID: 27550837 PMCID: PMC4994040 DOI: 10.1038/srep31894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness.
Collapse
|
30
|
Stem Cell Leukemia: how a TALented actor can go awry on the hematopoietic stage. Leukemia 2016; 30:1968-1978. [DOI: 10.1038/leu.2016.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
|
31
|
Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 2016; 30:1993-2001. [DOI: 10.1038/leu.2016.100] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
|
32
|
Abstract
LMO2 was first discovered through proximity to frequently occurring chromosomal translocations in T cell acute lymphoblastic leukaemia (T-ALL). Subsequent studies on its role in tumours and in normal settings have highlighted LMO2 as an archetypical chromosomal translocation oncogene, activated by association with antigen receptor gene loci and a paradigm for translocation gene activation in T-ALL. The normal function of LMO2 in haematopoietic cell fate and angiogenesis suggests it is a master gene regulator exerting a dysfunctional control on differentiation following chromosomal translocations. Its importance in T cell neoplasia has been further emphasized by the recurrent findings of interstitial deletions of chromosome 11 near LMO2 and of LMO2 as a target of retroviral insertion gene activation during gene therapy trials for X chromosome-linked severe combined immuno-deficiency syndrome, both types of event leading to similar T cell leukaemia. The discovery of LMO2 in some B cell neoplasias and in some epithelial cancers suggests a more ubiquitous function as an oncogenic protein, and that the current development of novel inhibitors will be of great value in future cancer treatment. Further, the role of LMO2 in angiogenesis and in haematopoietic stem cells (HSCs) bodes well for targeting LMO2 in angiogenic disorders and in generating autologous induced HSCs for application in various clinical indications.
Collapse
Affiliation(s)
- Jennifer Chambers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
33
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
34
|
Abstract
Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
Collapse
|
35
|
FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2. Oncogene 2015; 35:4141-8. [DOI: 10.1038/onc.2015.481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/19/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022]
|
36
|
Bonadies N, Göttgens B, Calero-Nieto FJ. The LMO2 -25 Region Harbours GATA2-Dependent Myeloid Enhancer and RUNX-Dependent T-Lymphoid Repressor Activity. PLoS One 2015; 10:e0131577. [PMID: 26161748 PMCID: PMC4498896 DOI: 10.1371/journal.pone.0131577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 12/02/2022] Open
Abstract
Lim domain only 2 (LMO2) is a transcriptional co-factor required for angiogenesis and the specification of haematopoietic cells during development. LMO2 is widely expressed within haematopoiesis with the exception of T-cells. Failure to downregulate LMO2 during T-cell maturation leads to leukaemia, thus underlining the critical nature of context-dependent regulation of LMO2 expression. We previously identified a distal regulatory element of LMO2 (element -25) that cooperates with the proximal promoter in directing haematopoietic expression. Here we dissected the functional activity of element -25 and showed it to consist of two modules that conferred independent and cell-type specific activities: a 3' myeloid enhancer and a 5' T-cell repressor. The myeloid enhancer was bound by GATA2 in progenitors and its activity depended on a highly conserved GATA motif, whereas the T-cell repressor moiety of element -25 was bound by the Core Binding Factor in T-cells and its repressive activity depended on a highly conserved RUNT motif. Since the myeloid enhancer and nearby downstream region is recurrently involved in oncogenic translocations, our data suggest that the -25 enhancer region provides an open chromatin environment prone to translocations, which in turn cause aberrant LMO2 expression in T-cells due to the removal of the adjacent T-cell repressor.
Collapse
Affiliation(s)
- Nicolas Bonadies
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Fernando J. Calero-Nieto
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
37
|
Kitajima K, Kawaguchi M, Miyashita K, Nakajima M, Kanokoda M, Hara T. Efficient production of T cells from mouse pluripotent stem cells by controlled expression of Lhx2. Genes Cells 2015; 20:720-38. [PMID: 26153538 DOI: 10.1111/gtc.12266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
LIM-homeobox transcription factor Lhx2 induces ex vivo amplification of adult hematopoietic stem cells (HSCs) in mice. We previously showed that engraftable HSC-like cells are generated from mouse embryonic stem cells (ESCs) and induced pluripotent stem cells by enforced expression of Lhx2. However, when these HSC-like cells were transplanted into irradiated congenic mice, donor-derived T cells were barely detectable, whereas other lineages of hematopoietic cells were continuously produced. Here we investigated T-cell differentiation potential of the Lhx2-induced HSC-like cells using ESCs carrying doxycycline (dox)-inducible Lhx2 expression cassette. Dox-mediated over-expression of Lhx2 conferred a self-renewing activity to ESC-derived c-Kit(+) CD41(+) embryonic hematopoietic progenitor cells (HPCs), thereby converting them to HSC-like cells. When these HSC-like cells were transplanted into irradiated immunodeficient mice and they were supplied with a dox-containing water, CD4/8 double negative T cells were detected in their thymi. Once the Lhx2 expression was terminated, differentiation of CD4/8 double positive and single positive T cells was initiated in the thymi of transplanted mice and mature T cells were released in the peripheral blood. These results showed that engraftable HSC-like cells with full hematopoietic potential can be obtained from ESCs by the conditional expression of Lhx2.
Collapse
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Manami Kawaguchi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuya Miyashita
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Marino Nakajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mai Kanokoda
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
38
|
Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nat Commun 2015; 6:6094. [PMID: 25615415 PMCID: PMC4317503 DOI: 10.1038/ncomms7094] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukaemias (T-ALL) are aggressive malignant proliferations characterized by high relapse rates and great genetic heterogeneity. TAL1 is amongst the most frequently deregulated oncogenes. Yet, over half of the TAL1(+) cases lack TAL1 lesions, suggesting unrecognized (epi)genetic deregulation mechanisms. Here we show that TAL1 is normally silenced in the T-cell lineage, and that the polycomb H3K27me3-repressive mark is focally diminished in TAL1(+) T-ALLs. Sequencing reveals that >20% of monoallelic TAL1(+) patients without previously known alterations display microinsertions or RAG1/2-mediated episomal reintegration in a single site 5' to TAL1. Using 'allelic-ChIP' and CrispR assays, we demonstrate that such insertions induce a selective switch from H3K27me3 to H3K27ac at the inserted but not the germline allele. We also show that, despite a considerable mechanistic diversity, the mode of oncogenic TAL1 activation, rather than expression levels, impact on clinical outcome. Altogether, these studies establish site-specific epigenetic desilencing as a mechanism of oncogenic activation.
Collapse
|
39
|
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10:e1004768. [PMID: 25522233 PMCID: PMC4270438 DOI: 10.1371/journal.pgen.1004768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL. Deciphering the initiating events in lymphoid leukemia is important for the development of new therapeutic strategies. In this manuscript, we define oncogenic reprogramming as the process through which non-self-renewing progenitors are converted into pre-leukemic stem cells with sustained self-renewal capacities. We provide strong genetic evidence that this step is rate-limiting in leukemogenesis and requires the activation of a self-renewal program by oncogenic transcription factors, as exemplified by SCL and LMO1. Furthermore, NOTCH1 is a pathway that drives cell fate in the thymus. We demonstrate that homeostatic NOTCH1 levels that are highest in specific thymocyte subsets determine their susceptibilities to oncogenic reprogramming by SCL and LMO1. Our data provide novel insight into the acquisition of self-renewal as a critical first step in lymphoid cell transformation, requiring the synergistic interaction of oncogenic transcription factors with a cellular context controlled by high physiological NOTCH1.
Collapse
|
40
|
Affiliation(s)
- Steven Goossens
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
41
|
Goodings C, Tripathi R, Cleveland SM, Elliott N, Guo Y, Shyr Y, Davé UP. Enforced expression of E47 has differential effects on Lmo2-induced T-cell leukemias. Leuk Res 2014; 39:100-9. [PMID: 25499232 DOI: 10.1016/j.leukres.2014.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/30/2014] [Accepted: 11/22/2014] [Indexed: 11/18/2022]
Abstract
LIM domain only-2 (LMO2) overexpression in T cells induces leukemia but the molecular mechanism remains to be elucidated. In hematopoietic stem and progenitor cells, Lmo2 is part of a protein complex comprised of class II basic helix loop helix proteins, Tal1and Lyl1. The latter transcription factors heterodimerize with E2A proteins like E47 and Heb to bind E boxes. LMO2 and TAL1 or LYL1 cooperate to induce T-ALL in mouse models, and are concordantly expressed in human T-ALL. Furthermore, LMO2 cooperates with the loss of E2A suggesting that LMO2 functions by creating a deficiency of E2A. In this study, we tested this hypothesis in Lmo2-induced T-ALL cell lines. We transduced these lines with an E47/estrogen receptor fusion construct that could be forced to homodimerize with 4-hydroxytamoxifen. We discovered that forced homodimerization induced growth arrest in 2 of the 4 lines tested. The lines sensitive to E47 homodimerization accumulated in G1 and had reduced S phase entry. We analyzed the transcriptome of a resistant and a sensitive line to discern the E47 targets responsible for the cellular effects. Our results suggest that E47 has diverse effects in T-ALL but that functional deficiency of E47 is not a universal feature of Lmo2-induced T-ALL.
Collapse
Affiliation(s)
- Charnise Goodings
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rati Tripathi
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan M Cleveland
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natalina Elliott
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Utpal P Davé
- Departments of Cancer Biology and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
42
|
Smeets MFMA, Wiest DL, Izon DJ. Fli-1 regulates the DN2 to DN3 thymocyte transition and promotes γδ T-cell commitment by enhancing TCR signal strength. Eur J Immunol 2014; 44:2617-24. [PMID: 24935715 PMCID: PMC5242326 DOI: 10.1002/eji.201444442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/22/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023]
Abstract
Friend leukemia integration 1 (Fli-1) is a member of the Ets transcription factor family and is expressed during T-cell development; however, the role Fli-1 plays in early T-cell differentiation has not been elucidated. In this report, we demonstrate that in mouse, Fli-1 overexpression retards the CD4(-) CD8(-) double-negative (DN) to CD4(+) CD8(+) double-positive (DP) transition by deregulating normal DN thymocyte development. Specifically, Fli-1 expression moderates the DN2 and DN3 developmental transitions. We further show that Fli-1 overexpression partially mimics strong TCR signals in developing DN thymocytes and thereby enhances γδ T-cell development. Conversely, Fli-1 knockdown by small hairpin RNA reverses the lineage bias from γδ T cells and directs DN cells to the αβ lineage by attenuating TCR signaling. Therefore, Fli-1 plays a critical role in both the DN2 to DN3 transition and αβ/γδ lineage commitment.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Mice
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymocytes/cytology
- Thymocytes/immunology
Collapse
Affiliation(s)
- Monique F M A Smeets
- Haematology and Leukaemia Unit, St. Vincent's Institute, Fitzroy, Victoria, Australia
| | | | | |
Collapse
|
43
|
Cleveland SM, Goodings C, Tripathi RM, Elliott N, Thompson MA, Guo Y, Shyr Y, Davé UP. LMO2 induces T-cell leukemia with epigenetic deregulation of CD4. Exp Hematol 2014; 42:581-93.e5. [PMID: 24792354 PMCID: PMC4241760 DOI: 10.1016/j.exphem.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
In this study, we present a remarkable clonal cell line, 32080, derived from a CD2-Lmo2- transgenic T-cell leukemia with differentiation arrest at the transition from the intermediate single positive to double positive stages of T-cell development. We observed that 32080 cells had a striking variegated pattern in CD4 expression. There was cell-to-cell variability, with some cells expressing no CD4 and others expressing high CD4. The two populations were isogenic and yet differed in their rates of apoptosis and sensitivity to glucocorticoid. We sorted the 32080 line for CD4-positive or CD4-negative cells and observed them in culture. After 1 week, both sorted populations showed variegated CD4 expression, like the parental line, showing that the two populations could interconvert. We determined that cell replication was necessary to transit from CD4(+) to CD4(-) and CD4(-) to CD4(+). Lmo2 knockdown decreased CD4 expression, while inhibition of intracellular NOTCH1 or histone deacetylase activity induced CD4 expression. Enforced expression of RUNX1 repressed CD4 expression. We analyzed the CD4 locus by Histone 3 chromatin immunoprecipitation and found silencing marks in the CD4(-) cells and activating marks in the CD4(+) population. The 32080 cell line is a striking model of intermediate single positive to double positive T-cell plasticity and invokes a novel mechanism for LMO2's oncogenic functions.
Collapse
Affiliation(s)
- Susan M Cleveland
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Charnise Goodings
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Rati M Tripathi
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Natalina Elliott
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA
| | - Mary Ann Thompson
- Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee, USA
| | - Yan Guo
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Utpal P Davé
- Tennessee Valley Healthcare System and the Vanderbilt University Medical Center, Departments of Medicine and Cancer Biology, Nashville, Tennessee, USA.
| |
Collapse
|
44
|
Cleveland SM, Smith S, Tripathi R, Mathias EM, Goodings C, Elliott N, Peng D, El-Rifai W, Yi D, Chen X, Li L, Mullighan C, Downing JR, Love P, Davé UP. Lmo2 induces hematopoietic stem cell-like features in T-cell progenitor cells prior to leukemia. Stem Cells 2014; 31:882-94. [PMID: 23378057 DOI: 10.1002/stem.1345] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/14/2022]
Abstract
LIM domain only 2 (Lmo2) is frequently deregulated in sporadic and gene therapy-induced acute T-cell lymphoblastic leukemia (T-ALL) where its overexpression is an important initiating mutational event. In transgenic and retroviral mouse models, Lmo2 expression can be enforced in multiple hematopoietic lineages but leukemia only arises from T cells. These data suggest that Lmo2 confers clonal growth advantage in T-cell progenitors. We analyzed proliferation, differentiation, and cell death in CD2-Lmo2 transgenic thymic progenitor cells to understand the cellular effects of enforced Lmo2 expression. Most impressively, Lmo2 transgenic T-cell progenitor cells were blocked in differentiation, quiescent, and immortalized in vitro on OP9-DL1 stromal cells. These cellular effects were concordant with a transcriptional signature in Lmo2 transgenic T-cell progenitor cells that is also present in hematopoietic stem cells (HSCs) and early T-cell precursor ALL. These results are significant in light of the crucial role of Lmo2 in the maintenance of the HSC. The cellular effects and transcriptional effects have implications for LMO2-dependent leukemogenesis and the treatment of LMO2-induced T-ALL.
Collapse
Affiliation(s)
- Susan M Cleveland
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6307, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, Chen SC, Mullighan CG, Sorrentino BP. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. ACTA ACUST UNITED AC 2014; 211:701-13. [PMID: 24687960 PMCID: PMC3978278 DOI: 10.1084/jem.20122727] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) exhibits lymphoid, myeloid, and stem cell features and is associated with a poor prognosis. Whole genome sequencing of human ETP-ALL cases has identified recurrent mutations in signaling, histone modification, and hematopoietic development genes but it remains to be determined which of these abnormalities are sufficient to initiate leukemia. We show that activating mutations in the interleukin-7 receptor identified in human pediatric ETP-ALL cases are sufficient to generate ETP-ALL in mice transplanted with primitive transduced thymocytes from p19(Arf-/-) mice. The cellular mechanism by which these mutant receptors induce ETP-ALL is the block of thymocyte differentiation at the double negative 2 stage at which myeloid lineage and T lymphocyte developmental potential coexist. Analyses of samples from pediatric ETP-ALL cases and our murine ETP-ALL model show uniformly high levels of LMO2 expression, very low to undetectable levels of BCL11B expression, and a relative lack of activating NOTCH1 mutations. We report that pharmacological blockade of Jak-Stat signaling with ruxolitinib has significant antileukemic activity in this ETP-ALL model. This new murine model recapitulates several important cellular and molecular features of ETP-ALL and should be useful to further define novel therapeutic approaches for this aggressive leukemia.
Collapse
Affiliation(s)
- Louise M Treanor
- Department of Hematology and 2 Department of Pathology, Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Smith S, Tripathi R, Goodings C, Cleveland S, Mathias E, Hardaway JA, Elliott N, Yi Y, Chen X, Downing J, Mullighan C, Swing DA, Tessarollo L, Li L, Love P, Jenkins NA, Copeland NG, Thompson MA, Du Y, Davé UP. LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways. PLoS One 2014; 9:e85883. [PMID: 24465765 PMCID: PMC3897537 DOI: 10.1371/journal.pone.0085883] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/03/2013] [Indexed: 02/03/2023] Open
Abstract
The LMO2 oncogene is deregulated in the majority of human T-cell leukemia cases and in most gene therapy-induced T-cell leukemias. We made transgenic mice with enforced expression of Lmo2 in T-cells by the CD2 promoter/enhancer. These transgenic mice developed highly penetrant T-ALL by two distinct patterns of gene expression: one in which there was concordant activation of Lyl1, Hhex, and Mycn or alternatively, with Notch1 target gene activation. Most strikingly, this gene expression clustering was conserved in human Early T-cell Precursor ALL (ETP-ALL), where LMO2, HHEX, LYL1, and MYCN were most highly expressed. We discovered that HHEX is a direct transcriptional target of LMO2 consistent with its concordant gene expression. Furthermore, conditional inactivation of Hhex in CD2-Lmo2 transgenic mice markedly attenuated T-ALL development, demonstrating that Hhex is a crucial mediator of Lmo2's oncogenic function. The CD2-Lmo2 transgenic mice offer mechanistic insight into concordant oncogene expression and provide a model for the highly treatment-resistant ETP-ALL subtype.
Collapse
Affiliation(s)
- Stephen Smith
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Rati Tripathi
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Charnise Goodings
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Susan Cleveland
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Elizabeth Mathias
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - J. Andrew Hardaway
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Natalina Elliott
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Yajun Yi
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Liqi Li
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Love
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy A. Jenkins
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Neal G. Copeland
- The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Mary Ann Thompson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Utpal P. Davé
- Division of Hematology/Oncology, Vanderbilt University Medical Center and the Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| |
Collapse
|
47
|
Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex. Sci Rep 2014; 4:3643. [PMID: 24407558 PMCID: PMC3887373 DOI: 10.1038/srep03643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 12/09/2013] [Indexed: 01/07/2023] Open
Abstract
LMO2 was discovered via chromosomal translocations in T-cell leukaemia and shown normally to be essential for haematopoiesis. LMO2 is made up of two LIM only domains (thus it is a LIM-only protein) and forms a bridge in a multi-protein complex. We have studied the mechanism of formation of this complex using a single domain antibody fragment that inhibits LMO2 by sequestering it in a non-functional form. The crystal structure of LMO2 with this antibody fragment has been solved revealing a conformational difference in the positioning and angle between the two LIM domains compared with its normal binding. This contortion occurs by bending at a central helical region of LMO2. This is a unique mechanism for inhibiting an intracellular protein function and the structural contusion implies a model in which newly synthesized, intrinsically disordered LMO2 binds to a partner protein nucleating further interactions and suggests approaches for therapeutic targeting of LMO2.
Collapse
|
48
|
Loosveld M, Bonnet M, Gon S, Montpellier B, Quilichini B, Navarro JM, Crouzet T, Goujart MA, Chasson L, Morgado E, Picard C, Hernandez L, Fossat C, Gabert J, Michel G, Nadel B, Payet-Bornet D. MYC fails to efficiently shape malignant transformation in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2014; 53:52-66. [DOI: 10.1002/gcc.22117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Marie Loosveld
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Mélanie Bonnet
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Stéphanie Gon
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Bertrand Montpellier
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | | | - Jean-Marc Navarro
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Thomas Crouzet
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Marie-Amélie Goujart
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Ester Morgado
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Christophe Picard
- UMR 7268; Anthropologie Bio-culturelle; Droit, Ethique et Santé - ADES
| | - Lucie Hernandez
- Hematology Laboratory; AP-HP, Hôpital Saint-Louis 75010 Paris France
| | - Chantal Fossat
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Jean Gabert
- Université de la Méditerranée IFR 11; Marseille France
- Biochemistry and molecular Biology Laboratory; AP-HM Hopital Nord; Marseille France
| | - Gérard Michel
- Department of Hematology; AP-HM La Timone; 13385 Marseille France
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| | - Dominique Payet-Bornet
- Centre d'Immunologie de Marseille-Luminy; Aix-Marseille Université; 13288 Marseille France
- INSERM U1104
- CNRS UMR7280; 13288 Marseille France
| |
Collapse
|
49
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
50
|
Abstract
In acute promyelocytic leukemia, granulocytic differentiation is arrested at the promyelocyte stage. The variant t(11;17) translocation produces two fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) and RARα-PLZF, both of which participate in leukemia development. Here we provide evidence that the activity of CCAAT/enhancer binding protein α (C/EBPα), a master regulator of granulocytic differentiation, is severely impaired in leukemic promyelocytes with the t(11;17) translocation compared with those associated with the t(15;17) translocation. We show that RARα-PLZF inhibits myeloid cell differentiation through interactions with C/EBPα tethered to DNA, using ChIP and DNA capture assays. Furthermore, RARα-PLZF recruits HDAC1 and causes histone H3 deacetylation at C/EBPα target loci, thereby decreasing the expression of C/EBPα target genes. In line with these results, HDAC inhibitors restore in part C/EBPα target gene expression. These findings provide molecular evidence for a mechanism through which RARα-PLZF acts as a modifier oncogene that subverts differentiation in the granulocytic lineage by associating with C/EBPα and inhibiting its activity.
Collapse
|