1
|
Yanagi M, Ikegami I, Kamekura R, Sato T, Sato T, Kamiya S, Murayama K, Jitsukawa S, Ito F, Yorozu A, Kihara M, Abe T, Takaki H, Kawata K, Shigehara K, Miyajima S, Nishikiori H, Sato A, Tohse N, Takano KI, Chiba H, Ichimiya S. Bob1 maintains T follicular helper cells for long-term humoral immunity. Commun Biol 2024; 7:185. [PMID: 38360857 PMCID: PMC10869348 DOI: 10.1038/s42003-024-05827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Humoral immunity is vital for host protection, yet aberrant antibody responses can trigger harmful inflammation and immune-related disorders. T follicular helper (Tfh) cells, central to humoral immunity, have garnered significant attention for unraveling immune mechanisms. This study shows the role of B-cell Oct-binding protein 1 (Bob1), a transcriptional coactivator, in Tfh cell regulation. Our investigation, utilizing conditional Bob1-deficient mice, suggests that Bob1 plays a critical role in modulating inducible T-cell costimulator expression and cellular respiration in Tfh cells. This regulation maintains the long-term functionality of Tfh cells, enabling their reactivation from central memory T cells to produce antibodies during recall responses. In a bronchial asthma model induced by house dust mite (HDM) inhalation, Bob1 is observed to enhance HDM-specific antibodies, including IgE, highlighting its pivotal function in Tfh cell regulation. Further exploration of Bob1-dependent mechanisms in Tfh cells holds promise for governing protective immunity and addressing immune-related disorders.
Collapse
Affiliation(s)
- Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kosuke Murayama
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sumito Jitsukawa
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Fumie Ito
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Akira Yorozu
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Hiromi Takaki
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Satsuki Miyajima
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa, 061-1449, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| |
Collapse
|
2
|
Johnsson H, Cole J, McInnes IB, Graham G, Siebert S. Differences in transcriptional changes in psoriasis and psoriatic arthritis skin with immunoglobulin gene enrichment in psoriatic arthritis. Rheumatology (Oxford) 2024; 63:218-225. [PMID: 37137278 PMCID: PMC10765156 DOI: 10.1093/rheumatology/kead195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES Approximately 20% of people with psoriasis develop PsA. Although genetic, clinical and environmental risk factors have been identified, it is not known why some people with psoriasis develop PsA. The skin disease is traditionally considered the same in both. This study compares transcriptional changes in psoriasis and PsA skin for the first time. METHODS Skin biopsies were collected from healthy controls (HC), and uninvolved and lesional skin from patients with PsA. Bulk tissue sequencing was performed and analysed using the pipeline Searchlight 2.0. Transcriptional changes in PsA skin were compared with existing sequencing data from participants with psoriasis without PsA (GSE121212). Psoriasis and PsA datasets could not be directly compared as different analysis methods were used. Data from participants with PsA in the GSE121212 dataset were used for validation. RESULTS Skin samples from 9 participants with PsA and 9 HC were sequenced, analysed and compared with available transcriptomic data for 16 participants with psoriasis compared with 16 HC. Uninvolved skin in psoriasis shared transcriptional changes with lesional skin in psoriasis, but uninvolved skin in PsA did not. Most transcriptional changes in psoriasis and PsA lesional skin were shared, but immunoglobulin genes were upregulated in PsA lesional skin specifically. The transcription factor POU2F1, which regulates immunoglobulin gene expression, was enriched in PsA lesional skin. This was confirmed in the validation cohort. CONCLUSIONS Immunoglobulin genes are upregulated in PsA but not in psoriasis skin lesions. This may have implications for the spread from the cutaneous compartment to other tissues.
Collapse
Affiliation(s)
- Hanna Johnsson
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John Cole
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Gerard Graham
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Stefan Siebert
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Wu S, Yin Y, Wang X. The epigenetic regulation of the germinal center response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194828. [PMID: 35643396 DOI: 10.1016/j.bbagrm.2022.194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
In response to T-cell-dependent antigens, antigen-experienced B cells migrate to the center of the B-cell follicle to seed the germinal center (GC) response after cognate interactions with CD4+ T cells. These GC B cells eventually mature into memory and long-lived antibody-secreting plasma cells, thus generating long-lived humoral immunity. Within GC, B cells undergo somatic hypermutation of their B cell receptors (BCR) and positive selection for the emergence of high-affinity antigen-specific B-cell clones. However, this process may be dangerous, as the accumulation of aberrant mutations could result in malignant transformation of GC B cells or give rise to autoreactive B cell clones that can cause autoimmunity. Because of this, better understanding of GC development provides diagnostic and therapeutic clues to the underlying pathologic process. A productive GC response is orchestrated by multiple mechanisms. An emerging important regulator of GC reaction is epigenetic modulation, which has key transcriptional regulatory properties. In this review, we summarize the current knowledge on the biology of epigenetic mechanisms in the regulation of GC reaction and outline its importance in identification of immunotherapy decision making.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
OCT2 pre-positioning facilitates cell fate transition and chromatin architecture changes in humoral immunity. Nat Immunol 2021; 22:1327-1340. [PMID: 34556886 PMCID: PMC9829245 DOI: 10.1038/s41590-021-01025-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
During the germinal center (GC) reaction, B cells undergo profound transcriptional, epigenetic and genomic architectural changes. How such changes are established remains unknown. Mapping chromatin accessibility during the humoral immune response, we show that OCT2 was the dominant transcription factor linked to differential accessibility of GC regulatory elements. Silent chromatin regions destined to become GC-specific super-enhancers (SEs) contained pre-positioned OCT2-binding sites in naive B cells (NBs). These preloaded SE 'seeds' featured spatial clustering of regulatory elements enriched in OCT2 DNA-binding motifs that became heavily loaded with OCT2 and its GC-specific coactivator OCAB in GC B cells (GCBs). SEs with high abundance of pre-positioned OCT2 binding preferentially formed long-range chromatin contacts in GCs, to support expression of GC-specifying factors. Gain in accessibility and architectural interactivity of these regions were dependent on recruitment of OCAB. Pre-positioning key regulators at SEs may represent a broadly used strategy for facilitating rapid cell fate transitions.
Collapse
|
5
|
Zhao J, Peng H, Gao J, Nong A, Hua H, Yang S, Chen L, Wu X, Zhang H, Wang J. Current insights into the expression and functions of tumor-derived immunoglobulins. Cell Death Discov 2021; 7:148. [PMID: 34226529 PMCID: PMC8257790 DOI: 10.1038/s41420-021-00550-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have reported expressions of immunoglobulins (Igs) in many human tumor tissues and cells. Tumor-derived Igs have displayed multiple significant functions which are different from classical Igs produced by B lymphocytes and plasma cells. This review will concentrate on major progress in expressions, functions, and mechanisms of tumor-derived Igs, similarities and differences between tumor-derived Igs and B-cell-derived Igs. We also discuss the future research directions of tumor-derived Igs, including their structural characteristics, physicochemical properties, mechanisms for rearrangement and expression regulation, signaling pathways involved, and clinical applications.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hui Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Jie Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Anna Nong
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Haoming Hua
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shulin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Liying Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xiangsheng Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Juping Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China.
| |
Collapse
|
6
|
OBF1 and Oct factors control the germinal center transcriptional program. Blood 2021; 137:2920-2934. [PMID: 33512466 DOI: 10.1182/blood.2020010175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
OBF1 is a specific coactivator of the POU family transcription factors OCT1 and OCT2. OBF1 and OCT2 are B cell-specific and indispensable for germinal center (GC) formation, but their mechanism of action is unclear. Here, we show by chromatin immunoprecipitation-sequencing that OBF1 extensively colocalizes with OCT1 and OCT2. We found that these factors also often colocalize with transcription factors of the ETS family. Furthermore, we showed that OBF1, OCT2, and OCT1 bind widely to the promoters or enhancers of genes involved in GC formation in mouse and human GC B cells. Short hairpin RNA knockdown experiments demonstrated that OCT1, OCT2, and OBF1 regulate each other and are essential for proliferation of GC-derived lymphoma cell lines. OBF1 downregulation disrupts the GC transcriptional program: genes involved in GC maintenance, such as BCL6, are downregulated, whereas genes related to exit from the GC program, such as IRF4, are upregulated. Ectopic expression of BCL6 does not restore the proliferation of GC-derived lymphoma cells depleted of OBF1 unless IRF4 is also depleted, indicating that OBF1 controls an essential regulatory node in GC differentiation.
Collapse
|
7
|
Yeremenko N, Danger R, Baeten D, Tomilin A, Brouard S. Transcriptional regulator BOB.1: Molecular mechanisms and emerging role in chronic inflammation and autoimmunity. Autoimmun Rev 2021; 20:102833. [PMID: 33864944 DOI: 10.1016/j.autrev.2021.102833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Lymphocytes constitute an essential and potent effector compartment of the immune system. Therefore, their development and functions must be strictly regulated to avoid inappropriate immune responses, such as autoimmune reactions. Several lines of evidence from genetics (e.g. association with multiple sclerosis and primary biliary cirrhosis), human expression studies (e.g. increased expression in target tissues and draining lymph nodes of patients with autoimmune diseases), animal models (e.g. loss of functional protein protects animals from the development of collagen-induced arthritis, experimental autoimmune encephalomyelitis, type 1 diabetes, bleomycin-induced fibrosis) strongly support a causal link between the aberrant expression of the lymphocyte-restricted transcriptional regulator BOB.1 and the development of autoimmune diseases. In this review, we summarize the current knowledge of unusual structural and functional plasticity of BOB.1, stringent regulation of its expression, and the pivotal role that BOB.1 plays in shaping B- and T-cell responses. We discuss recent developments highlighting the significant contribution of BOB.1 to the pathogenesis of autoimmune diseases and how to leverage our knowledge to target this regulator to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Nataliya Yeremenko
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France; Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Richard Danger
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dominique Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russian Federation
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
8
|
Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nat Commun 2021; 12:651. [PMID: 33510161 PMCID: PMC7844026 DOI: 10.1038/s41467-020-20849-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
To investigate the three-dimensional (3D) genome architecture across normal B cell differentiation and in neoplastic cells from different subtypes of chronic lymphocytic leukemia and mantle cell lymphoma patients, here we integrate in situ Hi-C and nine additional omics layers. Beyond conventional active (A) and inactive (B) compartments, we uncover a highly-dynamic intermediate compartment enriched in poised and polycomb-repressed chromatin. During B cell development, 28% of the compartments change, mostly involving a widespread chromatin activation from naive to germinal center B cells and a reversal to the naive state upon further maturation into memory B cells. B cell neoplasms are characterized by both entity and subtype-specific alterations in 3D genome organization, including large chromatin blocks spanning key disease-specific genes. This study indicates that 3D genome interactions are extensively modulated during normal B cell differentiation and that the genome of B cell neoplasias acquires a tumor-specific 3D genome architecture.
Collapse
|
9
|
Lu X, Chu CS, Fang T, Rayon-Estrada V, Fang F, Patke A, Qian Y, Clarke SH, Melnick AM, Zhang Y, Papavasiliou FN, Roeder RG. MTA2/NuRD Regulates B Cell Development and Cooperates with OCA-B in Controlling the Pre-B to Immature B Cell Transition. Cell Rep 2020; 28:472-485.e5. [PMID: 31291582 PMCID: PMC6690613 DOI: 10.1016/j.celrep.2019.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/21/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The NuRD complex contains both chromatin remodeling and histone deacetylase activities. Mice lacking the MTA2 subunit of NuRD show developmental defects in pro-B, pre-B, immature B, and marginal zone B cells, and abnormal germinal center B cell differentiation during immune responses. Mta2 inactivation also causes a derepression of Igll1 and VpreB1 genes in pre-B cells. Furthermore, MTA2/NuRD interacts directly with AIOLOS/IKAROS and shows a striking overlap with AIOLOS/IKAROS target genes in human pre-B cells, suggesting a functional interdependence between MTA2/NuRD and AIOLOS. Mechanistically, MTA2 deficiency in mice leads to increased H3K27 acetylation at both Igll1 and VpreB1 promoters. Gene profiling analyses also identify distinct MTA2-dependent transcription programs in pro-B and pre-B cells. In addition, we find a strong synergy between MTA2 and OCA-B in repressing Igll1 and VpreB1 at the pre-B cell stage, and in regulating both the pre-B to immature B transition and splenic B cell development. Lu et al. examine B cell developmental defects in MTA2-deficient mice. MTA2 interacts with AIOLOS/IKAROS, represses Igll1 expression, co-binds to most AIOLOS/IKAROS target genes in pre-B cells, and cooperates with OCA-B in the pre-B to immature B transition. These data suggest that AIOLOS/IKAROS functions through MTA2/NuRD during B cell development.
Collapse
Affiliation(s)
- Xiangdong Lu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Terry Fang
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Violeta Rayon-Estrada
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
| | - Fang Fang
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alina Patke
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Ye Qian
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi Zhang
- HHMI, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - F Nina Papavasiliou
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA; Division of Immune Diversity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Eibel H, Winkler T, Ceredig R. Editorial: Making Science Fun - A Tribute to Our Colleague and Friend, Prof. Antonius G. Rolink (1953-2017). Front Immunol 2019; 9:2915. [PMID: 30619279 PMCID: PMC6306044 DOI: 10.3389/fimmu.2018.02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Thomas Winkler
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rhodri Ceredig
- Discipline of Physiology, College of Medicine and Nursing Health Science, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Song S, Matthias PD. The Transcriptional Regulation of Germinal Center Formation. Front Immunol 2018; 9:2026. [PMID: 30233601 PMCID: PMC6134015 DOI: 10.3389/fimmu.2018.02026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Germinal centers (GCs) are essential structures of the humoral immune response, which form in the periphery in response to T cell dependent antigens. During the GC reaction, B cells undergo critical differentiation steps, which ultimately lead to the generation of antibodies with altered effector function and higher affinity for the selected antigen. Remarkably, many of the B cell tumors have their origin in the GCs; thus, understanding how the formation of these structures is regulated or deregulated is of high medical importance. This review gives an overview of the transcription factors that have been linked to the generation of GCs, and of their roles in the process.
Collapse
Affiliation(s)
- Shuang Song
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Patrick D Matthias
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Barwick BG, Scharer CD, Martinez RJ, Price MJ, Wein AN, Haines RR, Bally APR, Kohlmeier JE, Boss JM. B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat Commun 2018; 9:1900. [PMID: 29765016 PMCID: PMC5953949 DOI: 10.1038/s41467-018-04234-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
B cells provide humoral immunity by differentiating into antibody-secreting plasma cells, a process that requires cellular division and is linked to DNA hypomethylation. Conversely, little is known about how de novo deposition of DNA methylation affects B cell fate and function. Here we show that genetic deletion of the de novo DNA methyltransferases Dnmt3a and Dnmt3b (Dnmt3-deficient) in mouse B cells results in normal B cell development and maturation, but increased cell activation and expansion of the germinal center B cell and plasma cell populations upon immunization. Gene expression is mostly unaltered in naive and germinal center B cells, but dysregulated in Dnmt3-deficient plasma cells. Differences in gene expression are proximal to Dnmt3-dependent DNA methylation and chromatin changes, both of which coincide with E2A and PU.1-IRF composite-binding motifs. Thus, de novo DNA methylation limits B cell activation, represses the plasma cell chromatin state, and regulates plasma cell differentiation.
Collapse
Affiliation(s)
- Benjamin G Barwick
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1701 Uppergate Drive, WCI 4060 C, Atlanta, GA, 30322, USA
| | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Ryan J Martinez
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
- Department of Medicine, Emory University School of Medicine, 1648 Pierce Dr. NE, Atlanta, GA, 30307, USA
| | - Madeline J Price
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Alexander N Wein
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Robert R Haines
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Alexander P R Bally
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
- Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Rd NE, Suite 3052, Atlanta, GA, 30329, USA
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Jeremy M Boss
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Whole-exome and transcriptome sequencing of refractory diffuse large B-cell lymphoma. Oncotarget 2018; 7:86433-86445. [PMID: 27835906 PMCID: PMC5349924 DOI: 10.18632/oncotarget.13239] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although rituximab therapy improves clinical outcome, some patients develop resistant DLBCL; however, the genetic alterations in these patients are not well documented. To identify the genetic background of refractory DLBCL, we conducted whole-exome sequencing and transcriptome sequencing for six patients with refractory and seven with responsive DLBCL. The average numbers of pathogenic somatic single nucleotide variants and indels in coding regions were 71 in refractory patients (range 28–120) and 38 (range 19–66) in responsive patients. Missense mutations of TP53 were exclusive in 50% (3/6) of refractory patients and involved the DNA-binding domain of TP53. All missense mutations of TP53 were accompanied by copy number deletions. RAB11FIP5, PRKCB, PRDM15, FNBP4, AHR, CEP128, BRE, DHX16, MYO6, and NMT1 mutations were recurrent in refractory patients. MYD88, B2M, SORCS3, and WDFY3 mutations were more frequent in refractory patients than in responsive patients. REL–BCL11A fusion was found in two refractory patients; one had both fusion and copy number gain. Recurrent copy gains of POU2AF1, SLC1A4, REL11, FANCL, CACNA1D, TRRAP, and CUX1 with significantly increased average expression were found in refractory patients. The expression profile revealed enriched gene sets associated with treatment resistance, including oxidative phosphorylation and ATP-binding cassette transporters. In conclusion, this study integrated both genomic and transcriptomic alterations associated with refractory DLBCL and found several treatment-resistance alterations that may contribute to refractoriness.
Collapse
|
14
|
von Muenchow L, Tsapogas P, Albertí-Servera L, Capoferri G, Doelz M, Rolink H, Bosco N, Ceredig R, Rolink AG. Pro-B cells propagated in stromal cell-free cultures reconstitute functional B-cell compartments in immunodeficient mice. Eur J Immunol 2016; 47:394-405. [PMID: 27925658 DOI: 10.1002/eji.201646638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 01/04/2023]
Abstract
Up to now long-term in vitro growth of pro-B cells was thought to require stromal cells. However, here we show that fetal liver (FL) and bone marrow (BM) derived pro-B cells can be propagated long-term in stromal cell-free cultures supplemented with IL-7, stem cell factor and FLT3 ligand. Within a week, most cells expressed surface CD19, CD79A, λ5, and VpreB antigens and had rearranged immunoglobulin D-J heavy chain genes. Both FL and BM pro-B cells reconstituted the B-cell compartments of immuno-incompetent Rag2-deficient mice, with FL pro-B cells generating follicular, marginal zone (MZB) and B1a B cells, and BM pro-B cells giving rise mainly to MZB cells. Reconstituted Rag2-deficient mice generated significant levels of IgM and IgG antibodies to a type II T-independent antigen; mice reconstituted with FL pro-B cells generated surprisingly high IgG1 titers. Finally, we show for the first time that mice reconstituted with mixtures of pro-B and pro-T cells propagated in stromal cell-free in vitro cultures mounted a T-cell-dependent antibody response. This novel stromal cell-free culture system facilitates our understanding of B-cell development and might be applied clinically.
Collapse
Affiliation(s)
- Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Albertí-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giuseppina Capoferri
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Doelz
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Molecular Immune Regulation, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hannie Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nabil Bosco
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology, National University of Ireland, Galway
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Barwick BG, Scharer CD, Bally AP, Boss JM. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nat Immunol 2016; 17:1216-1225. [PMID: 27500631 PMCID: PMC5157049 DOI: 10.1038/ni.3519] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/23/2016] [Indexed: 12/16/2022]
Abstract
The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.
Collapse
Affiliation(s)
- Benjamin G. Barwick
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Alexander P.R. Bally
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Jeremy M. Boss
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
16
|
Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2. Proc Natl Acad Sci U S A 2016; 113:E2039-46. [PMID: 26993806 DOI: 10.1073/pnas.1600557113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.
Collapse
|
17
|
Abstract
The regulation of antibody production is linked to the generation and maintenance of plasmablasts and plasma cells from their B cell precursors. Plasmablasts are the rapidly produced and short-lived effector cells of the early antibody response, whereas plasma cells are the long-lived mediators of lasting humoral immunity. An extraordinary number of control mechanisms, at both the cellular and molecular levels, underlie the regulation of this essential arm of the immune response. Despite this complexity, the terminal differentiation of B cells can be described as a simple probabilistic process that is governed by a central gene-regulatory network and modified by environmental stimuli.
Collapse
|
18
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Gehre N, Nusser A, von Muenchow L, Tussiwand R, Engdahl C, Capoferri G, Bosco N, Ceredig R, Rolink AG. A stromal cell free culture system generates mouse pro-T cells that can reconstitute T-cell compartments in vivo. Eur J Immunol 2014; 45:932-42. [DOI: 10.1002/eji.201444681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Nadine Gehre
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Anja Nusser
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Roxane Tussiwand
- University of Washington, Department of Pathology and Immunology; St. Louis USA
| | - Corinne Engdahl
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Giuseppina Capoferri
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Nabil Bosco
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| | - Rhodri Ceredig
- Department of Biosciences; University of Galway; Galway; Ireland
| | - Antonius G. Rolink
- Developmental and Molecular Immunology; Department of Biomedicine; University of Basel, Basel; Switzerland
| |
Collapse
|
20
|
Corcoran L, Emslie D, Kratina T, Shi W, Hirsch S, Taubenheim N, Chevrier S. Oct2 and Obf1 as Facilitators of B:T Cell Collaboration during a Humoral Immune Response. Front Immunol 2014; 5:108. [PMID: 24688485 PMCID: PMC3960507 DOI: 10.3389/fimmu.2014.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig) in B lineage cells. This prediction flowed from the earlier observation that an 8-bp sequence, the “octamer motif,” was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f1 gene, was characterized and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1), encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1) on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterization of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signaling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signaling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.
Collapse
Affiliation(s)
- Lynn Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Dianne Emslie
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Tobias Kratina
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Wei Shi
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Susanne Hirsch
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Nadine Taubenheim
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Stephane Chevrier
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
21
|
Willis SN, Good-Jacobson KL, Curtis J, Light A, Tellier J, Shi W, Smyth GK, Tarlinton DM, Belz GT, Corcoran LM, Kallies A, Nutt SL. Transcription factor IRF4 regulates germinal center cell formation through a B cell-intrinsic mechanism. THE JOURNAL OF IMMUNOLOGY 2014; 192:3200-6. [PMID: 24591370 DOI: 10.4049/jimmunol.1303216] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In response to antigenic stimulation, mature B cells interact with follicular helper T cells in specialized structures called germinal centers (GCs), which leads to the development of memory B cells and Ab-secreting plasma cells. The transcription factor IFN regulatory factor 4 (IRF4) is essential for the formation of follicular helper T cells and thus GCs, although whether IRF4 plays a distinct role in GC B cells remains contentious. RNAseq analysis on ex vivo-derived mouse B cell populations showed that Irf4 was lowly expressed in naive B cells, highly expressed in plasma cells, but absent from GC B cells. In this study, we used conditional deletion of Irf4 in mature B cells as well as wild-type and Irf4-deficient mixed bone marrow chimeric mice to investigate how and where IRF4 plays its essential role in GC formation. Strikingly, GC formation was severely impaired in mice in which Irf4 was conditionally deleted in mature B cells, after immunization with protein Ags or infection with Leishmania major. This effect was evident as early as day 5 following immunization, before the development of GCs, indicating that Irf4 was required for the development of early GC B cells. This defect was B cell intrinsic because Irf4-deficient B cells in chimeric mice failed to participate in the GC in response to L. major or influenza virus infection. Taken together, these data demonstrate a B cell-intrinsic requirement for IRF4 for not only the development of Ab secreting plasma cells but also for GC formation.
Collapse
Affiliation(s)
- Simon N Willis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 2014; 123:1487-98. [PMID: 24435047 DOI: 10.1182/blood-2013-05-500264] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Follicular lymphoma (FL) constitutes the second most common non-Hodgkin lymphoma in the western world. FL carries characteristic recurrent structural genomic aberrations. However, information regarding the coding genome in FL is still evolving. Here, we describe the results of massively parallel exome sequencing and single nucleotide polymorphism 6.0 array genomic profiling of 11 highly purified FL cases, and 1 transformed FL case and the validation of selected mutations in 102 FL cases. We report the identification of 15 novel recurrently mutated genes in FL. These include frequent mutations in the linker histone genes HIST1H1 B-E (27%) and mutations in OCT2 (also known as POU2F2; 8%), IRF8 (6%), and ARID1A (11%). A subset of the mutations in HIST1H1 B-E affected binding to DNMT3B, and mutations in HIST1H1 B-E and in EZH2 or ARID1A were largely mutually exclusive, implicating HIST1H1 B-E in epigenetic deregulation in FL. Mutations in OCT2 (POU2F2) affected its transcriptional and functional properties as measured through luciferase assays, the biological analysis of stably transduced cell lines, and global expression profiling. Finally, multiple novel mutated genes located within regions of acquired uniparental disomy in FL are identified. In aggregate, these data substantially broaden our understanding of the genomic pathogenesis of FL.
Collapse
|
23
|
Randall KL. Generating humoral immune memory following infection or vaccination. Expert Rev Vaccines 2014; 9:1083-93. [DOI: 10.1586/erv.10.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Mok Y, Schwierzeck V, Thomas DC, Vigorito E, Rayner TF, Jarvis LB, Prosser HM, Bradley A, Withers DR, Mårtensson IL, Corcoran LM, Blenkiron C, Miska EA, Lyons PA, Smith KGC. MiR-210 is induced by Oct-2, regulates B cells, and inhibits autoantibody production. THE JOURNAL OF IMMUNOLOGY 2013; 191:3037-3048. [PMID: 23960236 DOI: 10.4049/jimmunol.1301289] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (MiRs) are small, noncoding RNAs that regulate gene expression posttranscriptionally. In this study, we show that MiR-210 is induced by Oct-2, a key transcriptional mediator of B cell activation. Germline deletion of MiR-210 results in the development of autoantibodies from 5 mo of age. Overexpression of MiR-210 in vivo resulted in cell autonomous expansion of the B1 lineage and impaired fitness of B2 cells. Mice overexpressing MiR-210 exhibited impaired class-switched Ab responses, a finding confirmed in wild-type B cells transfected with a MiR-210 mimic. In vitro studies demonstrated defects in cellular proliferation and cell cycle entry, which were consistent with the transcriptomic analysis demonstrating downregulation of genes involved in cellular proliferation and B cell activation. These findings indicate that Oct-2 induction of MiR-210 provides a novel inhibitory mechanism for the control of B cells and autoantibody production.
Collapse
Affiliation(s)
- Yingting Mok
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Vera Schwierzeck
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - David C Thomas
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tim F Rayner
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lorna B Jarvis
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - David R Withers
- MRC Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, B15 2TT, UK
| | - Inga-Lill Mårtensson
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Cherie Blenkiron
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Paul A Lyons
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Kenneth G C Smith
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
25
|
Karnowski A, Chevrier S, Belz GT, Mount A, Emslie D, D'Costa K, Tarlinton DM, Kallies A, Corcoran LM. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. ACTA ACUST UNITED AC 2012; 209:2049-64. [PMID: 23045607 PMCID: PMC3478936 DOI: 10.1084/jem.20111504] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptional activator Oct2 and cofactor OBF-1 regulate B cell IL-6 to induce T cell production of IL-21, to support Tfh cell development in antiviral immunity. A strong humoral response to infection requires the collaboration of several hematopoietic cell types that communicate via antigen presentation, surface coreceptors and their ligands, and secreted factors. The proinflammatory cytokine IL-6 has been shown to promote the differentiation of activated CD4+ T cells into T follicular helper cells (TFH cells) during an immune response. TFH cells collaborate with B cells in the formation of germinal centers (GCs) during T cell–dependent antibody responses, in part through secretion of critical cytokines such as IL-21. In this study, we demonstrate that loss of either IL-6 or IL-21 has marginal effects on the generation of TFH cells and on the formation of GCs during the response to acute viral infection. However, mice lacking both IL-6 and IL-21 were unable to generate a robust TFH cell–dependent immune response. We found that IL-6 production in follicular B cells in the draining lymph node was an important early event during the antiviral response and that B cell–derived IL-6 was necessary and sufficient to induce IL-21 from CD4+ T cells in vitro and to support TFH cell development in vivo. Finally, the transcriptional activator Oct2 and its cofactor OBF-1 were identified as regulators of Il6 expression in B cells.
Collapse
Affiliation(s)
- Alex Karnowski
- Molecular Immunology Division and 2 Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang D, Adams CM, Fernandes JF, Egger RL, Walbot V. A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:925-35. [PMID: 22748129 PMCID: PMC4144787 DOI: 10.1111/j.1467-7652.2012.00721.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During maize anther development, somatic locular cells differentiate to support meiosis in the pollen mother cells. Meiosis is an important event during anther growth and is essential for plant fertility as pollen contains the haploid sperm. A subset of maize male sterile mutants exhibit meiotic failure, including ms8 (male sterile 8) in which meiocytes arrest as dyads and the locular somatic cells exhibit multiple defects. Systematic proteomic profiles were analysed in biological triplicates plus technical triplicates comparing ms8 anthers with fertile sibling samples at both the premeiotic and meiotic stages; proteins from 3.5 to 20 kDa were fractionated by 1-D PAGE, cleaved with Lys-C and then sequenced using a LTQ Orbitrap Velos MS paradigm. Three hundred and 59 proteins were identified with two or more assigned peptides in which each of those peptides were counted at least two or more times (0.4% peptide false discovery rate (FDR) and 0.2% protein FDR); 2761 proteins were identified with one or more assigned peptides (0.4% peptide FDR and 7.6% protein FDR). Stage-specific protein expression provides candidate stage markers for early anther development, and proteins specifically expressed in fertile compared to sterile anthers provide important clues about the regulation of meiosis. 49% of the proteins detected by this study are new to an independent whole anther proteome, and many small proteins missed by automated maize genome annotation were validated; these outcomes indicate the value of focusing on low molecular weight proteins. The roles of distinctive expressed proteins and methods for mass spectrometry of low molecular weight proteins are discussed.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | | | | | | |
Collapse
|
27
|
Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD. The genetic network controlling plasma cell differentiation. Semin Immunol 2011; 23:341-9. [PMID: 21924923 DOI: 10.1016/j.smim.2011.08.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/19/2011] [Indexed: 12/26/2022]
Abstract
Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response.
Collapse
Affiliation(s)
- Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3050, Australia
| | | | | | | | | |
Collapse
|
28
|
Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat Immunol 2011; 12:472-7. [DOI: 10.1038/ni.2019] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Wang D, Skibbe DS, Walbot V. Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. ACTA ACUST UNITED AC 2011; 24:297-306. [PMID: 21475967 DOI: 10.1007/s00497-011-0167-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/18/2011] [Indexed: 12/23/2022]
Abstract
Maize male reproductive development is complex and lengthy, and anther formation and pollen maturation are precisely and spatiotemporally regulated. Here, we document that callose, somatic, and microspore defect 1 (csmd1), a new male-sterile mutant, has both pre-meiotic somatic and post-meiotic gametophyte and somatic defects. Chromosome behavior and cell developmental events were monitored by nuclear staining viewed by bright field microscopy; cell dimensions were charted by Volocity analysis of confocal microscopy images. Aniline blue staining and quantitative assays were performed to record callose deposition, and expression of three callose synthase genes was measured by qRT-PCR. Despite numerous defects and unlike other maize male-sterile mutants that show growth arrest coincident with locular defects, csmd1 anther elongation is nearly normal. Pre-meiotically and during prophase I, there is excess callose surrounding the meiocytes. Post-meiotically csmd1 epidermal cells have impaired elongation but excess longitudinal divisions, and uninucleate microspores cease growth; the microspore nucleoli degrade followed by cytoplasmic vacuolization and haploid cell collapse. The single vascular bundle within csmd1 anthers senesces precociously, coordinate with microspore death. Although csmd1 anther locules contain only epidermal and endothecial cells at maturity, locules are oval rather than collapsed, indicating that these two cell types suffice to maintain an open channel within each locule. Our data indicate that csmd1 encodes a crucial factor important for normal anther development in both somatic and haploid cells, that excess callose deposition does not cause meiotic arrest, and that developing pollen is not required for continued maize anther growth.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | |
Collapse
|
30
|
Tian C, Chen X, Ao J. The up-regulation of large yellow croaker secretory IgM heavy chain at early phase of immune response. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:483-490. [PMID: 19343516 DOI: 10.1007/s10695-009-9318-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/13/2009] [Indexed: 05/27/2023]
Abstract
An immunoglobulin M (IgM) heavy-chain gene homologue was isolated from the spleen cDNA library of the large yellow croaker Pseudosciaena crocea (LycIgH). The complete cDNA of LycIgH is 1,987 nucleotides long, encoding a protein of 585 amino acids with a putative molecular weight of 64.5 kDa. The deduced LycIgH possesses a typical secretory IgM heavy chain organization with a variable region (V(H)) connected to four constant regions (C(H1-4)) by a diversity segment (D(H)) and a joining segment (J(H)). Tissue expression profile analysis showed that LycIgH was constitutively expressed in gills, intestine, liver, kidney, heart, spleen, muscle, and blood, while at a higher level in spleen, kidney and intestine. Upon stimulation with poly (I: C), the LycIgH transcripts were quickly increased in spleen and kidney at 12 h post induction (with 5.87- and 5.48-fold mRNA increases, respectively), followed by a recovery to normal level at 24 h. The LycIgH transcripts in spleen and kidney induced by inactivated bacterial vaccine reached their peak levels at 48 h (14.53-fold) and 12 h (3.70-fold), respectively. These results indicated the up-regulation of LycIgH expression in spleen and kidney by poly (I: C) or bacterial vaccine occurred at the early phase of induction and was differentially modulated in the two tissues by different stimulations.
Collapse
Affiliation(s)
- Chen Tian
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
31
|
Zhu X, Wu L, Zhang L, Hao P, Zhang S, Huang J, Zheng J, Liu Y, Li W, Zhang Y, Zhou C, Zhang Y, Yin CC, Qiu X. Distinct regulatory mechanism of immunoglobulin gene transcription in epithelial cancer cells. Cell Mol Immunol 2010; 7:279-86. [PMID: 20473321 DOI: 10.1038/cmi.2010.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The restriction of immunoglobulin (Ig) expression to B lymphocytes is well established. However, several reports have confirmed that the Ig gene can be expressed in many non-B cancer cells and/or some normal cells. Our aim is to determine whether the Ig gene promoter can be activated in non-B cancer cells and to identify the regulatory mechanism for Ig gene expression. Our results show that the Ig promoter of VH4-59 was activated in several non-B cancer cell lines. Moreover, two novel positive regulatory elements, an enhancer-like element at -800 to -610 bp and a copromoter-like element at -610 to -300 bp, were identified in two epithelial cancer cell lines, HeLa S3 and HT-29. The octamer element (5'-ATGCAAAT-3') located in the Ig promoter, a crucial element for B-cell-derived Ig gene transcription, was also very important for non-B-cell-derived Ig gene transcription. More importantly, we confirmed that octamer-related protein-1 (Oct-1), but not Oct-2, was a crucial transcriptional factor for Ig gene transcription due to its ability to bind to the octamer element of the Ig promoter in epithelial cancer cells. These results suggested the presence of a distinct regulatory mechanism for Ig gene expression in non-B cancer cells.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Peking University Center for Human Disease Genomics, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Todoerti K, Barbui V, Pedrini O, Lionetti M, Fossati G, Mascagni P, Rambaldi A, Neri A, Introna M, Lombardi L, Golay J. Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 2009; 95:260-9. [PMID: 19713220 DOI: 10.3324/haematol.2009.012088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The histone deacetylase inhibitor ITF2357 has potent cytotoxic activity in multiple myeloma in vitro and has entered clinical trials for this disease. DESIGN AND METHODS In order to gain an overall view of the activity of ITF2357 and identify specific pathways that may be modulated by the drug, we performed gene expression profiling of the KMS18 multiple myeloma cell line treated with the drug. The modulation of several genes and their biological consequence were verified in a panel of multiple myeloma cell lines and cells freshly isolated from patients by using polymerase chain reaction analysis and western blotting. RESULTS Out of 38,500 human genes, we identified 140 and 574 up-regulated genes and 102 and 556 down-modulated genes at 2 and 6 h, respectively, with a significant presence of genes related to transcription regulation at 2 h and to cell cycling and apoptosis at 6 h. Several of the identified genes are particularly relevant to the biology of multiple myeloma and it was confirmed that ITF2357 also modulated their encoded proteins in different multiple myeloma cell lines. In particular, ITF2357 down-modulated the interleukin-6 receptor alpha (CD126) transcript and protein in both cell lines and freshly isolated patients' cells, whereas it did not significantly modify interleukin-6 receptor beta (CD130) expression. The decrease in CD126 expression was accompanied by decreased signaling by interleukin-6 receptor, as measured by STAT3 phosphorylation in the presence and absence of inter-leukin-6. Finally, the drug significantly down-modulated the MIRHG1 transcript and its associated microRNA, miR-19a and miR-19b, known to have oncogenic activity in multiple myeloma. CONCLUSIONS ITF2357 inhibits several signaling pathways involved in myeloma cell growth and survival.
Collapse
Affiliation(s)
- Katia Todoerti
- Department of Medical Sciences, University of Milan, Fondazione IRCCS Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bordon A, Bosco N, Du Roure C, Bartholdy B, Kohler H, Matthias G, Rolink AG, Matthias P. Enforced expression of the transcriptional coactivator OBF1 impairs B cell differentiation at the earliest stage of development. PLoS One 2008; 3:e4007. [PMID: 19104664 PMCID: PMC2603323 DOI: 10.1371/journal.pone.0004007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/19/2008] [Indexed: 02/06/2023] Open
Abstract
OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation.
Collapse
Affiliation(s)
- Alain Bordon
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Richard MLL, Hikima JI, Wilson MR, Miller NW, Cunningham C, Warr GW. BOB.1 of the channel catfish, Ictalurus punctatus: not a transcriptional coactivator? Mol Immunol 2008; 46:481-91. [PMID: 19041136 DOI: 10.1016/j.molimm.2008.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/05/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
Expression of the immunoglobulin heavy chain (IGH) locus of the channel catfish (Ictalurus punctatus) is driven by the Emu3' enhancer, whose core region contains two octamer motifs and a muE5 site. Orthologues of the Oct1 and Oct2 transcription factors have been cloned in the channel catfish and shown to bind to the octamer motifs within the core enhancer. While catfish Oct2 is an activator of transcription, catfish Oct1 failed to drive transcription and may act as a negative regulator of IGH transcription. In mammals, the Oct co-activator BOB.1 (B cell Oct-binding protein1, also known as OCA-B and OBF-1) greatly enhances the transcriptional activity of Oct factors and plays an important role in the development of the immune system. An orthologue of BOB.1 has been cloned in the catfish, and its function characterized. The POU binding domain of the catfish BOB.1 was found to be 95% identical at the amino acid level with the binding domain of human BOB.1, and all the residues directly involved in binding to the Oct-DNA complex were conserved. Despite this conservation, catfish BOB.1 failed to enhance transcriptional activation mediated by endogenous or co-transfected catfish Oct2, and failed to rescue the activity of the inactive catfish Oct1. Electrophoretic mobility shift assays showed that catfish BOB.1 was capable of binding both catfish Oct1 and Oct2 when they formed a complex with the Oct motif. Analysis of recombinant chimeric catfish and human BOB.1 proteins demonstrated that the failure to drive transcription was due to the lack of a functional activation domain within the catfish BOB.1.
Collapse
Affiliation(s)
- Mara L Lennard Richard
- Marine Biomedicine and Environmental Sciences Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
B lymphocytes are an integral part of the adaptive immune system. On antigen binding to the B-cell receptor (BCR), B cells rapidly proliferate and differentiate into antibody-secreting plasma cells. The p38 mitogen-activated protein kinase (MAPK) pathway functions downstream of the BCR to control cell proliferation, but the transcriptional effectors of this pathway in B cells have remained elusive. In the present study, we inactivated Mef2c exclusively in B cells by conditional gene targeting in mice. Loss of MEF2C function resulted in a reduced immune response to antigen, defective germinal center formation, and a severe defect in B-cell proliferation, and we show that MEF2C regulates proliferation in response to BCR stimulation via the p38 MAPK pathway. p38 directly phosphorylates MEF2C via three residues in the C-terminal transactivation domain, establishing MEF2C as a direct transcriptional effector of BCR signaling via p38 MAPK.
Collapse
|
36
|
Emslie D, D'Costa K, Hasbold J, Metcalf D, Takatsu K, Hodgkin PO, Corcoran LM. Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor alpha chain expression on activated B cells. ACTA ACUST UNITED AC 2008; 205:409-21. [PMID: 18250192 PMCID: PMC2271016 DOI: 10.1084/jem.20072049] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mice lacking a functional gene for the Oct2 transcriptional activator display several developmental and functional deficiencies in the B lymphocyte lineage. These include defective B cell receptor (BCR) and Toll-like receptor 4 signaling, an absence of B-1 and marginal zone populations, and globally reduced levels of serum immunoglobulin (Ig) in naive and immunized animals. Oct2 was originally identified through its ability to bind to regulatory regions in the Ig loci, but genetic evidence has not supported an essential role for Oct2 in the expression of Ig genes. We describe a new Oct2-mediated role in B cells. Oct2 augments the ability of activated B cells to differentiate to antibody-secreting plasma cells (ASCs) under T cell-dependent conditions through direct regulation of the gene encoding the alpha chain of the interleukin (IL) 5 receptor. Ectopic expression of IL-5Ralpha in oct2-deficient B cells largely restores their ability to differentiate to functional ASCs in vitro but does not correct other phenotypic defects in the mutants, such as the maturation and specialization of peripheral B cells, which must therefore rely on distinct Oct2 target genes. IL-5 augments ASC differentiation in vitro, and we show that IL-5 directly activates the plasma cell differentiation program by enhancing blimp1 expression.
Collapse
Affiliation(s)
- Dianne Emslie
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 2008; 28:1688-701. [PMID: 18180281 DOI: 10.1128/mcb.01154-06] [Citation(s) in RCA: 429] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modifications play important roles in regulating protein structure and function. Histone deacetylase 6 (HDAC6) is a mostly cytoplasmic class II HDAC, which has a unique structure with two catalytic domains and a domain binding ubiquitin with high affinity. This enzyme was recently identified as a multisubstrate protein deacetylase that can act on acetylated histone tails, alpha-tubulin and Hsp90. To investigate the in vivo functions of HDAC6 and the relevance of tubulin acetylation/deacetylation, we targeted the HDAC6 gene by homologous recombination in embryonic stem cells and generated knockout mice. HDAC6-deficient mice are viable and fertile and show hyperacetylated tubulin in most tissues. The highest level of expression of HDAC6 is seen in the testis, yet development and function of this organ are normal in the absence of HDAC6. Likewise, lymphoid development is normal, but the immune response is moderately affected. Furthermore, the lack of HDAC6 results in a small increase in cancellous bone mineral density, indicating that this deacetylase plays a minor role in bone biology. HDAC6-deficient mouse embryonic fibroblasts show apparently normal microtubule organization and stability and also show increased Hsp90 acetylation correlating with impaired Hsp90 function. Collectively, these data demonstrate that mice survive well without HDAC6 and that tubulin hyperacetylation is not detrimental to normal mammalian development.
Collapse
|
38
|
Zhao C, Inoue J, Imoto I, Otsuki T, Iida S, Ueda R, Inazawa J. POU2AF1, an amplification target at 11q23, promotes growth of multiple myeloma cells by directly regulating expression of a B-cell maturation factor, TNFRSF17. Oncogene 2007; 27:63-75. [PMID: 17621271 DOI: 10.1038/sj.onc.1210637] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple myeloma (MM), a progressive hematological neoplasm, is thought to result from multiple genetic events affecting the terminal plasma cell. However, genetic aberrations related to MM are seldom reported. Using our in-house array-based comparative genomic hybridization system to locate candidate target genes with following their expression analysis, we identified POU2AF1 at 11q23.1 as a probable amplification target in MM cell lines. POU2AF1 is a B-cell-specific transcriptional co-activator, which interacts with octamer-binding transcription factors Oct-1 and Oct-2, and augments their function. Downregulation of POU2AF1 expression by specific small-interfering RNA (siRNA) inhibited MM cell growth, whereas ectopic expression of POU2AF1 promoted growth of MM cells. Among putative transcriptional targets for POU2AF1, B-cell maturation factor, TNFRSF17, enhanced its transcription by POU2AF1, and POU2AF1 directly bound to an octamer site within the 5' region of TNFRSF17. Expression level of TNFRSF17 was closely correlated with that of POU2AF1 in cell lines and primary samples of MM, and decreasing TNFRSF17 expression by means of TNFRSF17 siRNA inhibited MM cell growth. Taken together, our results suggest that POU2AF1, when activated by amplification or other mechanisms, may contribute to progression of MM by accelerating growth of MM cells through direct transactivation of one of its target genes, TNFRSF17.
Collapse
Affiliation(s)
- C Zhao
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Zuo J, Ge H, Zhu G, Matthias P, Sun J. OBF-1 is essential for the generation of antibody-secreting cells and the development of autoimmunity in MRL-lpr mice. J Autoimmun 2007; 29:87-96. [PMID: 17574818 DOI: 10.1016/j.jaut.2007.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/06/2007] [Accepted: 05/07/2007] [Indexed: 02/06/2023]
Abstract
As reported previously, the lack of the transcriptional co-activator OBF-1 prevented development of autoimmunity in Aiolos knockout mice. To further investigate the role and mechanism of OBF-1 in autoimmunity, we crossed OBF-1 null mice with MRL-lpr mice and generated OBF-1-deficent MRL-lpr mice. OBF-1 deletion abrogated all autoantibodies in the MRL-lpr mice, including anti-dsDNA Ab and anti-Sm Ab. The failure to produce autoantibodies was not related to development of immature or mature B cells, but correlated with severely reduced antibody-secreting cells (ASCs). The loss of OBF-1 protected against hypergammaglobulinemia, immune complex deposition, glomerulonephritis, and early mortality in MRL-lpr mice. In addition, accumulation of CD4(-)CD8(-)B220(+)CD3(+) T cells that characteristically develop in Fas mutation mice were markedly reduced in MRL-lpr mice without OBF-1. These results identify OBF-1 as a critical gene in the development of autoantibodies and reveal an essential role for OBF-1 in the generation of antibody/autoantibody-secreting cells in vivo.
Collapse
Affiliation(s)
- Jinxin Zuo
- Health Science Institute, Shanghai Institutes for Biological Sciences & Shanghai JiaoTong University School of Medicine, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Finocchiaro G, Mancuso FM, Cittaro D, Muller H. Graph-based identification of cancer signaling pathways from published gene expression signatures using PubLiME. Nucleic Acids Res 2007; 35:2343-55. [PMID: 17389643 PMCID: PMC1874632 DOI: 10.1093/nar/gkm119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gene expression technology has become a routine application in many laboratories and has provided large amounts of gene expression signatures that have been identified in a variety of cancer types. Interpretation of gene expression signatures would profit from the availability of a procedure capable of assigning differentially regulated genes or entire gene signatures to defined cancer signaling pathways. Here we describe a graph-based approach that identifies cancer signaling pathways from published gene expression signatures. Published gene expression signatures are collected in a database (PubLiME: Published Lists of Microarray Experiments) enabled for cross-platform gene annotation. Significant co-occurrence modules composed of up to 10 genes in different gene expression signatures are identified. Significantly co-occurring genes are linked by an edge in an undirected graph. Edge-betweenness and k-clique clustering combined with graph modularity as a quality measure are used to identify communities in the resulting graph. The identified communities consist of cell cycle, apoptosis, phosphorylation cascade, extra cellular matrix, interferon and immune response regulators as well as communities of unknown function. The genes constituting different communities are characterized by common genomic features and strongly enriched cis-regulatory modules in their upstream regulatory regions that are consistent with pathway assignment of those genes.
Collapse
Affiliation(s)
- Giacomo Finocchiaro
- The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy and Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Francesco Mattia Mancuso
- The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy and Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Davide Cittaro
- The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy and Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | - Heiko Muller
- The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy and Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
- *To whom correspondence should be addressed. +39 02 574303263+39 02 574303244
| |
Collapse
|
41
|
Dong B, Zhao FQ. Expression of the Oct-2 transcription factor in mouse mammary gland and cloning and characterization of a novel Oct-2 isoform. Cell Tissue Res 2007; 328:595-606. [PMID: 17285328 DOI: 10.1007/s00441-006-0368-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 12/12/2006] [Indexed: 11/25/2022]
Abstract
Oct-2 is a member of the POU family of transcription factors, which specifically bind to the octamer DNA motif ATGCAAAT and its closely related sequences. Unlike its ubiquitous counterpart Oct-1, Oct-2 is thought to be expressed only in B lymphocytes and neuronal cells and is mainly involved in immunoglobulin gene expression. We show here that Oct-2 is also expressed in the epithelial cells of mouse mammary gland, and that this expression is developmentally regulated. Rapid amplification of cDNA ends and subsequent cDNA cloning indicate that the mammary gland expresses multiple Oct-2 isoforms, including a novel isoform, named Oct-2.7. Compared with Oct-2 (isoform 2.1), the deduced Oct-2.7 sequence has an additional 22 amino acids close to the N-terminus and a novel 76-amino-acid C-terminus resulting from alternative splicing, with retention of the last intron that is spliced out in all other isoforms. Although Oct-2.7 has intact POU-specific and POU-homeo domains, it is unable to bind to the octamer motif, unlike all other known isoforms. Like Oct-1, both Oct-2.1 and Oct-2.7 can activate basal beta-casein gene promoter activity. However, activation by Oct-2.7, which is independent of DNA binding, is significantly lower than that by Oct-2.1. Moreover, deletion of the first 114 amino acids at the N-terminus of Oct-2.1 has no effect on activation; this does not support previous reports of the presence of an inhibitory domain in this region.
Collapse
Affiliation(s)
- Bing Dong
- Lactation and Mammary Gland Biology Group, Department of Animal Science, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
42
|
Characterization of an Oct1 orthologue in the channel catfish, Ictalurus punctatus: a negative regulator of immunoglobulin gene transcription? BMC Mol Biol 2007; 8:8. [PMID: 17266766 PMCID: PMC1800861 DOI: 10.1186/1471-2199-8-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enhancer (Emu3') of the immunoglobulin heavy chain locus (IGH) of the channel catfish (Ictalurus punctatus) has been well characterized. The functional core region consists of two variant Oct transcription factor binding octamer motifs and one E-protein binding muE5 site. An orthologue to the Oct2 transcription factor has previously been cloned in catfish and is a functionally active transcription factor. This study was undertaken to clone and characterize the Oct1 transcription factor, which has also been shown to be important in driving immunoglobulin gene transcription in mammals. RESULTS An orthologue of Oct1, a POU family transcription factor, was cloned from a catfish macrophage cDNA library. The inferred amino acid sequence of the catfish Oct1, when aligned with other vertebrate Oct1 sequences, revealed clear conservation of structure, with the POU specific subdomain of catfish Oct1 showing 96% identity to that of mouse Oct1. Expression of Oct1 was observed in clonal T and B cell lines and in all tissues examined. Catfish Oct1, when transfected into both mammalian (mouse) and catfish B cell lines, unexpectedly failed to drive transcription from three different octamer-containing reporter constructs. These contained a trimer of octamer motifs, a fish VH promoter, and the core region of the catfish Emu3' IGH enhancer, respectively. This failure of catfish Oct1 to drive transcription was not rescued by human BOB.1, a co-activator of Oct transcription factors that stimulates transcription driven by catfish Oct2. When co-transfected with catfish Oct2, Oct1 reduced Oct2 driven transcriptional activation. Electrophoretic mobility shift assays showed that catfish Oct1 (native or expressed in vitro) bound both consensus and variant octamer motifs. Putative N- and C-terminal activation domains of Oct1, when fused to a Gal4 DNA binding domain and co-transfected with Gal4-dependent reporter constructs were transcriptionally inactive, which may be due in part to a lack of residues associated with activation domain function. CONCLUSION An orthologue to mammalian Oct1 has been found in the catfish. It is similar to mammalian Oct1 in structure and expression. However, these results indicate that the physiological functions of catfish Oct1 differ from those of mammalian Oct1 and include negative regulation of transcription.
Collapse
|
43
|
Erratum: Corrigendum: B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nat Immunol 2006. [DOI: 10.1038/ni0906-1004b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Suzuki T, Minehata KI, Akagi K, Jenkins NA, Copeland NG. Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO J 2006; 25:3422-31. [PMID: 16858412 PMCID: PMC1523184 DOI: 10.1038/sj.emboj.7601215] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 06/06/2006] [Indexed: 11/09/2022] Open
Abstract
Retroviral insertional mutagenesis preferentially identifies oncogenes rather than tumor suppressor (TS) genes, presumably because a single retroviral-induced mutation is sufficient to activate an oncogene and initiate a tumor, whereas two mutations are needed to inactivate a TS gene. Here we show that TS genes can be identified by insertional mutagenesis when the screens are performed in Blm-deficient backgrounds. Blm-deficient mice, like Bloom syndrome patients, have increased frequencies of mitotic recombination owing to a mutation in the RecQ protein-like-3 helicase gene. This increased mitotic recombination increases the likelihood that an insertional mutation in one allele of a TS gene will become homozygoused by non-sister chromatid exchange and the homozygosity of the insertion provides a marker for identifying the TS gene. We also show that known as well as novel TS genes can be identified by insertional mutagenesis in Blm-deficient mice and identify two JmjC family proteins that contribute to genome stability in species as evolutionarily diverse as mammals and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Cancer Genetic Unit, Horizontal Medical Research Organization, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken-ichi Minehata
- Cancer Genetic Unit, Horizontal Medical Research Organization, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiko Akagi
- Mouse Cancer Genetics Program, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Nancy A Jenkins
- Mouse Cancer Genetics Program, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Neal G Copeland
- Mouse Cancer Genetics Program, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| |
Collapse
|
45
|
Bartholdy B, Du Roure C, Bordon A, Emslie D, Corcoran LM, Matthias P. The Ets factor Spi-B is a direct critical target of the coactivator OBF-1. Proc Natl Acad Sci U S A 2006; 103:11665-70. [PMID: 16861304 PMCID: PMC1513538 DOI: 10.1073/pnas.0509430103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBF-1 (Bob.1, OCA-B) is a lymphoid-specific transcriptional coactivator that associates with the transcription factors Oct-1 or Oct-2 on the conserved octamer element present in the promoters of several ubiquitous and lymphoid-specific genes. OBF-1-deficient mice have B cell-intrinsic defects, lack germinal centers, and have severely impaired immune responses to T cell-dependent antigens. Crucial genes that are regulated by OBF-1 and that might explain the observed phenotype of OBF-1 deficiency have remained elusive to date. Here we have generated transgenic mice expressing OBF-1 specifically in T cells and examined these together with mice lacking OBF-1 to discover transcriptional targets of this coactivator. Using microarray analysis, we have identified the Ets transcription factor Spi-B as a direct target gene critically regulated by OBF-1 that can help explain the phenotype of OBF-1-deficient mice. Spi-B has been implicated in signaling pathways downstream of the B cell receptor and is essential for germinal center formation and maintenance. The present findings establish a hierarchy between these two factors and provide a molecular link between OBF-1 and B cell receptor signaling.
Collapse
Affiliation(s)
- Boris Bartholdy
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Camille Du Roure
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Alain Bordon
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Dianne Emslie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Lynn M. Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Patrick Matthias
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Yu X, Siegel R, Roeder RG. Interaction of the B Cell-specific Transcriptional Coactivator OCA-B and Galectin-1 and a Possible Role in Regulating BCR-mediated B Cell Proliferation. J Biol Chem 2006; 281:15505-16. [PMID: 16565088 DOI: 10.1074/jbc.m509041200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
47
|
Heckman CA, Duan H, Garcia PB, Boxer LM. Oct transcription factors mediate t(14;18) lymphoma cell survival by directly regulating bcl-2 expression. Oncogene 2006; 25:888-98. [PMID: 16186795 DOI: 10.1038/sj.onc.1209127] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-1 and Oct-2 are members of the POU homeodomain family of transcriptional regulators and are critical for normal embryonic development. Gene-targeting studies showed that Oct-1 and Oct-2 are largely dispensable for B-cell development and immunoglobulin production, although both Oct-2 and Bob-1 are required for a proper immune response and germinal center formation. In these studies, we investigated the role of Oct factors in B-cell lymphomas. Recent investigations have shown increased expression of Oct-2 and Bob-1 in lymphomas, and we observed greatly increased levels of Oct-2 in lymphoma cells with the t(14;18) translocation. Decreased expression of Oct-1, Oct-2, or Bob-1 by RNA interference resulted in apoptosis and down-regulation of bcl-2 expression. Furthermore, Oct-2 induced bcl-2 promoter activity and mediated this effect through three regions in the bcl-2 P2 promoter. Although these regions did not contain canonical octamer motifs, we observed the direct interaction of Oct-2 with all three sites both in vitro by EMSA and in vivo by chromatin immunoprecipitation assay. Moreover, by mutation analysis we found that the ability of Oct-2 to activate bcl-2 required C/EBP, Cdx, and TATA-binding sites. Oct-2, therefore, acts as a cell survival factor in t(14;18) lymphoma cells by directly activating the antiapoptotic gene bcl-2.
Collapse
Affiliation(s)
- C A Heckman
- Center for Molecular Biology in Medicine, Palo Alto VAHCS, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|