1
|
Geethika K, Verma A, Mondal P, Mandal SS. Molecular Analysis of Changes in DNA Binding Affinity and Bending Extent Induced by the Mutations on the Aromatic Amino Residues in Cren7. Chemphyschem 2024:e202400545. [PMID: 39221606 DOI: 10.1002/cphc.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Proteins from Crenarchaeal organisms exhibit remarkable thermal stability. The aromatic amino acids in Cren7, a Crenarchaeal protein, regulate protein stability and further modulate DNA binding and its compaction. Specific aromatic amino acids were mutated, and using spectroscopic and theoretical approaches, we have examined the effect of the mutation on the structure, DNA binding affinity, and DNA bending ability of Cren7. The mutants were compared to the structure and function of wild-type (WT) Cren7. The reverse titration profiles were analysed by a noncooperative McGhee-von Hippel model to estimate affinity constant (Ka) and binding site size (n) associated with binding to the DNA. The biolayer interferometry (BLI) measurements showed that the binding affinity decreased at higher salt concentrations. For theoretical analysis of the extent of DNA bending, radius of gyration and bending angle were compared for WT and mutants. The time evolution of order parameters based on the translational and rotational motion of tryptophan residue (W26) was used for the qualitative detection of stacking interactions between W26 of Cren7 and DNA nucleobases. It was observed that the orientation of W26 in F41A favored the formation of a new lone pair-lone pair interaction between DNA and Cren7. Consequently, in thermostable proteins, the aromatic residues at the terminus maintain structural stability, whereas the residues at the core optimize the degree of DNA bending and compaction.
Collapse
Affiliation(s)
- K Geethika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Arunima Verma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Padmabati Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Soumit S Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
2
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
3
|
Mitra R, Li J, Sagendorf JM, Jiang Y, Cohen AS, Chiu TP, Glasscock CJ, Rohs R. Geometric deep learning of protein-DNA binding specificity. Nat Methods 2024; 21:1674-1683. [PMID: 39103447 PMCID: PMC11399107 DOI: 10.1038/s41592-024-02372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Predicting protein-DNA binding specificity is a challenging yet essential task for understanding gene regulation. Protein-DNA complexes usually exhibit binding to a selected DNA target site, whereas a protein binds, with varying degrees of binding specificity, to a wide range of DNA sequences. This information is not directly accessible in a single structure. Here, to access this information, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity from protein-DNA structure. DeepPBS can be applied to experimental or predicted structures. Interpretable protein heavy atom importance scores for interface residues can be extracted. When aggregated at the protein residue level, these scores are validated through mutagenesis experiments. Applied to designed proteins targeting specific DNA sequences, DeepPBS was demonstrated to predict experimentally measured binding specificity. DeepPBS offers a foundation for machine-aided studies that advance our understanding of molecular interactions and guide experimental designs and synthetic biology.
Collapse
Affiliation(s)
- Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jared M Sagendorf
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Ari S Cohen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Cameron J Glasscock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Han L, Hu Y, Mo Q, Yang H, Gu F, Bai F, Sun Y, Ma H. Engineering miniature IscB nickase for robust base editing with broad targeting range. Nat Chem Biol 2024:10.1038/s41589-024-01670-w. [PMID: 38977788 DOI: 10.1038/s41589-024-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
IscB has a similar domain organization to Cas9, but the small size of IscB is better suited for delivery by adeno-associated virus. To improve the low editing efficiency of OgeuIscB (IscB from human gut metagenome) in mammalian cells, we developed high-efficiency miniature base editors by engineering OgeuIscB nickase and its cognate ωRNA, termed IminiBEs. We demonstrated the robust editing efficiency of IminiCBE (67% on average) or IminiABE (52% on average). Fusing non-specific DNA-binding protein Sso7d to IminiBEs increased the editing efficiency of low-efficiency sites by around two- to threefold, and we termed it SIminiBEs. In addition, IminiCBE and SIminiCBE recognize NNRR, NNRY and NNYR target-adjacent motifs, which broaden the canonical NWRRNA target-adjacent motif sites for the wild-type IscB nickase. Overall, IminiBEs and SIminiBEs are efficient miniature base editors for site-specific genomic mutations.
Collapse
Affiliation(s)
- Linxiao Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueer Hu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Feng Gu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
5
|
Hu Y, Han L, Mo Q, Du Z, Jiang W, Wu X, Zheng J, Xiao X, Sun Y, Ma H. Engineering miniature CRISPR-Cas Un1Cas12f1 for efficient base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102201. [PMID: 38766526 PMCID: PMC11101732 DOI: 10.1016/j.omtn.2024.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Adeno-associated virus (AAV) is a relatively safe and efficient vector for gene therapy. However, due to its 4.7-kb limit of cargo, SpCas9-mediated base editors cannot be packaged into a single AAV vector, which hinders their clinical application. The development of efficient miniature base editors becomes an urgent need. Un1Cas12f1 is a class II V-F-type CRISPR-Cas protein with only 529 amino acids. Although Un1Cas12f1 has been engineered to be a base editor in mammalian cells, the base-editing efficiency is less than 10%, which limits its therapeutic applications. Here, we developed hypercompact and high-efficiency base editors by engineering Un1Cas12f1, fusing non-specific DNA binding protein Sso7d, and truncating single guide RNA (sgRNA), termed STUminiBEs. We demonstrated robust A-to-G conversion (54% on average) by STUminiABEs or C-to-T conversion (45% on average) by STUminiCBEs. We packaged STUminiCBEs into AAVs and successfully introduced a premature stop codon on the PCSK9 gene in mammalian cells. In sum, STUminiBEs are efficient miniature base editors and could readily be packaged into AAVs for biological research or biomedical applications.
Collapse
Affiliation(s)
- Yueer Hu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linxiao Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zengming Du
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Wei Jiang
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Xia Wu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Xiao Xiao
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Mitra R, Li J, Sagendorf JM, Jiang Y, Chiu TP, Rohs R. DeepPBS: Geometric deep learning for interpretable prediction of protein-DNA binding specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571942. [PMID: 38293168 PMCID: PMC10827229 DOI: 10.1101/2023.12.15.571942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Predicting specificity in protein-DNA interactions is a challenging yet essential task for understanding gene regulation. Here, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity across protein families based on protein-DNA structures. The DeepPBS architecture allows investigation of different family-specific recognition patterns. DeepPBS can be applied to predicted structures, and can aid in the modeling of protein-DNA complexes. DeepPBS is interpretable and can be used to calculate protein heavy atom-level importance scores, demonstrated as a case-study on p53-DNA interface. When aggregated at the protein residue level, these scores conform well with alanine scanning mutagenesis experimental data. The inference time for DeepPBS is sufficiently fast for analyzing simulation trajectories, as demonstrated on a molecular-dynamics simulation of a Drosophila Hox-DNA tertiary complex with its cofactor. DeepPBS and its corresponding data resources offer a foundation for machine-aided protein-DNA interaction studies, guiding experimental choices and complex design, as well as advancing our understanding of molecular interactions.
Collapse
|
7
|
Ding N, Chen Y, Chu Y, Zhong C, Huang L, Zhang Z. Lysine Methylation Modulates the Interaction of Archaeal Chromatin Protein Cren7 With DNA. Front Microbiol 2022; 13:837737. [PMID: 35308404 PMCID: PMC8927968 DOI: 10.3389/fmicb.2022.837737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Cren7 and Sis7d, two chromatin proteins from Sulfolobus islandicus, undergo extensive methylations at multiple lysine residues to various extents. Whether this highly conserved protein serves an epigenetic role in the regulation of the structure and function of the chromosome remains unclear. In the present study, we show that methylation significantly affects Cren7, but not Sis7d, in the ability to bind DNA and to constrain negative DNA supercoils. Strikingly, methylated Cren7 was significantly less efficient in forming oligomers or mediating intermolecular DNA bridging. Single-site substitution mutation with glutamine reveals that methylation of the four lysine residues (K24, K31, K42, and K48) of Cren7 at the protein-DNA interface, which are variably conserved among Cren7 homologues from different branches of the Crenarchaeota, influenced Cren7-DNA interactions in different manners. We suggest that dynamic methylation of Cren7 may represent a potential epigenetic mechanism involved in the chromosomal regulation in crenarchaea.
Collapse
Affiliation(s)
- Niannian Ding
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Chen
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yindi Chu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhenfeng Zhang,
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Li Huang,
| |
Collapse
|
8
|
Chen C, Liu Q, Yuan Y, Cai X, Ding X, Li B, Yang Y, Wang B, Wang G, Leong DT, Qian H. Protein-mediated DNA self-assembly by controlling the surface charge in a molecular crowding environment. Biomater Sci 2022; 10:2006-2013. [PMID: 35289345 DOI: 10.1039/d1bm02017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing and building artificial nanodevices and nanoarchitectures in living systems are extremely intriguing subjects in nanotechnology and synthetic biology. Taking advantage of cellular machinery and endogenous biomacromolecules, such as proteins,...
Collapse
Affiliation(s)
- Chunfa Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Qian Liu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Yuan
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Xiaolian Cai
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotong Ding
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Boxuan Li
- Department of Pharmacy, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Yao Yang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Bin Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
9
|
Laursen SP, Bowerman S, Luger K. Archaea: The Final Frontier of Chromatin. J Mol Biol 2020; 433:166791. [PMID: 33383035 PMCID: PMC7987875 DOI: 10.1016/j.jmb.2020.166791] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The three domains of life employ various strategies to organize their genomes. Archaea utilize features similar to those found in both eukaryotic and bacterial chromatin to organize their DNA. In this review, we discuss the current state of research regarding the structure-function relationships of several archaeal chromatin proteins (histones, Alba, Cren7, and Sul7d). We address individual structures as well as inferred models for higher-order chromatin formation. Each protein introduces a unique phenotype to chromatin organization, and these structures are put into the context of in vivo and in vitro data. We close by discussing the present gaps in knowledge that are preventing further studies of the organization of archaeal chromatin, on both the organismal and domain level.
Collapse
Affiliation(s)
- Shawn P Laursen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States.
| |
Collapse
|
10
|
De Maio A, Porzio E, Rotondo S, Bianchi AR, Faraone-Mennella MR. In Sulfolobus solfataricus, the Poly(ADP-Ribose) Polymerase-Like Thermoprotein Is a Multifunctional Enzyme. Microorganisms 2020; 8:microorganisms8101523. [PMID: 33023025 PMCID: PMC7599888 DOI: 10.3390/microorganisms8101523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
In Sulfolobus solfataricus, Sso, the ADP-ribosylating thermozyme is known to carry both auto- and heteromodification of target proteins via short chains of ADP-ribose. Here, we provide evidence that this thermoprotein is a multifunctional enzyme, also showing ATPase activity. Electrophoretic and kinetic analyses were performed using NAD+ and ATP as substrates. The results showed that ATP is acting as a negative effector on the NAD+-dependent reaction, and is also responsible for inducing the dimerization of the thermozyme. These findings enabled us to further investigate the kinetic of ADP-ribosylation activity in the presence of ATP, and to also assay its ability to work as a substrate. Moreover, since the heteroacceptor of ADP-ribose is the sulfolobal Sso7 protein, known as an ATPase, some reconstitution experiments were set up to study the reciprocal influence of the ADP-ribosylating thermozyme and the Sso7 protein on their activities, considering also the possibility of direct enzyme/Sso7 protein interactions. This study provides new insights into the ATP-ase activity of the ADP-ribosylating thermozyme, which is able to establish stable complexes with Sso7 protein.
Collapse
Affiliation(s)
- Anna De Maio
- Department of Biology, Polytechnic School of Basic Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.R.); (A.R.B.)
- National Institute of Biostructures and Biosystems (INBB), via delle Medaglie d’oro, 00136 Rome, Italy
- Correspondence: (A.D.M.); (M.R.F.-M.); Tel.: +39-081-679134 (A.D.M.); +39-081-679136 (M.R.F.-M.)
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, CNR, via P.Castellino 111, 80131 Naples, Italy;
| | - Sergio Rotondo
- Department of Biology, Polytechnic School of Basic Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.R.); (A.R.B.)
| | - Anna Rita Bianchi
- Department of Biology, Polytechnic School of Basic Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.R.); (A.R.B.)
| | - Maria Rosaria Faraone-Mennella
- Department of Biology, Polytechnic School of Basic Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.R.); (A.R.B.)
- National Institute of Biostructures and Biosystems (INBB), via delle Medaglie d’oro, 00136 Rome, Italy
- Correspondence: (A.D.M.); (M.R.F.-M.); Tel.: +39-081-679134 (A.D.M.); +39-081-679136 (M.R.F.-M.)
| |
Collapse
|
11
|
Zhang Z, Zhan Z, Wang B, Chen Y, Chen X, Wan C, Fu Y, Huang L. Archaeal Chromatin Proteins Cren7 and Sul7d Compact DNA by Bending and Bridging. mBio 2020; 11:e00804-20. [PMID: 32518188 PMCID: PMC7373190 DOI: 10.1128/mbio.00804-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/06/2020] [Indexed: 11/20/2022] Open
Abstract
Archaeal chromatin proteins Cren7 and Sul7d from Sulfolobus are DNA benders. To better understand their architectural roles in chromosomal DNA organization, we analyzed DNA compaction by Cren7 and Sis7d, a Sul7d family member, from Sulfolobus islandicus at the single-molecule (SM) level by total single-molecule internal reflection fluorescence microscopy (SM-TIRFM) and atomic force microscopy (AFM). We show that both Cren7 and Sis7d were able to compact singly tethered λ DNA into a highly condensed structure in a three-step process and that Cren7 was over an order of magnitude more efficient than Sis7d in DNA compaction. The two proteins were similar in DNA bending kinetics but different in DNA condensation patterns. At saturating concentrations, Sis7d formed randomly distributed clusters whereas Cren7 generated a single and highly condensed core on plasmid DNA. This observation is consistent with the greater ability of Cren7 than of Sis7d to bridge DNA. Our results offer significant insights into the mechanism and kinetics of chromosomal DNA organization in Crenarchaea.IMPORTANCE A long-standing question is how chromosomal DNA is packaged in Crenarchaeota, a major group of archaea, which synthesize large amounts of unique small DNA-binding proteins but in general contain no archaeal histones. In the present work, we tested our hypothesis that the two well-studied crenarchaeal chromatin proteins Cren7 and Sul7d compact DNA by both DNA bending and bridging. We show that the two proteins are capable of compacting DNA, albeit with different efficiencies and in different manners, at the single molecule level. We demonstrate for the first time that the two proteins, which have long been regarded as DNA binders and benders, are able to mediate DNA bridging, and this previously unknown property of the proteins allows DNA to be packaged into highly condensed structures. Therefore, our results provide significant insights into the mechanism and kinetics of chromosomal DNA organization in Crenarchaeota.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhengyan Zhan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yuanyuan Chen
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiuqiang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cuihong Wan
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
|
13
|
Zhang Z, Zhao M, Chen Y, Wang L, Liu Q, Dong Y, Gong Y, Huang L. Architectural roles of Cren7 in folding crenarchaeal chromatin filament. Mol Microbiol 2019; 111:556-569. [PMID: 30499242 DOI: 10.1111/mmi.14173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
Abstract
Archaea have evolved various strategies in chromosomal organization. While histone homologues exist in most archaeal phyla, Cren7 is a chromatin protein conserved in the Crenarchaeota. Here, we show that Cren7 preferentially binds DNA with AT-rich sequences over that with GC-rich sequences with a binding size of 6~7 bp. Structural studies of Cren7 in complex with either an 18-bp or a 20-bp double-stranded DNA fragment reveal that Cren7 binds to the minor groove of DNA as monomers in a head-to-tail manner. The neighboring Cren7 monomers are located on the opposite sides of the DNA duplex, with each introducing a single-step sharp kink by intercalation of the hydrophobic side chain of Leu28, bending the DNA into an S-shape conformation. A structural model for the chromatin fiber folded by Cren7 was established and verified by the analysis of cross-linked Cren7-DNA complexes by atomic force microscopy. Our results suggest that Cren7 differs significantly from Sul7, another chromatin protein conserved among Sulfolobus species, in both DNA binding and deformation. These data shed significant light on the strategy of chromosomal DNA organization in crenarchaea.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Mohan Zhao
- Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Yuanyuan Chen
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Li Wang
- Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Qinghua Liu
- Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Yuhui Dong
- Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Yong Gong
- Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Shijingshan District, Beijing, 100049, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
14
|
Aye SL, Fujiwara K, Ueki A, Doi N. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication. Biochem Biophys Res Commun 2018; 499:170-176. [PMID: 29550479 DOI: 10.1016/j.bbrc.2018.03.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol.
Collapse
Affiliation(s)
- Seaim Lwin Aye
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Asuka Ueki
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| |
Collapse
|
15
|
Mao JY, Li HW, Wei SC, Harroun SG, Lee MY, Lin HY, Chung CY, Hsu CH, Chen YR, Lin HJ, Huang CC. DNA Modulates the Interaction of Genetically Engineered DNA-Binding Proteins and Gold Nanoparticles: Diagnosis of High-Risk HPV Infection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44307-44315. [PMID: 29202217 DOI: 10.1021/acsami.7b13873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gene detection has an important role in diagnosing several serious diseases and genetic defects in modern clinical medicine. Herein, we report a fast and convenient gene detection method based on the modulation of the interaction between a heat-resistant double-stranded DNA (dsDNA)-binding protein (Sso7d) and gold nanoparticles (Au NPs). We prepared a recombinant Cys-Sso7d, which is Sso7d with an extra cysteine (Cys) residue in the N-terminus, through protein engineering to control the interaction between Sso7d and Au NPs. Cys-Sso7d exhibited a stronger affinity for Au NPs and more easily induced the aggregation of Au NPs than Sso7d. In addition, Cys-Sso7d retained its ability to bind with dsDNA. The aggregation of Au NPs induced by Cys-Sso7d was diminished in the presence of dsDNA, which could be utilized as a transduction mechanism for the detection of the polymerase chain reaction (PCR) products of human papillomavirus (HPV) gene fragments (HPV types 16 and 18). The Cys-Sso7d/Au NP probe could detect as few as 1 copy of the HPV gene. The sensitivity and specificity of the Cys-Sso7d/Au NP probe for Pap smear clinical specimens (n = 52) for HPV 16 and HPV 18 detection were 85.7%/100.0% and 85.7%/91.7%, respectively. Our results demonstrate that the Cys-Sso7d/Au NP probe can be used to diagnose high-risk HPV types in Pap smear samples with high sensitivity, specificity, and accuracy.
Collapse
Affiliation(s)
- Ju-Yi Mao
- Doctoral Degree Program in Marine Biotechnology and ⊥Agricultural Biotechnology Research Center, Academia Sinica , Taipei 11529, Taiwan
| | - Han-Wei Li
- iStat Biomedical Co., Ltd. , New Taipei City 22102, Taiwan
| | | | - Scott G Harroun
- Department of Chemistry, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | - Chih-Ching Huang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 80708, Taiwan
| |
Collapse
|
16
|
Estrich NA, Hernandez-Garcia A, de Vries R, LaBean TH. Engineered Diblock Polypeptides Improve DNA and Gold Solubility during Molecular Assembly. ACS NANO 2017; 11:831-842. [PMID: 28048935 DOI: 10.1021/acsnano.6b07291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Programmed molecular recognition is being developed for the bionanofabrication of mixed organic/inorganic supramolecular assemblies for applications in electronics, photonics, and medicine. For example, DNA-based nanotechnology seeks to exploit the easily programmed complementary base-pairing of DNA to direct assembly of complex, designed nanostructures. Optimal solution conditions for bionanofabrication, mimicking those of biological systems, may involve high concentrations of biomacromolecules (proteins, nucleic acids, etc.) and significant concentrations of various ions (Mg2+, Na+, Cl-, etc.). Given a desire to assemble diverse inorganic components (metallic nanoparticles, quantum dots, carbon nanostructures, etc.), it will be increasingly difficult to find solution conditions simultaneously compatible with all components. Frequently, the use of chemical surfactants is undesirable, leaving a need for the development of alternative strategies. Herein, we discuss the use of artificial, diblock polypeptides in the role of solution compatibilizing agents for molecular assembly. We describe the use of two distinct diblock polypeptides with affinity for DNA in the stabilization of DNA origami and DNA-functionalized gold nanoparticles (spheres and rods) in solution, protection of DNA from enzymatic degradation, as well as two 3D tetrahedral DNA origamis. We present initial data showing that the diblock polypeptides promote the formation in the solution of desired organic/inorganic assemblies.
Collapse
Affiliation(s)
- Nicole A Estrich
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| | - Armando Hernandez-Garcia
- Simpson Querrey Institute for Bionanotechnology, Northwestern University , Evanston, Illinois 60208, United States
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre , Wageningen 6708 PB, The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre , Wageningen 6708 PB, The Netherlands
| | - Thomas H LaBean
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| |
Collapse
|
17
|
Hernandez-Garcia A, Estrich NA, Werten MWT, Van Der Maarel JRC, LaBean TH, de Wolf FA, Cohen Stuart MA, de Vries R. Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS NANO 2017; 11:144-152. [PMID: 27936577 DOI: 10.1021/acsnano.6b05938] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Emerging DNA-based nanotechnologies would benefit from the ability to modulate the properties (e.g., solubility, melting temperature, chemical stability) of diverse DNA templates (single molecules or origami nanostructures) through controlled, self-assembling coatings. We here introduce a DNA coating agent, called C8-BSso7d, which binds to and coats with high specificity and affinity, individual DNA molecules as well as folded origami nanostructures. C8-BSso7d coats and protects without condensing, collapsing or destroying the spatial structure of the underlying DNA template. C8-BSso7d combines the specific nonelectrostatic DNA binding affinity of an archeal-derived DNA binding domain (Sso7d, 7 kDa) with a long hydrophilic random coil polypeptide (C8, 73 kDa), which provides colloidal stability (solubility) through formation of polymer brushes around the DNA templates. C8-BSso7d is produced recombinantly in yeast and has a precise (but engineerable) amino acid sequence of precise length. Using electrophoresis, AFM, and fluorescence microscopy we demonstrate protein coat formation with stiffening of one-dimensional templates (linear dsDNA, supercoiled dsDNA and circular ssDNA), as well as coat formation without any structural distortion or disruption of two-dimensional DNA origami template. Combining the programmability of DNA with the nonperturbing precise coating capability of the engineered protein C8-BSso7d holds promise for future applications such as the creation of DNA-protein hybrid networks, or the efficient transfection of individual DNA nanostructures into cells.
Collapse
Affiliation(s)
- Armando Hernandez-Garcia
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nicole A Estrich
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Marc W T Werten
- Wageningen UR Food and Biobased Research, Wageningen University and Research , Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | | | - Thomas H LaBean
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Frits A de Wolf
- Wageningen UR Food and Biobased Research, Wageningen University and Research , Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
18
|
D'Agata R, Palladino P, Spoto G. Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1-11. [PMID: 28144559 PMCID: PMC5238629 DOI: 10.3762/bjnano.8.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion. The behaviour of the modified AuNP dispersion as a consequence of the competitive displacement of the biotinylated oligonucleotide has been investigated and the critical role of displaced oligonucletides in triggering the quasi one-dimensional aggregation of nanoparticles is demonstrated for the first time. The thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays.
Collapse
Affiliation(s)
- Roberta D'Agata
- Consorio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Pasquale Palladino
- Consorio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Giuseppe Spoto
- Consorio Interuniversitario “Istituto Nazionale Biostrutture e Biosistemi”, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| |
Collapse
|
19
|
Kalichuk V, Béhar G, Renodon-Cornière A, Danovski G, Obal G, Barbet J, Mouratou B, Pecorari F. The archaeal "7 kDa DNA-binding" proteins: extended characterization of an old gifted family. Sci Rep 2016; 6:37274. [PMID: 27853299 PMCID: PMC5112516 DOI: 10.1038/srep37274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023] Open
Abstract
The “7 kDa DNA-binding” family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins for binding to double-stranded DNA (dsDNA) were determined in phosphate-buffered saline at 25 °C and were in the range from 11 μM to 22 μM with a preference for G/C rich sequences. In accordance with the extremophilic origin of their hosts, the proteins were found highly stable from pH 0 to pH 12 and at temperatures from 85.5 °C to 100 °C. Thus, these results validate eight putative “7 kDa DNA-binding” family proteins and show that they behave similarly regarding both their function and their stability among various genera and species. As Sac7d and Sso7d have found numerous uses as molecular biology reagents and artificial affinity proteins, this study also sheds light on even more attractive proteins that will facilitate engineering of novel highly robust reagents.
Collapse
Affiliation(s)
- Valentina Kalichuk
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Ghislaine Béhar
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Georgi Danovski
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Gonzalo Obal
- Institut Pasteur de Montevideo, Protein Biophysics Unit, Montevideo, Uruguay
| | - Jacques Barbet
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Barbara Mouratou
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Frédéric Pecorari
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
20
|
Turaga G, Edmondson SP, Smith K, Shriver JW. Insights into the Structure of Sulfolobus Nucleoid Using Engineered Sac7d Dimers with a Defined Orientation. Biochemistry 2016; 55:6230-6237. [PMID: 27766846 DOI: 10.1021/acs.biochem.6b00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of Archaeal chromatin or nucleoid is believed to have characteristics similar to that found in both eukaryotes and bacteria. Recent comparative studies have suggested that DNA compaction in Archaea requires a bridging protein (e.g., Alba) along with either a wrapping protein (e.g., a histone) or a bending protein such as Sac7d. While X-ray crystal structures demonstrate that Sac7d binds as a monomer to create a significant kink in duplex DNA, the structure of a multiprotein-DNA complex has not been established. Using cross-linked dimers of Sac7d with a defined orientation, we present evidence that indicates that Sac7d is able to largely coat duplex DNA in vivo by binding in alternating head-to-head and tail-to-tail orientations. Although each Sac7d monomer promotes a significant kink of nearly 70°, coated DNA is expected to be largely extended because of compensation of repetitive kinks with helical symmetry.
Collapse
Affiliation(s)
- Gokul Turaga
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Stephen P Edmondson
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Kelley Smith
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - John W Shriver
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| |
Collapse
|
21
|
Corona RI, Guo JT. Statistical analysis of structural determinants for protein-DNA-binding specificity. Proteins 2016; 84:1147-61. [PMID: 27147539 DOI: 10.1002/prot.25061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022]
Abstract
DNA-binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA-binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein-DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein-DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein-DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA-binding proteins and structural variations. The results indicate that HS and MS DNA-binding domains have larger conformational changes upon DNA-binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147-1161. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosario I Corona
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, Charlotte, North Carolina, 28223
| | - Jun-Tao Guo
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, Charlotte, North Carolina, 28223
| |
Collapse
|
22
|
Takada S, Kanada R, Tan C, Terakawa T, Li W, Kenzaki H. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations. Acc Chem Res 2015; 48:3026-35. [PMID: 26575522 DOI: 10.1021/acs.accounts.5b00338] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to emulate one ATP cycle of a molecular motor, kinesin. Second, nonspecific protein-DNA binding was studied by a combination of elaborate protein and DNA models. Third, a transcription factor, p53, that contains highly fluctuating regions was simulated on two perpendicularly arranged DNA segments, addressing intersegmental transfer of p53. Fourth, we simulated structural dynamics of dinucleosomes connected by a linker DNA finding distinct types of internucleosome docking and salt-concentration-dependent compaction. Finally, we discuss many of limitations in the current approaches and future directions. Especially, more accurate electrostatic treatment and a phospholipid model that matches our CG resolutions are of immediate importance.
Collapse
Affiliation(s)
- Shoji Takada
- Department
of Biophysics, Graduate School of Science, Kyoto University, Sakyo, Kyoto 6068502, Japan
| | - Ryo Kanada
- Department
of Biophysics, Graduate School of Science, Kyoto University, Sakyo, Kyoto 6068502, Japan
| | - Cheng Tan
- Department
of Biophysics, Graduate School of Science, Kyoto University, Sakyo, Kyoto 6068502, Japan
| | - Tsuyoshi Terakawa
- Department
of Biochemistry and Molecular Biophysics, Columbia University, 650 W 168 Street New York, New York 10032, United States
| | - Wenfei Li
- Department
of Physics, Nanjing University, Nanjing 210093, China
| | - Hiroo Kenzaki
- Advanced
Center for Computing and Communication, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA (NEW YORK, N.Y.) 2015; 21:2007-22. [PMID: 26574518 PMCID: PMC4647455 DOI: 10.1261/rna.053918.115] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Among chromatin modifying factors shown to be recruited and regulated by long noncoding RNAs (lncRNAs), PRC2 is one of the most studied. Mammalian PRC2 binds thousands of RNAs in vivo, and it is becoming a model system for the recruitment of chromatin modifying factors by RNA. Yet, well-defined PRC2-binding motifs within target RNAs have been elusive. From the protein side, PRC2 RNA-binding subunits contain no known RNA-binding domains, complicating functional studies. Here we provide a critical review of existing models for the recruitment of PRC2 to chromatin by RNAs. This discussion may also serve researchers who are studying the recruitment of other chromatin modifiers by lncRNAs.
Collapse
Affiliation(s)
- Chen Davidovich
- BioFrontiers Institute and Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Thomas R Cech
- BioFrontiers Institute and Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
24
|
Nguyen-Huynh NT, Osz J, Peluso-Iltis C, Rochel N, Potier N, Leize-Wagner E. Monitoring of the retinoic acid receptor-retinoid X receptor dimerization upon DNA binding by native mass spectrometry. Biophys Chem 2015; 210:2-8. [PMID: 26558701 DOI: 10.1016/j.bpc.2015.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022]
Abstract
Identifying protein-DNA interactions is essential to understand the regulatory networks of cells and their influence on gene expression. In this study, we use native electrospray mass spectrometry (ESI-MS) to investigate how the heterodimerization of retinoic acid receptor-retinoid X receptor (RAR-RXR) is mediated by DNA sequence. In presence of various RAR response elements (RAREs), three oligomeric states of RAR-RXR DNA binding domains (DBDs) bound to RAREs (monomer, homo- or heterodimers) were detected and individually monitored to follow subunit assembly and disassembly upon RAREs' abundancy or sequence. In particular, a cooperative heterodimerization was shown with RARb2 DR5 (5 base pair spaced direct repeat) while a high heterogeneity reflecting random complex formation could be observed with the DR0 response elements, in agreement with native gel electrophoresis data or molecular modeling. Such MS information will help to identify the composition of species formed in solution and to define which DR sequence is specific for RAR-RXR heterodimerization.
Collapse
Affiliation(s)
- Nha-Thi Nguyen-Huynh
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008 Strasbourg, France
| | - Judit Osz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Noëlle Potier
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008 Strasbourg, France.
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|
25
|
Béhar G, Pacheco S, Maillasson M, Mouratou B, Pecorari F. Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability. J Biotechnol 2015; 192 Pt A:123-9. [PMID: 25450641 DOI: 10.1016/j.jbiotec.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/07/2014] [Indexed: 12/23/2022]
Abstract
As a useful reagent for biotechnological applications, a scaffold protein needs to be as stable as possible to ensure longer lifetimes. We have developed archaeal extremophilic proteins from the “7 kDa DNA-binding” family as scaffolds to derive affinity proteins (Affitins). In this study, we evaluated a rational structure/sequence-guided approach to stabilize an Affitin derived from Sac7d by transferring its human IgG binding site onto the framework of the more thermally stable Sso7d homolog. The chimera obtained was functional, well expressed in Escherichia coli, but less thermally stable than the original Affitin (T(m) = 74.2 °C vs. T(m) = 80.4 °C). Two single mutations described as thermally stabilizing wild type Sso7d were introduced into chimeras. Only the double mutation nearly restored thermal stability (T(m) = 76.9 °C). Interestingly, the chimera and its double mutant were stable from pH 0 up to at least pH 13. Our results show that it is possible to increase further the stability of Affitins toward alkaline conditions (+2 pH units) while conserving their advantageous properties. As Affitins are based on a growing family of homologs from archaeal extremophiles, we conclude that this approach offers new potential for their improvement, which will be useful in demanding biotechnological applications.
Collapse
|
26
|
Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, Dame RT. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014; 53:6430-8. [PMID: 25291500 PMCID: PMC5451147 DOI: 10.1021/bi500344j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
helical structure of double-stranded DNA is destabilized by
increasing temperature. Above a critical temperature (the melting
temperature), the two strands in duplex DNA become fully separated.
Below this temperature, the structural effects are localized. Using
tethered particle motion in a temperature-controlled sample chamber,
we systematically investigated the effect of increasing temperature
on DNA structure and the interplay between this effect and protein
binding. Our measurements revealed that (1) increasing temperature
enhances DNA flexibility, effectively leading to more compact folding
of the double-stranded DNA chain, and (2) temperature differentially
affects different types of DNA-bending chromatin proteins from mesophilic
and thermophilic organisms. Thus, our findings aid in understanding
genome organization in organisms thriving at moderate as well as extreme
temperatures. Moreover, our results underscore the importance of carefully
controlling and measuring temperature in single-molecule DNA (micromanipulation)
experiments.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Leiden University , 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea. Int J Mol Sci 2014; 15:17162-87. [PMID: 25257534 PMCID: PMC4200833 DOI: 10.3390/ijms150917162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.
Collapse
|
28
|
|
29
|
Paquet F, Delalande O, Goffinont S, Culard F, Loth K, Asseline U, Castaing B, Landon C. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea. PLoS One 2014; 9:e88809. [PMID: 24558431 PMCID: PMC3928310 DOI: 10.1371/journal.pone.0088809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Abstract
In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1) from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR) data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.
Collapse
Affiliation(s)
- Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
- * E-mail:
| | - Olivier Delalande
- Faculté des Sciences Pharmaceutiques et Biologiques, Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique UMR 6290, Université de Rennes1, Rennes, France
| | - Stephane Goffinont
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Ulysse Asseline
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Celine Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| |
Collapse
|
30
|
Kumari S, Swaminathan A, Chatterjee S, Senapati P, Boopathi R, Kundu TK. Chromatin organization, epigenetics and differentiation: an evolutionary perspective. Subcell Biochem 2013; 61:3-35. [PMID: 23150244 DOI: 10.1007/978-94-007-4525-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome packaging is a universal phenomenon from prokaryotes to higher mammals. Genomic constituents and forces have however, travelled a long evolutionary route. Both DNA and protein elements constitute the genome and also aid in its dynamicity. With the evolution of organisms, these have experienced several structural and functional changes. These evolutionary changes were made to meet the challenging scenario of evolving organisms. This review discusses in detail the evolutionary perspective and functionality gain in the phenomena of genome organization and epigenetics.
Collapse
Affiliation(s)
- Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Post, Bangalore, 560064, India
| | | | | | | | | | | |
Collapse
|
31
|
Driessen RPC, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar UD, White MF, Schiessel H, van Noort J, Dame RT. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Res 2012; 41:196-205. [PMID: 23155062 PMCID: PMC3592393 DOI: 10.1093/nar/gks1053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein–DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Physics of Life Processes, Leiden Institute of Physics and Cell Observatory, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Crenshaw CM, Nam K, Oo K, Kutchukian PS, Bowman BR, Karplus M, Verdine GL. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. J Biol Chem 2012; 287:24916-28. [PMID: 22511791 PMCID: PMC3408145 DOI: 10.1074/jbc.m111.316497] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.
Collapse
Affiliation(s)
- Charisse M. Crenshaw
- From the Departments of Molecular and Cellular Biology, ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Kwangho Nam
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | - Peter S. Kutchukian
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Brian R. Bowman
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Martin Karplus
- Chemical and Chemical Biology, and ,the L'Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Gregory L. Verdine
- Chemical and Chemical Biology, and ,Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, ,the Program in Cancer Chemical Biology and Chemical Biology Initiative, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and , To whom correspondence should be addressed. 12 Oxford St., Cambridge, MA 02138. Fax: 617-495-8755; E-mail:
| |
Collapse
|
33
|
Sinha SK, Bandyopadhyay S. Dynamic properties of water around a protein-DNA complex from molecular dynamics simulations. J Chem Phys 2012; 135:135101. [PMID: 21992339 DOI: 10.1063/1.3634004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Formation of protein-DNA complex is an important step in regulation of genes in living organisms. One important issue in this problem is the role played by water in mediating the protein-DNA interactions. In this work, we have carried out atomistic molecular dynamics simulations to explore the heterogeneous dynamics of water molecules present in different regions around a complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. It is demonstrated that such heterogeneous water motions around the complex are correlated with the relaxation time scales of hydrogen bonds formed by those water molecules with the protein and DNA. The calculations reveal the existence of a fraction of extraordinarily restricted water molecules forming a highly rigid thin layer in between the binding motifs of the protein and DNA. It is further proved that higher rigidity of water layers around the complex originates from more frequent reformations of broken water-water hydrogen bonds. Importantly, it is found that the formation of the complex affects the transverse and longitudinal degrees of freedom of surrounding water molecules in a nonuniform manner.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| | | |
Collapse
|
34
|
Chen X, Guo R, Huang L, Hong R. Evolutionary conservation and DNA binding properties of the Ssh7 proteins from Sulfolobus shibatae. ACTA ACUST UNITED AC 2011; 45:583-92. [PMID: 18762890 DOI: 10.1007/bf02879746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2001] [Indexed: 11/25/2022]
Abstract
The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DNA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both native and recombinant forms of the protein behaved in a similar fashion in the assays, suggesting that the interaction of Ssh7 with DNA is not affected either by specific lysine methylation found in the native Ssh7 proteins or by the difference between the two Ssh7 isomers in amino acid sequence. Our data show that Ssh7 binds duplex DNA fragments with a binding size of approximately 6.6 base pairs and an apparent dissociation constant of (0.7-1.0) x 10(-7) mol/L under the assay conditions employed in the present study. In addition, Ssh7 binds more tightly to negatively supercoiled DNA than to linear or relaxed DNA.
Collapse
Affiliation(s)
- Xulin Chen
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
35
|
Hsu CH, Wang AHJ. The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res 2011; 39:6764-74. [PMID: 21546550 PMCID: PMC3159460 DOI: 10.1093/nar/gkr283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Organisms growing at elevated temperatures face the challenge of maintaining the integrity of their genetic materials. Archaea possess unique chromatin proteins for gene organization and information processing. We present the solution structure of Sso7c4 from Sulfolobus solfataricus, which has a homodimeric DNA-binding fold forming a swapped β-loop-β ‘Tai-Chi’ topology. The fold is reminiscent of the N-terminal DNA-binding domain of AbrB and MazE. In addition, several amide resonances in the heteronuclear single quantum coherence spectra of Sso7c4 are shifted and broadened with the addition of small amounts of duplex DNA oligomers. The locations of the corresponding amides in the Sso7c4 structure define its DNA-interacting surface. NMR spectra of DNA titrated with the protein further indicated that Sso7c4 interacts with DNA in the major groove. Taken together, a plausible model for the Sso7c4–DNA complex is presented, in which the DNA double helix is curved around the protein dimer.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
36
|
Xia Y, Chen E, Liang D. Recognition of single- and double-stranded oligonucleotides by bovine serum albumin via nonspecific interactions. Biomacromolecules 2010; 11:3158-66. [PMID: 20873766 DOI: 10.1021/bm100969z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complexes formed by bovine serum albumin (BSA) with single-stranded oligonucleotide (ss-oligo) or double-stranded oligonucleotide (ds-oligo) were investigated by laser light scattering, zeta potential analysis, and atomic force microscopy. It was found that BSA was able to recognize ss-oligo and ds-oligo upon forming complexes in HCOOH-HCOONa buffer at pH 3.0. When oligonucleotide was added dropwise to BSA, BSA formed a complex with ss-oligo but not with ds-oligo in the studied charge ratio. When BSA was added to oligonucleotides, BSA formed complexes with both ss-oligo and ds-oligo but via different paths: the BSA/ds-oligo underwent two processes, heavy precipitation followed by reentry, with increasing BSA/oligo charge ratio, whereas BSA/ss-oligo underwent only aggregation process, but with a charge reversal occurred at BSA/oligo charge ratio about 0.1. Moreover, the complex formed by BSA and ds-oligo showed a kinetics much slower than that of BSA and ss-oligo. We attributed the big difference upon complexation to the physical nature of oligonucleotides as well as the conformational change of BSA under severe conditions. The differentiation of ss-oligo from ds-oligo by BSA via nonspecific interactions gained insight in the recognition of DNA or RNA by specific protein (enzyme) under physiological conditions.
Collapse
Affiliation(s)
- Yuqiong Xia
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China 100871
| | | | | |
Collapse
|
37
|
Fazekas A, Steeves R, Newmaster S. Improving sequencing quality from PCR products containing long mononucleotide repeats. Biotechniques 2010; 48:277-85. [PMID: 20569204 DOI: 10.2144/000113369] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Stutter products are a common artifact in the PCR amplification of frequently used genetic markers that contain mononucleotide simple sequence repeats. Despite the importance of accurate determination of nucleotide sequence and allele size, there has been little progress toward decreasing the formation of stutter products during PCR. In this study, we tested the effects of lowered extension temperatures, inclusion of co-solutes in PCR, PCR cycle number, and the use of different polymerases on sequence quality for a set of sequences containing mononucleotide A/T repeats of 10-17 bp. Our analyses showed that sequence quality of mononucleotide repeats <or=15 bp is greatly improved with the use of proofreading DNA polymerases fused to nonspecific dsDNA binding domains. Our findings also suggest that the number of nucleotides with which the DNA polymerase interacts may be the most important factor in the reduction of slipped-strand mispairings in vitro.
Collapse
Affiliation(s)
- Aron Fazekas
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
38
|
Feng Y, Yao H, Wang J. Crystal structure of the crenarchaeal conserved chromatin protein Cren7 and double-stranded DNA complex. Protein Sci 2010; 19:1253-7. [PMID: 20512977 DOI: 10.1002/pro.385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cren7 is a crenarchaeal conserved chromatin protein discovered recently. To explore the mechanism of the DNA packaging in Crenarchaeota, the crystal structure of Cren7-GCGATCGC complex has been determined and refined at 1.6 A resolution. Cren7 kinks the dsDNA sharply similar to Sul7d, another chromatin protein existing only in Sulfolobales, which reveals that the "bending and unwinding" compacting mechanism is conserved in Crenarchaeota. Significant structural differences are revealed by comparing both protein-dsDNA complexes. The kinked sites on the same dsDNA in the complexes with Sul7d and Cren7 show one base pair shift. For Cren7, fewer charged residues in the beta-barrel structural region bind to DNA, and additionally, the flexible loop L(beta3beta4) is also involved in the binding. Electrophoretic mobility shift assays indicate that loop L(beta3beta4) is essential for DNA-binding of Cren7. These differences provide insight into the functional difference of both chromatin proteins, suggesting that Cren7 may be more regulative than Sul7d in the DNA-binding affinity by the methylation in the flexible loop L(beta3beta4) in vivo.
Collapse
Affiliation(s)
- Yingang Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | |
Collapse
|
39
|
Zhang Z, Gong Y, Guo L, Jiang T, Huang L. Structural insights into the interaction of the crenarchaeal chromatin protein Cren7 with DNA. Mol Microbiol 2010; 76:749-59. [PMID: 20345658 DOI: 10.1111/j.1365-2958.2010.07136.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cren7, a newly found chromatin protein, is highly conserved in the Crenarchaeota. The protein shows higher affinity for double-stranded DNA than for single-stranded DNA, constrains negative DNA supercoils in vitro and is associated with genomic DNA in vivo. Here we report the crystal structures of the Cren7 protein from Sulfolobus solfataricus in complex with two DNA sequences. Cren7 binds in the minor groove of DNA and causes a single-step sharp kink in DNA (approximately 53 degrees) through the intercalation of the hydrophobic side chain of Leu28. Loop beta 3-beta 4 of Cren7 undergoes a significant conformational change upon binding of the protein to DNA, suggesting its critical role in the stabilization of the protein-DNA complex. The roles of DNA-contacting amino acid residues in stabilizing the Cren7-DNA interaction were examined by mutational analysis. Structural comparison of Cren7-DNA complexes with Sac7d-DNA complexes reveals significant differences between the two proteins in DNA binding surface, suggesting that Cren7 and Sul7d serve distinct functions in chromosomal organization.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | |
Collapse
|
40
|
Castellano S, Farina B, Faraone-Mennella MR. The ADP-ribosylation of Sulfolobus solfataricus Sso7 modulates protein/DNA interactions in vitro. FEBS Lett 2009; 583:1154-8. [PMID: 19272378 DOI: 10.1016/j.febslet.2009.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 02/27/2009] [Accepted: 03/01/2009] [Indexed: 11/29/2022]
Abstract
The 7 kDa Sso7 is a basic protein particularly abundant in Sulfolobus solfataricus and is involved in DNA assembly. This protein undergoes in vitro ADP-ribosylation by an endogenous poly(ADP-ribose) polymerase-like enzyme. The circular dichroism spectrum of purified ADP-ribosylated Sso7 shows that this modification stabilizes the prevalent protein beta-conformation, as suggested by shifting of negative ellipticity minimum to 220 nm. Moreover, a short ADP-ribose chain (up to 6-mers) bound to Sso7 is able to reduce drastically the thermoprotective and DNA condensing ability of the protein, suggesting a possible regulatory role of ADP-ribosylation in sulfolobal DNA organization.
Collapse
Affiliation(s)
- Sabrina Castellano
- Department of Structural and Functional Biology, Faculty of Sciences MM FF NN, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Napoli, Italy
| | | | | |
Collapse
|
41
|
Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res 2008; 36:1129-37. [PMID: 18096617 PMCID: PMC2275093 DOI: 10.1093/nar/gkm1128] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 11/13/2022] Open
Abstract
Archaea contain a variety of chromatin proteins consistent with the evolution of different genome packaging mechanisms. Among the two main kingdoms in the Archaea, Euryarchaeota synthesize histone homologs, whereas Crenarchaeota have not been shown to possess a chromatin protein conserved at the kingdom level. We report the identification of Cren7, a novel family of chromatin proteins highly conserved in the Crenarchaeota. A small, basic, methylated and abundant protein, Cren7 displays a higher affinity for double-stranded DNA than for single-stranded DNA, constrains negative DNA supercoils and is associated with genomic DNA in vivo. The solution structure and DNA-binding surface of Cren7 from the hyperthermophilic crenarchaeon Sulfolobus solfataricus were determined by NMR. The protein adopts an SH3-like fold. It interacts with duplex DNA through a beta-sheet and a long flexible loop, presumably resulting in DNA distortions through intercalation of conserved hydrophobic residues into the DNA structure. These data suggest that the crenarchaeal kingdom in the Archaea shares a common strategy in chromatin organization.
Collapse
Affiliation(s)
- Li Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Yingang Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Hongwei Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Jinfeng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 3A Datun Road, Beijing 100101, P. R. China and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, P.R. China
| |
Collapse
|
42
|
Biochemical characterization of DNA-binding proteins from Pyrobaculum aerophilum and Aeropyrum pernix. Extremophiles 2007; 12:235-46. [DOI: 10.1007/s00792-007-0120-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/24/2007] [Indexed: 11/25/2022]
|
43
|
Berkner S, Grogan D, Albers SV, Lipps G. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 2007; 35:e88. [PMID: 17576673 PMCID: PMC1919505 DOI: 10.1093/nar/gkm449] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The extreme thermoacidophiles of the genus Sulfolobus are among the best-studied archaea but have lacked small, reliable plasmid vectors, which have proven extremely useful for manipulating and analyzing genes in other microorganisms. Here we report the successful construction of a series of Sulfolobus-Escherichia coli shuttle vectors based on the small multicopy plasmid pRN1 from Sulfolobus islandicus. Selection in suitable uracil auxotrophs is provided through inclusion of pyrEF genes in the plasmid. The shuttle vectors do not integrate into the genome and do not rearrange. The plasmids allow functional overexpression of genes, as could be demonstrated for the beta-glycosidase (lacS) gene of S. solfataricus. In addition, we demonstrate that this beta-glycosidase gene could function as selectable marker in S. solfataricus. The shuttle plasmids differ in their interruption sites within pRN1 and allowed us to delineate functionally important regions of pRN1. The orf56/orf904 operon appears to be essential for pRN1 replication, in contrast interruption of the highly conserved orf80/plrA gene is tolerated. The new vector system promises to facilitate genetic studies of Sulfolobus and to have biotechnological uses, such as the overexpression or optimization of thermophilic enzymes that are not readily performed in mesophilic hosts.
Collapse
Affiliation(s)
- Silvia Berkner
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Dennis Grogan
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Sonja-Verena Albers
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Georg Lipps
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
- *To whom correspondence should be addressed: +49 921 552433, Fax: +49 921 552432,
| |
Collapse
|
44
|
Mackay DT, Botting CH, Taylor GL, White MF. An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus. Mol Microbiol 2007; 64:1540-8. [PMID: 17511810 DOI: 10.1111/j.1365-2958.2007.05752.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-terminal protein acetylation is common in eukaryotes and halophilic archaea, but very rare in bacteria. We demonstrate that some of the most abundant proteins present in the crenarchaeote Sulfolobus solfataricus, including subunits of the thermosome, proteosome and ribosome, are acetylated at the N-terminus. Modification was observed at the N-terminal residues serine, alanine, threonine and methionine-glutamate. A conserved archaeal protein, ssArd1, was cloned and expressed in Escherichia coli, and shown to acetylate the same N-terminal sequences in vitro. The specific activity of ssArd1 is sensitive to protein structure in addition to sequence context. The crenarchaeota and euryarchaeota apparently differ in respect of the frequency of acetylation of Met-Glu termini, which appears much more common in S. solfataricus. This sequence is acetylated by the related Nat3 acetylase in eukarya. ssArd1 thus has a relaxed sequence specificity compared with the eukaryotic N-acetyl transferases, and may represent an ancestral form of the enzyme. This represents another example where archaeal molecular biology resembles that in eukaryotes rather than bacteria.
Collapse
Affiliation(s)
- Dale T Mackay
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | | | | | |
Collapse
|
45
|
Luo X, Schwarz-Linek U, Botting CH, Hensel R, Siebers B, White MF. CC1, a novel crenarchaeal DNA binding protein. J Bacteriol 2007; 189:403-9. [PMID: 17085561 PMCID: PMC1797387 DOI: 10.1128/jb.01246-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/21/2006] [Indexed: 01/01/2023] Open
Abstract
The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.
Collapse
Affiliation(s)
- Xiao Luo
- Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews, Fife KY16 9ST, UK
| | | | | | | | | | | |
Collapse
|
46
|
Tashiro R, Wang AHJ, Sugiyama H. Photoreactivation of DNA by an archaeal nucleoprotein Sso7d. Proc Natl Acad Sci U S A 2006; 103:16655-9. [PMID: 17075069 PMCID: PMC1636510 DOI: 10.1073/pnas.0603484103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sso7d is a chromosomal protein of hyperthermophilic Archaea. The crystal structure of Sso7d-d(GTAAT(I)UAC)(2) has been clarified at high resolution, showing that the protein binds in the minor groove of DNA, causing a sharp kink of approximately 60 degrees. Recently, we found that photoirradiation of Sso7d and 5-iodouracil-((I)U)-containing 5'-d(GTAAT(I)UAC)-3' efficiently induced the abstraction of hydrogen from the methyl group of T(5) at the kink. In the present study, we found that the photoreactivity of 5-bromouracil ((Br)U)-containing 5'-d(GTAAT(Br)UAC)-3' was enhanced in the presence of Sso7d. Using hypoxanthine (I)-containing 5'-d(ITAAT(Br)UAC)-3', we demonstrated that electron transfer occurs efficiently from Sso7d to DNA. Product analysis showed that Trp-24 of Sso7d, located at the surface of the DNA, is consumed to produce N'-formylkynurenine during photoirradiation, indicating that Trp-24 acts as an electron source. To explore the possibility of electron transfer between Sso7d and other DNA substrates, we examined the photochemical repair of the thymine dimer 5'-d(GTAAT<>TAC)-3' by Sso7d. Sso7d effectively repaired 5'-d(GTAAT<>TAC)-3' to 5'-d(GTAATTAC)-3' under irradiation conditions. During this reaction, Trp-24 was not oxidized significantly, indicating that the anion radical of the repaired TT sequence is oxidized by the cation radical of Trp-24, and that a so-called "circular electron transfer" mechanism is operating in this system.
Collapse
Affiliation(s)
- Ryu Tashiro
- *Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; and
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hiroshi Sugiyama
- *Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Guagliardi A, Cerchia L, Rossi M. The Sso7d protein of Sulfolobus solfataricus: in vitro relationship among different activities. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:87-93. [PMID: 15803646 PMCID: PMC2685558 DOI: 10.1155/2002/313147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physiological role of the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus is unknown. In vitro studies have shown that Sso7d promotes annealing of complementary DNA strands (Guagliardi et al. 1997), induces negative supercoiling (Lopez-Garcia et al. 1998), and chaperones the disassembly and renaturation of protein aggregates in an ATP hydrolysis-dependent manner (Guagliardi et al. 2000). In this study, we examined the relationships among the binding of Sso7d to double-stranded DNA, its interaction with protein aggregates, and its ATPase activity. Experiments with 1-anilinonaphthalene-8-sulfonic acid as probe demonstrated that exposed hydrophobic surfaces in Sso7d are responsible for interactions with protein aggregates and double-stranded DNA, whereas the site of ATPase activity has a non-hydrophobic character. The interactions of Sso7d with double-stranded DNA and with protein aggregates are mutually exclusive events, suggesting that the disassembly activity and the DNA-related activities of Sso7d may be competitive in vivo. In contrast, the hydrolysis of ATP by Sso7d is independent of the binding of Sso7d to double-stranded DNA or protein aggregates.
Collapse
Affiliation(s)
- Annamaria Guagliardi
- Dipartimento di Chimica Biologica, Università Federico II di Napoli, Via Mezzocannone 16, 80134 Napoli, Italy.
| | | | | |
Collapse
|
48
|
Iwahara J, Schwieters CD, Clore GM. Characterization of Nonspecific Protein−DNA Interactions by 1H Paramagnetic Relaxation Enhancement. J Am Chem Soc 2004; 126:12800-8. [PMID: 15469275 DOI: 10.1021/ja046246b] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonspecific protein-DNA interactions play an important role in a variety of contexts related to DNA packaging, nucleoprotein complex formation, and gene regulation. Biophysical characterization of nonspecific protein-DNA interactions at the atomic level poses significant challenges owing to the dynamic nature of such complexes. Although NMR spectroscopy represents a powerful tool for the analysis of dynamic systems, conventional NMR techniques have provided little information on nonspecific protein-DNA interactions. We show that intermolecular (1)H paramagnetic relaxation enhancement (PRE) arising from Mn(2+) chelated to an EDTA-group covalently attached to a thymine base (dT-EDTA-Mn(2+)) in DNA provides a unique approach for probing the global dynamics and equilibrium distribution of nonspecific protein-DNA interactions. For nonspecific DNA binding, similar intermolecular (1)H-PRE profiles are observed on the (1)H resonances of the bound protein when dT-EDTA-Mn(2+) is located at either end of a DNA oligonucleotide duplex. We demonstrate the applicability of this approach to HMG-box proteins and contrast the results obtained for nonspecific DNA binding of the A-box of HMGB-1 (HMGB-1A) with sequence-specific DNA binding of the related SRY protein. Intermolecular (1)H-PRE data demonstrate unambiguously that HMGB-1A binds to multiple sites in multiple orientations even on a DNA fragment as short as 14 base pairs. Combining the (1)H-PRE data with the crystal structure of the HMGB-1 A-box/cisplatin-modified DNA complex allows one to obtain a semiquantitative estimate of the equilibrium populations at the various sites.
Collapse
Affiliation(s)
- Junji Iwahara
- Contribution from the Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | |
Collapse
|
49
|
Granata V, Vecchio PD, Barone G, Shehi E, Fusi P, Tortora P, Graziano G. Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Int J Biol Macromol 2004; 34:195-201. [PMID: 15225992 DOI: 10.1016/j.ijbiomac.2004.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
The unfolding induced by guanidine hydrochloride of the small protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus has been investigated by means of circular dichroism and fluorescence measurements. At neutral pH and room temperature the midpoint of the transition occurred at 4M guanidine hydrochloride. Thermodynamic information was obtained by means of both the linear extrapolation model and the denaturant binding model, in the assumption of a two-state N<==>D transition. A comparison with thermodynamic data determined from the thermal unfolding of Sso7d indicated that the denaturant binding model has to be preferred. Finally, it is shown that Sso7d is the most stable against both temperature and guanidine hydrochloride among a set of globular proteins possessing a very similar 3D structure.
Collapse
Affiliation(s)
- Vincenzo Granata
- Dipartimento di Chimica, Università di Napoli Federico II, Via Cinthia, 45-80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Todorova R, Atanasov B. The role of the salt concentration, proton, and phosphate binding on the thermal stability of wild and cloned DNA-binding protein Sso7d from Sulfolobus solfataricus. Int J Biol Macromol 2004; 34:135-47. [PMID: 15178018 DOI: 10.1016/j.ijbiomac.2004.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2004] [Indexed: 11/21/2022]
Abstract
The acidic pH (1.5-7.0) and ionic strength (0.005-0.2M) dependence of thermodynamic functions of protein Sso7d from Sulfolobus solfataricus, cloned (c-Sso7d) and N-heptapeptide deleted [c-des(1-7)Sso7d] in glycine, and phosphate buffers was studied by means of adiabatic scanning calorimetry. The difference of proton binding was estimated from deltaHcal(pH), Td(pH), and (deltaTd/deltapH). It was found that a single group non-co-operative ionization with apparent pKa = 3.25 for both cloned and deleted proteins govern the thermal unfolding of two different (protonated and unprotonated) forms. deltaH degrees is found to be pH-independent and the changes in stability (deltaG degrees ) originate from changes in entropy terms. The apparent pKa measured at high salt concentrations decreases with 0.5 pH units from glycine to phosphate and the free energy of transfer at high ionic strength is 0.7 kcal/mol. The ionic strength dependence for the pH-dependent D-states is very different at pH 6.0 and 1.5. This is consistent with the property of denatured state to be more compacted or "closed" (Dc) at neutral or weak acidic pH and more random or "open" (Do) at acidic pH. From the Bjerrum's relation was found the number of screened charges important for the unfolding process. The main conclusions are: (1) the thermal stability of Sso7d has prominently entropic nature; (2) a single non-co-operative ionization controls the conformations in the D-state; and (3) pH-dependent conformational equilibrium could be functionally important in Sso7d-DNA recognition.
Collapse
Affiliation(s)
- Roumiana Todorova
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | |
Collapse
|