1
|
Lang F, Rönicke F, Wagenknecht HA. Cell-resistant wavelength-shifting molecular beacons made of L-DNA and a clickable L-configured uridine. Org Biomol Chem 2024; 22:4568-4573. [PMID: 38771639 DOI: 10.1039/d4ob00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Wavelength-shifting molecular beacons were prepared from L-DNA. The clickable anchor for the two dyes, Cy3 and Cy5, was 2'-O-propargyl-L-uridine and was synthesized from L-ribose. Four clickable molecular beacons were prepared and double-modified with the azide dyes by a combination of click chemistry on a solid support for Cy3 during DNA synthesis and postsynthetic click chemistry for Cy5 in solution. Cy3 and Cy5 successfully formed a FRET pair in the beacons, and the closed form (red fluorescence) and the open form (green fluorescence) can be distinguished by the two-color fluorescence readout. Two molecular beacons were identified to show the greatest fluorescence contrast in temperature-dependent fluorescence measurements. The stability of the L-configured molecular beacons was demonstrated after several heating and cooling cycles as well as in the cell lysate. In comparison, D-configured molecular beacons showed a rapid decrease of fluorescence contrast in the cell lysate, which is caused by the opening of the beacons, probably due to degradation. This was confirmed in cell experiments using confocal microscopy. The L-configured molecular beacons are potential intracellular thermometers for future applications.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Tan E, Selden RF. Rapid and Sensitive Human-Specific DNA Quantitation Using a Microfluidic Amplification Module at the Point-of-Care. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083671 DOI: 10.1109/embc40787.2023.10340932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
A rapid microfluidic human-specific DNA quantitation assay module was developed for chip-based amplification of the human TH01 and Alu loci in the presence of PicoGreen. The method makes use of the thermal cycler and 488 nm Solid State laser-based optical train that are components of the fully-integrated, sample-in to results out, ANDE Rapid Nucleic Acid Analysis system. The assay was effective in quantitating human DNA from a variety of sample types, including blood, buccal, and forensic touch samples mixed with varying amounts of non-human DNA. The 28-cycle TH01 and 10-cycle Alu reactions were completed in 18 minutes and 7 minutes, respectively. The observed limit of detection (LOD) of the assay is approximately 0.3 ng, and the flexibility of assay design allows an LOD of as little as 0.005 femtograms.Clinical Relevance-We have developed a fully-integrated, sample-in to results-out, Rapid Nucleic Acid Analysis system that characterizes nucleic acid fragments (whether generated by PCR, rt-PCR, sequencing, or SNP reactions) by electrophoresis in plastic microfluidic channels. Here we describe the development, characterization, and validation of the microfluidic quantitation module. The quantitation module is the first that can be incorporated into integrated microfluidic workflows for the analysis of highly-multiplexed clinical diagnostic assays interrogating hundreds of genomic targets in a single sample. In particular, the use of a microfluidic quantitation module allows reaction volumes, thermal cycling conditions, and electrophoretic injection protocols to be determined based on nucleic acid content during and throughout fully-automated processing-dramatically enhancing the power of the fully-automated diagnostic system.
Collapse
|
3
|
Mao Y, Xu K, Miglietta L, Kreitmann L, Moser N, Georgiou P, Holmes A, Rodriguez-Manzano J. Deep Domain Adaptation Enhances Amplification Curve Analysis for Single-Channel Multiplexing in Real-Time PCR. IEEE J Biomed Health Inform 2023; 27:3093-3103. [PMID: 37028376 DOI: 10.1109/jbhi.2023.3257727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Data-driven approaches for molecular diagnostics are emerging as an alternative to perform an accurate and inexpensive multi-pathogen detection. A novel technique called Amplification Curve Analysis (ACA) has been recently developed by coupling machine learning and real-time Polymerase Chain Reaction (qPCR) to enable the simultaneous detection of multiple targets in a single reaction well. However, target classification purely relying on the amplification curve shapes faces several challenges, such as distribution discrepancies between different data sources (i.e., training vs testing). Optimisation of computational models is required to achieve higher performance of ACA classification in multiplex qPCR through the reduction of those discrepancies. Here, we proposed a novel transformer-based conditional domain adversarial network (T-CDAN) to eliminate data distribution differences between the source domain (synthetic DNA data) and the target domain (clinical isolate data). The labelled training data from the source domain and unlabelled testing data from the target domain are fed into the T-CDAN, which learns both domains' information simultaneously. After mapping the inputs into a domain-irrelevant space, T-CDAN removes the feature distribution differences and provides a clearer decision boundary for the classifier, resulting in a more accurate pathogen identification. Evaluation of 198 clinical isolates containing three types of carbapenem-resistant genes (blaNDM, blaIMP and blaOXA-48) illustrates a curve-level accuracy of 93.1% and a sample-level accuracy of 97.0% using T-CDAN, showing an accuracy improvement of 20.9% and 4.9% respectively. This research emphasises the importance of deep domain adaptation to enable high-level multiplexing in a single qPCR reaction, providing a solid approach to extend qPCR instruments' capabilities in real-world clinical applications.
Collapse
|
4
|
Schöllkopf S, Knoll A, Homer A, Seitz O. Double FIT hybridization probes – towards enhancing brightness, turn-on and specificity of RNA detection. Chem Sci 2023; 14:4166-4173. [PMID: 37063796 PMCID: PMC10094420 DOI: 10.1039/d3sc00363a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Efficient fluorogenic hybridization probes combine high brightness and specificity of fluorescence signaling with large turn-on of fluorescence.
Collapse
Affiliation(s)
- Sophie Schöllkopf
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Andrea Knoll
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Amal Homer
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
5
|
Choijookhuu N, Shibata Y, Ishizuka T, Xu Y, Koji T, Hishikawa Y. An Advanced Detection System for In Situ Hybridization Using a Fluorescence Resonance Energy Transfer-based Molecular Beacon Probe. Acta Histochem Cytochem 2022; 55:119-128. [PMID: 36405552 PMCID: PMC9631986 DOI: 10.1267/ahc.22-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/24/2023] Open
Abstract
In situ hybridization (ISH) is a powerful method for detecting specific RNAs at the cellular level. Although conventional ISH using hapten-labeled probes are useful for detecting multiple RNAs, the detection procedures are still complex and required longer time. Therefore, we introduced a new application of fluorescence resonance energy transfer (FRET)-based molecular beacon (MB) probes for ISH. MCF-7 cells and C57BL/6J mouse uterus were used for ISH. MB probes for ERα mRNA and 28S rRNA were labeled with Cy3/BHQ-2 and 6-FAM/DABCYL, and conventional probes were labeled with digoxigenin. Fluorescence measurements revealed that of more-rapid hybridization kinetics compared to conventional probes. In MCF-7 cells, 28S rRNA was detected in nucleolus and cytoplasm of all cells, whereas ERα mRNA was detected in some nucleolus. In the uterus, 28S rRNA was clearly detected using complementary MB probe, but there were no signals in control slides. Moreover, 28S rRNA was detected in all cells, whereas ERα mRNA was detected mainly in the epithelium. Fluorescence intensity of 28S rRNA was decreased significantly in 1 or 2 base-mismatched sequences, that indicates highly specific detection of target RNAs. In conclusion, the FRET-based MB probes are very useful for ISH, providing rapid hybridization, high sensitivity and specificity.
Collapse
Affiliation(s)
- Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Yasuaki Shibata
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1–12–4 Sakamoto, Nagasaki 852–8523, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1–12–4 Sakamoto, Nagasaki 852–8523, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan,Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889–1692, Japan
| |
Collapse
|
6
|
Tu T, Huan S, Ke G, Zhang X. Functional Xeno Nucleic Acids for Biomedical Application. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-2186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Tu T, Huan S, Ke G, Zhang X. Functional Xeno Nucleic Acids for Biomedical Application. Chem Res Chin Univ 2022:1-7. [PMID: 35814030 PMCID: PMC9253239 DOI: 10.1007/s40242-022-2186-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Functional nucleic acids(FNAs) refer to a type of oligonucleotides with functions over the traditional genetic roles of nucleic acids, which have been widely applied in screening, sensing and imaging fields. However, the potential application of FNAs in biomedical field is still restricted by the unsatisfactory stability, biocompatibility, biodistribution and immunity of natural nucleic acids(DNA/RNA). Xeno nucleic acids(XNAs) are a kind of nucleic acid analogues with chemically modified sugar groups that possess improved biological properties, including improved biological stability, increased binding affinity, reduced immune responses, and enhanced cell penetration or tissue specificity. In the last two decades, scientists have made great progress in the research of functional xeno nucleic acids, which makes it an emerging attractive biomedical application material. In this review, we summarized the design of functional xeno nucleic acids and their applications in the biomedical field.
Collapse
Affiliation(s)
- Tingting Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
8
|
Optimization and performance evaluation of double-stranded probe in real-time PCR. Anal Biochem 2022; 650:114711. [PMID: 35561816 DOI: 10.1016/j.ab.2022.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND TaqMan probe-based real-time PCR (qPCR/RT-qPCR) has been widely used in various fields because of its high sensitivity and specificity. However, TaqMan probes are associated with a relatively higher background signal, and hence negatively affect the detection results. METHODS Double-stranded probes (DSPs) were designed for the high sensitive detection of hepatitis B virus (HBV) DNA and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA using qPCR/RT-qPCR. DSPs consist of different lengths of positive and negative strands with complementary oligonucleotides. We systematically optimized DSP length, the free energy of hybridization (ΔG) between complementary oligonucleotides, and the length of sticky ends, and DSP performance was evaluated in comparison with other types of probes. RESULTS By using similar length positive and negative strands, controlling ΔG between complementary oligonucleotides to approximately -30 kcal/mol, and maintaining the sticky end length at 4-6 nt, the analytical performance of DSP was significantly improved. Compared with other types of probes, DSP is advantageous in fluorescence signal intensity and sensitivity. CONCLUSION DSPs can further improve the detection sensitivity and the detection rate of low-concentration samples in molecular diagnosis.
Collapse
|
9
|
Vargas DY, Tyagi S, Marras SA, Moerzinger P, Abin-Carriquiry JA, Cuello M, Rodriguez C, Martinez A, Makhnin A, Farina A, Patel C, Chuang TL, Li BT, Kramer FR. Multiplex SuperSelective PCR Assays for the Detection and Quantitation of Rare Somatic Mutations in Liquid Biopsies. J Mol Diagn 2022; 24:189-204. [PMID: 34954118 PMCID: PMC8961470 DOI: 10.1016/j.jmoldx.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
SuperSelective primers, by virtue of their unique design, enable the simultaneous identification and quantitation of inherited reference genes and rare somatic mutations in routine multiplex PCR assays, while virtually eliminating signals from abundant wild-type sequences closely related to the target mutations. These assays are sensitive, specific, rapid, and low cost, and can be performed in widely available spectrofluorometric thermal cyclers. Herein, we provide examples of SuperSelective PCR assays that target eight different somatic EGFR mutations, irrespective of whether they occur in the same codon, occur at separate sites within the same exon, or involve deletions. In addition, we provide examples of SuperSelective PCR assays that detect specific EGFR mutations in circulating tumor DNA present in the plasma of liquid biopsies obtained from patients with non-small-cell lung cancer. The results suggest that multiplex SuperSelective PCR assays may enable the choice, and subsequent modification, of effective targeted therapies for the treatment of an individual's cancer, utilizing frequent noninvasive liquid biopsies.
Collapse
Affiliation(s)
- Diana Y. Vargas
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Salvatore A.E. Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | | | - Mauricio Cuello
- Servicio de Oncología Clínica, Hospital de Clínicas, Montevideo, Uruguay
| | - Clara Rodriguez
- Servicio de Oncología Clínica, Hospital de Clínicas, Montevideo, Uruguay
| | | | - Alex Makhnin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Farina
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chintan Patel
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tuan L. Chuang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bob T. Li
- Memorial Sloan Kettering Cancer Center, New York, New York,Weill-Cornell Medicine, New York, New York,Address correspondence to Fred R. Kramer, Ph.D., Public Health Research Institute, 225 Warren St., Newark, NJ 07103; or Bob T. Li, M.D., Thoracic Liquid Biopsy Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065.
| | - Fred R. Kramer
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey,Address correspondence to Fred R. Kramer, Ph.D., Public Health Research Institute, 225 Warren St., Newark, NJ 07103; or Bob T. Li, M.D., Thoracic Liquid Biopsy Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065.
| |
Collapse
|
10
|
Chen Y. Recent progress in fluorescent aptasensors for the detection of aflatoxin B1 in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:86-96. [PMID: 34897320 DOI: 10.1039/d1ay01714d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 pollution is one of the most critical issues of food safety and has been categorized as a group I carcinogen by the International Agency for Research on Cancer. Aflatoxin B1 exists in various foods and feedstuff products and can be produced and contaminate food products in all processes, including growth, harvest, storage, or processing. Therefore, it is of great value for detecting and on-site monitoring aflatoxin B1. Aptamers are short single-stranded DNA or RNA obtained from the nucleic acid molecular library through SELEX. With advantages of high specificity, large affinity, and easy modification, aptasensors have become popular in a wide range of promising applications. This review focuses on recent advances on fluorescent aptamer sensors for the detection of aflatoxin B1, including their design strategies, working mechanisms, and applications to on-site detection. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Chu X, Zhu D, Liu M, Kong L, Ai S. Moderate stability of a scissor double fluorescent triple helix molecular switch for the ultrasensitive biosensing of crop transgene. NEW J CHEM 2022. [DOI: 10.1039/d2nj00647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic of the ultrasensitive biosensing of special genes. (I: traditional molecular beacon detection method; II: scissor DFTHMS; III: three cases of BHQ-1-TFO).
Collapse
Affiliation(s)
- Xiuling Chu
- Shandong Taian Ecological Environment Monitoring Center, Taian 271000, P. R. China
| | - Desong Zhu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| | - Min Liu
- Shandong Qingdao Ecological Environment Monitoring Center, Qingdao 266000, P. R. China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian 271018, P. R. China
| | - Shiyun Ai
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
12
|
Kempf O, Ullmann GM, Schobert R, Kempf K, Bombarda E. Chemoselective Attachment of the Water-Soluble Dark Quencher Hydrodabcyl to Amino Groups in Peptides and Preservation of Its Spectroscopic Properties over a Wide pH Range. ACS OMEGA 2021; 6:32896-32903. [PMID: 34901640 PMCID: PMC8655893 DOI: 10.1021/acsomega.1c04891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
The water-soluble quencher hydrodabcyl can be activated as an N-succinimidyl ester that is readily accessible from crude hydrodabcyl and storable for a long time. With primary and secondary amines, it reacts swiftly and chemoselectively, even in the presence of other competing nucleophiles such as those typically present in natural peptides. One of the three phenolic OH groups of hydrodabcyl is amenable to selective mono-Boc protection resulting in reduced polarity, advantageous to its further use in organic synthesis. The advantages of hydrodabcyl over dabcyl in spectrometric applications are exemplified by the pH dependence of its absorbance spectra.
Collapse
Affiliation(s)
- Oxana Kempf
- Department
of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - G. Matthias Ullmann
- Computational
Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Organic
Chemistry Laboratory, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Karl Kempf
- ISM, University of Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Elisa Bombarda
- Department
of Biochemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
13
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
14
|
Tabara K, Watanabe K, Shigeto H, Yamamura S, Kishi T, Kitamatsu M, Ohtsuki T. Fluorophore-PNA-Quencher/Quencher-DNA probe for miRNA detection. Bioorg Med Chem Lett 2021; 51:128359. [PMID: 34534675 DOI: 10.1016/j.bmcl.2021.128359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Micro RNAs (miRNAs) are involved in a variety of biological functions and are attracting attention as diagnostic and prognostic markers for various diseases. Highly sensitive RNA detection methods are required to determine miRNA expression levels and intracellular localization. In this study, we designed new double-stranded peptide nucleic acid (PNA)/DNA probes consisting of a fluorophore-PNA-quencher (fPq) and a quencher-DNA (qD) for miR-221 detection. We optimized the fPq structure, PNA-DNA hybrid length, and hybrid position. The resultant fPq-2/qD-6b probe was a 6-bp hybrid probe with a 10-base fPq and a 6-base qD. The signal-to-background ratios of the probes showed that fPq-2/qD-6b had a higher target sensitivity than fPq (PNA beacon)-type and fP/qD-type probes. The results of the detection limit and target specificity indicate that the fPq/qD probe is promising for RNA detection in both cells and cell extracts as well as for miRNA diagnosis.
Collapse
Affiliation(s)
- Kentaro Tabara
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hajime Shigeto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Shohei Yamamura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Takamasa Kishi
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Mizuki Kitamatsu
- Department of Applied Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
15
|
Shen L, Wang P, Ke Y. DNA Nanotechnology-Based Biosensors and Therapeutics. Adv Healthc Mater 2021; 10:e2002205. [PMID: 34085411 DOI: 10.1002/adhm.202002205] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past few decades, DNA nanotechnology engenders a vast variety of programmable nanostructures utilizing Watson-Crick base pairing. Due to their precise engineering, unprecedented programmability, and intrinsic biocompatibility, DNA nanostructures cannot only interact with small molecules, nucleic acids, proteins, viruses, and cancer cells, but also can serve as nanocarriers to deliver different therapeutic agents. Such addressability innate to DNA nanostructures enables their use in various fields of biomedical applications such as biosensors and cancer therapy. This review is begun with a brief introduction of the development of DNA nanotechnology, followed by a summary of recent applications of DNA nanostructures in biosensors and therapeutics. Finally, challenges and opportunities for practical applications of DNA nanotechnology are discussed.
Collapse
Affiliation(s)
- Luyao Shen
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Pengfei Wang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
16
|
Barnoin G, Shaya J, Richert L, Le HN, Vincent S, Guérineau V, Mély Y, Michel BY, Burger A. Intermolecular dark resonance energy transfer (DRET): upgrading fluorogenic DNA sensing. Nucleic Acids Res 2021; 49:e72. [PMID: 33872373 PMCID: PMC8266640 DOI: 10.1093/nar/gkab237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The sensitivity of FRET-based sensing is usually limited by the spectral overlaps of the FRET donor and acceptor, which generate a poor signal-to-noise ratio. To overcome this limitation, a quenched donor presenting a large Stokes shift can be combined with a bright acceptor to perform Dark Resonance Energy Transfer (DRET). The consequent fluorogenic response from the acceptor considerably improves the signal-to-noise ratio. To date, DRET has mainly relied on a donor that is covalently bound to the acceptor. In this context, our aim was to develop the first intermolecular DRET pair for specific sensing of nucleic acid sequences. To this end, we designed DFK, a push-pull probe based on a fluorenyl π-platform that is strongly quenched in water. DFK was incorporated into a series of oligonucleotides and used as a DRET donor with Cy5-labeled complementary sequences. In line with our expectations, excitation of the dark donor in the double-labeled duplex switched on the far-red Cy5 emission and remained free of cross-excitation. The DRET mechanism was supported by time-resolved fluorescence measurements. This concept was then applied with binary probes, which confirmed the distance dependence of DRET as well as its potency in detecting sequences of interest with low background noise.
Collapse
Affiliation(s)
- Guillaume Barnoin
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Janah Shaya
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Hoang-Ngoan Le
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Steve Vincent
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Benoît Y Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| | - Alain Burger
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272 - Parc Valrose, 06108 Nice cedex 2, France
| |
Collapse
|
17
|
Podder A, Lee HJ, Kim BH. Fluorescent Nucleic Acid Systems for Biosensors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arup Podder
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
18
|
Bhuin S, Halder S, Saha SK, Chakravarty M. Binding interactions and FRET between bovine serum albumin and various phenothiazine-/anthracene-based dyes: a structure-property relationship. RSC Adv 2021; 11:1679-1693. [PMID: 35424090 PMCID: PMC8693680 DOI: 10.1039/d0ra09580j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
The present study demonstrates binding interactions and Förster resonance energy transfer (FRET) between bovine serum albumin (BSA) and a series of structurally and electronically diverse phenothiazine (PTZ) and anthracene (ANT) dyes. Upon selective excitation of tryptophan (Trp) residues of BSA, radiationless energy transfer to a dye takes place, resulting in fluorescence quenching of the former. Fluorescence quenching mechanisms, FRET parameters, possible locations, and binding constants of dyes with the BSA have been examined to deduce a structure–property relationship. The mechanism of quenching is apparently static in nature. PTZ dyes with heteroatoms and a pentyl tail (C5-PTZ) attached to them were found to have a stronger binding affinity with BSA as compared to ANT dyes. Stronger binding affinities of C5-PTZ dyes with BSA result in greater energy transfer efficiencies (ET). A dye with a strong electron-withdrawing group present in it has shown better energy accepting capability. A FRET study with dicyanoaniline (DCA) analogs of PTZ and ANT dyes (C5-PTZDCA and ANTDCA, respectively) revealed that ET depends on electronic and structural factors of molecules. An almost orthogonal geometry between ANT and DCA moieties (∼79°) in ANTDCA induces the greater extent of electron transfer from ANT to DCA, showing a higher ET for this dye as compared to C5-PTZDCA in which the torsion angle is only ∼38°. Further, the observed facts have been validated by experimentally determined bandgaps (using cyclic voltammetry experiments) for all the dyes. Thus, the hydrophobic character and the presence of interactive substituents along with the electron-accepting abilities majorly control the FRET for such dyes with BSA. The present study demonstrates binding interactions and Förster resonance energy transfer (FRET) between bovine serum albumin (BSA) and a series of structurally and electronically diverse phenothiazine (PTZ) and anthracene (ANT) dyes.![]()
Collapse
Affiliation(s)
- Shouvik Bhuin
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| | - Subit Kumar Saha
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campuses Hyderabad-500078 Telangana India
| |
Collapse
|
19
|
Sinha K, Sharma P, Som Chaudhury S, Das Mukhopadhyay C, Ruidas B. Species detection using probe technology. FOOD TOXICOLOGY AND FORENSICS 2021:313-346. [DOI: 10.1016/b978-0-12-822360-4.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
20
|
Mao S, Ying Y, Wu R, Chen AK. Recent Advances in the Molecular Beacon Technology for Live-Cell Single-Molecule Imaging. iScience 2020; 23:101801. [PMID: 33299972 PMCID: PMC7702005 DOI: 10.1016/j.isci.2020.101801] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids, aside from being best known as the carrier of genetic information, are versatile biomaterials for constructing nanoscopic devices for biointerfacing, owing to their unique properties such as specific base pairing and predictable structure. For live-cell analysis of native RNA transcripts, the most widely used nucleic acid-based nanodevice has been the molecular beacon (MB), a class of stem-loop-forming probes that is activated to fluoresce upon hybridization with target RNA. Here, we overview efforts that have been made in developing MB-based bioassays for sensitive intracellular analysis, particularly at the single-molecule level. We also describe challenges that are currently limiting the widespread use of MBs and provide possible solutions. With continued refinement of MBs in terms of labeling specificity and detection accuracy, accompanied by new development in imaging platforms with unprecedented sensitivity, the application of MBs is envisioned to expand in various biological research fields.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ruonan Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Antony K. Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Corresponding author
| |
Collapse
|
21
|
Bai H, Jin C, Zou J, Wang R, Fu T, Tan W. Conformational Conversion Enhances Cellular Uptake of F Base Double-Strand-Conjugated Oligonucleotides. Anal Chem 2020; 92:10375-10380. [PMID: 32527079 DOI: 10.1021/acs.analchem.0c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Artificial bases have emerged as a useful tool to expand genetic alphabets and biomedical applications of oligonucleotides. Herein, we reported that the conformation conversion enhances cellular uptake of hydrophobic 3,5-bis(trifluoromethyl)benzene (F) base double-strand-conjugated oligonucleotides. The formation of the F base double-strand caged the hydrophobic F base in the duplex strand, thus preventing F base from interacting with cells to some extent. However, upon conversion of F base double-strand-conjugated oligonucleotide to F base single-strand-conjugated oligonucleotide, F bases then were allowed to interact with cells by stronger hydrophobic interactions, followed by cellular uptake. The results were concluded as a pairing-induced cage effect of F base and have the potential for the construction of stimuli-responsive cellular uptake of functional nucleic acids.
Collapse
Affiliation(s)
- Huarong Bai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Jin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianmei Zou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), and Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Pereira PM, Gustafsson N, Marsh M, Mhlanga MM, Henriques R. Super-beacons: Open-source probes with spontaneous tuneable blinking compatible with live-cell super-resolution microscopy. Traffic 2020; 21:375-385. [PMID: 32170988 PMCID: PMC7643006 DOI: 10.1111/tra.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/28/2022]
Abstract
Localization-based super-resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non-fluorescent states. These transitions are commonly regulated by high-intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single-molecule self-quenching as a mechanism to generate spontaneous photoswitching. To demonstrate this principle, we developed a new class of DNA-based open-source super-resolution probes named super-beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live-cell compatible super-resolution microscopy without high-illumination or toxic imaging buffers is revealed by imaging interferon inducible transmembrane proteins (IFITMs) at sub-100 nm resolutions.
Collapse
Affiliation(s)
- Pedro M. Pereira
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
- Bacterial Cell BiologyMOSTMICRO, ITQB‐NOVAOeirasPortugal
| | - Nils Gustafsson
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Department für Physik and CeNSLudwig‐Maximilians‐UniversitätMunichGermany
| | - Mark Marsh
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Musa M. Mhlanga
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Ricardo Henriques
- MRC‐Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
23
|
Aparin IO, Sergeeva OV, Mishin AS, Khaydukov EV, Korshun VA, Zatsepin TS. Excimer-FRET Cascade in Dual DNA Probes: Open Access to Large Stokes Shift, Enhanced Acceptor Light up, and Robust RNA Sensing. Anal Chem 2020; 92:7028-7036. [DOI: 10.1021/acs.analchem.0c00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ilya O. Aparin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Olga V. Sergeeva
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia
| | - Alexander S. Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Evgeny V. Khaydukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Federal Scientific Research Centre “Crystallography and Photonics” RAS, 119333 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Department of Biology and Biotechnology, National Research University Higher School of Economics, 117312 Moscow, Russia
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
24
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
25
|
Yang X, Liu Q, Wen D, Gao M, Zhang D, Jin Q, Kong J, Zhang J. Ultrasensitive fluorescence detection of sequence-specific DNA via labeling hairpin DNA probes for fluorescein o-acrylate polymers. Anal Chim Acta 2019; 1088:144-149. [PMID: 31623710 DOI: 10.1016/j.aca.2019.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/12/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Sensitive detection of DNA is conducive to enhance the accuracy of diseases diagnosis and risk prediction. In this work, we report the use of activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) as a novel on-chip amplification strategy for the fluorescence detection of DNA. More specifically, the target DNA was captured by the on-chip immobilized hairpin DNA probes. Upon hybridization, exposed 3'-N3 of the hairpin was used to attach AGET ATRP initiators onto the silicon surface by click chemistry. Then, numerous fluorescent labeling linked to the end of the probes via the formation of long chain polymers of fluorescein o-acrylate, which in turn amplified the fluorescence signal for DNA detection. Under optimal conditions, it showed a good linear range from 100 fM to 1 μM in DNA detection, with the limit of detection as low as 4.3 fM. Moreover, this strategy showed good detection performance in complex real serum samples, the fluorescence intensity of 0.1 nM tDNA in 1% fetal bovine serum samples was 97.6% of that in Tris-EDTA buffer. Based on its high sensitivity, reduced cost and simplicity, the proposed signal amplification strategy displays translational potential in clinical application.
Collapse
Affiliation(s)
- Xinxiu Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China
| | - Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Dongxiao Wen
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450008, PR China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China; Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu Province, PR China.
| |
Collapse
|
26
|
Tang Z, Liu X, Wang Y, Chen Q, Hammock BD, Xu Y. Nanobody-based fluorescence resonance energy transfer immunoassay for noncompetitive and simultaneous detection of ochratoxin a and ochratoxin B. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:238-245. [PMID: 31082608 PMCID: PMC7103568 DOI: 10.1016/j.envpol.2019.04.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
A noncompetitive and homogeneous fluorescence resonance energy transfer (FRET) immunoassay was developed using a nanobody (Nb) for highly sensitive and simultaneous detection of ochratoxin A (OTA) and ochratoxin B (OTB). The promoted intrinsic fluorescence (λex: 280 nm) of tryptophan residues (donor) in Nb can excite the fluorescence of OTA and OTB (acceptor) for detection (λem: 430 nm). Using optimal conditions, the limits of detection of the Nb-based FRET immunoassay were 0.06 and 0.12 ng/mL for OTA and OTB, respectively. Minimal cross reactivity was detected for several analogues of OTA and OTB as well as nonspecific proteins and antibodies. Acceptable accuracy and precision were obtained in the spike and recovery study, and the results correlated well with those by HPLC. These results demonstrated that the developed method could be a useful tool for noncompetitive, homogeneous, and simultaneous detection of OTA and OTB as well as other environmental analytes with similar fluorescence properties.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China.
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| |
Collapse
|
27
|
Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 2019; 141:111448. [PMID: 31252258 DOI: 10.1016/j.bios.2019.111448] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, nucleic acid amplification tests (NAATs) including polymerase chain reaction (PCR) were an indispensable methodology for diagnosing cancers, viral and bacterial infections owing to their high sensitivity and specificity. Because the NAATs can recognize and discriminate even a few copies of nucleic acid (NA) and species-specific NA sequences, NAATs have become the gold standard in a wide range of applications. However, limitations of NAAT approaches have recently become more apparent by reason of their lengthy run time, large reaction volume, and complex protocol. To meet the current demands of clinicians and biomedical researchers, new NAATs have developed to achieve ultrafast sample-to-answer protocols for the point-of-care testing (POCT). In this review, ultrafast NA-POCT platforms are discussed, outlining their NA amplification principles as well as delineating recent advances in ultrafast NAAT applications. The main focus is to provide an overview of NA-POCT platforms in regard to sample preparation of NA, NA amplification, NA detection process, interpretation of the analysis, and evaluation of the platform design. Increasing importance will be given to innovative, ultrafast amplification methods and tools which incorporate artificial intelligence (AI)-associated data analysis processes and mobile-healthcare networks. The future prospects of NA POCT platforms are promising as they allow absolute quantitation of NA in individuals which is essential to precision medicine.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, USA
| | | | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, FL, USA
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Won-Yep Rho
- School of International Engineering and Science, Chonbuk National University, Jeonju, South Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, South Korea.
| |
Collapse
|
28
|
Farzan VM, Kvach MV, Aparin IO, Kireev DE, Prikazchikova TA, Ustinov AV, Shmanai VV, Shipulin GA, Korshun VA, Zatsepin TS. Novel homo Yin-Yang probes improve sensitivity in RT-qPCR detection of low copy HIV RNA. Talanta 2019; 194:226-232. [DOI: 10.1016/j.talanta.2018.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
|
29
|
Schwechheimer C, Doll L, Wagenknecht HA. Synthesis of Dye-Modified Oligonucleotides via Copper(I)-Catalyzed Alkyne Azide Cycloaddition Using On- and Off-Bead Approaches. ACTA ACUST UNITED AC 2019; 72:4.80.1-4.80.13. [PMID: 29927126 DOI: 10.1002/cpnc.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescence molecular imaging is widely used to visualize and observe different biomolecules, in particular DNA and RNA, in vivo and in real time. Typically, DNA strands are tagged with only one fluorophore, and, in the case of molecular beacons, an additional quencher is conjugated, which bears the risk of false-positive or false-negative results because only fluorescence intensities at one fluorescence wavelength (color) are compared. To address this drawback, the concept of "DNA/RNA traffic lights," which is characterized by a fluorescence color change due to energy transfer between two dyes, was developed by our working group. For these DNA and RNA systems, the oligonucleotides are post-synthetically labeled, specifically after solid-phase synthesis by chemical means, with a fluorescent dye using copper(I)-catalyzed cycloaddition at the 2' position of single uridines. In order to functionalize oligonucleotides with several different labels, an on-resin method is required to ensure the necessary selectivity. This unit describes two different CuAAC ("click") approaches-in solution (post-synthetic) and on solid phase (during synthesis)-for the attachment of fluorophores to the 2' position of DNA. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Larissa Doll
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
30
|
Gorman J, Pandya R, Allardice JR, Price MB, Schmidt TW, Friend RH, Rao A, Davis NJLK. Excimer Formation in Carboxylic Acid-Functionalized Perylene Diimides Attached to Silicon Dioxide Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:3433-3440. [PMID: 30906497 PMCID: PMC6428145 DOI: 10.1021/acs.jpcc.8b12061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Indexed: 05/13/2023]
Abstract
The creation of artificial light-harvesting complexes involves the ordered arrangement of chromophores in space. To guarantee efficient energy-transfer processes, organic dyes must be brought into close proximity, often leading to aggregation and the formation of excimer states. In recent years, the attachment of ligand-based chromophores to nanoparticles has also generated interest in relation to improved solar harvesting and spin-dependent electronic interactions such as singlet fission and upconversion. We explore the covalent attachment of two novel perylene-diimide (PDI) carboxylic acid ligands to silicon dioxide nanoparticles. This allows us to study electronic interactions between the ligands when attached to nanoparticles because these cannot couple to the wide band gap silicon dioxide. One of the synthesized PDI ligands has sterically hindering phenols in the bay position and undergoes minimal optical changes upon attachment, but the other forms an excimer state with a red-shifted and long-lived florescence. As such, molecular structure changes offer a method to tune weak and strong interactions between ligand layers on nanocrystal surfaces.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Raj Pandya
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Jesse R. Allardice
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Michael B. Price
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, Wellington 6140, New Zealand
| | - Timothy W. Schmidt
- ARC
Centre of Excellence in Exciton Science, School of Chemistry, UNSW Sydney, Sydney NSW 2052, Australia
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Nathaniel J. L. K. Davis
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
31
|
Mahani M, Mousapour Z, Divsar F, Nomani A, Ju H. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Mikrochim Acta 2019; 186:132. [PMID: 30707293 DOI: 10.1007/s00604-019-3233-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/04/2019] [Indexed: 01/12/2023]
Abstract
A carbon quantum dot (CQD) labeled molecular beacon was synthesized and applied to the detection of microRNA-21. The CQDs possess low cytotoxicity, excellent water solubility, and photostability. The CQDs were characterized by transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The molecular beacon (MB) was labeled with the CQDs at the 5' end, and with Black Hole Quencher 1 (BHQ1) at the 3' end. The two labels act as the donor and acceptor parts of a FRET system, respectively. Only weak fluorescence is observed in the absence of microRNA-21, and in the presence of scrambled or mismatched sequences. However, in the presence of microRNA-21, fluorescence intensity of the CQDs at 460 nm (excitation at 360 nm) recovers. The hybridization of the hairpin structure of the MB with microRNA-21 opens the loop of MB. Consequently, the distance between the BHQ1 quencher and the CQDs is increased and fluorescence changes. The probe has high sensitivity (with a 0.3 nM limit of detection) and specificity. It can distinguish between microRNA-21 and its single mismatch mutant and hence represents a valuable tool for the early cancer diagnosis. Graphical abstract Schematic presentation of a fluorometric microR-21 assay using carbon dots carrying a molecular beacon (MB) labeled with a black hole quencher. Quenching is suppressed once the MB binds to microRNA-21.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Zhahra Mousapour
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University, P. O. BOX: 19395-3197, Tehran, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
32
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
33
|
Zhou X, Yao D, He M, Xiao S, Liang H. Optimizing the Toehold Strategy of On-Chip Nucleic Acid Hybridization Probe for the Discrimination of Single Nucleotide Polymorphism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14811-14816. [PMID: 30110553 DOI: 10.1021/acs.langmuir.8b02134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The synthetic DNA hybridization probe has proved its importance in biology and biotechnology. In this study, taking advantage of a novel analytical technique called dual polarization interferometry (DPI), the influence of the toehold strategy of on-chip DNA hybridization probe on the discrimination of single nucleotide polymorphism (SNP) was investigated. Through adjusting the toehold length, the toehold strategies of on-chip toehold exchange probe were thoroughly optimized. For the "6/5" probe, an optimal discrimination factor of 78% against the spurious target was achieved. Moreover, the ability of the on-chip probe in SNP discrimination was significantly enhanced compared to its pure solution counterpart. This simple and rapid detection method for SNP discrimination based on the on-chip toehold exchange probe will show great potential in disease diagnosis.
Collapse
Affiliation(s)
- Xiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Dongbao Yao
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Miao He
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| |
Collapse
|
34
|
Zhang H, Wang LJ, Wang L, Chen H, Chen X, Zhang CY. Development of a cascade isothermal amplification approach for the sensitive detection of DNA methyltransferase. J Mater Chem B 2018; 7:157-162. [PMID: 32254960 DOI: 10.1039/c8tb02096e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA methyltransferase (MTase) is an important epigenetic modification enzyme responsible for DNA methylation, and the dysregulation of DNA MTase activity is associated with various diseases in humans. Herein, we take advantage of the DNA lesion repair mechanism in vivo to develop a new fluorescence approach for the specific and sensitive detection of DNA methyltransferase (DNA MTase) on the basis of the DNA lesion repair-directed cascade isothermal amplification. Due to the high amplification efficiency of the uracil repair-mediated exponential isothermal amplification reaction (EXPAR), the efficient cleavage of endonuclease IV (Endo IV)-induced cyclic catalysis, and the low background signal caused by single uracil repair-mediated inhibition of nonspecific amplification, this approach exhibits high sensitivity with a detection limit of 0.014 U mL-1 for pure Dam MTase and 0.61 × 10-6 mg mL-1 for Dam MTase in E. coli cells and it can be further applied for the screening of DNA MTase inhibitors. More importantly, this approach can be applied to detect other DNA MTases by designing appropriate substrates, showing great potential in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | |
Collapse
|
35
|
Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A Review on Electroporation-Based Intracellular Delivery. Molecules 2018; 23:E3044. [PMID: 30469344 PMCID: PMC6278265 DOI: 10.3390/molecules23113044] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022] Open
Abstract
Intracellular delivery is a critical step in biological discoveries and has been widely utilized in biomedical research. A variety of molecular tools have been developed for cell-based gene therapies, including FDA approved CAR-T immunotherapy, iPSC, cell reprogramming and gene editing. Despite the inspiring results of these applications, intracellular delivery of foreign molecules including nucleic acids and proteins remains challenging. Efficient yet non-invasive delivery of biomolecules in a high-throughput manner has thus long fascinates the scientific community. As one of the most popular non-viral technologies for cell transfection, electroporation has gone through enormous development with the assist of nanotechnology and microfabrication. Emergence of miniatured electroporation system brought up many merits over the weakness of traditional electroporation system, including precise dose control and high cell viability. These new generation of electroporation systems are of considerable importance to expand the biological applications of intracellular delivery, bypassing the potential safety issue of viral vectors. In this review, we will go over the recent progresses in the electroporation-based intracellular delivery and several potential applications of cutting-edge research on the miniatured electroporation, including gene therapy, cellular reprogramming and intracellular probe.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanxin Chen
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL 33573, USA.
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yicheng Yao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
36
|
Xu Y, Huo B, Sun X, Ning B, Peng Y, Bai J, Gao Z. Rapid detection of staphylococcal enterotoxin B in milk samples based on fluorescence hybridization chain reaction amplification. RSC Adv 2018; 8:16024-16031. [PMID: 35542189 PMCID: PMC9080154 DOI: 10.1039/c8ra01599f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
A rapid, simple, and sensitive method has been developed to detect staphylococcal enterotoxin B (SEB). To establish the hybridization chain reaction-based aptasensor, we described the new probes of two hairpins (H1 and H2), which were first designed based on the partial complementary sequence of the SEB aptamer (cDNA). The H1 labeled with a fluorophore and a quencher can act as a molecular fluorescence “switch”. Hence, in the presence of SEB, the aptamer binds SEB, while the unbound cDNA triggers HCR to carry out the cyclic hybridization of H1 and H2 so as to turn “ON” the fluorescence through forming long nicked DNA. By using this new strategy, SEB can be sensitively detected within the range of 3.13 ng mL−1 to 100 ng mL−1 with a detection limit of 0.33 ng mL−1 (S/N = 3). Furthermore, the developed method could facilitate the detection of SEB effectively in milk samples. A new competitive aptasensor combined with HCR was developed for SEB detection.![]()
Collapse
Affiliation(s)
- Yanyang Xu
- College of Food Science and Engineering
- Jilin University
- Changchun 130022
- P. R. China
| | - Bingyang Huo
- College of Food Science and Engineering
- Jilin University
- Changchun 130022
- P. R. China
| | - Xuan Sun
- Huazhong Agricultural University
- College of Life Science and Technology
- Wuhan 430070
- P. R. China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety
- Institute of Environmental and Operational Medicine
- Academy of Military Medical Science
- Academy of Military Science
- Tianjin 300050
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety
- Institute of Environmental and Operational Medicine
- Academy of Military Medical Science
- Academy of Military Science
- Tianjin 300050
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety
- Institute of Environmental and Operational Medicine
- Academy of Military Medical Science
- Academy of Military Science
- Tianjin 300050
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety
- Institute of Environmental and Operational Medicine
- Academy of Military Medical Science
- Academy of Military Science
- Tianjin 300050
| |
Collapse
|
37
|
Hairpin probe for sequence-specific recognition of double-stranded DNA on simian virus 40. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7152-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Ochmann SE, Vietz C, Trofymchuk K, Acuna GP, Lalkens B, Tinnefeld P. Optical Nanoantenna for Single Molecule-Based Detection of Zika Virus Nucleic Acids without Molecular Multiplication. Anal Chem 2017; 89:13000-13007. [DOI: 10.1021/acs.analchem.7b04082] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sarah E. Ochmann
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Carolin Vietz
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Kateryna Trofymchuk
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Guillermo P. Acuna
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Birka Lalkens
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Philip Tinnefeld
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
- Department
of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5-13, 81377 Muenchen, Germany
| |
Collapse
|
39
|
Kempf O, Kempf K, Schobert R, Bombarda E. Hydrodabcyl: A Superior Hydrophilic Alternative to the Dark Fluorescence Quencher Dabcyl. Anal Chem 2017; 89:11893-11897. [DOI: 10.1021/acs.analchem.7b03488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oxana Kempf
- Department
of Biochemistry and ‡Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse
30, 95440, Bayreuth, Germany
| | - Karl Kempf
- Department
of Biochemistry and ‡Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse
30, 95440, Bayreuth, Germany
| | - Rainer Schobert
- Department
of Biochemistry and ‡Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse
30, 95440, Bayreuth, Germany
| | - Elisa Bombarda
- Department
of Biochemistry and ‡Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse
30, 95440, Bayreuth, Germany
| |
Collapse
|
40
|
Jin C, Fu T, Wang R, Liu H, Zou J, Zhao Z, Ye M, Zhang X, Tan W. Fluorinated molecular beacons as functional DNA nanomolecules for cellular imaging. Chem Sci 2017; 8:7082-7086. [PMID: 29147537 PMCID: PMC5637457 DOI: 10.1039/c7sc02819a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/21/2017] [Indexed: 01/16/2023] Open
Abstract
Molecular beacons (MBs) are simple, but practical, fluorescent nanoprobes widely used to detect small molecules, nucleic acids and proteins. However, some challenges still remain when MBs are employed in complex biological environments, such as instability and non-target interference. To meet such challenges, we have designed and synthesized fluorinated molecular beacons (FMBs) as functional DNA nanomolecules for cellular imaging, in which the stem sequence is simply composed of artificial nucleotides with 3,5-bis(trifluoromethyl)benzene (F) as the surrogate base of natural A, T, C and G bases. The introduction of F base into MBs significantly increases their hydrophobicity, and the stem is formed by the assembly of self-complementary base F nucleotides through hydrophobic interactions. Fluorescence studies revealed that FMBs confer improved stability over conventional MBs. To demonstrate the application of FMBs for cellular imaging, we constructed an FMB to detect mRNA in MCF-7 cells, and the FMB was proven to be a practical nanoprobe for cellular imaging of mRNA.
Collapse
Affiliation(s)
- Cheng Jin
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Ruowen Wang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
- Department of Chemistry , Department of Physiology and Functional Genomics , Center for Research at the Bio/Nano Interface , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA
- Department of Biotechnology and Biomedicine , Yangtze Delta Region Institute of Tsinghua University , Zhejiang 314006 , China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Jianmei Zou
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Aptamer Engineering Center of Hunan Province , Hunan University , Changsha , Hunan 410082 , China . ;
- Department of Chemistry , Department of Physiology and Functional Genomics , Center for Research at the Bio/Nano Interface , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , USA
| |
Collapse
|
41
|
Lavis LD. Teaching Old Dyes New Tricks: Biological Probes Built from Fluoresceins and Rhodamines. Annu Rev Biochem 2017; 86:825-843. [DOI: 10.1146/annurev-biochem-061516-044839] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| |
Collapse
|
42
|
Novel Poly(Diol Sebacate)s as Additives to Modify Paclitaxel Release From Poly(Lactic-co-Glycolic Acid) Thin Films. J Pharm Sci 2017; 106:2106-2114. [PMID: 28535975 DOI: 10.1016/j.xphs.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/23/2023]
Abstract
Paclitaxel (PTX) incorporation in poly(lactic-co-glycolic acid) (PLGA) matrices produce films with high tensile rigidity and slow release that fail to deliver the required release rate for most biomedical applications such as in drug eluting stents and cancer treatments. To modify and improve this behavior, a set of poly(diol sebacate)s were synthesized and fully characterized as possible additives. The tensile properties of PLGA blends were evaluated as these materials could be used as coatings in drug eluting stent applications. A significant improvement in mechanical flexibility was observed with 20% additive content, as it reduced the Young's modulus value and increased the maximum deformation at break. PTX release was studied and correlated with the release of additive from PLGA films. An increase in the initial burst release phase was observed on all blends when compared to the control films of PLGA. Modulation of PTX release was achieved by altering the hydrophilicity degree of the additive or its percentage content on the blend. This supports the possibility that PTX was partitioned into the additive phase. Cytotoxicity analyses of novel additives were performed on mouse embryonic fibroblasts NIH/3T3.
Collapse
|
43
|
Kashida H, Asanuma H. Development of Pseudo Base-Pairs on d-Threoninol which Exhibit Various Functions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Hiroyuki Asanuma
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| |
Collapse
|
44
|
Borghei YS, Hosseini M, Ganjali MR. Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2272-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Tang P, Zheng J, Tang J, Ma D, Xu W, Li J, Cao Z, Yang R. Programmable DNA triple-helix molecular switch in biosensing applications: from in homogenous solutions to in living cells. Chem Commun (Camb) 2017; 53:2507-2510. [PMID: 28184393 DOI: 10.1039/c6cc09496a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrated a new gold nanoparticles (AuNPs)-integrated programmable triple-helix molecular switch (THMS) to realize the biosensing of multiple targets from in homogenous solution to in living cells. The results demonstrated that this proposed programmable THMS could be successfully used for imaging multiple messenger RNA (mRNA) in living cells and it significantly extends the scope of the THMS sensing platform.
Collapse
Affiliation(s)
- Pinting Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jianru Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Dandan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Weijian Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. and Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| |
Collapse
|
46
|
Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 2016; 91:393-399. [PMID: 28063388 DOI: 10.1016/j.bios.2016.12.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022]
Abstract
In this paper, a nanostructured biosensor is developed to detect glucose in tear by using fluorescence resonance energy transfer (FRET) quenching mechanism. The designed FRET pair, including the donor, CdSe/ZnS quantum dots (QDs), and the acceptor, dextran-binding malachite green (MG-dextran), was conjugated to concanavalin A (Con A), an enzyme with specific affinity to glucose. In the presence of glucose, the quenched emission of QDs through the FRET mechanism is restored by displacing the dextran from Con A. To have a dual-modulation sensor for convenient and accurate detection, the nanostructured FRET sensors were assembled onto a patterned ZnO nanorod array deposited on the synthetic silicone hydrogel. Consequently, the concentration of glucose detected by the patterned sensor can be converted to fluorescence spectra with high signal-to-noise ratio and calibrated image pixel value. The photoluminescence intensity of the patterned FRET sensor increases linearly with increasing concentration of glucose from 0.03mmol/L to 3mmol/L, which covers the range of tear glucose levels for both diabetics and healthy subjects. Meanwhile, the calibrated values of pixel intensities of the fluorescence images captured by a handhold fluorescence microscope increases with increasing glucose. Four male Sprague-Dawley rats with different blood glucose concentrations were utilized to demonstrate the quick response of the patterned FRET sensor to 2µL of tear samples.
Collapse
Affiliation(s)
- Longyi Chen
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Wai Hei Tse
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Yi Chen
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Matthew W McDonald
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - James Melling
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | - Jin Zhang
- Department of Chemical & Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B9; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 5B9.
| |
Collapse
|
47
|
Fidan Z, Wende A, Resch-Genger U. Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions. Anal Bioanal Chem 2016; 409:1519-1529. [DOI: 10.1007/s00216-016-0088-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
|
48
|
Khodakov D, Wang C, Zhang DY. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Deliv Rev 2016; 105:3-19. [PMID: 27089811 DOI: 10.1016/j.addr.2016.04.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022]
Abstract
Nucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics.
Collapse
|
49
|
Del Bonis-O'Donnell JT, Vong D, Pennathur S, Fygenson DK. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters. NANOSCALE 2016; 8:14489-96. [PMID: 27406901 DOI: 10.1039/c6nr03827a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag(+) ions. The utility of AgNC-MBs has been limited, however, because changing the target binding sequence unpredictably alters cluster fluorescence. Here we show that the original AgNC-MB design depends on bases in the target-binding (loop) domain to stabilize its AgNC. We then rationally alter the design to overcome this limitation. By separating and lengthening the AgNC-stabilizing domain, we create an AgNC-hairpin probe with consistent performance for arbitrary target sequence. This new design supports ratiometric fluorescence measurements of DNA target concentration, thereby providing a more sensitive, responsive and stable signal compared to turn-on AgNC probes. Using the new design, we demonstrate AgNC-MBs with nanomolar sensitivity and singe-nucleotide specificity, expanding the breadth of applicability of these cost-effective probes for biomolecular detection.
Collapse
|
50
|
Xu H, Zhang R, Li F, Zhou Y, Peng T, Wang X, Shen Z. Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer. Anal Bioanal Chem 2016; 408:6181-8. [DOI: 10.1007/s00216-016-9729-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 01/03/2023]
|