1
|
Teive HAG, Coutinho L, Camargo CHF. Spinocerebellar Ataxia Type 10 (SCA 10) in Brazil. CEREBELLUM (LONDON, ENGLAND) 2025; 24:86. [PMID: 40232546 DOI: 10.1007/s12311-025-01838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant inherited ataxia caused by the expansion of ATTCT pentanucleotide repeats in intron 9 of the ATXN10 gene. This rare form of SCA has predominantly been observed in individuals of Indigenous American and East Asian descent. Notably, in Mexico and the southern Brazilian states of Paraná and Santa Catarina, SCA10 is identified as the second most prevalent type of spinocerebellar ataxia. Initially, the phenotype described in Mexico featured a combination of cerebellar ataxia and epilepsy-a presentation also observed in other Latin American and Asian countries, as well as some Brazilian states. However, in Paraná and Santa Catarina, the predominant manifestation of SCA10 is pure cerebellar ataxia, which is distinguished from the presentations seen in other regions.
Collapse
Affiliation(s)
- Hélio A Ghizoni Teive
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil.
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil.
- , Rua General Carneiro, 1103/102, Centro, Curitiba, PR, 80060-150, Brazil.
| | - Léo Coutinho
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Postgraduate Program in Internal Medicine, Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Moon J. Tandem repeat disorders: from diagnosis to emerging therapeutic strategies. ENCEPHALITIS 2025; 5:27-35. [PMID: 39654412 PMCID: PMC12042693 DOI: 10.47936/encephalitis.2024.00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 04/18/2025] Open
Abstract
Tandem repeat disorders (TRDs) are genetic conditions characterized by the abnormal expansion of repetitive DNA sequences within specific genes. The growing number of identified TRDs highlights their complexity, with varied molecular mechanisms ranging from toxic protein production and repeat-associated non-AUG translation to RNA toxicity and epigenetic modifications. TRDs also exhibit unique clinical features such as reduced penetrance, anticipation, and repeat motif changes. Advances in molecular diagnostics such as long-read sequencing have significantly improved the detection of TRDs, especially for large or complex repeat expansions. Additionally, emerging therapeutic strategies, particularly antisense oligonucleotides (ASOs) and gene editing technologies, are showing great promise. ASOs in particular have demonstrated success through mechanisms like allele-specific knockdown and splice modulation. In this review, we explore the classification of TRDs, advances in diagnostics, molecular mechanisms, clinical features, and innovative therapeutic strategies, highlighting the need for further research to refine treatments and improve outcomes.
Collapse
Affiliation(s)
- Jangsup Moon
- Rare Disease Center, Department of Genomic Medicine; Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Hasan A, Furtado GV, Miglorini E, Mergener R, Massuyama B, Barsottini O, Pedroso JL, Teive HG, Saraiva-Pereira ML, Ashizawa T, Jardim LB. The impact of interrupted ATXN10 expansions on clinical findings of spinocerebellar ataxia type 10. J Neurol 2025; 272:261. [PMID: 40067487 DOI: 10.1007/s00415-025-13003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Spinocerebellar ataxia type 10 (SCA10), due to an ATTCT repeat expansion in ATXN10, has variable expressivity and the role of presence (ATTCTint +) and absence (ATTCTint-) of interruptions in the repeat is not clear. We aimed to describe the relations between ATTCTint + and age at onset, seizures, and neurologic severity in ataxic and non-ataxic carriers from Brazil. METHODS Family, age at onset (AO), and seizures data plus DNA were obtained from symptomatic carriers already diagnosed in Porto Alegre, Curitiba, and São Paulo, Brazil. Patients and their relatives were invited to be evaluated through Scale of Assessment and Rating of Ataxia (SARA) and other clinical scales; a SARA > 2.5 classified subjects as ataxic carriers. Repeat-primed PCR (RP-PCR) defined the expansions with (ATTCTint +) or without (ATTCTint-) interruptions. Comparisons were performed for a p level of 0.05. RESULTS Among 78 ataxic carriers, earlier AO (p = 0.039) and higher occurrences of epilepsy (p < 0.0001) were seen in subjects with ATTCTint + than in those with ATTCTint-. Clinical scales were worse in 34 ataxics than in 7 non-ataxics and 10 related controls (p = 0.006) and did not discriminate non-ataxics from controls. The 11 ataxic ATTCTint + carriers had higher SARA scores per year of disease duration than the 23 ATTCTint- carriers (r = 0.879, beta = 0.45, p = 0.0001). DISCUSSION ATTCTint + carriers had worse clinical findings than ATTCTint- carriers: earlier AO, more seizures, and worse ataxia scores. Interruptions in the expanded repeat have a real impact in SCA10 phenotype.
Collapse
Affiliation(s)
- Ali Hasan
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Gabriel Vasata Furtado
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Elaine Miglorini
- Serviço de Neurologia, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Rafaella Mergener
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Pathology, Universidade Federal das Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Breno Massuyama
- Hospital São Paulo, Universidade Federal do Estado de São Paulo, São Paulo, SP, Brazil
| | - Orlando Barsottini
- Hospital São Paulo, Universidade Federal do Estado de São Paulo, São Paulo, SP, Brazil
| | - José Luiz Pedroso
- Hospital São Paulo, Universidade Federal do Estado de São Paulo, São Paulo, SP, Brazil
| | - Helio G Teive
- Serviço de Neurologia, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Grupo de Estudo Em Doenças Neurodegenerativas, Programa de Pós-Graduação Em Medicina Interna, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Tetsuo Ashizawa
- Methodist Hospital and Houston Methodist Research Institute, Houston, TX, USA
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Romero-Molina AO, Ramirez-Garcia G, Chirino-Perez A, Padron-Rivera G, Hernandez-Castillo CR, Garcia-Gomar MG, Torres-Vences DL, Fernandez-Ruiz J. Cerebellar cognitive affective syndrome in patients with spinocerebellar ataxia type 10. PLoS One 2025; 20:e0319505. [PMID: 40029932 PMCID: PMC11875346 DOI: 10.1371/journal.pone.0319505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia, characterized by epilepsy, ataxic symptoms, and cognitive impairments linked to Cerebellar Cognitive Affective Syndrome (CCAS). The Cerebellar Cognitive Affective Syndrome Scale (CCAS-S) has been developed to identify CCAS across various cerebellar pathologies. OBJECTIVE To determine whether patients with SCA10 exhibit CCAS using the CCAS-S, and to compare its effectiveness with the Montreal Cognitive Assessment (MoCA). A secondary objective was to evaluate the effect of demographic and clinical data on CCAS-S performance. METHOD Fifteen patients with SCA10 and fifteen matched controls underwent assessments using the CCAS-S, the MoCA, the Scale for the Assessment and Rating of Ataxia (SARA), and the Center for Epidemiologic Studies Depression Scale (CES-D). Diagnostic accuracy was analyzed using ROC curve analysis, comparing total and subcategory scores between groups. Demographic and clinical data were examined for relations with CCAS-S scores. RESULTS The CCAS-S effectively distinguished cognitive impairments in SCA10 patients, showing satisfactory sensitivity and specificity (AUC of 0.83). Although no significant differences were found in the AUCs between CCAS-S and MoCA (p = 0.45), the CCAS-S demonstrated a significantly larger effect size in the comparison between patients and control group (d = 2.33). Cognitive performance was poorer in patients than in controls (p = < 0.001), with depressive symptoms and age having a significant impact on CCAS-S outcomes. CONCLUSIONS Patients with the SCA10 mutation exhibit CCAS. Besides the significant cognitive impairment, also detected by MoCA, the CCAS-S score was significantly affected by indicators of depressive mood and age, highlighting the importance of considering these variables during outcome analyses.
Collapse
Affiliation(s)
- Angel Omar Romero-Molina
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Gabriel Ramirez-Garcia
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Amanda Chirino-Perez
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Gustavo Padron-Rivera
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | | | - Maria Guadalupe Garcia-Gomar
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autonoma de Mexico, Juriquilla, Queretaro, Mexico
| | - Diana Laura Torres-Vences
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Juan Fernandez-Ruiz
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Laboratorio de Neuropsicologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
5
|
Sharafi S, Rezvani Z. Investigation of Spinocerebellar Ataxia (SCA) Disease in Iranian Patients and Accurate Trinucleotide Repeat Detection in the SCA3 by TP-PCR Method. Mol Neurobiol 2025; 62:2756-2763. [PMID: 39155322 DOI: 10.1007/s12035-024-04434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
SCA (spinocerebellar ataxia) which is autosomal dominantly transferred is a subset of inherited cerebellar ataxia. These progressive neurological diseases have clinical features of ataxia and are derived from the destruction of the cerebellum. These diseases can also affect other areas, including the brainstem. Frequent proliferation of CAG nucleotides can encode polyglutamine and, as a result, produce the toxic polyglutamine (poly Q) protein that leads to many types of SCAs. They are categorized based on specific genetic mutations. The main symptoms of SCA, gait ataxia and incoordination, nystagmus, vision problems, and dysarthria, can be mentioned. In this study, 31 Iranians who were suspected of SCA disease were clinically diagnosed from November 2019 to September 2021. For these 31 patients suspected of spinocerebellar ataxia, PCR was performed, and the analysis was based on vertical electrophoresis. For SCA3 patients, the TP-PCR technique was carried out and evaluated by capillary electrophoresis. For all 31 patients, PCR function was successful according to the results attained by conventional PCR. The number of three nucleotide replications was within the normal range for 22 people, and nine patients were reported. Studies showed that three people suspected of SCA were infected with SCA3 according to the TP-PCR technique, and this was while seven people were diagnosed with SCA3 using the PCR method. As the purpose of this test is to provide a more accurate diagnostic method and prenatal diagnosis of this disease, the TP-PCR method proved to be more suitable when applied for the diagnosis of abnormal trinucleotides CAG in spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Shafagh Sharafi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Qutb Rawandi Blvd, Kashan City, Isfahan Province, Iran
| | - Zahra Rezvani
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Qutb Rawandi Blvd, Kashan City, Isfahan Province, Iran.
| |
Collapse
|
6
|
Milla-Neyra K, Araujo-Aliaga I, Manrique-Enciso C, Sarapura-Castro E, Illanes-Manrique M, Veliz-Otani D, Saldarriaga-Mayo A, Medina-Colque A, Rios-Pinto J, Cornejo-Herrera I, Rivera-Valdivia A, F Mata I, Loesch D, Lozano-Vasquez L, Bordia T, O'Connor T, Schüle B, Cornejo-Olivas M. Novel Intermediate ATXN10 Alleles in the Healthy Peruvian Population: A Matter of Indigenous American Ethnic Origin. CEREBELLUM (LONDON, ENGLAND) 2025; 24:44. [PMID: 39918768 DOI: 10.1007/s12311-025-01795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a neurodegenerative disease predominant in Latin American individuals with Indigenous American ancestry. SCA10 is caused by an expansion of ATTCT repeat within the ATXN10 gene. Healthy individuals carry 9-32 ATTCT repeats, whereas SCA10 patients carry an expansion of 280 repeats and higher. Recently, intermediate alleles (over than 32 repeats) have been identified in healthy Peruvian Indigenous American individuals, with unclear significance. This study aims to characterize the variability of the ATTCT repeats within the ATXN10 gene across self-declared Indigenous American and Mestizo subpopulations from Peru. A total of 871 samples (754 Mestizo and 117 Indigenous American) were analyzed using PCR, and RP-PCR when suspecting apparent homozygosity due to larger alleles. 8.7% of the total of healthy individuals (76/871) carry at least one intermediate allele. The 14-repeat allele being the most common for both subpopulations (41.5%). Intermediate alleles were detected in the Peruvian population (4.5%) with a significantly higher frequency among self-declared Indigenous American compared to Mestizo, suggesting a possible association with the ethnic origin. The G allele at the SNP rs41524547 had a frequency of 51.39% in individuals with intermediate alleles, with not significantly difference between subpopulations. Further analysis should be performed to confirm the size and composition of ATTCT repeat tract, as well as the contribution of rs41524547 in SCA10.
Collapse
Affiliation(s)
- Karina Milla-Neyra
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.
| | - Ismael Araujo-Aliaga
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Carla Manrique-Enciso
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | - Elison Sarapura-Castro
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Maryenela Illanes-Manrique
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Diego Veliz-Otani
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ana Saldarriaga-Mayo
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | | | | | | | - Andrea Rivera-Valdivia
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru
| | - Ignacio F Mata
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas Loesch
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Leonel Lozano-Vasquez
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Tanuja Bordia
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy O'Connor
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.
- Neurogenetics Working Group, Universidad Cientifica del Sur, Lima, Peru.
| |
Collapse
|
7
|
Jara-Prado A, Arias-Capistran E, Guerrero-Camacho J, Ochoa-Morales A, Boll MC, Dávila-Ortíz de Montellano D, Rasmussen A, Ashizawa T, Fernandez-Ruiz J, Yescas-Gómez P, Ramírez-García MÁ. ATXN10 Gene Expansions in Mexican Patients with Ataxia Without Epilepsy. CEREBELLUM (LONDON, ENGLAND) 2025; 24:33. [PMID: 39820777 DOI: 10.1007/s12311-024-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 01/30/2025]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant (AD) neurodegenerative disorder prevalent in the Americas, particularly in Mexico. Clinical manifestations include progressive ataxia and epilepsy. However, it can exhibit wide phenotypic variability and even reduced penetrance. Because the diagnostic overlaps with other ataxias, molecular diagnosis is essential. This cross-sectional study conducted a retrospective review and analysis of 183 DNA samples from a laboratory registry of patients with ataxia who were suspected of having AD ataxia (n = 86; negative for ATXN1, ATXN2, ATXN3, ATXN7, TBP, and ATN1 genes) or sporadic ataxia (n = 97). Triplet repeat-primed PCR (TP-PCR) was performed to identify ATXN10 gene expansions. 19.6% (n = 36) of the samples showed ATXN10 expansions, with a higher proportion of hereditary AD cases (30.2%; n = 26) compared to sporadic cases (10.3%; n = 10). Clinical information was available in only 23 registries, with manifestations predominantly including cerebellar signs, but notably not epilepsy. The frequency of SCA10 in our country underlines the need to change the diagnostic suspicion, as the absence of epilepsy challenges previous diagnostic assumptions. As this is a study from a laboratory registry, we are aware of certain limitations.
Collapse
Affiliation(s)
- Aurelio Jara-Prado
- Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico
| | - Eukeni Arias-Capistran
- Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico
- Universidad Simón Bolívar, Mexico City, Mexico
| | - Jorge Guerrero-Camacho
- Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico
| | - Adriana Ochoa-Morales
- Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico
| | - Marie Catherine Boll
- Clinical Research Laboratory, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - David Dávila-Ortíz de Montellano
- Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico
| | | | | | - Juan Fernandez-Ruiz
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Petra Yescas-Gómez
- Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico
| | - Miguel Ángel Ramírez-García
- Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico.
| |
Collapse
|
8
|
Paradisi I, Arias S, Ikonomu V. Spinocerebellar ataxia type 10 and Huntington disease-like 2 in Venezuela: Further evidence of two different ancestral founder effects. Ann Hum Genet 2024; 88:445-454. [PMID: 39212267 DOI: 10.1111/ahg.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The American continent populations have a wide genetic diversity, as a product of the admixture of three ethnic groups: Amerindian, European, and African Sub-Saharan. Spinocerebellar ataxia type 10 (SCA10) and Huntington disease-like 2 (HDL2) have very ancient ancestral origins but are restricted to two populations: Amerindian and African Sub-Saharan, respectively. This study aimed to investigate the genetic epidemiological features of these diseases in Venezuela. METHODS In-phase haplotypes with the expanded alleles were established in seven unrelated index cases diagnosed with SCA10 and in 11 unrelated index cases diagnosed with HDL2. The origins of remote ancestors were recorded. RESULTS The geographic origin of the ancestors showed grouping in clusters. SCA10 had a minimal general prevalence of 1:256,174 families in the country, but within the identified geographic clusters, the prevalence ranged from 5 per 100,000 to 43 per 100,000 families. HDL2 had a general prevalence of 1:163,016 families, however, within the clusters, the prevalence ranged from 31 per 100,000 to 60 per 100,000 families. The locus-specific haplotype shared by all families worldwide, including the Venezuelans, supports a single old ancestral origin in each case. CONCLUSION Knowing the genetic ancestry and geographic origins of patients in Ibero-American mixed populations could have significant diagnostic implications; thus, both diseases in Venezuela should always be first explored in patients with a suggestive phenotype and ancestors coming from the same known geographic clusters.
Collapse
Affiliation(s)
- Irene Paradisi
- Laboratory of Human Genetics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuelan
| | - Sergio Arias
- Laboratory of Human Genetics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuelan
| | - Vassiliki Ikonomu
- Laboratory of Human Genetics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuelan
| |
Collapse
|
9
|
Halman A, Lonsdale A, Oshlack A. Analysis of Tandem Repeats in Short-Read Sequencing Data: From Genotyping Known Pathogenic Repeats to Discovering Novel Expansions. Curr Protoc 2024; 4:e70010. [PMID: 39499075 PMCID: PMC11602959 DOI: 10.1002/cpz1.70010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Short tandem repeats (STRs) and variable-number tandem repeats (VNTRs) are repetitive genomic sequences seen widely throughout the genome. These repeat expansions are currently known to cause ∼60 diseases, with expansions in new loci linked to rare diseases continuing to be discovered. Genome sequencing is an important tool for detecting disease-causing variants and several computational tools have been developed to analyze tandem repeats from genomic data, enabling the genotyping and the identification of expanded alleles. However, guidelines for conducting the analysis of these repeats and, more importantly, for assessing the findings are lacking. Understanding the tools and their technical limitations is important for accurately interpreting the results. This article provides detailed, step-by-step instructions for three key use cases in STR analysis from short-read genome sequencing data, which are also applicable to smaller VNTRs. First, it demonstrates an approach for genotyping known pathogenic loci and the identification of clinically significant expansions. Second, we offer guidance on defining tandem repeat loci and conducting genome-wide genotyping studies, which is also applicable to diploid organisms other than humans. Third, instructions are provided on how to find novel expansions at loci not previously known to be associated with disease, aiding in the discovery of new pathogenic loci. Moreover, we introduce the use of newly-developed helper tools that enable a complete and streamlined tandem repeat analysis protocol by addressing the gaps in current methods. All three protocols are compatible with human hg19, hg38, and the latest telomere-to-telomere (hs1) reference genomes. Additionally, this protocol provides an overview and discussion on how to interpret genotyping results. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genotyping known pathogenic tandem repeat loci Alternate Protocol: Genotyping known pathogenic tandem repeat loci with STRipy Support Protocol 1: Installation of tools and ExpansionHunter catalog modification Basic Protocol 2: Performing genome-wide genotyping of tandem repeats Basic Protocol 3: Discovering de novo tandem repeat expansions Support Protocol 2: Compiling ExpansionHunter Denovo from source code and generating STR profiles.
Collapse
Affiliation(s)
- Andreas Halman
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneVictoriaAustralia
| | - Andrew Lonsdale
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneVictoriaAustralia
| | - Alicia Oshlack
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneVictoriaAustralia
- School of Mathematics and StatisticsThe University of MelbourneVictoriaAustralia
| |
Collapse
|
10
|
McFarland KN, Tiwari A, Hashem V, Zhang L, Zeng D, Vincent J, Arredondo MJ, Johnson KL, Gan SR, Yabe I, Skov L, Rasmussen A, Ashizawa T. Extended haplotype with rs41524547-G defines the ancestral origin of SCA10. Hum Mol Genet 2024; 33:1567-1574. [PMID: 38832639 PMCID: PMC12099295 DOI: 10.1093/hmg/ddae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant ataxia caused by a large expansion of the (ATTCT)n repeat in ATXN10. SCA10 was described in Native American and Asian individuals which prompted a search for an expanded haplotype to confirm a common ancestral origin for the expansion event. All patients with SCA10 expansions in our cohort share a single haplotype defined at the 5'-end by the minor allele of rs41524547, located ~35 kb upstream of the SCA10 expansion. Intriguingly, rs41524547 is located within the miRNA gene, MIR4762, within its DROSHA cleavage site and just outside the seed sequence for mir4792-5p. The world-wide frequency of rs41524547-G is less than 5% and found almost exclusively in the Americas and East Asia-a geographic distribution that mirrors reported SCA10 cases. We identified rs41524547-G(+) DNA from the 1000 Genomes/International Genome Sample Resource and our own general population samples and identified SCA10 repeat expansions in up to 25% of these samples. The reduced penetrance of these SCA10 expansions may be explained by a young (pre-onset) age at sample collection, a small repeat size, purity of repeat units, or the disruption of miR4762-5p function. We conclude that rs41524547-G is the most robust at-risk SNP allele for SCA10, is useful for screening of SCA10 expansions in population genetics studies and provides the most compelling evidence to date for a single, prehistoric origin of SCA10 expansions sometime prior to or during the migration of individuals across the Bering Land Bridge into the Americas.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, College of Medicine, The McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, United States
- Center for Translational Research in Neurodegeneration, University of Florida, 1275 Center Drive, Gainesville, FL 32610, United States
| | - Anjana Tiwari
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Vera Hashem
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Yinghua East Street 2, Chaoyang, Beijing 100029, China
| | - Desmond Zeng
- Department of Neurology, College of Medicine, The McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, United States
| | - Justin Vincent
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Maria J Arredondo
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| | - Kristy L Johnson
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, Oklahoma 73104, United States
| | - Shi Rui Gan
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 20 Cha Zhong Lu, Tailing District, Fuzhou 362000, China
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, 7 Chome Kita 15 Jonishi, Kita Ward, Sapporo 060-8638, Japan
| | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Universitetsbyen 81, 3., Building 1872, Aarhus C. DK-8000, Denmark
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, Oklahoma 73104, United States
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, The McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL 32610, United States
- Neuroscience Research Program and Department of Neurology, Houston Methodist Hospital and Weill Cornell Medicine, 6560 Fannin Street, Houston, TX 77030, United States
| |
Collapse
|
11
|
Bao N, Wang Z, Fu J, Dong H, Jin Y. RNA structure in alternative splicing regulation: from mechanism to therapy. Acta Biochim Biophys Sin (Shanghai) 2024; 57:3-21. [PMID: 39034824 PMCID: PMC11802352 DOI: 10.3724/abbs.2024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Alternative splicing is a highly intricate process that plays a crucial role in post-transcriptional regulation and significantly expands the functional proteome of a limited number of coding genes in eukaryotes. Its regulation is multifactorial, with RNA structure exerting a significant impact. Aberrant RNA conformations lead to dysregulation of splicing patterns, which directly affects the manifestation of disease symptoms. In this review, the molecular mechanisms of RNA secondary structure-mediated splicing regulation are summarized, with a focus on the complex interplay between aberrant RNA conformations and disease phenotypes resulted from splicing defects. This study also explores additional factors that reshape structural conformations, enriching our understanding of the mechanistic network underlying structure-mediated splicing regulation. In addition, an emphasis has been placed on the clinical role of targeting aberrant splicing corrections in human diseases. The principal mechanisms of action behind this phenomenon are described, followed by a discussion of prospective development strategies and pertinent challenges.
Collapse
Affiliation(s)
- Nengcheng Bao
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Zhechao Wang
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Jiayan Fu
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Haiyang Dong
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yongfeng Jin
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
12
|
Oketch JW, Wain LV, Hollox EJ. A comparison of software for analysis of rare and common short tandem repeat (STR) variation using human genome sequences from clinical and population-based samples. PLoS One 2024; 19:e0300545. [PMID: 38558075 PMCID: PMC10984476 DOI: 10.1371/journal.pone.0300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Short tandem repeat (STR) variation is an often overlooked source of variation between genomes. STRs comprise about 3% of the human genome and are highly polymorphic. Some cause Mendelian disease, and others affect gene expression. Their contribution to common disease is not well-understood, but recent software tools designed to genotype STRs using short read sequencing data will help address this. Here, we compare software that genotypes common STRs and rarer STR expansions genome-wide, with the aim of applying them to population-scale genomes. By using the Genome-In-A-Bottle (GIAB) consortium and 1000 Genomes Project short-read sequencing data, we compare performance in terms of sequence length, depth, computing resources needed, genotyping accuracy and number of STRs genotyped. To ensure broad applicability of our findings, we also measure genotyping performance against a set of genomes from clinical samples with known STR expansions, and a set of STRs commonly used for forensic identification. We find that HipSTR, ExpansionHunter and GangSTR perform well in genotyping common STRs, including the CODIS 13 core STRs used for forensic analysis. GangSTR and ExpansionHunter outperform HipSTR for genotyping call rate and memory usage. ExpansionHunter denovo (EHdn), STRling and GangSTR outperformed STRetch for detecting expanded STRs, and EHdn and STRling used considerably less processor time compared to GangSTR. Analysis on shared genomic sequence data provided by the GIAB consortium allows future performance comparisons of new software approaches on a common set of data, facilitating comparisons and allowing researchers to choose the best software that fulfils their needs.
Collapse
Affiliation(s)
- John W. Oketch
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Louise V. Wain
- Department of Population Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
14
|
Rafehi H, Bennett MF, Bahlo M. Detection and discovery of repeat expansions in ataxia enabled by next-generation sequencing: present and future. Emerg Top Life Sci 2023; 7:349-359. [PMID: 37733280 PMCID: PMC10754322 DOI: 10.1042/etls20230018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Hereditary cerebellar ataxias are a heterogenous group of progressive neurological disorders that are disproportionately caused by repeat expansions (REs) of short tandem repeats (STRs). Genetic diagnosis for RE disorders such as ataxias are difficult as the current gold standard for diagnosis is repeat-primed PCR assays or Southern blots, neither of which are scalable nor readily available for all STR loci. In the last five years, significant advances have been made in our ability to detect STRs and REs in short-read sequencing data, especially whole-genome sequencing. Given the increasing reliance of genomics in diagnosis of rare diseases, the use of established RE detection pipelines for RE disorders is now a highly feasible and practical first-step alternative to molecular testing methods. In addition, many new pathogenic REs have been discovered in recent years by utilising WGS data. Collectively, genomes are an important resource/platform for further advancements in both the discovery and diagnosis of REs that cause ataxia and will lead to much needed improvement in diagnostic rates for patients with hereditary ataxia.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Chaisson MJP, Sulovari A, Valdmanis PN, Miller DE, Eichler EE. Advances in the discovery and analyses of human tandem repeats. Emerg Top Life Sci 2023; 7:361-381. [PMID: 37905568 PMCID: PMC10806765 DOI: 10.1042/etls20230074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Long-read sequencing platforms provide unparalleled access to the structure and composition of all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes our current understanding of their organization within the human genome, their importance with respect to disease, as well as the advances and challenges in understanding their genetic diversity and functional effects. Novel computational methods are being developed to visualize and associate these complex patterns of human variation with disease, expression, and epigenetic differences. We predict accurate characterization of this repeat-rich form of human variation will become increasingly relevant to both basic and clinical human genetics.
Collapse
Affiliation(s)
- Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, U.S.A
- The Genomic and Epigenomic Regulation Program, USC Norris Cancer Center, University of Southern California, Los Angeles, CA 90089, U.S.A
| | - Arvis Sulovari
- Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, U.S.A
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, U.S.A
- Department of Pediatrics, University of Washington, Seattle, WA 98195, U.S.A
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
16
|
Negrutskii BS, Porubleva LV, Malinowska A, Novosylna OV, Dadlez M, Knudsen CR. Understanding functions of eEF1 translation elongation factors beyond translation. A proteomic approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:67-99. [PMID: 38220433 DOI: 10.1016/bs.apcsb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.
Collapse
Affiliation(s)
- Boris S Negrutskii
- Institute of Molecular Biology and Genetics, Kyiv, Ukraine; Aarhus Institute of Advanced Sciences, Høegh-Guldbergs, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark.
| | | | - Agata Malinowska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark
| |
Collapse
|
17
|
Liu Y, Li J, Wu Q. Short Tandem Repeats of Human Genome Are Intrinsically Unstable in Cultured Cells in vivo. Gene 2023:147539. [PMID: 37279866 DOI: 10.1016/j.gene.2023.147539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Short tandem repeats (STRs) are a class of abundant structural or functional elements in the human genome and exhibit a polymorphic nature of repeat length and genetic variation within human populations. Interestingly, STR expansions underlie about 60 neurological disorders. However, "stutter" artifacts or noises render it difficult to investigate the pathogenesis of STR expansions. Here, we systematically investigated STR instability in cultured human cells using GC-rich CAG and AT-rich ATTCT tandem repeats as examples. We found that triplicate bidirectional Sanger sequencing with PCR amplification under proper conditions can reliably assess STR length. In addition, we found that next-generation sequencing with paired-end reads bidirectionally covering STR regions can accurately and reliably assay STR length. Finally, we found that STRs are intrinsically unstable in cultured human cell populations and during single-cell cloning. Our data suggest a general method for accurately and reliably assessing STR length and have important implications in investigating pathogenesis of STR expansion diseases.
Collapse
Affiliation(s)
- Yuzhe Liu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratory, Shanghai 201203, China
| | - Jinhuan Li
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratory, Shanghai 201203, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratory, Shanghai 201203, China.
| |
Collapse
|
18
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
19
|
Depienne C, van den Maagdenberg AMJM, Kühnel T, Ishiura H, Corbett MA, Tsuji S. Insights into familial adult myoclonus epilepsy pathogenesis: How the same repeat expansion in six unrelated genes may lead to cortical excitability. Epilepsia 2023. [PMID: 36622139 DOI: 10.1111/epi.17504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) results from the same pathogenic TTTTA/TTTCA pentanucleotide repeat expansion in six distinct genes encoding proteins with different subcellular localizations and very different functions, which poses the issue of what causes the neurobiological disturbances that lead to the clinical phenotype. Postmortem and electrophysiological studies have pointed to cortical hyperexcitability as well as dysfunction and neurodegeneration of both the cortex and cerebellum of FAME subjects. FAME expansions, contrary to the same expansion in DAB1 causing spinocerebellar ataxia type 37, seem to have no or limited impact on their recipient gene expression, which suggests a pathophysiological mechanism independent of the gene and its function. Current hypotheses include toxicity of the RNA molecules carrying UUUCA repeats, or toxicity of polypeptides encoded by the repeats, a mechanism known as repeat-associated non-AUG translation. The analysis of postmortem brains of FAME1 expansion (in SAMD12) carriers has revealed the presence of RNA foci that could be formed by the aggregation of RNA molecules with abnormal UUUCA repeats, but evidence is still lacking for other FAME subtypes. Even when the expansion is located in a gene ubiquitously expressed, expression of repeats remains undetectable in peripheral tissues (blood, skin). Therefore, the development of appropriate cellular models (induced pluripotent stem cell-derived neurons) or the study of affected tissues in patients is required to elucidate how FAME repeat expansions located in unrelated genes lead to disease.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hiroyuki Ishiura
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mark A Corbett
- Robinson Research Institute, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Shoji Tsuji
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
20
|
Liu Y, Wan L, Ngai CK, Wang Y, Lam SL, Guo P. Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1584-1592. [PMID: 36874156 PMCID: PMC9975016 DOI: 10.1016/j.csbj.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs.
Collapse
Affiliation(s)
- Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liqi Wan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
21
|
Morato Torres CA, Zafar F, Tsai YC, Vazquez JP, Gallagher MD, McLaughlin I, Hong K, Lai J, Lee J, Chirino-Perez A, Romero-Molina AO, Torres F, Fernandez-Ruiz J, Ashizawa T, Ziegle J, Jiménez Gil FJ, Schüle B. ATTCT and ATTCC repeat expansions in the ATXN10 gene affect disease penetrance of spinocerebellar ataxia type 10. HGG ADVANCES 2022; 3:100137. [PMID: 36092952 PMCID: PMC9460507 DOI: 10.1016/j.xhgg.2022.100137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant disorder caused by an expanded pentanucleotide repeat in the ATXN10 gene. This repeat expansion, when fully penetrant, has a size of 850-4,500 repeats. It has been shown that the repeat composition can be a modifier of disease, e.g., seizures. Here, we describe a Mexican kindred in which we identified both pure (ATTCT)n and mixed (ATTCT)n-(ATTCC)n expansions in the same family. We used amplification-free targeted sequencing and optical genome mapping to decipher the composition of these repeat expansions. We found a considerable degree of mosaicism of the repeat expansion. This mosaicism was confirmed in skin fibroblasts from individuals with ATXN10 expansions with RNAScope in situ hybridization. All affected family members with the mixed ATXN10 repeat expansion showed typical clinical signs of spinocerebellar ataxia and epilepsy. In contrast, individuals with the pure ATXN10 expansion present with Parkinson's disease or are unaffected, even in individuals more than 20 years older than the average age at onset for SCA10. Our findings suggest that the pure (ATTCT)n expansion is non-pathogenic, while repeat interruptions, e.g., (ATTCC)n, are necessary to cause SCA10. This mechanism has been recently described for several other repeat expansions including SCA31 (BEAN1), SCA37 (DAB1), and three loci for benign adult familial myoclonic epilepsy BAFME (SAMD12, TNRC6A, RAPGEF2). Therefore, long-read sequencing and optical genome mapping of the entire genomic structure of repeat expansions are critical for clinical practice and genetic counseling, as variations in the repeat can affect disease penetrance, symptoms, and disease trajectory.
Collapse
Affiliation(s)
| | - Faria Zafar
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu-Chih Tsai
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | | | | | - Ian McLaughlin
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | - Karl Hong
- Bionano Genomics, San Diego, CA 92121, USA
| | - Jill Lai
- Bionano Genomics, San Diego, CA 92121, USA
| | - Joyce Lee
- Bionano Genomics, San Diego, CA 92121, USA
| | - Amanda Chirino-Perez
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Angel Omar Romero-Molina
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Francisco Torres
- Southern California Permanente Medical Group, Oxnard, CA 93036, USA
| | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Tetsuo Ashizawa
- Department Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Janet Ziegle
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | | | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Kurosaki T, Ashizawa T. The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Front Genet 2022; 13:936869. [PMID: 36199580 PMCID: PMC9528567 DOI: 10.3389/fgene.2022.936869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is characterized by progressive cerebellar neurodegeneration and, in many patients, epilepsy. This disease mainly occurs in individuals with Indigenous American or East Asian ancestry, with strong evidence supporting a founder effect. The mutation causing SCA10 is a large expansion in an ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. The ATTCT repeat is highly unstable, expanding to 280-4,500 repeats in affected patients compared with the 9-32 repeats in normal individuals, one of the largest repeat expansions causing neurological disorders identified to date. However, the underlying molecular basis of how this huge repeat expansion evolves and contributes to the SCA10 phenotype remains largely unknown. Recent progress in next-generation DNA sequencing technologies has established that the SCA10 repeat sequence has a highly heterogeneous structure. Here we summarize what is known about the structure and origin of SCA10 repeats, discuss the potential contribution of variant repeats to the SCA10 disease phenotype, and explore how this information can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Center for RNA Biology, University of Rochester, Rochester, NY, United States
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist Houston, TX, United States
| |
Collapse
|
23
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
24
|
Zhang N, Ashizawa T. Mechanistic and Therapeutic Insights into Ataxic Disorders with Pentanucleotide Expansions. Cells 2022; 11:1567. [PMID: 35563872 PMCID: PMC9099484 DOI: 10.3390/cells11091567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pentanucleotide expansion diseases constitute a special class of neurodegeneration. The repeat expansions occur in non-coding regions, have likely arisen from Alu elements, and often result in autosomal dominant or recessive phenotypes with underlying cerebellar neuropathology. When transcribed (potentially bidirectionally), the expanded RNA forms complex secondary and tertiary structures that can give rise to RNA-mediated toxicity, including protein sequestration, pentapeptide synthesis, and mRNA dysregulation. Since several of these diseases have recently been discovered, our understanding of their pathological mechanisms is limited, and their therapeutic interventions underexplored. This review aims to highlight new in vitro and in vivo insights into these incurable diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| |
Collapse
|
25
|
Mao C, Li X, Su Y, Luo H, Fan L, Zheng H, Fan Y, Yang Z, Zhang S, Hu Z, Hao X, Shi C, Xu Y. Spinocerebellar Ataxia Type 10 with Atypical Clinical Manifestation in Han Chinese. CEREBELLUM (LONDON, ENGLAND) 2022; 22:355-362. [PMID: 35441258 DOI: 10.1007/s12311-022-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia accompanied by extracerebellar signs and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of ATXN10. Cases of SCA10, formerly confined to America, have been reported in Europe and Asia. In the present study, we aim to report an atypical SCA10 family in China and provide a reference for the diagnosis of SCA10 in Asia by comparing their clinical and genetic features with former SCA10 pedigrees. Genomic DNA was extracted from patients and subjected to RP-PCR (repeat-primed PCR), Southern blotting, and haplotype analysis to determine the genetic pathogenesis. Patients with SCA10 in this pedigree demonstrated atypical SCA10 manifestations, including the absence of seizures and ocular abnormalities. Magnetic resonance imaging (MRI) showed cerebellar atrophy in five patients with available data. RP-PCR and Southern blotting revealed abnormal expansion. Analysis of single nucleotide polymorphisms (SNPs) surrounding the SCA10 locus in the proband and other affected family members revealed the "C-expansion-G-G-C" haplotype, consistent with former studies. These findings imply that the SCA10 mutation may have occurred before the Amerindian migration from East Asia to North America. It also suggested that SCA10 should be taken into account during differential diagnosis in patients of Asian ancestry, even if they do not present with typical features such as epilepsy.
Collapse
Affiliation(s)
- Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Taghavi A, Yildirim I. Computational Investigation of Bending Properties of RNA AUUCU, CCUG, CAG, and CUG Repeat Expansions Associated With Neuromuscular Disorders. Front Mol Biosci 2022; 9:830161. [PMID: 35480881 PMCID: PMC9037632 DOI: 10.3389/fmolb.2022.830161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
Expansions of RNA AUUCU, CCUG, CAG, and CUG repeats cause spinocerebellar ataxia type 10, myotonic dystrophy type 2, Huntington’s disease, and myotonic dystrophy type 1, respectively. By performing extensive molecular dynamic simulations, we investigated the bending propensities and conformational landscapes adopted by 3×3, 2×2, and 1×1 internal loops observed in RNA AUUCU, CCUG, CAG, and CUG repeat expansions using model systems having biologically relevant repeat sizes. We show that the conformational variability experienced by these loops is more complex than previous reports where a variety of unconventional hydrogen bonds are formed. At the global scale, strong bending propensity was observed in r(AUUCU)10, r(CCUG)15, r(CAG)20, and r(CUG)20, and, to a lesser extent, in r(AUUCU)4, r(CCUG)10, r(CAG)10, and r(CUG)10. Furthermore, RNA CAG repeats exhibit a tendency toward bent states with more than 50% of observed conformations having bending angles greater than 50°, while RNA CUG repeats display relatively linear-like conformations with extremely bent conformations accounting for less than 25% of the observed structures. Conformations experienced by RNA AUUCU repeats are a combination of strongly bent and kinked structures. The bent states in RNA CCUG repeats mostly fall into the moderately bent category with a marginal ensemble experiencing extreme bending. The general pattern observed in all the bent structures indicates the collapse of the major groove width as the mechanical trigger for bending, which is caused by alteration of base pair step parameters at multiple locations along the RNA due to local distortions at the loop sites. Overextension is also observed in all the RNA repeats that is attributed to widening of the major groove width as well as undertwisting phenomenon. This information and the rich structural repository could be applied for structure based small molecule design targeting disease-causing RNAs. The bending propensities of these constructs, at the global level, could also have implications on how expanded RNA repeats interact with proteins.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, United States
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, United States
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States
- *Correspondence: Ilyas Yildirim,
| |
Collapse
|
27
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
28
|
Marsili L, Duque KR, Bode RL, Kauffman MA, Espay AJ. Uncovering Essential Tremor Genetics: The Promise of Long-Read Sequencing. Front Neurol 2022; 13:821189. [PMID: 35401394 PMCID: PMC8983820 DOI: 10.3389/fneur.2022.821189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Long-read sequencing (LRS) technologies have been recently introduced to overcome intrinsic limitations of widely-used next-generation sequencing (NGS) technologies, namely the sequencing limited to short-read fragments (150–300 base pairs). Since its introduction, LRS has permitted many successes in unraveling hidden mutational mechanisms. One area in clinical neurology in need of rethinking as it applies to genetic mechanisms is essential tremor (ET). This disorder, among the most common in neurology, is a syndrome often exhibiting an autosomal dominant pattern of inheritance whose large phenotypic spectrum suggest a multitude of genetic etiologies. Exome sequencing has revealed the genetic etiology only in rare ET families (FUS, SORT1, SCN4A, NOS3, KCNS2, HAPLN4/BRAL2, and USP46). We hypothesize that a reason for this shortcoming may be non-classical genetic mechanism(s) underpinning ET, among them trinucleotide, tetranucleotide, or pentanucleotide repeat disorders. In support of this hypothesis, trinucleotide (e.g., GGC repeats in NOTCH2NLC) and pentanucleotide repeat disorders (e.g., ATTTC repeats in STARD7) have been revealed as pathogenic in patients with a past history of what has come to be referred to as “ET plus,” bilateral hand tremor associated with epilepsy and/or leukoencephalopathy. A systematic review of LRS in neurodegenerative disorders showed that 10 of the 22 (45%) genetic etiologies ascertained by LRS include tremor in their phenotypic spectrum, suggesting that future clinical applications of LRS for tremor disorders may uncover genetic subtypes of familial ET that have eluded NGS, particularly those with associated leukoencephalopathy or family history of epilepsy. LRS provides a pathway for potentially uncovering novel genes and genetic mechanisms, helping narrow the large proportion of “idiopathic” ET.
Collapse
Affiliation(s)
- Luca Marsili
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Kevin R. Duque
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Rachel L. Bode
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| | - Alberto J. Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Alberto J. Espay
| |
Collapse
|
29
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
30
|
Loureiro JR, Castro AF, Figueiredo AS, Silveira I. Molecular Mechanisms in Pentanucleotide Repeat Diseases. Cells 2022; 11:cells11020205. [PMID: 35053321 PMCID: PMC8773600 DOI: 10.3390/cells11020205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.
Collapse
Affiliation(s)
- Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana S. Figueiredo
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-2240-8800
| |
Collapse
|
31
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
32
|
The molecular pathogenesis of repeat expansion diseases. Biochem Soc Trans 2021; 50:119-134. [PMID: 34940797 DOI: 10.1042/bst20200143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Expanded short tandem repeats in the genome cause various monogenic diseases, particularly neurological disorders. Since the discovery of a CGG repeat expansion in the FMR1 gene in 1991, more than 40 repeat expansion diseases have been identified to date. In the coding repeat expansion diseases, in which the expanded repeat sequence is located in the coding regions of genes, the toxicity of repeat polypeptides, particularly misfolding and aggregation of proteins containing an expanded polyglutamine tract, have been the focus of investigation. On the other hand, in the non-coding repeat expansion diseases, in which the expanded repeat sequence is located in introns or untranslated regions, the toxicity of repeat RNAs has been the focus of investigation. Recently, these repeat RNAs were demonstrated to be translated into repeat polypeptides by the novel mechanism of repeat-associated non-AUG translation, which has extended the research direction of the pathological mechanisms of this disease entity to include polypeptide toxicity. Thus, a common pathogenesis has been suggested for both coding and non-coding repeat expansion diseases. In this review, we briefly outline the major pathogenic mechanisms of repeat expansion diseases, including a loss-of-function mechanism caused by repeat expansion, repeat RNA toxicity caused by RNA foci formation and protein sequestration, and toxicity by repeat polypeptides. We also discuss perturbation of the physiological liquid-liquid phase separation state caused by these repeat RNAs and repeat polypeptides, as well as potential therapeutic approaches against repeat expansion diseases.
Collapse
|
33
|
Maia N, Nabais Sá MJ, Melo-Pires M, de Brouwer APM, Jorge P. Intellectual disability genomics: current state, pitfalls and future challenges. BMC Genomics 2021; 22:909. [PMID: 34930158 PMCID: PMC8686650 DOI: 10.1186/s12864-021-08227-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID) can be caused by non-genetic and genetic factors, the latter being responsible for more than 1700 ID-related disorders. The broad ID phenotypic and genetic heterogeneity, as well as the difficulty in the establishment of the inheritance pattern, often result in a delay in the diagnosis. It has become apparent that massive parallel sequencing can overcome these difficulties. In this review we address: (i) ID genetic aetiology, (ii) clinical/medical settings testing, (iii) massive parallel sequencing, (iv) variant filtering and prioritization, (v) variant classification guidelines and functional studies, and (vi) ID diagnostic yield. Furthermore, the need for a constant update of the methodologies and functional tests, is essential. Thus, international collaborations, to gather expertise, data and resources through multidisciplinary contributions, are fundamental to keep track of the fast progress in ID gene discovery.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| | - Maria João Nabais Sá
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Manuel Melo-Pires
- Serviço de Neuropatologia, Centro Hospitalar e Universitário do Porto (CHUPorto), Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Paula Jorge
- Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| |
Collapse
|
34
|
Bentley-Ford MR, Andersen RS, Croyle MJ, Haycraft CJ, Clearman KR, Foote JB, Reiter JF, Yoder BK. ATXN10 Is Required for Embryonic Heart Development and Maintenance of Epithelial Cell Phenotypes in the Adult Kidney and Pancreas. Front Cell Dev Biol 2021; 9:705182. [PMID: 34970537 PMCID: PMC8712648 DOI: 10.3389/fcell.2021.705182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Atxn10 is a gene known for its role in cytokinesis and is associated with spinocerebellar ataxia (SCA10), a slowly progressing cerebellar syndrome caused by an intragenic pentanucleotide repeat expansion. Atxn10 is also implicated in the ciliopathy syndromes nephronophthisis (NPHP) and Joubert syndrome (JBTS), which are caused by the disruption of cilia function leading to nephron loss, impaired renal function, and cerebellar hypoplasia. How Atxn10 disruption contributes to these disorders remains unknown. Here, we generated Atxn10 congenital and conditional mutant mouse models. Our data indicate that while ATXN10 protein can be detected around the base of the cilium as well as in the cytosol, its loss does not cause overt changes in cilia formation or morphology. Congenital loss of Atxn10 results in embryonic lethality around E10.5 associated with pericardial effusion and loss of trabeculation. Similarly, tissue-specific loss of ATXN10 in the developing endothelium (Tie2-Cre) and myocardium (cTnT-Cre) also results in embryonic lethality with severe cardiac malformations occurring in the latter. Using an inducible Cagg-CreER to disrupt ATXN10 systemically at postnatal stages, we show that ATXN10 is also required for survival in adult mice. Loss of ATXN10 results in severe pancreatic and renal abnormalities leading to lethality within a few weeks post ATXN10 deletion in adult mice. Evaluation of these phenotypes further identified rapid epithelial-to-mesenchymal transition (EMT) in these tissues. In the pancreas, the phenotype includes signs of both acinar to ductal metaplasia and EMT with aberrant cilia formation and severe defects in glucose homeostasis related to pancreatic insufficiency or defects in feeding or nutrient intake. Collectively, this study identifies ATXN10 as an essential protein for survival.
Collapse
Affiliation(s)
- Melissa R. Bentley-Ford
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Reagan S. Andersen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J. Croyle
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J. Haycraft
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelsey R. Clearman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy B. Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, University of Alabama at Birmingham, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, United States
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Ataxin-10 Inhibits TNF- α-Induced Endothelial Inflammation via Suppressing Interferon Regulatory Factor-1. Mediators Inflamm 2021; 2021:7042148. [PMID: 34858081 PMCID: PMC8632433 DOI: 10.1155/2021/7042148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023] Open
Abstract
Endothelial inflammation is a crucial event in the initiation of atherosclerosis. Here, we identify Ataxin-10 protein as a novel negative modulator of endothelial activation by suppressing IRF-1 transcription activity. The protein level of Ataxin-10 is relatively higher in human vascular endothelial cells, which can be significantly suppressed by TNF-α in both HUVECs and HLMECs. Overexpression of Ataxin-10 markedly inhibited the mRNA expressions of VCAM-1 and several cytokines including MCP-1, CXCL-1, CCL-5, and TNF-α; thus, it can also suppress monocyte adhesion to endothelial cells. Accordingly, Ataxin-10 silencing promoted endothelial inflammation. However, Ataxin-10 did not affect the MAPK/NF-κB signaling pathway stimulated by TNF-α in HUVECs. Using the yeast two-hybrid assay, we found that Ataxin-10 can directly bind to interferon regulatory factor-1 (IRF-1). Upon TNF-α stimulation, Ataxin-10 promoted the cytoplasmic localization of IRF-1, which inhibited the transcription of VCAM-1. Moreover, knockdown of IRF-1 can eliminate the effect of Ataxin-10 on the expression of VCAM-1 in HUVECs induced by TNF-α. Taken together, these results indicate that Ataxin-10 inhibits endothelial cell activation and may serve as a promising therapeutic target for some vascular inflammatory-related diseases such as atherosclerosis.
Collapse
|
36
|
Su Y, Fan L, Shi C, Wang T, Zheng H, Luo H, Zhang S, Hu Z, Fan Y, Dong Y, Yang J, Mao C, Xu Y. Deciphering Neurodegenerative Diseases Using Long-Read Sequencing. Neurology 2021; 97:423-433. [PMID: 34389649 PMCID: PMC8408508 DOI: 10.1212/wnl.0000000000012466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Neurodegenerative diseases exhibit chronic progressive lesions in the central and peripheral nervous systems with unclear causes. The search for pathogenic mutations in human neurodegenerative diseases has benefited from massively parallel short-read sequencers. However, genomic regions, including repetitive elements, especially with high/low GC content, are far beyond the capability of conventional approaches. Recently, long-read single-molecule DNA sequencing technologies have emerged and enabled researchers to study genomes, transcriptomes, and metagenomes at unprecedented resolutions. The identification of novel mutations in unresolved neurodegenerative disorders, the characterization of causative repeat expansions, and the direct detection of epigenetic modifications on naive DNA by virtue of long-read sequencers will further expand our understanding of neurodegenerative diseases. In this article, we review and compare 2 prevailing long-read sequencing technologies, Pacific Biosciences and Oxford Nanopore Technologies, and discuss their applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yali Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
37
|
Chirino-Pérez A, Vaca-Palomares I, Torres DL, Hernandez-Castillo CR, Diaz R, Ramirez-Garcia G, Fernandez-Ruiz J. Cognitive Impairments in Spinocerebellar Ataxia Type 10 and Their Relation to Cortical Thickness. Mov Disord 2021; 36:2910-2921. [PMID: 34327752 DOI: 10.1002/mds.28728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 10 is a neurodegenerative disorder caused by the expansion of an ATTCT pentanucleotide repeat. Its clinical features include ataxia and, in some cases, epileptic seizures. There is, however, a dearth of information about its cognitive deficits and the neural bases underpinning them. OBJECTIVES The objectives of this study were to characterize the performance of spinocerebellar ataxia type 10 patients in 2 cognitive domains typically affected in spinocerebellar ataxias, memory and executive function, and to correlate the identified cognitive impairments with ataxia severity and cerebral/cerebellar cortical thickness, as quantified by MRI. METHODS Memory and executive function tests were administered to 17 genetically confirmed Mexican spinocerebellar ataxia type 10 patients, and their results were compared with 17 healthy matched volunteers. MRI was performed in 16 patients. RESULTS Patients showed deficits in visual and visuospatial short-term memory, reduced storage capacity for verbal memory, and impaired monitoring, planning, and cognitive flexibility, which were ataxia independent. Patients with seizures (n = 9) and without seizures (n = 8) did not differ significantly in cognitive performance. There were significant correlations between short-term visuospatial memory impairment and posterior cerebellar lobe cortical thickness (bilateral lobule VI, IX, and right X). Cognitive flexibility deficiencies correlated with cerebral cortical thickness in the left middle frontal, cingulate, opercular, and temporal gyri. Cerebellar cortical thickness in several bilateral regions was correlated with motor impairment. CONCLUSIONS Patients with spinocerebellar ataxia type 10 show significant memory and executive dysfunction that can be correlated with deterioration in the posterior lobe of the cerebellum and prefrontal, cingulate, and middle temporal cortices.
Collapse
Affiliation(s)
- Amanda Chirino-Pérez
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Israel Vaca-Palomares
- Cognitive and Behavioral Sciences, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana L Torres
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Rosalinda Diaz
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriel Ramirez-Garcia
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Juan Fernandez-Ruiz
- Neuropsychology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.,Faculty of Psychology, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|
38
|
Tateishi-Karimata H, Sugimoto N. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res 2021; 49:7839-7855. [PMID: 34244785 PMCID: PMC8373145 DOI: 10.1093/nar/gkab580] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer and neurodegenerative diseases are caused by genetic and environmental factors. Expression of tumour suppressor genes is suppressed by mutations or epigenetic silencing, whereas for neurodegenerative disease-related genes, nucleic acid-based effects may be presented through loss of protein function due to erroneous protein sequences or gain of toxic function from extended repeat transcripts or toxic peptide production. These diseases are triggered by damaged genes and proteins due to lifestyle and exposure to radiation. Recent studies have indicated that transient, non-canonical structural changes in nucleic acids in response to the environment can regulate the expression of disease-related genes. Non-canonical structures are involved in many cellular functions, such as regulation of gene expression through transcription and translation, epigenetic regulation of chromatin, and DNA recombination. Transcripts generated from repeat sequences of neurodegenerative disease-related genes form non-canonical structures that are involved in protein transport and toxic aggregate formation. Intracellular phase separation promotes transcription and protein assembly, which are controlled by the nucleic acid structure and can influence cancer and neurodegenerative disease progression. These findings may aid in elucidating the underlying disease mechanisms. Here, we review the influence of non-canonical nucleic acid structures in disease-related genes on disease onset and progression.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
39
|
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun 2021; 9:98. [PMID: 34034831 PMCID: PMC8145836 DOI: 10.1186/s40478-021-01201-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. MAIN BODY STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. CONCLUSION We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
Collapse
Affiliation(s)
- Sanjog R. Chintalaphani
- School of Medicine, University of New South Wales, Sydney, 2052 Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050 Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010 Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Molecular Medicine Laboratory and Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2137 Australia
| |
Collapse
|
40
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
41
|
Konno KM, Zonta MB, Guimarães ATB, Camargo CHF, Munhoz RP, Raskin S, Ashizawa T, Teive HAG. Balance and physical functioning in Spinocerebellar ataxias 3 and 10. Acta Neurol Scand 2021; 143:458-463. [PMID: 33251611 DOI: 10.1111/ane.13384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/08/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Limitations of functional capacity and balance are common features of the natural history of spinocerebellar ataxias (SCA). However, their onset and progression patterns differ according to subtype. The aim of our study was to compare physical functionality and balance parameters in SCA10 and SCA3 patients, correlating with clinical variables. MATERIALS & METHODS Cross-sectional study evaluating ninety-five SCA patients (60 with SCA3 and 35 with SCA10) with validated scales for functional independence, balance and the severity of signs and symptoms. RESULTS The groups were similar in terms of age and gender, and results were adjusted for age at symptom onset. The SCA10 patients had better results for balance and functional independence (p < 0.007). They also had lower scores for disease severity (p < 0.0002) and the subitems gait (p < 0.0005), posture (p < 0.0021) and sitting balance (p < 0.0008). Symptom progression in both groups was similar for patients with a disease duration of up to ten years, but there was a more marked decline in SCA3 patients after this period. CONCLUSIONS We have shown that disease progression as assessed by balance and physical functioning is slower in SCA10 patients than SCA3 patients, particularly after 10 years of disease. These findings are important as they can help to characterize the disease, assisting in the development of new therapies and rehabilitation programs.
Collapse
Affiliation(s)
- Katia M. Konno
- Movement Disorders Unit Neurology Service Internal Medicine Department Hospital de Clínicas Curitiba Paraná Brazil
| | - Marise Bueno Zonta
- Movement Disorders Unit Neurology Service Internal Medicine Department Hospital de Clínicas Curitiba Paraná Brazil
- Neurological Diseases Group Postgraduate Program in Internal Medicine Internal Medicine Department Hospital de Clínicas Federal University of Paraná Curitiba Paraná Brazil
| | - Ana T. B. Guimarães
- Center for Biological and Health Sciences State University of Western Paraná Cascavel Paraná Brazil
| | - Carlos Henrique F. Camargo
- Neurological Diseases Group Postgraduate Program in Internal Medicine Internal Medicine Department Hospital de Clínicas Federal University of Paraná Curitiba Paraná Brazil
| | - Renato Puppi Munhoz
- Gloria and Morton Shulman Movement Disorders Centre Toronto Western HospitalUniversity of Toronto Toronto Ontario Canada
| | - Salmo Raskin
- Genetika ‐ Centro de Aconselhamento e Laboratório de Genética Curitiba Paraná Brazil
| | - Tetsuo Ashizawa
- Neuroscience Research Program Houston Methodist Neurological Institute and Research Institute Weill Cornell Medical College Houston Texas USA
| | - Helio A. G. Teive
- Movement Disorders Unit Neurology Service Internal Medicine Department Hospital de Clínicas Curitiba Paraná Brazil
- Neurological Diseases Group Postgraduate Program in Internal Medicine Internal Medicine Department Hospital de Clínicas Federal University of Paraná Curitiba Paraná Brazil
| |
Collapse
|
42
|
Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem Soc Trans 2021; 49:775-792. [PMID: 33729487 PMCID: PMC8106499 DOI: 10.1042/bst20200690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.
Collapse
|
43
|
Response to ATXN10 Microsatellite Distribution in a Peruvian Amerindian Population. THE CEREBELLUM 2021; 20:946-947. [PMID: 33728569 DOI: 10.1007/s12311-021-01258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
|
44
|
Zhou Y, Sood R, Wang Q, Carrington B, Park M, Young AC, Birnbaum D, Liu Z, Ashizawa T, Mullikin JC, Koubeissi MZ, Liu P. Clinical and genomic analysis of a large Chinese family with familial cortical myoclonic tremor with epilepsy and SAMD12 intronic repeat expansion. Epilepsia Open 2021; 6:102-111. [PMID: 33681653 PMCID: PMC7918340 DOI: 10.1002/epi4.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/07/2020] [Accepted: 11/14/2020] [Indexed: 01/13/2023] Open
Abstract
Objective Our goal was to perform detailed clinical and genomic analysis of a large multigenerational Chinese family with 21 individuals showing symptoms of Familial Cortical Myoclonic Tremor with Epilepsy (FCMTE) that we have followed for over 20 years. Methods Patients were subjected to clinical evaluation, routine EEG, and structural magnetic resonance imaging. Whole exome sequencing, repeat-primed PCR, long-range PCR, and PacBio sequencing were performed to characterize the disease-causing mutation in this family. Results All evaluated patients manifested adult-onset seizures and presented with progressive myoclonic postural tremors starting after the third or fourth decade of life. Seizures typically diminished markedly in frequency with implementation of antiseizure medications but did not completely cease. The electroencephalogram of affected individuals showed generalized or multifocal spikes and slow wave complexes. An expansion of TTTTA motifs with addition of TTTCA motifs in intron 4 of SAMD12 was identified to segregate with the disease phenotype in this family. Furthermore, we found that the mutant allele is unstable and can undergo both contraction and expansion by changes in the number of repeat motifs each time it is passed to the next generation. The size of mutant allele varied from 5 to 5.5 kb with 549-603 copies of TTTTA and 287-343 copies of TTTCA repeat motifs in this family. Significance Our study provides a detailed description of clinical progression of FCMTE symptoms and its management with antiseizure medications. Our method of repeat analysis by PacBio sequencing of long-range PCR products does not require high-quality DNA and hence can be easily applied to other families to elucidate any correlation between the repeat size and phenotypic variables, such as, age of onset, and severity of symptoms.
Collapse
Affiliation(s)
- Yongxing Zhou
- Department of NeurologyMedStar St Mary’s Hospital/Georgetown University HospitalMedStar Medical GroupLeonardtownMDUSA
| | - Raman Sood
- Translational and Functional Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Qun Wang
- Epilepsy CenterDepartment of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Blake Carrington
- Translational and Functional Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Morgan Park
- NIH Intramural Sequencing CenterNational Human Genome Research InstituteNational Institutes of HealthRockvilleMDUSA
| | - Alice C. Young
- NIH Intramural Sequencing CenterNational Human Genome Research InstituteNational Institutes of HealthRockvilleMDUSA
| | - Daniel Birnbaum
- Department of NeurologyEinstein Medical CenterPhiladelphiaPAUSA
| | - Zhao Liu
- Division of Pediatric NeurologyChildren's Hospital of IllinoisUniversity of Illinois College of MedicineChicagoILUSA
| | - Tetsuo Ashizawa
- Houston Methodist Neurological Institute and Research InstituteHoustonTXUSA
| | - James C. Mullikin
- NIH Intramural Sequencing CenterNational Human Genome Research InstituteNational Institutes of HealthRockvilleMDUSA
| | - Mohamad Z. Koubeissi
- Epilepsy CenterDepartment of NeurologyGeorge Washington UniversityWashingtonDCUSA
| | - Paul Liu
- Translational and Functional Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
45
|
Shibata T, Nagano K, Ueyama M, Ninomiya K, Hirose T, Nagai Y, Ishikawa K, Kawai G, Nakatani K. Small molecule targeting r(UGGAA) n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nat Commun 2021; 12:236. [PMID: 33431896 PMCID: PMC7801683 DOI: 10.1038/s41467-020-20487-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Synthetic small molecules modulating RNA structure and function have therapeutic potential for RNA diseases. Here we report our discovery that naphthyridine carbamate dimer (NCD) targets disease-causing r(UGGAA)n repeat RNAs in spinocerebellar ataxia type 31 (SCA31). Structural analysis of the NCD-UGGAA/UGGAA complex by nuclear magnetic resonance (NMR) spectroscopy clarifies the mode of binding that recognizes four guanines in the UGGAA/UGGAA pentad by hydrogen bonding with four naphthyridine moieties of two NCD molecules. Biological studies show that NCD disrupts naturally occurring RNA foci built on r(UGGAA)n repeat RNA known as nuclear stress bodies (nSBs) by interfering with RNA–protein interactions resulting in the suppression of nSB-mediated splicing events. Feeding NCD to larvae of the Drosophila model of SCA31 alleviates the disease phenotype induced by toxic r(UGGAA)n repeat RNA. These studies demonstrate that small molecules targeting toxic repeat RNAs are a promising chemical tool for studies on repeat expansion diseases. Synthetic small molecules modulating RNA structure and function have therapeutic potential for RNA diseases. Here the authors show the mechanism by which a small molecule targets the disease-causing r(UGGAA)n repeat RNAs in spinocerebellar ataxia type 31.
Collapse
Affiliation(s)
- Tomonori Shibata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki, Japan
| | - Konami Nagano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kensuke Ninomiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kinya Ishikawa
- Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki, Japan.
| |
Collapse
|
46
|
Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. J Huntingtons Dis 2021; 10:7-33. [PMID: 33579863 PMCID: PMC7990401 DOI: 10.3233/jhd-200429] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation for a number of inherited human disorders, including Huntington's disease (HD), opened up a new era of human genetics and provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems, somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention. Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
Collapse
Affiliation(s)
- Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
47
|
Han F, Su D, Qu C. Spinocerebellar ataxia type 40: A case report and literature review. Transl Neurosci 2021; 12:379-384. [PMID: 34721893 PMCID: PMC8525662 DOI: 10.1515/tnsci-2020-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases with ataxia as the main clinical manifestation. The phenotypes, gene mutations, and involved sites of different subtypes show a high degree of heterogeneity. The incidence of SCA varies greatly among different subtypes and the case of SCA40 is extremely rare. The aim of this study is to report a rare case of SCA40 and systematically review the incidence, gene mutation, and phenotype of SCAs, especially SCA40.
Collapse
Affiliation(s)
- Fengyue Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| | - Dan Su
- Department of Neurology, Jinan Shizhong District People's Hospital, Jinan, Shandong, 250100, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
48
|
Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol Mol Biol Rev 2020; 85:85/1/e00110-20. [PMID: 33361270 DOI: 10.1128/mmbr.00110-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duplex DNA naturally folds into a right-handed double helix in physiological conditions. Some sequences of unusual base composition may nevertheless form alternative structures, as was shown for many repeated sequences in vitro However, evidence for the formation of noncanonical structures in living cells is difficult to gather. It mainly relies on genetic assays demonstrating their function in vivo or through genetic instability reflecting particular properties of such structures. Efforts were made to reveal their existence directly in a living cell, mainly by generating antibodies specific to secondary structures or using chemical ligands selected for their affinity to these structures. Among secondary structure-forming DNAs are G-quadruplexes, human fragile sites containing minisatellites, AT-rich regions, inverted repeats able to form cruciform structures, hairpin-forming CAG/CTG triplet repeats, and triple helices formed by homopurine-homopyrimidine GAA/TTC trinucleotide repeats. Many of these alternative structures are involved in human pathologies, such as neurological or developmental disorders, as in the case of trinucleotide repeats, or cancers triggered by translocations linked to fragile sites. This review will discuss and highlight evidence supporting the formation of alternative DNA structures in vivo and will emphasize the role of the mismatch repair machinery in binding mispaired DNA duplexes, triggering genetic instability.
Collapse
|
49
|
Bhanushali AA, Venkatesan R, Das BR. Spinocerebellar Ataxias in India: Three‑year Molecular Data from a Central Reference Laboratory. Neurol India 2020; 68:86-91. [PMID: 32129252 DOI: 10.4103/0028-3886.279666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction There is a great deal of heterogeneity, both phenotypically and genotypically among the autosomal dominant cerebellar ataxias (ADCA). Their prevalence also varies in different populations. Trinucleotide repeat expansions (CTG/CAG) have been shown predominantly to cause a number of ADCAs. Aim The present study describes the frequency of spinocerebellar ataxias (SCA) and the CAG repeat sizes among the different regions of India. Settings and Design Molecular data from our central reference laboratory were retrospectively analyzed for SCAs 1, 2, 3, 6, 7, 10, 12, 17 and DRPLA. Correlation between age at diagnosis and the CAG repeats of the expanded and the normal alleles were tested with the Spearman correlation test. Results The presence of SCAs vary according to geographical regions and ethnicities; SCA 12 was detected with the highest frequency (229/901), but was restricted to a specific ethnic population, followed by SCA 2 with a positivity of 12% (101/845). SCA 3 previously known as Machado-Joseph Disease had a prevalence of 4.05% (32/789), whereas SCA 1 was diagnosed in 30/773 (3.88%). No positivity was seen for SCA 10 from the 103 samples tested and for SCA 17 from the 131 samples tested either as a part of an extended panel or stand-alone. Conclusion In this report, we are able to expand the portrait of SCAs in India by presenting the largest ever molecular data from a central reference laboratory.
Collapse
Affiliation(s)
| | | | - Bibhu R Das
- Research and Development, Mumbai, Maharashtra, India
| |
Collapse
|
50
|
Nakamori M, Mochizuki H. Targeting Expanded Repeats by Small Molecules in Repeat Expansion Disorders. Mov Disord 2020; 36:298-305. [DOI: 10.1002/mds.28397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|