1
|
Napoli FR, Li X, Hurtado AA, Levine EM. Microphthalmia and disrupted retinal development due to a LacZ knock-in/knock-out allele at the Vsx2 locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597937. [PMID: 38895315 PMCID: PMC11185793 DOI: 10.1101/2024.06.08.597937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Visual System Homeobox 2 (Vsx2) is a transcription factor expressed in the developing retina that regulates tissue identity, growth, and fate determination. Several mutations in the Vsx2 gene exist in mice, including a spontaneous nonsense mutation and two targeted missense mutations originally identified in humans. Here, we expand the genetic repertoire to include a LacZ reporter allele (Vsx2 LacZ ) designed to express beta-Galactosidase (b-GAL) and simultaneously disrupt Vsx2 function (knock-in/knock-out). The retinal expression pattern of b-GAL is concordant with VSX2, and the mutant allele is recessive. Vsx2 LacZ homozygous mice have congenital bilateral microphthalmia accompanied by defects in retinal development including ectopic expression of non-retinal genes, reduced proliferation, delayed neurogenesis, aberrant tissue morphology, and an absence of bipolar interneurons - all hallmarks of Vsx2 loss-of-function. Unexpectedly, the mutant VSX2 protein is stably expressed, and there are subtle differences in eye size and early retinal neurogenesis when compared to the null mutant, ocular retardation J. The perdurance of the mutant VSX2 protein combined with subtle deviations from the null phenotype leaves open the possibility that Vsx2 LacZ allele is not a complete knock-out. The Vsx2 LacZ allele exhibits loss-of-function characteristics and adds to the genetic toolkit for understanding Vsx2 function.
Collapse
Affiliation(s)
- Francesca R. Napoli
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232
| | - Xiaodong Li
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232
| | - Alan A. Hurtado
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville TN 37232
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232
| |
Collapse
|
2
|
Honnell V, Sweeney S, Norrie J, Parks M, Ramirez C, Jannu AJ, Xu B, Teubner B, Lee AY, Bell C, Dyer MA. Evolutionary conservation of VSX2 super-enhancer modules in retinal development. Development 2024; 151:dev202435. [PMID: 38994775 PMCID: PMC11266796 DOI: 10.1242/dev.202435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. We recently identified developmental stage- and cell type-specific modules within the murine Vsx2 SE. Here, we show that the human VSX2 SE modules have similar developmental stage- and cell type-specific activity in reporter gene assays. By inserting the human sequence of one VSX2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the function of these SE modules during human retinal development, we deleted individual modules in human embryonic stem cells and generated retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module led to disruptions in bipolar neuron development. This prototypical SE serves as a model for understanding developmental stage- and cell type-specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.
Collapse
Affiliation(s)
- Victoria Honnell
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shannon Sweeney
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Madison Parks
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Asha Jacob Jannu
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett Teubner
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ah Young Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claire Bell
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Zhang K, Cai W, Hu L, Chen S. Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming. Curr Stem Cell Res Ther 2024; 19:1251-1262. [PMID: 37807418 DOI: 10.2174/011574888x255496230923164547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Wenwen Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| |
Collapse
|
4
|
Honnell V, Sweeney S, Norrie J, Ramirez C, Xu B, Teubner B, Lee AY, Bell C, Dyer MA. Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562742. [PMID: 37905144 PMCID: PMC10614883 DOI: 10.1101/2023.10.17.562742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. Recently, we found that distinct modules within a murine SE regulate gene expression of master regulatory transcription factor Vsx2 in a developmental stage- and cell-type specific manner. Vsx2 is expressed in retinal progenitor cells as well as differentiated bipolar neurons and Müller glia. Mutations in VSX2 in humans and mice lead to microphthalmia due to a defect in retinal progenitor cell proliferation. Deletion of a single module within the Vsx2 SE leads to microphthalmia. Deletion of a separate module within the SE leads to a complete loss of bipolar neurons, yet the remainder of the retina develops normally. Furthermore, the Vsx2 SE is evolutionarily conserved in vertebrates, suggesting that these modules are important for retinal development across species. In the present study, we examine the ability of these modules to drive retinal development between species. By inserting the human build of one Vsx2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the implications of these SE modules in a model of human development, we generated human retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module leads to a complete loss of ON cone bipolar neurons. This prototypical SE serves as a model for uncoupling developmental stage- and cell-type specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.
Collapse
Affiliation(s)
- Victoria Honnell
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Graduate School of Biomedical Sciences at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Shannon Sweeney
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Brett Teubner
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Ah Young Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Claire Bell
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
5
|
Casey MA, Lusk S, Kwan KM. Eye Morphogenesis in Vertebrates. Annu Rev Vis Sci 2023; 9:221-243. [PMID: 37040791 DOI: 10.1146/annurev-vision-100720-111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Proper eye structure is essential for visual function: Multiple essential eye tissues must take shape and assemble into a precise three-dimensional configuration. Accordingly, alterations to eye structure can lead to pathological conditions of visual impairment. Changes in eye shape can also be adaptive over evolutionary time. Eye structure is first established during development with the formation of the optic cup, which contains the neural retina, retinal pigment epithelium, and lens. This crucial yet deceptively simple hemispherical structure lays the foundation for all later elaborations of the eye. Building on descriptions of the embryonic eye that started with hand drawings and micrographs, the field is beginning to identify mechanisms driving dynamic changes in three-dimensional cell and tissue shape. A combination of molecular genetics, imaging, and pharmacological approaches is defining connections among transcription factors, signaling pathways, and the intracellular machinery governing the emergence of this crucial structure.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| |
Collapse
|
6
|
Smirnov VM, Robert MP, Condroyer C, Navarro J, Antonio A, Rozet JM, Sahel JA, Perrault I, Audo I, Zeitz C. Association of Missense Variants in VSX2 With a Peculiar Form of Congenital Stationary Night Blindness Affecting All Bipolar Cells. JAMA Ophthalmol 2022; 140:1163-1173. [PMID: 36264558 PMCID: PMC9585472 DOI: 10.1001/jamaophthalmol.2022.4146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/23/2022] [Indexed: 01/12/2023]
Abstract
Importance Congenital stationary night blindness (CSNB) is an inherited stationary retinal disorder that is clinically and genetically heterogeneous. To date, the genetic association between some cases with CSNB and an unusual complex clinical picture is unclear. Objective To describe an unreported CSNB phenotype and the associated gene defect in 3 patients from 2 unrelated families. Design, Setting, and Participants This retrospective case series was conducted in 2021 and 2022 at a national referral center for rare ocular diseases. Data for 3 patients from a cohort of 140 genetically unsolved CSNB cases were analyzed clinically and genetically. Exposures Complete ocular examination including full-field electroretinography and multimodal fundus imaging (spectral-domain optical coherence tomography, color, infrared reflectance, and short-wavelength autofluorescence photographs) were performed. The gene defect was identified by exome sequencing and confirmed by Sanger sequencing and co-segregation analysis in 1 family. Screening was performed for genetically unsolved CSNB cases for VSX2 variants by direct Sanger sequencing. Main Outcomes and Measures Ocular and molecular biology findings. Results The series included 3 patients whose clinical investigations occurred at ages in the early 30s, younger than 12 years, and in the mid 40s. They had nystagmus, low stable visual acuity, and myopia from birth and experienced night blindness. Two older patients had bilateral lens luxation and underwent lens extraction. Full-field electroretinography revealed an electronegative Schubert-Bornschein appearance, combining characteristics of incomplete and complete CSNB, affecting the function of rod and cone ON- and OFF-bipolar cells. Exome sequencing and co-segregation analysis in a consanguineous family with 2 affected members identified a homozygous variant in VSX2. Subsequently, screening of the CSNB cohort identified another unrelated patient harboring a distinct VSX2 variant. Conclusions and Relevance This case series revealed a peculiar pan-bipolar cell retinopathy with lens luxation associated with variants in VSX2. Clinicians should be aware of this association and VSX2 added to CSNB diagnostic gene panels.
Collapse
Affiliation(s)
- Vasily M. Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Université de Lille, Faculté de Médecine, Lille, France
- Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
| | - Matthieu P. Robert
- Ophthalmology Department, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris University, Gif-sur-Yvette, France
| | | | - Julien Navarro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR 1163, Institute of Genetic Diseases, Imagine Institute, and Paris University, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR 1163, Institute of Genetic Diseases, Imagine Institute, and Paris University, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
7
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
8
|
Bian F, Daghsni M, Lu F, Liu S, Gross JM, Aldiri I. Functional analysis of the Vsx2 super-enhancer uncovers distinct cis-regulatory circuits controlling Vsx2 expression during retinogenesis. Development 2022; 149:dev200642. [PMID: 35831950 PMCID: PMC9440754 DOI: 10.1242/dev.200642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Vsx2 is a transcription factor essential for retinal proliferation and bipolar cell differentiation, but the molecular mechanisms underlying its developmental roles are unclear. Here, we have profiled VSX2 genomic occupancy during mouse retinogenesis, revealing extensive retinal genetic programs associated with VSX2 during development. VSX2 binds and transactivates its enhancer in association with the transcription factor PAX6. Mice harboring deletions in the Vsx2 regulatory landscape exhibit specific abnormalities in retinal proliferation and in bipolar cell differentiation. In one of those deletions, a complete loss of bipolar cells is associated with a bias towards photoreceptor production. VSX2 occupies cis-regulatory elements nearby genes associated with photoreceptor differentiation and homeostasis in the adult mouse and human retina, including a conserved region nearby Prdm1, a factor implicated in the specification of rod photoreceptors and suppression of bipolar cell fate. VSX2 interacts with the transcription factor OTX2 and can act to suppress OTX2-dependent enhancer transactivation of the Prdm1 enhancer. Taken together, our analyses indicate that Vsx2 expression can be temporally and spatially uncoupled at the enhancer level, and they illuminate important mechanistic insights into how VSX2 is engaged with gene regulatory networks that are essential for retinal proliferation and cell fate acquisition.
Collapse
Affiliation(s)
- Fuyun Bian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Honnell V, Norrie JL, Patel AG, Ramirez C, Zhang J, Lai YH, Wan S, Dyer MA. Identification of a modular super-enhancer in murine retinal development. Nat Commun 2022; 13:253. [PMID: 35017532 PMCID: PMC8752785 DOI: 10.1038/s41467-021-27924-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Super-enhancers are expansive regions of genomic DNA comprised of multiple putative enhancers that contribute to the dynamic gene expression patterns during development. This is particularly important in neurogenesis because many essential transcription factors have complex developmental stage- and cell-type specific expression patterns across the central nervous system. In the developing retina, Vsx2 is expressed in retinal progenitor cells and is maintained in differentiated bipolar neurons and Müller glia. A single super-enhancer controls this complex and dynamic pattern of expression. Here we show that deletion of one region disrupts retinal progenitor cell proliferation but does not affect cell fate specification. The deletion of another region has no effect on retinal progenitor cell proliferation but instead leads to a complete loss of bipolar neurons. This prototypical super-enhancer may serve as a model for dissecting the complex gene expression patterns for neurogenic transcription factors during development. Moreover, it provides a unique opportunity to alter expression of individual transcription factors in particular cell types at specific stages of development. This provides a deeper understanding of function that cannot be achieved with traditional knockout mouse approaches.
Collapse
Affiliation(s)
- Victoria Honnell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jackie L Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anand G Patel
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yu-Hsuan Lai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
10
|
Isla-Magrané H, Veiga A, García-Arumí J, Duarri A. Multiocular organoids from human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium lineages. Stem Cell Res Ther 2021; 12:581. [PMID: 34809716 PMCID: PMC8607587 DOI: 10.1186/s13287-021-02651-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recently, great efforts have been made to design protocols for obtaining ocular cells from human stem cells to model diseases or for regenerative purposes. Current protocols generally focus on isolating retinal cells, retinal pigment epithelium (RPE), or corneal cells and fail to recapitulate the complexity of the tissue during eye development. Here, the generation of more advanced in vitro multiocular organoids from human induced pluripotent stem cells (hiPSCs) is demonstrated. METHODS A 2-step method was established to first obtain self-organized multizone ocular progenitor cells (mzOPCs) from 2D hiPSC cultures within three weeks. Then, after the cells were manually isolated and grown in suspension, 3D multiocular organoids were generated to model important cellular features of developing eyes. RESULTS In the 2D culture, self-formed mzOPCs spanned the neuroectoderm, surface ectoderm, neural crest, and RPE, mimicking early stages of eye development. After lifting, mzOPCs developed into different 3D multiocular organoids composed of multiple cell lineages including RPE, retina, and cornea, and interactions between the different cell types and regions of the eye system were observed. Within these organoids, the retinal regions exhibited correct layering and contained all major retinal cell subtypes as well as retinal morphological cues, whereas the corneal regions closely resembled the transparent ocular-surface epithelium and contained of corneal, limbal, and conjunctival epithelial cells. The arrangement of RPE cells also formed organoids composed of polarized pigmented epithelial cells at the surface that were completely filled with collagen matrix. CONCLUSIONS This approach clearly demonstrated the advantages of the combined 2D-3D construction tissue model as it provided a more ocular native-like cellular environment than that of previous models. In this complex preparations, multiocular organoids may be used to model the crosstalk between different cell types in eye development and disease.
Collapse
Affiliation(s)
- Helena Isla-Magrané
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Anna Veiga
- Regenerative Medicine Program IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Ophthalmology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Ophthalmology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
11
|
West ER, Cepko CL. Development and diversification of bipolar interneurons in the mammalian retina. Dev Biol 2021; 481:30-42. [PMID: 34534525 DOI: 10.1016/j.ydbio.2021.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Collapse
Affiliation(s)
- Emma R West
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Huang L, Liang H, Wang S, Chen S. m 6A writer complex promotes timely differentiation and survival of retinal progenitor cells in zebrafish. Biochem Biophys Res Commun 2021; 567:171-176. [PMID: 34166914 DOI: 10.1016/j.bbrc.2021.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/13/2021] [Indexed: 11/18/2022]
Abstract
N6-Methyladenosine (m6A) is the most prevalent internal modification in eukaryotic mRNAs that modulates mRNA metabolism and function. Most m6A modifications on mRNAs are catalyzed by a core writer complex consisting of a methyltransferase, Mettl3, and two ancillary components, Mettl14 and Wtap. Recent studies have demonstrated important roles of m6A in various physiological and pathological processes, such as stem cell multipotency, cell differentiation, and cancer progression. However, our knowledge about m6A in the retina is still lacking. In this study, we used zebrafish as a model vertebrate to study the function of the m6A modification during retinal development. We show that the three main components of the m6A writer complex, mettl3, mettl14 and wtap, are abundantly expressed in the developing zebrafish eyes, and that knocking down m6A writer complex in zebrafish embryos caused microphthalmia formation, delayed retinal progenitor cells differentiation and increased cell death. By examining the retinal developmental processes in m6A writer complex-deficient fish, we show that m6A modification regulates zebrafish retinal development through ensuring the timely differentiation and survival of the retinal progenitor cells.
Collapse
Affiliation(s)
- Lianggui Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huilin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Sifeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Cuevas E, Holder DL, Alshehri AH, Tréguier J, Lakowski J, Sowden JC. NRL -/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells 2021; 39:414-428. [PMID: 33400844 PMCID: PMC8438615 DOI: 10.1002/stem.3325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Organoid cultures represent a unique tool to investigate the developmental complexity of tissues like the human retina. NRL is a transcription factor required for the specification and homeostasis of mammalian rod photoreceptors. In Nrl-deficient mice, photoreceptor precursor cells do not differentiate into rods, and instead follow a default photoreceptor specification pathway to generate S-cone-like cells. To investigate whether this genetic switch mechanism is conserved in humans, we used CRISPR/Cas9 gene editing to engineer an NRL-deficient embryonic stem cell (ESC) line (NRL-/- ), and differentiated it into retinal organoids. Retinal organoids self-organize and resemble embryonic optic vesicles (OVs) that recapitulate the natural histogenesis of rods and cone photoreceptors. NRL-/- OVs develop comparably to controls, and exhibit a laminated, organized retinal structure with markers of photoreceptor synaptogenesis. Using immunohistochemistry and quantitative polymerase chain reaction (qPCR), we observed that NRL-/- OVs do not express NRL, or other rod photoreceptor markers directly or indirectly regulated by NRL. On the contrary, they show an abnormal number of photoreceptors positive for S-OPSIN, which define a primordial subtype of cone, and overexpress other cone genes indicating a conserved molecular switch in mammals. This study represents the first evidence in a human in vitro ESC-derived organoid system that NRL is required to define rod identity, and that in its absence S-cone-like cells develop as the default photoreceptor cell type. It shows how gene edited retinal organoids provide a useful system to investigate human photoreceptor specification, relevant for efforts to generate cells for transplantation in retinal degenerative diseases.
Collapse
Affiliation(s)
- Elisa Cuevas
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Daniel L. Holder
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Ashwak H. Alshehri
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Julie Tréguier
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Jörn Lakowski
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
- Centre for Human Development, Stem Cells and RegenerationUniversity of SouthamptonSouthamptonUK
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
14
|
Harding P, Toms M, Schiff E, Owen N, Bell S, Lloyd IC, Moosajee M. EPHA2 Segregates with Microphthalmia and Congenital Cataracts in Two Unrelated Families. Int J Mol Sci 2021; 22:2190. [PMID: 33671840 PMCID: PMC7926380 DOI: 10.3390/ijms22042190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
EPHA2 is a transmembrane tyrosine kinase receptor that, when disrupted, causes congenital and age-related cataracts. Cat-Map reports 22 pathogenic EPHA2 variants associated with congenital cataracts, variable microcornea, and lenticonus, but no previous association with microphthalmia (small, underdeveloped eye, ≥2 standard deviations below normal axial length). Microphthalmia arises from ocular maldevelopment with >90 monogenic causes, and can include a complex ocular phenotype. In this paper, we report two pathogenic EPHA2 variants in unrelated families presenting with bilateral microphthalmia and congenital cataracts. Whole genome sequencing through the 100,000 Genomes Project and cataract-related targeted gene panel testing identified autosomal dominant heterozygous mutations segregating with the disease: (i) missense c.1751C>T, p.(Pro584Leu) and (ii) splice site c.2826-9G>A. To functionally validate pathogenicity, morpholino knockdown of epha2a/epha2b in zebrafish resulted in significantly reduced eye size ± cataract formation. Misexpression of N-cadherin and retained fibre cell nuclei were observed in the developing lens of the epha2b knockdown morphant fish by 3 days post-fertilisation, which indicated a putative mechanism for microphthalmia pathogenesis through disruption of cadherin-mediated adherens junctions, preventing lens maturation and the critical signals stimulating eye growth. This study demonstrates a novel association of EPHA2 with microphthalmia, suggesting further analysis of pathogenic variants in unsolved microphthalmia cohorts may increase molecular diagnostic rates.
Collapse
Affiliation(s)
- Philippa Harding
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
| | - Maria Toms
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Elena Schiff
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
| | - Suzannah Bell
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
| | - Ian Christopher Lloyd
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
- Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
- The Francis Crick Institute, London NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
15
|
O'Hara-Wright M, Gonzalez-Cordero A. Retinal organoids: a window into human retinal development. Development 2020; 147:147/24/dev189746. [PMID: 33361444 PMCID: PMC7774906 DOI: 10.1242/dev.189746] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal development and maturation are orchestrated by a series of interacting signalling networks that drive the morphogenetic transformation of the anterior developing brain. Studies in model organisms continue to elucidate these complex series of events. However, the human retina shows many differences from that of other organisms and the investigation of human eye development now benefits from stem cell-derived organoids. Retinal differentiation methods have progressed from simple 2D adherent cultures to self-organising micro-physiological systems. As models of development, these have collectively offered new insights into the previously unexplored early development of the human retina and informed our knowledge of the key cell fate decisions that govern the specification of light-sensitive photoreceptors. Although the developmental trajectories of other retinal cell types remain more elusive, the collation of omics datasets, combined with advanced culture methodology, will enable modelling of the intricate process of human retinogenesis and retinal disease in vitro. Summary: Retinal organoid systems derived from human pluripotent stem cells are micro-physiological systems that offer new insights into previously unexplored human retina development.
Collapse
Affiliation(s)
- Michelle O'Hara-Wright
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, 2145, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, 2145, NSW, Australia .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| |
Collapse
|
16
|
Yoon KH, Fox SC, Dicipulo R, Lehmann OJ, Waskiewicz AJ. Ocular coloboma: Genetic variants reveal a dynamic model of eye development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:590-610. [PMID: 32852110 DOI: 10.1002/ajmg.c.31831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.
Collapse
Affiliation(s)
- Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Zygotic Vsx1 Plays a Key Role in Defining V2a Interneuron Sub-Lineage by Directly Repressing tal1 Transcription in Zebrafish. Int J Mol Sci 2020; 21:ijms21103600. [PMID: 32443726 PMCID: PMC7279403 DOI: 10.3390/ijms21103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
In the spinal cord, excitatory V2a and inhibitory V2b interneurons are produced together by the final division of common P2 progenitors. During V2a and V2b diversification, Tal1 is necessary and sufficient to promote V2b differentiation and Vsx2 suppresses the expression of motor neuron genes to consolidate V2a interneuron identity. The expression program of Tal1 is triggered by a Foxn4-driven regulatory network in the common P2 progenitors. Why the expression of Tal1 is inhibited in V2a interneurons at the onset of V2a and V2b sub-lineage diversification remains unclear. Since transcription repressor Vsx1 is expressed in the P2 progenitors and newborn V2a cells in zebrafish, we investigated the role of Vsx1 in V2a fate specification during V2a and V2b interneuron diversification in this species by loss and gain-of-function experiments. In vsx1 knockdown embryos or knockout Go chimeric embryos, tal1 was ectopically expressed in the presumptive V2a cells, while the generation of V2a interneurons was significantly suppressed. By contrast, in vsx1 overexpression embryos, normal expression of tal1 in the presumptive V2b cells was suppressed, while the generation of V2a interneuron was expanded. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly bind to tal1 promoter and repress tal1 transcription. These results indicate that Vsx1 can directly repress tal1 transcription and plays an essential role in defining V2a interneuron sub-lineage during V2a and V2b sub-lineage diversification in zebrafish.
Collapse
|
18
|
Cherry TJ, Yang MG, Harmin DA, Tao P, Timms AE, Bauwens M, Allikmets R, Jones EM, Chen R, De Baere E, Greenberg ME. Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc Natl Acad Sci U S A 2020; 117:9001-9012. [PMID: 32265282 PMCID: PMC7183164 DOI: 10.1073/pnas.1922501117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interplay of transcription factors and cis-regulatory elements (CREs) orchestrates the dynamic and diverse genetic programs that assemble the human central nervous system (CNS) during development and maintain its function throughout life. Genetic variation within CREs plays a central role in phenotypic variation in complex traits including the risk of developing disease. We took advantage of the retina, a well-characterized region of the CNS known to be affected by pathogenic variants in CREs, to establish a roadmap for characterizing regulatory variation in the human CNS. This comprehensive analysis of tissue-specific regulatory elements, transcription factor binding, and gene expression programs in three regions of the human visual system (retina, macula, and retinal pigment epithelium/choroid) reveals features of regulatory element evolution that shape tissue-specific gene expression programs and defines regulatory elements with the potential to contribute to Mendelian and complex disorders of human vision.
Collapse
Affiliation(s)
- Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101;
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98101
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98101
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Marty G Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Peter Tao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Evan M Jones
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | | |
Collapse
|
19
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
20
|
Norrie JL, Lupo MS, Xu B, Al Diri I, Valentine M, Putnam D, Griffiths L, Zhang J, Johnson D, Easton J, Shao Y, Honnell V, Frase S, Miller S, Stewart V, Zhou X, Chen X, Dyer MA. Nucleome Dynamics during Retinal Development. Neuron 2019; 104:512-528.e11. [PMID: 31493975 PMCID: PMC6842117 DOI: 10.1016/j.neuron.2019.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/02/2019] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
More than 8,000 genes are turned on or off as progenitor cells produce the 7 classes of retinal cell types during development. Thousands of enhancers are also active in the developing retinae, many having features of cell- and developmental stage-specific activity. We studied dynamic changes in the 3D chromatin landscape important for precisely orchestrated changes in gene expression during retinal development by ultra-deep in situ Hi-C analysis on murine retinae. We identified developmental-stage-specific changes in chromatin compartments and enhancer-promoter interactions. We developed a machine learning-based algorithm to map euchromatin and heterochromatin domains genome-wide and overlaid it with chromatin compartments identified by Hi-C. Single-cell ATAC-seq and RNA-seq were integrated with our Hi-C and previous ChIP-seq data to identify cell- and developmental-stage-specific super-enhancers (SEs). We identified a bipolar neuron-specific core regulatory circuit SE upstream of Vsx2, whose deletion in mice led to the loss of bipolar neurons.
Collapse
Affiliation(s)
- Jackie L Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marybeth S Lupo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Issam Al Diri
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lyra Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianna Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Victoria Honnell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharon Frase
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Valerie Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
21
|
Gamm DM, Clark E, Capowski EE, Singh R. The Role of FGF9 in the Production of Neural Retina and RPE in a Pluripotent Stem Cell Model of Early Human Retinal Development. Am J Ophthalmol 2019; 206:113-131. [PMID: 31078532 DOI: 10.1016/j.ajo.2019.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the role of fibroblast growth factors (FGFs) in the production of neural retina (NR) and retinal pigmented epithelium (RPE) in a human pluripotent stem cell model of early retinal development. METHODS Human induced pluripotent stem cell (hiPSC) lines from an individual with microphthalmia caused by a functional null mutation (R200Q) in visual system homeobox 2 (VSX2), a transcription factor involved in early NR progenitor cell (NRPC) production, and a normal sibling were differentiated along the retinal and forebrain lineages using an established protocol. Quantitative and global gene expression analyses (microarray and RNAseq) were used to investigate endogenous FGF expression profiles in these cultures over time. Based on these results, mutant and control hiPSC cultures were treated exogenously with selected FGFs and subjected to gene and protein expression analyses to determine their effects on RPE and NR production. RESULTS We found that FGF9 and FGF19 were selectively increased in early hiPSC-derived optic vesicles (OVs) when compared to isogenic cultures of hiPSC-derived forebrain neurospheres. Furthermore, these same FGFs were downregulated over time in (R200Q)VSX2 hiPSC-OVs relative to sibling control hiPSC-OVs. Interestingly, long-term supplementation with FGF9, but not FGF19, partially rescued the mutant retinal phenotype of the (R200Q)VSX2 hiPSC-OV model. However, antagonizing FGF9 in wild-type control hiPSCs did not alter OV development. CONCLUSIONS Our results show that FGF9 acts in concert with VSX2 to promote NR differentiation in hiPSC-OVs and has potential to be used to manipulate early retinogenesis and mitigate ocular defects caused by functional loss of VSX2 activity. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA; Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Eric Clark
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ruchira Singh
- Department of Ophthalmology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
22
|
An update on the genetics of ocular coloboma. Hum Genet 2019; 138:865-880. [PMID: 31073883 DOI: 10.1007/s00439-019-02019-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.
Collapse
|
23
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
24
|
Kemmanu V, Giliyar SK, Rao HL, Shetty BK, Kumaramanickavel G, McCarty CA. Consanguinity and its association with visual impairment in southern India: the Pavagada Pediatric Eye Disease Study 2. J Community Genet 2018; 10:345-350. [PMID: 30506417 DOI: 10.1007/s12687-018-0401-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022] Open
Abstract
To determine the association of consanguinity with the occurrence of genetically transmitted eye diseases in rural and urban populations in Pavagada and Madhugiri taluks, Karnataka state, south India. This study was part of a population based cross-sectional prevalence survey, "The Pavagada pediatric eye disease study 2." As a part of the demographic data, trained investigators collected information on consanguinity from the parents of children identified for the study. The children underwent visual acuity measurements and were examined by an ophthalmologist. Children with minor eye diseases were treated and those with major eye diseases were seen by a pediatric ophthalmologist. Eight thousand five hundred and fifty-three children were examined. The prevalence of ocular morbidity was 6.54% and blindness was 0.09%. The percentage of consanguineously married couples in the screened population was 34.33%. Among the blind children, 75% were blind with a disease with potential genetic etiology. Out of that, 66.67% were born out of consanguineous marriage (uncle-niece). Among children with diseases with a potential genetic etiology 54.29% of the children were born out of consanguineous union. Most of these children (71.43%) were born out of uncle-niece marriages. Further analysis showed that consanguineous parents were more likely to have children with disease with a potential genetic etiology as compared to nonconsanguineous parents (odds ratio: 2.551, p = 0.012). It is evident that consanguineous marriages, especially uncle-niece unions are common in the study area. Consanguinity is more likely to result in children with eye diseases with potential genetic etiology.
Collapse
Affiliation(s)
- Vasudha Kemmanu
- Department of Pediatric Ophthalmology and Strabismus, Narayana Nethralaya, 121/C, 1st 'R' block, Rajaji Nagar, Bangalore, Karnataka, 560010, India.
| | - Subramanya K Giliyar
- Department of Pediatric Ophthalmology and Strabismus, Narayana Nethralaya, 121/C, 1st 'R' block, Rajaji Nagar, Bangalore, Karnataka, 560010, India
| | - Harsha L Rao
- Department of Pediatric Ophthalmology and Strabismus, Narayana Nethralaya, 121/C, 1st 'R' block, Rajaji Nagar, Bangalore, Karnataka, 560010, India
| | - Bhujanga K Shetty
- Department of Pediatric Ophthalmology and Strabismus, Narayana Nethralaya, 121/C, 1st 'R' block, Rajaji Nagar, Bangalore, Karnataka, 560010, India
| | - Govindasamy Kumaramanickavel
- Department of Pediatric Ophthalmology and Strabismus, Narayana Nethralaya, 121/C, 1st 'R' block, Rajaji Nagar, Bangalore, Karnataka, 560010, India
| | | |
Collapse
|
25
|
Matías-Pérez D, García-Montaño LA, Cruz-Aguilar M, García-Montalvo IA, Nava-Valdéz J, Barragán-Arevalo T, Villanueva-Mendoza C, Villarroel CE, Guadarrama-Vallejo C, la Cruz RVD, Chacón-Camacho O, Zenteno JC. Identification of novel pathogenic variants and novel gene-phenotype correlations in Mexican subjects with microphthalmia and/or anophthalmia by next-generation sequencing. J Hum Genet 2018; 63:1169-1180. [PMID: 30181649 DOI: 10.1038/s10038-018-0504-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Severe congenital eye malformations, particularly microphthalmia and anophthalmia, are one of the main causes of visual handicap worldwide. They can arise from multifactorial, chromosomal, or monogenic factors and can be associated with extensive clinical variability. Genetic analysis of individuals with these defects has allowed the recognition of dozens of genes whose mutations lead to disruption of normal ocular embryonic development. Recent application of next generation sequencing (NGS) techniques for genetic screening of patients with congenital eye defects has greatly improved the recognition of monogenic cases. In this study, we applied clinical exome NGS to a group of 14 Mexican patients (including 7 familial and 7 sporadic cases) with microphthalmia and/or anophthalmia. Causal or likely causal pathogenic variants were demonstrated in ~60% (8 out of 14 patients) individuals. Seven out of 8 different identified mutations occurred in well-known microphthalmia/anophthalmia genes (OTX2, VSX2, MFRP, VSX1) or in genes associated with syndromes that include ocular defects (CHD7, COL4A1) (including two instances of CHD7 pathogenic variants). A single pathogenic variant was identified in PIEZO2, a gene that was not previously associated with isolated ocular defects. NGS efficiently identified the genetic etiology of microphthalmia/anophthalmia in ~60% of cases included in this cohort, the first from Mexican origin analyzed to date. The molecular defects identified through clinical exome sequencing in this study expands the phenotypic spectra of CHD7-associated disorders and implicate PIEZO2 as a candidate gene for major eye developmental defects.
Collapse
Affiliation(s)
| | - Leopoldo A García-Montaño
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Marisa Cruz-Aguilar
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Jessica Nava-Valdéz
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Tania Barragán-Arevalo
- Department of Human Genetics, National Institute of Pediatrics of Mexico, Mexico City, Mexico
| | - Cristina Villanueva-Mendoza
- Department of Genetics, Hospital "Dr. Luis Sanchez Bulnes", Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Camilo E Villarroel
- Department of Human Genetics, National Institute of Pediatrics of Mexico, Mexico City, Mexico
| | - Clavel Guadarrama-Vallejo
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Rocío Villafuerte-de la Cruz
- Ciencias Basicas, Escuela de Medicina, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, NL, Mexico
| | - Oscar Chacón-Camacho
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico. .,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico.
| |
Collapse
|
26
|
Buenaventura DF, Ghinia-Tegla MG, Emerson MM. Fate-restricted retinal progenitor cells adopt a molecular profile and spatial position distinct from multipotent progenitor cells. Dev Biol 2018; 443:35-49. [PMID: 30145104 DOI: 10.1016/j.ydbio.2018.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 12/22/2022]
Abstract
During development, multipotent retinal progenitor cells generate a large number of unique cell types. Recent evidence suggests that there are fate-restricted progenitor cell states in addition to multipotent ones. Here we report a transcriptomic analysis of fate- restricted progenitor cells biased to produce cone photoreceptors and horizontal cells, marked by the THRB cis-regulatory element ThrbCRM1. Comparison to a control population enriched in multipotent progenitor cells identified several genes considered to be pan-progenitor, such as VSX2, LHX2, and PAX6, as downregulated in these fate- restricted retinal progenitor cells. This differential regulation occurs in chick and in a different restricted progenitor population in mouse suggesting that this is a conserved feature of progenitor dynamics during retinal development. S-phase labeling also revealed that nuclear positions of restricted progenitor populations occupy distinct spatial niches within the developing chick retina. Using a conserved regulatory element proximal to the VSX2 gene, a potential negative feedback mechanism from specific transcription factors enriched in cone/horizontal cell progenitor cells was identified. This study identifies conserved molecular and cellular changes that occur during the generation of fate restricted retinal progenitor cells from multipotent retinal progenitor cells.
Collapse
Affiliation(s)
- Diego F Buenaventura
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, United States; Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, United States
| | - Miruna G Ghinia-Tegla
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, United States
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, United States; Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, United States.
| |
Collapse
|
27
|
Phenotypic Variation in a Four-Generation Family with Aniridia Carrying a Novel PAX6 Mutation. J Ophthalmol 2018; 2018:5978293. [PMID: 29850208 PMCID: PMC5904767 DOI: 10.1155/2018/5978293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Aniridia is a congenital disease that affects almost all eye structures and is primarily caused by loss-of-function mutations in the PAX6 gene. The degree of vision loss in aniridia varies and is dependent on the extent of foveal, iris, and optic nerve hypoplasia and the presence of glaucoma, cataracts, and corneal opacification. Here, we describe a 4-generation family in which 7 individuals across 2 generations carry a novel disease-causing frameshift mutation (NM_000280.4(PAX6):c.565TC>T) in PAX6. This mutation results in an early stop codon in exon 8, which is predicted to cause nonsense-mediated decay of the truncated mRNA and a functionally null PAX6 allele. Family members with aniridia showed differences in multiple eye phenotypes including iris and optic nerve hypoplasia, congenital and acquired corneal opacification, glaucoma, and strabismus. Visual acuity ranged from 20/100 to less than 20/800. Patients who required surgical intervention for glaucoma or corneal opacification had worse visual outcomes. Our results show that family members carrying a novel PAX6 frameshift mutation have variable expressivity, leading to different ocular comorbidities and visual outcomes.
Collapse
|
28
|
Genes and pathways in optic fissure closure. Semin Cell Dev Biol 2017; 91:55-65. [PMID: 29198497 DOI: 10.1016/j.semcdb.2017.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Embryonic development of the vertebrate eye begins with the formation of an optic vesicle which folds inwards to form a double-layered optic cup with a fissure on the ventral surface, known as the optic fissure. Closure of the optic fissure is essential for subsequent growth and development of the eye. A defect in this process can leave a gap in the iris, retina or optic nerve, known as a coloboma, which can lead to severe visual impairment. This review brings together current information about genes and pathways regulating fissure closure from human coloboma patients and animal models. It focuses especially on current understanding of the morphological changes and processes of epithelial remodelling occurring at the fissure margins.
Collapse
|
29
|
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, Mackey DA, Staffieri SE, Elder JE, Taranath D, Straga T, Black J, Pater J, Casey T, Hewitt AW, Burdon KP. High-Throughput Genetic Screening of 51 Pediatric Cataract Genes Identifies Causative Mutations in Inherited Pediatric Cataract in South Eastern Australia. G3 (BETHESDA, MD.) 2017; 7:3257-3268. [PMID: 28839118 PMCID: PMC5633377 DOI: 10.1534/g3.117.300109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 08/15/2017] [Indexed: 01/09/2023]
Abstract
Pediatric cataract is a leading cause of childhood blindness. This study aimed to determine the genetic cause of pediatric cataract in Australian families by screening known disease-associated genes using massively parallel sequencing technology. We sequenced 51 previously reported pediatric cataract genes in 33 affected individuals with a family history (cases with previously known or published mutations were excluded) using the Ion Torrent Personal Genome Machine. Variants were prioritized for validation if they were predicted to alter the protein sequence and were absent or rare with minor allele frequency <1% in public databases. Confirmed mutations were assessed for segregation with the phenotype in all available family members. All identified novel or previously reported cataract-causing mutations were screened in 326 unrelated Australian controls. We detected 11 novel mutations in GJA3, GJA8, CRYAA, CRYBB2, CRYGS, CRYGA, GCNT2, CRYGA, and MIP; and three previously reported cataract-causing mutations in GJA8, CRYAA, and CRYBB2 The most commonly mutated genes were those coding for gap junctions and crystallin proteins. Including previous reports of pediatric cataract-associated mutations in our Australian cohort, known genes account for >60% of familial pediatric cataract in Australia, indicating that still more causative genes remain to be identified.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia 6009, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Department of Ophthalmology, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - James E Elder
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Department of Ophthalmology, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Deepa Taranath
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Tania Straga
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Joanna Black
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - John Pater
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Alex W Hewitt
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
- Department of Paediatrics, University of Melbourne, Victoria 3010, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
30
|
Williams AL, Eason J, Chawla B, Bohnsack BL. Cyp1b1 Regulates Ocular Fissure Closure Through a Retinoic Acid-Independent Pathway. Invest Ophthalmol Vis Sci 2017; 58:1084-1097. [PMID: 28192799 PMCID: PMC5308778 DOI: 10.1167/iovs.16-20235] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in the CYP1B1 gene are the most commonly identified genetic causes of primary infantile-onset glaucoma. Despite this disease association, the role of CYP1B1 in eye development and its in vivo substrate remain unknown. In the present study, we used zebrafish to elucidate the mechanism by which cyp1b1 regulates eye development. Methods Zebrafish eye and neural crest development were analyzed using live imaging of transgenic zebrafish embryos, in situ hybridization, immunostaining, TUNEL assay, and methylacrylate sections. Cyp1b1 and retinoic acid (RA) levels were genetically (morpholino oligonucleotide antisense and mRNA) and pharmacologically manipulated to examine gene function. Results Using zebrafish, we observed that cyp1b1 was expressed in a specific spatiotemporal pattern in the ocular fissures of the developing zebrafish retina and regulated fissure patency. Decreased Cyp1b1 resulted in the premature breakdown of laminin in the ventral fissure and altered subsequent neural crest migration into the anterior segment. In contrast, cyp1b1 overexpression inhibited cell survival in the ventral ocular fissure and prevented fissure closure via an RA-independent pathway. Cyp1b1 overexpression also inhibited the ocular expression of vsx2, pax6a, and pax6b and increased the extraocular expression of shha. Importantly, embryos injected with human wild-type but not mutant CYP1B1 mRNA also showed colobomas, demonstrating the evolutionary and functional conservation of gene function between species. Conclusions Cyp1b1 regulation of ocular fissure closure indirectly affects neural crest migration and development through an RA-independent pathway. These studies provide insight into the role of Cyp1b1 in eye development and further elucidate the pathogenesis of primary infantile-onset glaucoma.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jessica Eason
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
31
|
Javadiyan S, Craig JE, Sharma S, Lower KM, Casey T, Haan E, Souzeau E, Burdon KP. Novel missense mutation in the bZIP transcription factor, MAF, associated with congenital cataract, developmental delay, seizures and hearing loss (Aymé-Gripp syndrome). BMC MEDICAL GENETICS 2017; 18:52. [PMID: 28482824 PMCID: PMC5422868 DOI: 10.1186/s12881-017-0414-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/28/2017] [Indexed: 01/24/2023]
Abstract
Background Cataract is a major cause of severe visual impairment in childhood. The purpose of this study was to determine the genetic cause of syndromic congenital cataract in an Australian mother and son. Method Fifty-one genes associated with congenital cataract were sequenced in the proband using a custom Ampliseq library on the Ion Torrent Personal Genome Machine (PGM). Reads were aligned against the human genome (hg19) and variants were annotated. Variants were prioritised for validation by Sanger sequencing if they were novel, rare or previously reported to be associated with paediatric cataract and were predicted to be protein changing. Variants were assessed for segregation with the phenotype in the affected mother. Result A novel likely pathogenic variant was identified in the transactivation domain of the MAF gene (c.176C > G, p.(Pro59Arg)) in the proband and his affected mother., but was absent in 326 unrelated controls and absent from public variant databases. Conclusion The MAF variant is the likely cause of the congenital cataract, Asperger syndrome, seizures, hearing loss and facial characteristics in the proband, providinga diagnosis of Aymé-Gripp syndrome for the family. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0414-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia.
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, Australia
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia
| | - Eric Haan
- SA Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
32
|
Lateral thinking - Interocular symmetry and asymmetry in neurovascular patterning, in health and disease. Prog Retin Eye Res 2017; 59:131-157. [PMID: 28457789 DOI: 10.1016/j.preteyeres.2017.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
No biological system or structure is likely to be perfectly symmetrical, or have identical right and left forms. This review explores the evidence for eye and visual pathway asymmetry, in health and in disease, and attempts to provide guidance for those studying the structure and function of the visual system, where recognition of symmetry or asymmetry may be essential. The principal question with regards to asymmetry is not 'are the eyes the same?', for some degree of asymmetry is pervasive, but 'when are they importantly different?'. Knowing if right and left eyes are 'importantly different' could have significant consequences for deciding whether right or left eyes are included in an analysis or for examining the association between a phenotype and ocular parameter. The presence of significant asymmetry would also have important implications for the design of normative databases of retinal and optic nerve metrics. In this review, we highlight not only the universal presence of asymmetry, but provide evidence that some elements of the visual system are inherently more asymmetric than others, pointing to the need for improved normative data to explain sources of asymmetry and their impact on determining associations with genetic, environmental or health-related factors and ultimately in clinical practice.
Collapse
|
33
|
Ergun SG, Akay GG, Ergun MA, Perçin EF. LRP5- linked osteoporosis-pseudoglioma syndrome mimicking isolated microphthalmia. Eur J Med Genet 2017; 60:200-204. [DOI: 10.1016/j.ejmg.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
34
|
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res 2017; 156:95-102. [PMID: 27334249 PMCID: PMC5538314 DOI: 10.1016/j.exer.2016.06.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 01/06/2023]
Abstract
The crystalline lens plays an important role in the refractive vision of vertebrates by facilitating variable fine focusing of light onto the retina. Loss of lens transparency, or cataract, is a frequently acquired cause of visual impairment in adults and may also present during childhood. Genetic studies have identified mutations in over 30 causative genes for congenital or other early-onset forms of cataract as well as several gene variants associated with age-related cataract. However, the pathogenic mechanisms resulting from genetic determinants of cataract are only just beginning to be understood. Here, we briefly summarize current concepts pointing to differences in the molecular mechanisms underlying congenital and age-related forms of cataract.
Collapse
Affiliation(s)
- Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1860, USA.
| |
Collapse
|
35
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|
36
|
Clinical utility gene card for: Non-Syndromic Microphthalmia Including Next-Generation Sequencing-Based Approaches. Eur J Hum Genet 2017; 25:ejhg2016201. [PMID: 28098148 DOI: 10.1038/ejhg.2016.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 11/08/2022] Open
|
37
|
Cheng MH, Tam CN, Choy KW, Tsang WH, Tsang SL, Pang CP, Song YQ, Sham MH. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid. PLoS One 2016; 11:e0160691. [PMID: 27513760 PMCID: PMC4981419 DOI: 10.1371/journal.pone.0160691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/23/2016] [Indexed: 11/18/2022] Open
Abstract
Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg) was investigated by sequencing. A single base deletion (299delG) in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the generation of CrygaSecc proteins with reduced solubility and prone to form aggregates within lens cells. Accumulation of mutant proteins in the lens fibers would lead to cataract formation in the Secc mutant.
Collapse
Affiliation(s)
- Man Hei Cheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chung Nga Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Hung Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - You Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Reproduction Development and Growth, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong SAR, China
| | - Mai Har Sham
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Centre for Reproduction Development and Growth, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
38
|
Capowski EE, Wright LS, Liang K, Phillips MJ, Wallace K, Petelinsek A, Hagstrom A, Pinilla I, Borys K, Lien J, Min JH, Keles S, Thomson JA, Gamm DM. Regulation of WNT Signaling by VSX2 During Optic Vesicle Patterning in Human Induced Pluripotent Stem Cells. Stem Cells 2016; 34:2625-2634. [PMID: 27301076 DOI: 10.1002/stem.2414] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Few gene targets of Visual System Homeobox 2 (VSX2) have been identified despite its broad and critical role in the maintenance of neural retina (NR) fate during early retinogenesis. We performed VSX2 ChIP-seq and ChIP-PCR assays on early stage optic vesicle-like structures (OVs) derived from human iPS cells (hiPSCs), which highlighted WNT pathway genes as direct regulatory targets of VSX2. Examination of early NR patterning in hiPSC-OVs from a patient with a functional null mutation in VSX2 revealed mis-expression and upregulation of WNT pathway components and retinal pigmented epithelium (RPE) markers in comparison to control hiPSC-OVs. Furthermore, pharmacological inhibition of WNT signaling rescued the early mutant phenotype, whereas augmentation of WNT signaling in control hiPSC-OVs phenocopied the mutant. These findings reveal an important role for VSX2 as a regulator of WNT signaling and suggest that VSX2 may act to maintain NR identity at the expense of RPE in part by direct repression of WNT pathway constituents. Stem Cells 2016;34:2625-2634.
Collapse
Affiliation(s)
| | - Lynda S Wright
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kun Liang
- Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kyle Wallace
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Petelinsek
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Hagstrom
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Isabel Pinilla
- Aragon Institute for Health Research (IIS Aragón), Lozano Blesa University Hospital, Zaragoza, 50009, Spain.,Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, 50009, Spain
| | - Katarzyna Borys
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jessica Lien
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jee Hong Min
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Ophthamology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
39
|
Abstract
Synaesthesia is characterised by idiosyncratic ectopic sensations which commonly take the form of coloured visual impressions evoked by touch or hearing. We studied six late-blind individuals who have retained synaesthetic colour perception. Four of them had been without any form of genuine colour vision for more than 10 years. All perceived colours when they heard or thought about letters, numbers, and time-related words (days of the week and months of the year). One experienced synaesthetic colours for all words. Another saw Braille characters as coloured dots when he touched them. The aberrant experiences were compelling and reliable: detailed verbal descriptions of the colours were remarkably consistent in tests more than 2 months apart. The percepts predominantly took the form of coloured patches, localised in body-centred space for five of the subjects and in head-centred space for the sixth. This implies that the neural activity underlying synaesthesia occurs after the establishment of a visual representation independent of eye (or head) position. The synaesthetic colour depended only on phonetic cues in one case, but on semantic context in others. Although synaesthesia might be due to idiosyncratic, aberrant corticocortical connectivity established during early development, it can persist for very long periods with little or no natural experience in the referred modality and therefore does not depend solely on continuing associative learning.
Collapse
Affiliation(s)
- Megan S Steven
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | |
Collapse
|
40
|
Abstract
Kabuki syndrome is a rare genetic malformation syndrome that is characterized by distinct facies, structural defects and intellectual disability. Kabuki syndrome may be caused by mutations in one of two histone methyltransferase genes: KMT2D and KDM6A. We describe a male child of nonconsanguineous Irish parents presenting with multiple malformations, including bilateral extreme microphthalmia; cleft palate; congenital diaphragmatic hernia; duplex kidney; as well as facial features of Kabuki syndrome, including interrupted eyebrows and lower lid ectropion. A de-novo germline mutation in KMT2D was identified. Whole-exome sequencing failed to reveal mutations in any of the known microphthalmia/anopthalmia genes. We also identified four other patients with Kabuki syndrome and microphthalmia. We postulate that Kabuki syndrome may produce this type of ocular phenotype as a result of extensive interaction between KMT2D, WAR complex proteins and PAXIP1. Children presenting with microphthalmia/anophthalmia should be examined closely for other signs of Kabuki syndrome, especially at an age where the facial gestalt might be less readily appreciable.
Collapse
|
41
|
Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp Eye Res 2016; 146:163-171. [DOI: 10.1016/j.exer.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
|
42
|
Miles A, Tropepe V. Coordinating progenitor cell cycle exit and differentiation in the developing vertebrate retina. NEUROGENESIS 2016; 3:e1161697. [PMID: 27604453 PMCID: PMC4974023 DOI: 10.1080/23262133.2016.1161697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/09/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The proper development of the vertebrate retina relies heavily on producing the correct number and type of differentiated retinal cell types. To achieve this, proliferating retinal progenitor cells (RPCs) must exit the cell cycle at an appropriate time and correctly express a subset of differentiation markers that help specify retinal cell fate. Homeobox genes, which encode a family of transcription factors, have been accredited to both these processes, implicated in the transcriptional regulation of important cell cycle components, such as cyclins and cyclin-dependent kinases, and proneural genes. This dual regulation of homeobox genes allows these factors to help co-ordinate the transition from the proliferating RPC to postmitotic, differentiated cell. However, understanding the exact molecular targets of these factors remains a challenging task. This commentary highlights the current knowledge we have about how these factors regulate cell cycle progression and differentiation, with particular emphasis on a recent discovery from our lab demonstrating an antagonistic relationship between Vsx2 and Dmbx1 to control RPC proliferation. Future studies should aim to further understand the direct transcriptional targets of these genes, additional co-factors/interacting proteins and the possible recruitment of epigenetic machinery by these homeobox genes.
Collapse
Affiliation(s)
- Amanda Miles
- Department of Cell & Systems Biology, University of Toronto , Toronto, Ontario, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology & Vision Sciences; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Chassaing N, Davis EE, McKnight KL, Niederriter AR, Causse A, David V, Desmaison A, Lamarre S, Vincent-Delorme C, Pasquier L, Coubes C, Lacombe D, Rossi M, Dufier JL, Dollfus H, Kaplan J, Katsanis N, Etchevers HC, Faguer S, Calvas P. Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res 2016; 26:474-85. [PMID: 26893459 PMCID: PMC4817771 DOI: 10.1101/gr.196048.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
Ocular developmental anomalies (ODA) such as anophthalmia/microphthalmia (AM) or anterior segment dysgenesis (ASD) have an estimated combined prevalence of 3.7 in 10,000 births. Mutations in SOX2 are the most frequent contributors to severe ODA, yet account for a minority of the genetic drivers. To identify novel ODA loci, we conducted targeted high-throughput sequencing of 407 candidate genes in an initial cohort of 22 sporadic ODA patients. Patched 1 (PTCH1), an inhibitor of sonic hedgehog (SHH) signaling, harbored an enrichment of rare heterozygous variants in comparison to either controls, or to the other candidate genes (four missense and one frameshift); targeted resequencing of PTCH1 in a second cohort of 48 ODA patients identified two additional rare nonsynonymous changes. Using multiple transient models and a CRISPR/Cas9-generated mutant, we show physiologically relevant phenotypes altering SHH signaling and eye development upon abrogation of ptch1 in zebrafish for which in vivo complementation assays using these models showed that all six patient missense mutations affect SHH signaling. Finally, through transcriptomic and ChIP analyses, we show that SOX2 binds to an intronic domain of the PTCH1 locus to regulate PTCH1 expression, findings that were validated both in vitro and in vivo. Together, these results demonstrate that PTCH1 mutations contribute to as much as 10% of ODA, identify the SHH signaling pathway as a novel effector of SOX2 activity during human ocular development, and indicate that ODA is likely the result of overactive SHH signaling in humans harboring mutations in either PTCH1 or SOX2.
Collapse
Affiliation(s)
- Nicolas Chassaing
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, 31059 Toulouse, France; Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; Inserm U1056, 31000 Toulouse, France
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA; Department of Pediatrics and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Kelly L McKnight
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Adrienne R Niederriter
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Alexandre Causse
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; CHU Toulouse, Service d'Ophtalmologie, Hôpital Purpan, 31059 Toulouse, France
| | - Véronique David
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes 1, IFR140 GFAS, Faculté de Médecine, 35043 Rennes, France; Laboratoire de Génétique Moléculaire, CHU Pontchaillou, 35043 Rennes Cedex, France
| | - Annaïck Desmaison
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France
| | - Sophie Lamarre
- Université de Toulouse; INSA, UPS, INP, LISBP, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France; Plateforme Biopuces de la Génopole de Toulouse Midi Pyrénées, INSA/DGBA 135, 31077 Toulouse, France
| | | | - Laurent Pasquier
- Service de Génétique Clinique, Hôpital Sud, 35200 Rennes, France
| | - Christine Coubes
- Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France
| | - Didier Lacombe
- Service de Génétique Médicale, Hôpital Pellegrin, 33076 Bordeaux Cedex, France; Université Bordeaux Segalen, Laboratoire MRGM, 33076 Bordeaux, France
| | - Massimiliano Rossi
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France; INSERM U1028 UMR CNRS 5292, UCBL, CRNL TIGER Team, 69677 Bron Cedex, France
| | - Jean-Louis Dufier
- Service d'Ophtalmologie, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Helene Dollfus
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Josseline Kaplan
- INSERM U781 & Department of Genetics, Paris Descartes University, 75015 Paris, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina 27701, USA; Department of Pediatrics and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Heather C Etchevers
- Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; INSERM, UMR_S910, Aix-Marseille University, Faculté de Médecine, 13385 Marseille, France
| | | | - Patrick Calvas
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, 31059 Toulouse, France; Université Paul-Sabatier Toulouse III, EA-4555, 31000 Toulouse, France; Inserm U1056, 31000 Toulouse, France
| |
Collapse
|
44
|
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, Pater J, Casey T, Hodson T, Burdon KP. Recurrent mutation in the crystallin alpha A gene associated with inherited paediatric cataract. BMC Res Notes 2016; 9:83. [PMID: 26867756 PMCID: PMC4750205 DOI: 10.1186/s13104-016-1890-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Cataract is a major cause of childhood blindness worldwide. The purpose of this study was to determine the genetic cause of paediatric cataract in a South Australian family with a bilateral lamellar paediatric cataract displaying variable phenotypes. Case presentation Fifty-one genes implicated in congenital cataract in human or mouse were sequenced in an affected individual from an Australian (Caucasian) family using a custom Ampliseq library on the Ion Torrent Personal Genome Machine. Reads were mapped against the human genome (hg19) and variants called with the Torrent Suite software. Variants were annotated to dbSNP 137 using Ion Reporter (IR 1.6.2) and were prioritised for validation if they were novel or rare and were predicted to be protein changing. We identified a previously reported oligomerization disrupting mutation, c.62G > A (p.R21Q), in the Crystallin alpha A (CRYAA) gene segregating in this three generation family. No other novel or rare coding mutations were detected in the known cataract genes sequenced. Microsatellite markers were used to compare the haplotypes between the family reported here and a previously published family with the same segregating mutation. Haplotype analysis indicated a potential common ancestry between the two South Australian families with this mutation. The work strengthens the genotype-phenotype correlations between this functional mutation in the crystallin alpha A (CRYAA) gene and paediatric cataract. Conclusion The p.R21Q mutation is the most likely cause of paediatric cataract in this family. The recurrence of this mutation in paediatric cataract families is likely due to a familial relationship. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1890-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, Australia.
| | - John Pater
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia.
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia.
| | | | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia. .,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
45
|
Zhou S, Flamier A, Abdouh M, Tétreault N, Barabino A, Wadhwa S, Bernier G. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 2015; 142:3294-306. [DOI: 10.1242/dev.125385] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cone photoreceptors are required for color discrimination and high-resolution central vision and are lost in macular degenerations, cone and cone/rod dystrophies. Cone transplantation could represent a therapeutic solution. However, an abundant source of human cones remains difficult to obtain. Work performed in model organisms suggests that anterior neural cell fate is induced ‘by default' if BMP, TGFβ and Wnt activities are blocked, and that photoreceptor genesis operates through an S-cone default pathway. We report here that Coco (Dand5), a member of the Cerberus gene family, is expressed in the developing and adult mouse retina. Upon exposure to recombinant COCO, human embryonic stem cells (hESCs) differentiated into S-cone photoreceptors, developed an inner segment-like protrusion, and could degrade cGMP when exposed to light. Addition of thyroid hormone resulted in a transition from a unique S-cone population toward a mixed M/S-cone population. When cultured at confluence for a prolonged period of time, COCO-exposed hESCs spontaneously developed into a cellular sheet composed of polarized cone photoreceptors. COCO showed dose-dependent and synergistic activity with IGF1 at blocking BMP/TGFβ/Wnt signaling, while its cone-inducing activity was blocked in a dose-dependent manner by exposure to BMP, TGFβ or Wnt-related proteins. Our work thus provides a unique platform to produce human cones for developmental, biochemical and therapeutic studies and supports the hypothesis that photoreceptor differentiation operates through an S-cone default pathway during human retinal development.
Collapse
Affiliation(s)
- Shufeng Zhou
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Mohamed Abdouh
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Nicolas Tétreault
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
- Department of Neuroscience, University of Montréal, Montréal H3T 1J4, Canada
- Department of Ophthalmology, University of Montréal, Montréal H3T 1J4, Canada
| |
Collapse
|
46
|
Wright LS, Pinilla I, Saha J, Clermont JM, Lien JS, Borys KD, Capowski EE, Phillips MJ, Gamm DM. VSX2 and ASCL1 Are Indicators of Neurogenic Competence in Human Retinal Progenitor Cultures. PLoS One 2015; 10:e0135830. [PMID: 26292211 PMCID: PMC4546156 DOI: 10.1371/journal.pone.0135830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/27/2015] [Indexed: 01/09/2023] Open
Abstract
Three dimensional (3D) culture techniques are frequently used for CNS tissue modeling and organoid production, including generation of retina-like tissues. A proposed advantage of these 3D systems is their potential to more closely approximate in vivo cellular microenvironments, which could translate into improved manufacture and/or maintenance of neuronal populations. Visual System Homeobox 2 (VSX2) labels all multipotent retinal progenitor cells (RPCs) and is known to play important roles in retinal development. In contrast, the proneural transcription factor Acheate scute-like 1 (ASCL1) is expressed transiently in a subset of RPCs, but is required for the production of most retinal neurons. Therefore, we asked whether the presence of VSX2 and ASCL1 could gauge neurogenic potential in 3D retinal cultures derived from human prenatal tissue or ES cells (hESCs). Short term prenatal 3D retinal cultures displayed multiple characteristics of human RPCs (hRPCs) found in situ, including robust expression of VSX2. Upon initiation of hRPC differentiation, there was a small increase in co-labeling of VSX2+ cells with ASCL1, along with a modest increase in the number of PKCα+ neurons. However, 3D prenatal retinal cultures lost expression of VSX2 and ASCL1 over time while concurrently becoming refractory to neuronal differentiation. Conversely, 3D optic vesicles derived from hESCs (hESC-OVs) maintained a robust VSX2+ hRPC population that could spontaneously co-express ASCL1 and generate photoreceptors and other retinal neurons for an extended period of time. These results show that VSX2 and ASCL1 can serve as markers for neurogenic potential in cultured hRPCs. Furthermore, unlike hESC-OVs, maintenance of 3D structure does not independently convey an advantage in the culture of prenatal hRPCs, further illustrating differences in the survival and differentiation requirements of hRPCs extracted from native tissue vs. those generated entirely in vitro.
Collapse
Affiliation(s)
- Lynda S. Wright
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Aragones Health Sciences Institute, Zaragoza, Spain
| | - Jishnu Saha
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joshua M. Clermont
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
- New England College of Optometry, Boston, Massachusetts, United States of America
| | - Jessica S. Lien
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Katarzyna D. Borys
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Elizabeth E. Capowski
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - M. Joseph Phillips
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David M. Gamm
- Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
47
|
Reis LM, Semina EV. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma. ACTA ACUST UNITED AC 2015; 105:96-113. [PMID: 26046913 DOI: 10.1002/bdrc.21097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
48
|
Gago-Rodrigues I, Fernández-Miñán A, Letelier J, Naranjo S, Tena JJ, Gómez-Skarmeta JL, Martinez-Morales JR. Analysis of opo cis-regulatory landscape uncovers Vsx2 requirement in early eye morphogenesis. Nat Commun 2015; 6:7054. [DOI: 10.1038/ncomms8054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/26/2015] [Indexed: 11/09/2022] Open
|
49
|
Sigulinsky CL, German ML, Leung AM, Clark AM, Yun S, Levine EM. Genetic chimeras reveal the autonomy requirements for Vsx2 in embryonic retinal progenitor cells. Neural Dev 2015; 10:12. [PMID: 25927996 PMCID: PMC4450477 DOI: 10.1186/s13064-015-0039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/14/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Vertebrate retinal development is a complex process, requiring the specification and maintenance of retinal identity, proliferative expansion of retinal progenitor cells (RPCs), and their differentiation into retinal neurons and glia. The homeobox gene Vsx2 is expressed in RPCs and required for the proper execution of this retinal program. However, our understanding of the mechanisms by which Vsx2 does this is still rudimentary. To define the autonomy requirements for Vsx2 in the regulation of RPC properties, we generated chimeric mouse embryos comprised of wild-type and Vsx2-deficient cells. RESULTS We show that Vsx2 maintains retinal identity in part through the cell-autonomous repression of the retinal pigment epithelium determinant Mitf, and that Lhx2 is required cell autonomously for the ectopic Mitf expression in Vsx2-deficient cells. We also found significant cell-nonautonomous contributions to Vsx2-mediated regulation of RPC proliferation, pointing to an important role for Vsx2 in establishing a growth-promoting extracellular environment. Additionally, we report a cell-autonomous requirement for Vsx2 in controlling when neurogenesis is initiated, indicating that Vsx2 is an important mediator of neurogenic competence. Finally, the distribution of wild-type cells shifted away from RPCs and toward retinal ganglion cell precursors in patches of high Vsx2-deficient cell density to potentially compensate for the lack of fated precursors in these areas. CONCLUSIONS Through the generation and analysis of genetic chimeras, we demonstrate that Vsx2 utilizes both cell-autonomous and cell-nonautonomous mechanisms to regulate progenitor properties in the embryonic retina. Importantly, Vsx2's role in regulating Mitf is in part separable from its role in promoting proliferation, and proliferation is excluded as the intrinsic timer that determines when neurogenesis is initiated. These findings highlight the complexity of Vsx2 function during retinal development and provide a framework for identifying the molecular mechanisms mediating these functions.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
- Interdepartmental Program in Neuroscience, University of Utah, 20 North 1900 East, Salt Lake City, UT, 84132, USA.
| | - Massiell L German
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Amanda M Leung
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT, 84132, USA.
| | - Anna M Clark
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Sanghee Yun
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT, 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
50
|
Phillips MJ, Perez ET, Martin JM, Reshel ST, Wallace KA, Capowski EE, Singh R, Wright LS, Clark EM, Barney PM, Stewart R, Dickerson SJ, Miller MJ, Percin EF, Thomson JA, Gamm DM. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 2015; 32:1480-92. [PMID: 24532057 DOI: 10.1002/stem.1667] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny.
Collapse
Affiliation(s)
- M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|