1
|
Wener ER, McLennan JD, Papsin BC, Cushing SL, Stavropoulos DJ, Mendoza-Londono R, Quercia N, Gordon KA. Variants in Genes Associated with Hearing Loss in Children: Prevalence in a Large Canadian Cohort. Laryngoscope 2024; 134:3832-3838. [PMID: 38426810 DOI: 10.1002/lary.31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The objective of this study was to assess the prevalence of genetic variants associated with hearing loss in a large cohort of children in Canada using high throughput next generation sequencing (NGS). METHODS A total of 485 children with hearing loss underwent NGS testing with an 80 gene panel of syndromic and non-syndromic variants known to be associated with hearing loss. Genetic variants were classified as pathogenic, likely pathogenic, likely benign, benign, or variants of uncertain significance (VUS), according to the American College of Medical Genetics and Genomics guidelines. RESULTS Across the 80 genes tested, 923 variants, predominantly in 28 genes, were identified in 324 children. Pathogenic variants occurred in 19/80 (23.8%) of the hearing loss related genes tested and confirmed the etiology of hearing loss in 73/485 (15.1%) of children. GJB2 was the most prevalent gene, affecting 28/73 (38.4%) children with confirmed genetic hearing loss in our cohort. Most identified variants (748/923, 81.0%, in 76/80 genes) were of uncertain significance. CONCLUSION Genetic testing using NGS identified the etiology in approximately 15% of childhood hearing loss in a Canadian cohort which is lower than what is typically reported. GJB2 was the most common genetic cause of hearing loss. VUS are commonly identified, presenting clinical challenges for counseling. LEVEL OF EVIDENCE 4 Laryngoscope, 134:3832-3838, 2024.
Collapse
Affiliation(s)
- Emily R Wener
- Archie's Cochlear Implant Laboratory, Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacob D McLennan
- Archie's Cochlear Implant Laboratory, Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon L Cushing
- Archie's Cochlear Implant Laboratory, Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dimitri James Stavropoulos
- Genome Diagnostics Paediatric Laboratory Medicine, Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Genome Diagnostics Paediatric Laboratory Medicine, Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nada Quercia
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen A Gordon
- Archie's Cochlear Implant Laboratory, Neuroscience & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kalambe S, Gaurkar S, Jain S, Deshmukh P. Comparison of Otoacoustic Emission (OAE) and Brainstem Evoked Response Audiometry (BERA) in High Risk Infants and Children under 5 Years of Age for Hearing Assessment in Western India: A Modification in Screening Protocol. Indian J Otolaryngol Head Neck Surg 2022; 74:4239-4253. [PMID: 36742507 PMCID: PMC9895683 DOI: 10.1007/s12070-021-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
There are very few studies from India, which have compared Otoacoustic Emission (OAE) and Brainstem Evoked Response Audiometry (BERA) as a screening modality for detection of hearing loss in children. With the aim of establishing some guidelines regarding the protocols for hearing loss assessment and preventive measures, the present study has been undertaken to compare OAE with BERA done simultaneously, in the diagnosis of paediatric hearing loss, and also to study associated risk factors for hearing loss in children of Rural Central India. Prospective observational study was carried out on 100 children (200ears) in age group of 0-5 years. Selection was based on the inclusion and exclusion criteria. In all the 100 children detailed history was taken from the parents and were subjected to distortion product otoacoustic emissions (DPOAE). Irrespective of the pass or refer result children were subjected for BERA test. The interpretation of OAE and BERA test was as follows. Both the results of OAE refer and BERA fail were considered as confirmed HL, OAE pass and BERA fail were considered as children having Auditory Neuropathy (AN), OAE refer and BERA pass were considered as children at risk of permanent hearing loss (HL), OAE pass and BERA pass were considered as children with no evidence of HL. In the present study the male to female ratio was 1.32:1. Of the total 100 children 80% children showed presence of any one or more than one risk factors. In our study, eclampsia [7%] followed by multiparity [6%] and oligohydramnios [5%] were the most common risk factors in prenatal period. Maximum number of infants in AN profile were with Low Apgar score, children exposed to ototoxic medications, non-syndromic cardiac disorders in children [25.8% each]. Maximum number of infants in Confirmed HL profile were with congenital syndromes/ear anomalies [41.86%] followed by other risk factors. In our study, both OAE and BERA test were comparable and statistically significant with p value of 0.0001. OAE has a high specificity and positive predictive value of 93.33% and 97.22% respectively and it has a low sensitivity and negative predictive value of 67.74% and 45.65% respectively. In a developing country like India were universal screening protocols are not followed large number of children may be missed and may present late when it affects child's communication abilities. Hence, we need to modify our screening test and implement high risk screening even in the absence of any hearing or speech complaints.
Collapse
Affiliation(s)
- Sanika Kalambe
- Department of Otolaryngology, Head and Neck Surgery, Datta Meghe Institute Of Medical Sciences, Jawaharlal Nehru Medical Colllege, Deemed To Be University, Sawangi (M), Wardha, Maharashtra 442004 India
- Present Address: Department of Otolaryngology, Head and Neck Surgery, Datta Meghe Medical College, Datta Meghe Institute Of Medical Sciences, Deemed to be University, Hingna Road, Wanadongri, Maharashtra 441110 India
- Sahakar Nagar, Plot no-4, Flat no.-401, Beena Arcade, Khamla, Nagpur, 440025 Maharashtra India
| | - Sagar Gaurkar
- Department of Otolaryngology, Head and Neck Surgery, Datta Meghe Institute Of Medical Sciences, Jawaharlal Nehru Medical Colllege, Deemed To Be University, Sawangi (M), Wardha, Maharashtra 442004 India
| | - Shraddha Jain
- Department of Otolaryngology, Head and Neck Surgery, Datta Meghe Institute Of Medical Sciences, Jawaharlal Nehru Medical Colllege, Deemed To Be University, Sawangi (M), Wardha, Maharashtra 442004 India
| | - Prasad Deshmukh
- Department of Otolaryngology, Head and Neck Surgery, Datta Meghe Institute Of Medical Sciences, Jawaharlal Nehru Medical Colllege, Deemed To Be University, Sawangi (M), Wardha, Maharashtra 442004 India
| |
Collapse
|
3
|
Bali B, Gruber-Dujardin E, Kusch K, Rankovic V, Moser T. Analyzing efficacy, stability, and safety of AAV-mediated optogenetic hearing restoration in mice. Life Sci Alliance 2022; 5:e202101338. [PMID: 35512833 PMCID: PMC9258265 DOI: 10.26508/lsa.202101338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
AAV-mediated optogenetic neural stimulation has become a clinical approach for restoring function in sensory disorders and feasibility for hearing restoration has been indicated in rodents. Nonetheless, long-term stability and safety of AAV-mediated channelrhodopsin (ChR) expression in spiral ganglion neurons (SGNs) remained to be addressed. Here, we used longitudinal studies on mice subjected to early postnatal administration of AAV2/6 carrying fast gating ChR f-Chrimson under the control of the human synapsin promoter unilaterally to the cochlea. f-Chrimson expression in SGNs in both ears and the brain was probed in animals aged 1 mo to 2 yr. f-Chrimson was observed in SGNs at all ages indicating longevity of ChR-expression. SGN numbers in the AAV-injected cochleae declined with age faster than in controls. Investigations were extended to the brain in which viral transduction was observed across the organ at varying degrees irrespective of age without observing viral spread-related pathologies. No viral DNA or virus-related histopathological findings in visceral organs were encountered. In summary, our study demonstrates life-long (24 mo in mice) expression of f-Chrimson in SGNs upon single AAV-dosing of the cochlea.
Collapse
Affiliation(s)
- Burak Bali
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | | | - Kathrin Kusch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Functional Auditory Genomics, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| |
Collapse
|
4
|
He Z, Ding Y, Mu Y, Xu X, Kong W, Chai R, Chen X. Stem Cell-Based Therapies in Hearing Loss. Front Cell Dev Biol 2021; 9:730042. [PMID: 34746126 PMCID: PMC8567027 DOI: 10.3389/fcell.2021.730042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, neural stem cell transplantation has received widespread attention as a new treatment method for supplementing specific cells damaged by disease, such as neurodegenerative diseases. A number of studies have proved that the transplantation of neural stem cells in multiple organs has an important therapeutic effect on activation and regeneration of cells, and restore damaged neurons. This article describes the methods for inducing the differentiation of endogenous and exogenous stem cells, the implantation operation and regulation of exogenous stem cells after implanted into the inner ear, and it elaborates the relevant signal pathways of stem cells in the inner ear, as well as the clinical application of various new materials. At present, stem cell therapy still has limitations, but the role of this technology in the treatment of hearing diseases has been widely recognized. With the development of related research, stem cell therapy will play a greater role in the treatment of diseases related to the inner ear.
Collapse
Affiliation(s)
- Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanyan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yurong Mu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Nolan LS. Age-related hearing loss: Why we need to think about sex as a biological variable. J Neurosci Res 2020; 98:1705-1720. [PMID: 32557661 DOI: 10.1002/jnr.24647] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has long been known that age-related hearing loss (ARHL) is more common, more severe, and with an earlier onset in men compared to women. Even in the absence of confounding factors such as noise exposure, these sexdifferences in susceptibility to ARHL remain. In the last decade, insight into the pleiotrophic nature by which estrogen signaling can impact multiple signaling mechanisms to mediate downstream changes in gene expression and/or elicit rapid changes in cellular function has rapidly gathered pace, and a role for estrogen signaling in the biological pathways that confer neuroprotection is becoming undeniable. Here I review the evidence why we need to consider sex as a biological variable (SABV) when investigating the etiology of ARHL. Loss of auditory function with aging is frequency-specific and modulated by SABV. Evidence also suggests that differences in cochlear physiology between women and men are already present from birth. Understanding the molecular basis of these sex differences in ARHL will accelerate the development of precision medicine therapies for ARHL.
Collapse
Affiliation(s)
- Lisa S Nolan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Umehara T, Hosokawa S, Kita JY, Takahashi G, Okamura J, Nakanishi H, Hosokawa K, Kyou K, Hayashi Y, Mineta H. Risk Factors and Prognostic Factors of Hearing Impairment in Neonatal Intensive Care Unit-Treated Infants. Audiol Neurootol 2019; 24:84-89. [PMID: 31132759 DOI: 10.1159/000500316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Infants admitted to the neonatal intensive care unit (NICU) have a higher incidence of congenital hearing loss compared with the healthy newborn population. OBJECTIVES To clarify the relationship between risk factors for hearing impairment in NICU-treated infants and deterioration of the auditory brainstem response (ABR) threshold during childhood. METHOD We screened 1,071 high-risk infants admitted to the NICU for hearing impairment. One-hundred forty-eight infants exhibited an abnormal ABR threshold of ≥40 dB nHL. We analyzed the correlation of change in ABR threshold with risk factors for future hearing impairment. RESULTS Among infants treated in the NICU, 148 (13.8%) exhibited an ABR threshold of ≥40 dB nHL; 107 of these 148 (72.3%) showed hearing change in the process (102 showed improvement to normal hearing level, whereas 5 showed further deterioration). Our analysis showed that the factors contributing to the elevation of ABR threshold were oxygen administration and chromosomal aberrations. CONCLUSIONS Factors related to the elevation of ABR threshold were oxygen administration and the presence of chromosomal aberrations. Awareness of risk factors that are more likely to cause hearing loss in infants may aid in follow-up treatment of these children.
Collapse
Affiliation(s)
- Tsuyoshi Umehara
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Otorhinolaryngology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Seiji Hosokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan,
| | - Jun-Ya Kita
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Otorhinolaryngology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | | | - Jun Okamura
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Otorhinolaryngology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Hiroshi Nakanishi
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kumiko Hosokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Yasuhiro Hayashi
- Department of Otorhinolaryngology, Seirei Yokohama General Hospital, Yokohama, Japan
| | - Hiroyuki Mineta
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
7
|
Abstract
Melanocyte development is orchestrated by a complex interconnecting regulatory network of genes and synergistic interactions. Piebaldism and Waardenburg syndrome are neurocristopathies that arise from mutations in genes involved in this complex network. Our understanding of melanocyte development, Piebaldism, and Waardenburg syndrome has improved dramatically over the past decade. The diagnosis and classification of Waardenburg syndrome, first proposed in 1992 and based on phenotype, have expanded over the past three decades to include genotype. This review focuses on the current understanding of human melanocyte development and the evaluation and management of Piebaldism and Waardenburg syndrome. Management is often challenging and requires a multidisciplinary approach.
Collapse
|
8
|
Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018; 11:221. [PMID: 29997477 PMCID: PMC6028713 DOI: 10.3389/fnmol.2018.00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects millions of people. Genetic mutations play a large and direct role in both congenital and late-onset cases of SNHL (e.g., age-dependent hearing loss, ADHL). Although hearing aids can help moderate to severe hearing loss the only effective treatment for deaf patients is the cochlear implant (CI). Gene- and cell-based therapies potentially may preserve or restore hearing with more natural sound perception, since their theoretical frequency resolution power is much higher than that of cochlear implants. These biologically-based interventions also carry the potential to re-establish hearing without the need for implanting any prosthetic device; the convenience and lower financial burden afforded by such biologically-based interventions could potentially benefit far more SNHL patients. Recently major progress has been achieved in preclinical studies of cochlear gene therapy. This review critically evaluates recent advances in the preclinical trials of gene therapies for SNHL and the major remaining challenges for the development and eventual clinical translation of this novel therapy. The cochlea bears many similarities to the eye for translational studies of gene therapies. Experience gained in ocular gene therapy trials, many of which have advanced to clinical phase III, may provide valuable guidance in improving the chance of success for cochlear gene therapy in human trials. A discussion on potential implications of translational knowledge gleaned from large numbers of advanced clinical trials of ocular gene therapy is therefore included.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sun Myoung Kim
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenwen Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yong Feng
- Xiangya School of Medicine, Changsha, China
| | - Weijia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Guevar J, Olby NJ, Meurs KM, Yost O, Friedenberg SG. Deafness and vestibular dysfunction in a Doberman Pinscher puppy associated with a mutation in the PTPRQ gene. J Vet Intern Med 2018; 32:665-669. [PMID: 29460419 PMCID: PMC5866982 DOI: 10.1111/jvim.15060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 01/15/2018] [Indexed: 12/28/2022] Open
Abstract
Background A congenital syndrome of hearing loss and vestibular dysfunction affects Doberman Pinschers. Its inheritance pattern is suspected to be autosomal recessive and it potentially represents a spontaneous animal model of an autosomal recessive syndromic hearing loss. Hypothesis/Objectives The objectives of this study were to use whole genome sequencing (WGS) to identify deleterious genetic variants in candidate genes associated with the syndrome and to study the prevalence of candidate variants among a population of unaffected Doberman Pinschers. Animals One affected Doberman Pinscher and 202 unaffected Doberman Pinschers. Methods WGS of the affected dog with filtering of variants against a database of 154 unaffected dogs of diverse breeds was performed. Confirmation of candidate variants was achieved by Sanger sequencing followed by genotyping of the control population of unaffected Doberman Pinschers. Results WGS and variant filtering identified an alteration in a gene associated with both deafness and vestibular disease in humans: protein tyrosine phosphatase, receptor type Q (PTPRQ). There was a homozygous A insertion at CFA15: 22 989 894, causing a frameshift mutation in exon 39 of the gene. This insertion is predicted to cause a protein truncation with a premature stop codon occurring after position 2054 of the protein sequence that causes 279 C‐terminal amino acids to be eliminated. Prevalence of the variant was 1.5% in a cohort of 202 unaffected Doberman Pinschers; all unaffected Doberman Pinschers were heterozygous or heterozygous for the reference allele. Conclusion and Clinical Importance We report the identification of a genetic alteration on the PTPRQ gene that is associated with congenital hearing and vestibular disorder in a young Doberman Pinscher dog.
Collapse
Affiliation(s)
- Julien Guevar
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin.,College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Natasha J Olby
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Kathryn M Meurs
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Oriana Yost
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | | |
Collapse
|
10
|
Wroblewska-Seniuk K, Greczka G, Dabrowski P, Szyfter-Harris J, Mazela J. Hearing impairment in premature newborns-Analysis based on the national hearing screening database in Poland. PLoS One 2017; 12:e0184359. [PMID: 28910311 PMCID: PMC5598959 DOI: 10.1371/journal.pone.0184359] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/22/2017] [Indexed: 12/04/2022] Open
Abstract
Objectives The incidence of sensorineural hearing loss is between 1 and 3 per 1000 in healthy neonates and 2–4 per 100 in high-risk infants. The national universal neonatal hearing screening carried out in Poland since 2002 enables selection of infants with suspicion and/or risk factors of hearing loss. In this study, we assessed the incidence and risk factors of hearing impairment in infants ≤33 weeks’ gestational age (wga). Methods We analyzed the database of the Polish Universal Newborns Hearing Screening Program from 2010 to 2013. The study group involved 11438 infants born before 33 wga, the control group—1487730 infants. Screening was performed by means of transient evoked otoacoustic emissions. The risk factors of hearing loss were recorded. Infants who failed the screening test and/or had risk factors were referred for further audiological evaluation. Results Hearing deficit was diagnosed in 11% of infants ≤25 wga, 5% at 26–27 wga, 3.46% at 28 wga and 2–3% at 29–32 wga. In the control group the incidence of hearing deficit was 0.2% (2.87% with risk factors). The most important risk factors were craniofacial malformations, very low birth weight, low Apgar score and mechanical ventilation. Hearing screening was positive in 22.42% newborns ≤28 wga and 10% at 29–32 wga and in the control group. Conclusions Hearing impairment is a severe consequence of prematurity. Its prevalence is inversely related to the maturity of the baby. Premature infants have many concomitant risk factors which influence the occurrence of hearing deficit.
Collapse
Affiliation(s)
| | - Grazyna Greczka
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Dabrowski
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Szyfter-Harris
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Mazela
- Department of Newborns’ Infectious Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Wroblewska-Seniuk K, Greczka G, Dabrowski P, Szyfter W, Mazela J. The results of newborn hearing screening by means of transient otoacoustic emissions - has anything changed over 10 years? Int J Pediatr Otorhinolaryngol 2017; 96:4-10. [PMID: 28390612 DOI: 10.1016/j.ijporl.2017.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Universal newborn hearing screening (UNHS) has become the standard of care in many countries. The aim of this study was to evaluate the results of UNHS after ten years of the program in Poland and to compare them with the results of 2003. METHODS In the study, we analyze the results of UNHS in the University Hospital in Poznan, Poland. Between 01.01.2013 and 31.12.2013, 6827 children were examined by means of otoacoustic emissions. RESULTS Risk factors (RF) were identified in 772 (11.3%) newborns, which is significantly less than 10 years ago (p < 0.05). The most frequent RF were: ototoxic medications, treatment in neonatal intensive care unit (NICU) and prematurity < 33 weeks of gestation. In 2003, the most frequent were ototoxic medications and prematurity, less frequent was treatment in NICU and more common was low Apgar score. In 51 (6.6%) newborns with RF, the result of OAE was positive either unilaterally or bilaterally. In infants without RF the result was positive unilaterally in 22 (0.4%) and bilaterally in 14 (0.2%) patients. These results are significantly lower than in our former study. The relative risk of positive result was the highest in infants with complex congenital anomalies (RR = 44.99), craniofacial anomalies (RR = 17.46) and mechanical ventilation for > 5 days (RR = 10.69). In our previous study, the highest RR of positive test results was in infants with family history, congenital malformations and low Apgar score. We found that most predictive as to the final diagnosis was bilaterally positive OAE test. In most patients, the second check confirmed the diagnosis, independently of RF. The number of false positive tests at the 1st level of screening is significantly lower now than 10 years ago, probably due to better staff training. CONCLUSIONS Long term monitoring and the appropriate management of hearing deficit in children is essential. UNHS seems to be the most efficient way of finding children who require treatment of hearing impairment. The prevalence of most risk factors of hearing deficit has significantly changed over the years. The number of false positive results has significantly decreased over the years thanks to better staff training.
Collapse
Affiliation(s)
- Katarzyna Wroblewska-Seniuk
- Department of Newborns' Infectious Diseases, Poznan University of Medical Sciences, ul. Polna 33, 60-535 Poznań, Poland.
| | - Grazyna Greczka
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Piotr Dabrowski
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Witold Szyfter
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Jan Mazela
- Department of Newborns' Infectious Diseases, Poznan University of Medical Sciences, ul. Polna 33, 60-535 Poznań, Poland
| |
Collapse
|
12
|
Wroblewska-Seniuk KE, Dabrowski P, Szyfter W, Mazela J. Universal newborn hearing screening: methods and results, obstacles, and benefits. Pediatr Res 2017; 81:415-422. [PMID: 27861465 DOI: 10.1038/pr.2016.250] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023]
Abstract
The incidence of sensorineural hearing loss ranges from 1 to 3 per 1,000 live births in term healthy neonates, and 2-4 per 100 in high-risk infants, a 10-fold increase. Early identification and intervention with hearing augmentation within 6 mo yields optimal effect. If undetected and without treatment, significant hearing impairment may negatively impact speech development and lead to disorders in psychological and mental behaviors. Hearing screening programs in newborns enable detection of hearing impairment in the first days after birth. Programs to identify hearing deficit have significantly improved over the two decades, and their implementation continues to grow throughout the world. Initially based on risk factors, these programs identified only 50-75% of infants with hearing loss. Current recommendations are to conduct universal hearing screening in all infants. Techniques used primarily include automated auditory brainstem responses and otoacoustic emissions that provide noninvasive recordings of physiologic auditory activity and are easily performed in neonates and infants. The aim of this review is to present the objectives, benefits, and results of newborn hearing screening programs including the pros and cons of universal vs. selective screening. A brief history and the anticipated future development of these programs will also be discussed.
Collapse
Affiliation(s)
| | - Piotr Dabrowski
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, Poznan, Poland
| | - Witold Szyfter
- Department of Otolaryngology and Oncological Laryngology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Mazela
- Department of Newborns' Infectious Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
13
|
Tang ZH, Chen JR, Zheng J, Shi HS, Ding J, Qian XD, Zhang C, Chen JL, Wang CC, Li L, Chen JZ, Yin SK, Huang TS, Chen P, Guan MX, Wang JF. Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Transl Med 2016; 5:561-71. [PMID: 27013738 DOI: 10.5966/sctm.2015-0252] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7A(WT/WT); C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. SIGNIFICANCE Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs.
Collapse
Affiliation(s)
- Zi-Hua Tang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jia-Rong Chen
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Zheng
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hao-Song Shi
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, People's Republic of China
| | - Jie Ding
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiao-Dan Qian
- The Affiliated Women's Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Cui Zhang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jian-Ling Chen
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Cui-Cui Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liang Li
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jun-Zhen Chen
- Department of Otolaryngology, The Affiliated Wenling People's Hospital, Wenzhou Medical University, Wenling, Zhejiang, People's Republic of China
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, People's Republic of China
| | - Tao-Sheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ping Chen
- Departments of Cell Biology and Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Min-Xin Guan
- Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jin-Fu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep 2016; 6:22250. [PMID: 26915689 PMCID: PMC4768099 DOI: 10.1038/srep22250] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans. Deafness genes, which harbor pathogenic mutations that have been identified in families with hereditary hearing loss, are commonly expressed in the auditory end organ or the cochlea and may contribute to normal hearing function, yet some of the mouse models carrying these mutations fail to recapitulate the hearing loss phenotype. In this study, we find that distinct expression patterns of those deafness genes in the cochlea of a non-human primate, the common marmoset (Callithrix jacchus). We examined 20 genes whose expression in the cochlea has already been reported. The deafness genes GJB3, CRYM, GRHL2, DFNA5, and ATP6B1 were expressed in marmoset cochleae in patterns different from those in mouse cochleae. Of note, all those genes are causative for progressive hearing loss in humans, but not in mice. The other tested genes, including the deafness gene COCH, in which mutation recapitulates deafness in mice, were expressed in a similar manner in both species. The result suggests that the discrepancy in the expression between rodents and primates may account for the phenotypic difference. This limitation of the rodent models can be bypassed by using non-human primate models such as the marmoset.
Collapse
Affiliation(s)
- Makoto Hosoya
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Masato Fujioka
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Kaoru Ogawa
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Keio University School of Medicine, Department of Physiology, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| |
Collapse
|
15
|
Teeling EC, Jones G, Rossiter SJ. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats. BAT BIOACOUSTICS 2016. [DOI: 10.1007/978-1-4939-3527-7_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Zhou MC, Min R, Ji JJ, Zhang S, Tong AL, Xu JP, Li ZY, Zhang HB, Li YX. Analysis of association among clinical features and shorter leukocyte telomere length in mitochondrial diabetes with m.3243A>G mitochondrial DNA mutation. BMC MEDICAL GENETICS 2015; 16:92. [PMID: 26449496 PMCID: PMC4599722 DOI: 10.1186/s12881-015-0238-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 09/30/2015] [Indexed: 11/15/2022]
Abstract
Background Mitochondrial diabetes is a kind of rare diabetes caused by monogenic mutation in mitochondia. The study aimed to summarize the clinical phenotype profiles in mitochondrial diabetes withm.3243A>G mitochondrial DNA mutation and to investigate the mechanism in this kind of diabetes by analyzing the relationship among clinical phenotypes and peripheral leukocyte DNA telomere length. Methods Fifteen patients with maternally inherited diabetes in five families were confirmed as carrying the m.3243A>G mitochondrial DNA mutation. One hundred patients with type 2 diabetes and one hundred healthy control subjects were recruited to participate in the study. Sanger sequencing was used to detect the m.3243A>G mitochondrial DNA mutation. The peak height G/A ratio in the sequence diagram was calculated. Real-time polymerase chain reaction (PCR) was used to measure telomere length. Results The patients with mitochondrial diabetes all had definite maternally inherited history, normal BMI (19.5 ± 2.36 kg/m2), early onset of diabetes (35.0 ± 14.6 years) and deafness. The peak height G/A ratio correlated significantly and negatively with the age at onset of diabetes (≦25 years, 61.6 ± 20.17 %; 25–45 years, 16.59 ± 8.64 %; >45 years, 6.37 ± 0.59 %; p = 0.000). Telomere length was significantly shorter among patients with mitochondrial diabetes and type 2 diabetes than in the control group (1.28 ± 0.54 vs. 1.14 ± 0.43 vs. 1.63 ± 0.61; p = 0.000). However, there was no significant difference between patients with mitochondrial diabetes and those with type 2 diabetes. There was no correlation between telomere length and the peak height G/A ratio. Conclusion Deafness with definite maternal inheritance and normal BMI, associated with elevated blood lactic acid and encephalomyopathy, for the most part, suggest the diagnosis of mitochondrial diabetes . The peak height G/A ratio could reflect the spectrum of age at onset of the disease. Telomere length was shorter in patients with mitochondrial diabetes and those with type 2 diabetes, which suggests that the shorter telomere length is likely involved in the pathogenesis of diabetes but is not specific for this kind of diabetes.
Collapse
Affiliation(s)
- Mei-Cen Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Rui Min
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jian-Jun Ji
- Hongshan Traditional Chinese Medicine Hospital, Chifeng City, Inner Mongolia, 024076, China
| | - Shi Zhang
- Metabolic Disease Hospital of Tianjin Medical University, Tianjin City, 300000, China
| | - An-Li Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jian-ping Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zeng-Yi Li
- Nanyang City Center Hospital, Nanyang City, Henan, 473003, China
| | - Hua-Bing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yu-Xiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
17
|
Abstract
Although deafness can be acquired throughout an animal's life from a variety of causes, hereditary deafness, especially congenital hereditary deafness, is a significant problem in several species. Extensive reviews exist of the genetics of deafness in humans and mice, but not for deafness in domestic animals. Hereditary deafness in many species and breeds is associated with loci for white pigmentation, where the cochlear pathology is cochleo-saccular. In other cases, there is no pigmentation association and the cochlear pathology is neuroepithelial. Late onset hereditary deafness has recently been identified in dogs and may be present but not yet recognized in other species. Few genes responsible for deafness have been identified in animals, but progress has been made for identifying genes responsible for the associated pigmentation phenotypes. Across species, the genes identified with deafness or white pigmentation patterns include MITF, PMEL, KIT, EDNRB, CDH23, TYR, and TRPM1 in dog, cat, horse, cow, pig, sheep, ferret, mink, camelid, and rabbit. Multiple causative genes are present in some species. Significant work remains in many cases to identify specific chromosomal deafness genes so that DNA testing can be used to identify carriers of the mutated genes and thereby reduce deafness prevalence.
Collapse
Affiliation(s)
- George M. Strain
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Carrier frequency of the GJB2 mutations that cause hereditary hearing loss in the Japanese population. J Hum Genet 2015; 60:613-7. [PMID: 26178431 PMCID: PMC4635169 DOI: 10.1038/jhg.2015.82] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/22/2015] [Accepted: 06/11/2015] [Indexed: 11/08/2022]
Abstract
Hearing impairment is one of the most common sensory disorders that affect ~1 in 1000 children, and half of them are considered to be hereditary. Information about the carrier frequencies of mutations that underlie autosomal recessive disorders is indispensable for accurate genetic counseling to predict the probability of patients' children's disease. However, there have been few reports specific to the Japanese population. GJB2 mutations are reported to be the most frequent cause of hereditary hearing loss, and the mutation spectrum and frequency of GJB2 mutations were reported to vary among different ethnic groups. In this study, we investigated the carrier frequency of GJB2 mutations and the mutation spectrum in 509 individuals randomly selected from the general Japanese population. We show that the carrier frequencies of the two most common pathogenic mutations are 1.57% (8/509) for c.235delC and 1.77% (9/509) for p.Val37Ile. In addition to these mutations, we found two pathogenic variants (p.[Gly45Glu;Tyr136*] and p.Arg143Trp), and the total carrier frequency was estimated to be around 3.73% (19/509). We also detected six unclassified variants, including two novel variants (p.Cys60Tyr and p.Phe106Leu), with the former predicted to be pathogenic. These findings will provide indispensable information for genetic counseling in the Japanese population.
Collapse
|
19
|
Decreased temporal precision of neuronal signaling as a candidate mechanism of auditory processing disorder. Hear Res 2015; 330:213-20. [PMID: 26119177 DOI: 10.1016/j.heares.2015.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/09/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022]
Abstract
The sense of hearing is the fastest of our senses and provides the first all-or-none action potential in the auditory nerve in less than four milliseconds. Short stimulus evoked latencies and their minimal variability are hallmarks of auditory processing from spiral ganglia to cortex. Here, we review how even small changes in first spike latencies (FSL) and their variability (jitter) impact auditory temporal processing. We discuss a number of mouse models with degraded FSL/jitter whose mutations occur exclusively in the central auditory system and therefore might serve as candidates to investigate the cellular mechanisms underlying auditory processing disorders (APD).
Collapse
|
20
|
A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci 2015; 35:1999-2014. [PMID: 25653358 DOI: 10.1523/jneurosci.3449-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approximately one-third of known deafness genes encode proteins located in the hair bundle, the sensory hair cell's mechanoreceptive organelle. In previous studies, we used mass spectrometry to characterize the hair bundle's proteome, resulting in the discovery of novel bundle proteins. One such protein is Xin-actin binding repeat containing 2 (XIRP2), an actin-cross-linking protein previously reported to be specifically expressed in striated muscle. Because mutations in other actin-cross-linkers result in hearing loss, we investigated the role of XIRP2 in hearing function. In the inner ear, XIRP2 is specifically expressed in hair cells, colocalizing with actin-rich structures in bundles, the underlying cuticular plate, and the circumferential actin belt. Analysis using peptide mass spectrometry revealed that the bundle harbors a previously uncharacterized XIRP2 splice variant, suggesting XIRP2's role in the hair cell differs significantly from that reported in myocytes. To determine the role of XIRP2 in hearing, we applied clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome-editing technology to induce targeted mutations into the mouse Xirp2 gene, resulting in the elimination of XIRP2 protein expression in the inner ear. Functional analysis of hearing in the resulting Xirp2-null mice revealed high-frequency hearing loss, and ultrastructural scanning electron microscopy analyses of hair cells demonstrated stereocilia degeneration in these mice. We thus conclude that XIRP2 is required for long-term maintenance of hair cell stereocilia, and that its dysfunction causes hearing loss in the mouse.
Collapse
|
21
|
Nishio SY, Hattori M, Moteki H, Tsukada K, Miyagawa M, Naito T, Yoshimura H, Iwasa YI, Mori K, Shima Y, Sakuma N, Usami SI. Gene expression profiles of the cochlea and vestibular endorgans: localization and function of genes causing deafness. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:6S-48S. [PMID: 25814645 DOI: 10.1177/0003489415575549] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. METHODS Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Homepage using localization, expression, and distribution as keywords. RESULTS Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. CONCLUSIONS The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehiko Naito
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-Ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Mori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yutaka Shima
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoko Sakuma
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Otorhinolaryngology and Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
22
|
Tsukada K, Fukuoka H, Usami SI. Vestibular functions of hereditary hearing loss patients with GJB2 mutations. Audiol Neurootol 2015; 20:147-52. [PMID: 25824904 DOI: 10.1159/000368292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Mutations in the GJB2 gene have been of particular interest as it is the most common causative gene for congenital deafness in all populations. Detailed audiological features, including genotype-phenotype correlations, have been well documented. However, in spite of abundant gene as well as protein expression in the vestibular end organs, neither vestibular symptoms nor vestibular functions have yet been elucidated. In the present study, vestibular functions were evaluated in patients diagnosed with GJB2-related deafness. SUBJECTS AND METHODS Vestibular functions were evaluated by caloric test and cervical vestibular evoked myogenic potential (cVEMP) testing in 24 patients with biallelic GJB2 mutations. RESULTS AND DISCUSSION Twenty-one of 23 patients (91.3%) had normal caloric responses and significantly lower cVEMP amplitudes than the control subjects. In the patients who were able to undergo vestibular testing, the mostly normal reactions to caloric testing indicated that the lateral semicircular canal was intact. However, the majority of GJB2 patients showed low cVEMP reactions, indicating a saccular defect.
Collapse
Affiliation(s)
- Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto City, Japan
| | | | | |
Collapse
|
23
|
Li TC, Wang WH, Li C, Yang JJ. Association between mutations in the gap junction β4 gene and nonsyndromic hearing loss: genotype-phenotype correlation patterns. Mol Med Rep 2014; 11:619-24. [PMID: 25333454 DOI: 10.3892/mmr.2014.2725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have confirmed that gap junctions, composed of connexin (Cx) protein, are essential for auditory function. However, few studies have investigated the correlation between variants in the gap junction β4 (GJB4) gene and phenotype in patients with nonsyndromic hearing loss. Our previous study identified 11 patients with GJB4 gene variants in 253 unrelated patients with nonsyndromic hearing loss. In the present study, the phenotype-genotype correlation was examined in the 11 deaf patients with the different variants of GJB4. Analytical results revealed that the majority of probands had congenital hearing loss, which was bilateral, stable and without associated dermatological manifestations or morphological changes of the inner ear. An audiometric profile, including the observed consistency with severe-profound and flat shape dominance, may enable screening for variants of GJB4. On the basis of the above results, it was hypothesized that GJB4 may be a genetic risk factor for the development of nonsyndromic hearing loss and the data from the present study can be used to direct the clinical evaluation and effectively manage the care of families of children with GJB4.
Collapse
Affiliation(s)
- Tung-Cheng Li
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Wen-Hung Wang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan, R.O.C
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University Hospital, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
24
|
Abstract
Objective:Homozygous homeobox A1 (HOXA1) mutations cause a spectrum of abnormalities in humans including bilateral profound deafness. This study evaluates the possible role of HOXA1 mutations in familial, non-syndromic sensorineural deafness.Methods:Forty-eight unrelated Middle Eastern families with either consanguinity or familial deafness were identified in a large deafness clinic, and the proband from each family was evaluated by chart review, audiogram, neuroimaging, and HOXA1 sequencing.Results:All 48 probands had normal neuro-ophthalmologic and general medical examinations except for refractive errors. All had congenital non-syndromic sensorineural hearing loss that was symmetric bilaterally and profound (>90 dBHL) in 33 individuals and varied from 40 to 90 dBHL in the remainder. Thirty-nine of these individuals had neuroimaging studies, all documenting normal internal carotid arteries and normal 6th, 7th, and 8th cranial nerves bilaterally. Of these, 27 had normal internal ear structures with the remaining 12 having mild to modest developmental abnormalities of the cochlea, semicircular canals, and/or vestibular aqueduct. No patient had homozygous HOXA1 mutations.Conclusions:None of these patients with non-syndromic deafness had HOXA1 mutations. None had major inner ear anomalies, obvious cerebrovascular defects, or recognized congenital heart disease. HOXA1 is likely not a common cause of non-syndromic deafness in this Middle Eastern population.
Collapse
|
25
|
Teudt IU, Richter CP. Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse. J Assoc Res Otolaryngol 2014; 15:675-94. [PMID: 24865766 PMCID: PMC4164692 DOI: 10.1007/s10162-014-0463-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
Abstract
The mouse has become an important animal model in understanding cochlear function. Structures, such as the tectorial membrane or hair cells, have been changed by gene manipulation, and the resulting effect on cochlear function has been studied. To contrast those findings, physical properties of the basilar membrane (BM) and tectorial membrane (TM) in mice without gene mutation are of great importance. Using the hemicochlea of CBA/CaJ mice, we have demonstrated that tectorial membrane (TM) and basilar membrane (BM) revealed a stiffness gradient along the cochlea. While a simple spring mass resonator predicts the change in the characteristic frequency of the BM, the spring mass model does not predict the frequency change along the TM. Plateau stiffness values of the TM were 0.6 ± 0.5, 0.2 ± 0.1, and 0.09 ± 0.09 N/m for the basal, middle, and upper turns, respectively. The BM plateau stiffness values were 3.7 ± 2.2, 1.2 ± 1.2, and 0.5 ± 0.5 N/m for the basal, middle, and upper turns, respectively. Estimations of the TM Young's modulus (in kPa) revealed 24.3 ± 25.2 for the basal turns, 5.1 ± 4.5 for the middle turns, and 1.9 ± 1.6 for the apical turns. Young's modulus determined at the BM pectinate zone was 76.8 ± 72, 23.9 ± 30.6, and 9.4 ± 6.2 kPa for the basal, middle, and apical turns, respectively. The reported stiffness values of the CBA/CaJ mouse TM and BM provide basic data for the physical properties of its organ of Corti.
Collapse
Affiliation(s)
- I. U. Teudt
- />Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Searle Building 12-561; 303 East Chicago Avenue, 60611-3008 Chicago, IL USA
- />Department of Otolaryngology—Head and Neck Surgery, University Clinic Hamburg-Eppendorf, Hamburg, Germany
- />Department of Otolaryngology—Head and Neck Surgery, Asklepios Clinic Altona, Hamburg, Germany
| | - C. P. Richter
- />Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Searle Building 12-561; 303 East Chicago Avenue, 60611-3008 Chicago, IL USA
- />Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
- />Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL USA
| |
Collapse
|
26
|
Agochukwu NB, Solomon BD, Muenke M. Hearing loss in syndromic craniosynostoses: introduction and consideration of mechanisms. Am J Audiol 2014; 23:135-41. [PMID: 24686979 DOI: 10.1044/2014_aja-13-0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE There are a number of craniosynostosis syndromes with hearing loss-including Muenke, Apert, Pfeiffer, Crouzon, Beare-Stevenson, Crouzon with acanthosis nigricans, and Jackson-Weiss syndromes-that result from mutations in the fibroblast growth factor receptor (FGFR) genes. Studies of FGFRs and their ligands, fibroblast growth factors (FGFs), have revealed clues to the precise contribution of aberrant FGFR signaling to inner ear morphogenesis and the hearing loss encountered in craniosynostoses. The purpose of this article is to review basic studies of FGFRs with emphasis on their function and expression in the inner ear and surrounding structures. METHOD A Medline search was performed to find basic science articles regarding FGFR, their ligands, and their expression and relevant mouse models. Additional items searched included clinical descriptions and studies of individuals with FGFR-related craniosynostosis syndromes. RESULTS The FGF signaling pathway is essential for the morphogensis and proper function of the inner ear and auditory sensory epithelium. CONCLUSION The variable auditory phenotypes seen in individuals with Muenke syndrome may have a genetic basis, likely due to multiple interacting factors in the genetic environment or modifying factors. Further analysis and studies of mouse models of Muenke syndrome, in particular, may provide clues to the specific effects of the defining mutation in FGFR3 in the inner ear not only at birth but also into adulthood. In particular, investigations into these models may give insight into the variable expression and incomplete penetrance of this phenotype.
Collapse
Affiliation(s)
- Nneamaka B. Agochukwu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Clinical Research Training Program, National Institutes of Health, Bethesda, MD
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
27
|
Chang-Chien J, Yen YC, Chien KH, Li SY, Hsu TC, Yang JJ. The connexin 30.3 of zebrafish homologue of human connexin 26 may play similar role in the inner ear. Hear Res 2014; 313:55-66. [PMID: 24811980 DOI: 10.1016/j.heares.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 04/11/2014] [Accepted: 04/22/2014] [Indexed: 12/24/2022]
Abstract
The intercellular gap junction channels formed by connexins (CXs) are important for recycling potassium ions in the inner ear. CXs are encoded by a family of the CX gene, such as GJB2, and the mechanism leading to mutant connexin-associated diseases, including hearing loss, remains to be elucidated. In this study, using bioinformatics, we found that two zebrafish cx genes, cx27.5 and cx30.3, are likely homologous to human and mouse GJB2. During embryogenesis, zebrafish cx27.5 was rarely expressed at 1.5-3 h post-fertilization (hpf), but a relatively high level of cx27.5 expression was detected from 6 to 96 hpf. However, zebrafish cx30.3 transcripts were hardly detected until 9 hpf. The temporal experiment was conducted in whole larvae. Both cx27.5 and cx30.3 transcripts were revealed significantly in the inner ear by reverse transcription polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization (WISH). In the HeLa cell model, we found that zebrafish Cx27.5 was distributed intracellularly in the cytoplasm, whereas Cx30.3 was localized in the plasma membrane of HeLa cells stably expressing Cx proteins. The expression pattern of zebrafish Cx30.3 in HeLa cells was more similar to that of cells expressing human CX26 than Cx27.5. In addition, we found that Cx30.3 was localized in the cell membrane of hair cells within the inner ear by immunohistochemistry (IHC), suggesting that zebrafish cx30.3 might play an essential role in the development of the inner ear, in the same manner as human GJB2. We then performed morpholino knockdown studies in zebrafish embryos to elucidate the physiological functions of Cx30.3. The zebrafish cx30.3 morphants exhibited wild-type-like and heart edema phenotypes with smaller inner ears at 72 hpf. Based on these results, we suggest that the zebrafish Cx30.3 and mammalian CX26 may play alike roles in the inner ear. Thus, zebrafish can potentially serve as a model for studying hearing loss disorders that result from human CX26 mutations.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Institute of Microbiology & Immunology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chang Yen
- Department of Ophthalmology, CHi-Mei Medical Center, Liou-Ying, Tainan, Taiwan; Department of Nursing, Min Hwei College of Health Care Management, Tainan, Taiwan
| | - Kuo-Hsuan Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Shaun-Yow Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Tsai-Ching Hsu
- Institute of Microbiology & Immunology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Sciences, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
28
|
Liu Q, Chen P, Wang J. Molecular mechanisms and potentials for differentiating inner ear stem cells into sensory hair cells. Dev Biol 2014; 390:93-101. [PMID: 24680894 DOI: 10.1016/j.ydbio.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
In mammals, hair cells may be damaged or lost due to genetic mutation, infectious disease, chemical ototoxicity, noise and other factors, causing permanent sensorineural deafness. Regeneration of hair cells is a basic pre-requisite for recovery of hearing in deaf animals. The inner ear stem cells in the organ of Corti and vestibular utricle are the most ideal precursors for regeneration of inner ear hair cells. This review highlights some recent findings concerning the proliferation and differentiation of inner ear stem cells. The differentiation of inner ear stem cells into hair cells involves a series of signaling pathways and regulatory factors. This paper offers a comprehensive analysis of the related studies.
Collapse
Affiliation(s)
- Quanwen Liu
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ping Chen
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Cell Biology and Otolaryngology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jinfu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
29
|
Fiori MC, Reuss L, Cuello LG, Altenberg GA. Functional analysis and regulation of purified connexin hemichannels. Front Physiol 2014; 5:71. [PMID: 24611052 PMCID: PMC3933781 DOI: 10.3389/fphys.2014.00071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023] Open
Abstract
Gap-junction channels (GJCs) are aqueous channels that communicate adjacent cells. They are formed by head-to-head association of two hemichannels (HCs), one from each of the adjacent cells. Functional HCs are connexin hexamers composed of one or more connexin isoforms. Deafness is the most frequent sensineural disorder, and mutations of Cx26 are the most common cause of genetic deafness. Cx43 is the most ubiquitous connexin, expressed in many organs, tissues, and cell types, including heart, brain, and kidney. Alterations in its expression and function play important roles in the pathophysiology of very frequent medical problems such as those related to cardiac and brain ischemia. There is extensive information on the relationship between phosphorylation and Cx43 targeting, location, and function from experiments in cells and organs in normal and pathological conditions. However, the molecular mechanisms of Cx43 regulation by phosphorylation are hard to tackle in complex systems. Here, we present the use of purified HCs as a model for functional and structural studies. Cx26 and Cx43 are the only isoforms that have been purified, reconstituted, and subjected to functional and structural analysis. Purified Cx26 and Cx43 HCs have properties compatible with those demonstrated in cells, and present methodologies for the functional analysis of purified HCs reconstituted in liposomes. We show that phosphorylation of serine 368 by PKC produces a partial closure of the Cx43 HCs, changing solute selectivity. We also present evidence that the effect of phosphorylation is highly cooperative, requiring modification of several connexin subunits, and that phosphorylation of serine 368 elicits conformational changes in the purified HCs. The use of purified HCs is starting to provide critical data to understand the regulation of HCs at the molecular level.
Collapse
Affiliation(s)
- Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis Reuss
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center Lubbock, TX, USA
| |
Collapse
|
30
|
Myosin light chain kinase regulates hearing in mice by influencing the F-actin cytoskeleton of outer hair cells and cochleae. Int J Mol Med 2014; 33:905-12. [PMID: 24481113 DOI: 10.3892/ijmm.2014.1634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/17/2014] [Indexed: 11/05/2022] Open
Abstract
Myosin light chain kinase (MLCK) phosphorylates myosin regulatory light chains to facilitate its interaction with actin filaments and produce contractile activity. The outer hair cells (OHCs) in the ear contain large amounts of actin and a variety myosins. The stereociliary and somatic motility of OHCs are closely related to hearing. It appears likely that MLCK may play an important role in acoustic trans-duction. In this study, we analyzed, both in vivo and in vitro, the OHCs of mice bearing a specific deletion of the MLCK gene and the OHCs of control mice. The phenotype was assessed by auditory function [acoustic brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs)], inner ear morphology and histology. MLCK-deficient mice aged 6-7 months showed impaired hearing, a 5- to 10-dB sound pressure level (SPL) increase in the ABR thresholds, when responding to clicks and tones of different frequencies (8 and 16 kHz) (P<0.05). The DPOAE amplitudes of 3-month-old MLCK-deficient mice decreased significantly (>10 dB SPL) at low frequencies (4, 5 and 6 kHz). The OHCs in the MLCK-deficient mice increased with abnormal stereocilia. The staining of F-actin and the phosphorylation of the regulatory light chain in MLCK-deficient OHCs was weak. Our results indicate that MLCK may regulate the structure and the motility of stereocilia through F-actin polymerization.
Collapse
|
31
|
Girotto G, Vuckovic D, Buniello A, Lorente-Cánovas B, Lewis M, Gasparini P, Steel KP. Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS One 2014; 9:e85352. [PMID: 24454846 PMCID: PMC3891868 DOI: 10.1371/journal.pone.0085352] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/25/2013] [Indexed: 11/25/2022] Open
Abstract
Considerable progress has been made in identifying deafness genes, but still little is known about the genetic basis of normal variation in hearing function. We recently carried out a Genome Wide Association Study (GWAS) of quantitative hearing traits in southern European populations and found several SNPs with suggestive but none with significant association. In the current study, we followed up these SNPs to investigate which of them might show a genuine association with auditory function using alternative approaches. Firstly, we generated a shortlist of 19 genes from the published GWAS results. Secondly, we carried out immunocytochemistry to examine expression of these 19 genes in the mouse inner ear. Twelve of them showed distinctive cochlear expression patterns. Four showed expression restricted to sensory hair cells (Csmd1, Arsg, Slc16a6 and Gabrg3), one only in marginal cells of the stria vascularis (Dclk1) while the others (Ptprd, Grm8, GlyBP, Evi5, Rimbp2, Ank2, Cdh13) in multiple cochlear cell types. In the third step, we tested these 12 genes for replication of association in an independent set of samples from the Caucasus and Central Asia. Nine out of them showed nominally significant association (p<0.05). In particular, 4 were replicated at the same SNP and with the same effect direction while the remaining 5 showed a significant association in a gene-based test. Finally, to look for genotype-phenotype relationship, the audiometric profiles of the three genotypes of the most strongly associated gene variants were analyzed. Seven out of the 9 replicated genes (CDH13, GRM8, ANK2, SLC16A6, ARSG, RIMBP2 and DCLK1) showed an audiometric pattern with differences between different genotypes further supporting their role in hearing function. These data demonstrate the usefulness of this multistep approach in providing new insights into the molecular basis of hearing and may suggest new targets for treatment and prevention of hearing impairment.
Collapse
Affiliation(s)
- Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Buniello
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| | - Beatriz Lorente-Cánovas
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| | - Morag Lewis
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Karen P. Steel
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom
| |
Collapse
|
32
|
Kluth S, Distl O. Congenital sensorineural deafness in dalmatian dogs associated with quantitative trait loci. PLoS One 2013; 8:e80642. [PMID: 24324618 PMCID: PMC3851758 DOI: 10.1371/journal.pone.0080642] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 10/14/2013] [Indexed: 12/13/2022] Open
Abstract
A genome-wide association study (GWAS) was performed for 235 Dalmatian dogs using the canine Illumina high density bead chip to identify quantitative trait loci (QTL) associated with canine congenital sensorineural deafness (CCSD). Data analysis was performed for all Dalmatian dogs and in addition, separately for brown-eyed and blue-eyed dogs because of the significant influence of eye colour on CCSD in Dalmatian dogs. Mixed linear model analysis (MLM) revealed seven QTL with experiment-wide significant associations (-log10P>5.0) for CCSD in all Dalmatian dogs. Six QTL with experiment-wide significant associations for CCSD were found in brown-eyed Dalmatian dogs and in blue-eyed Dalmatian dogs, four experiment-wide significant QTL were detected. The experiment-wide CCSD-associated SNPs explained 82% of the phenotypic variance of CCSD. Five CCSD-loci on dog chromosomes (CFA) 6, 14, 27, 29 and 31 were in close vicinity of genes shown as causative for hearing loss in human and/or mouse.
Collapse
Affiliation(s)
- Susanne Kluth
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
33
|
Vuckovic D, Biino G, Panu F, Pirastu M, Gasparini P, Girotto G. Lifestyle and normal hearing function in Italy and Central Asia: The potential role of coffee. HEARING BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.817134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Kim HJ, Won HH, Park KJ, Hong SH, Ki CS, Cho SS, Venselaar H, Vriend G, Kim JW. SNP linkage analysis and whole exome sequencing identify a novel POU4F3 mutation in autosomal dominant late-onset nonsyndromic hearing loss (DFNA15). PLoS One 2013; 8:e79063. [PMID: 24260153 PMCID: PMC3832514 DOI: 10.1371/journal.pone.0079063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3(rd) alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong-Hee Won
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Kyoung-Jin Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sung Hwa Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Sun Cho
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Abstract
INTRODUCTION Cochlear implantation is a safe surgery for restoration of hearing in profoundly deaf candidates. Profound deafness may at times, manifest as a part of a syndrome associated with cardiac anomalies. Cardiac co-morbidities may influence cochlear implantation in a spectrum of ways from minor intra operative issues to major life threatening complications. Issues related to pre operative, intra operative and post operative care needs to be addressed by an efficient in house cardiologist. OBJECTIVES Our retrospective study was aimed at analyzing the various cardiac co-morbidities encountered in 30 out of 500 cochlear implantees over a period of 14 years (July 1999-June 2012). This study was focused on developing a profile of cardiac complications influencing cochlear implantation and suggests a protocol for management of various cardiac issues related to cochlear implantation. Our article also reflects the cardiologist's perspective of peri-operative care to be given during cochlear implantation. Relevant literature has been reviewed. METHODS Case series of 30 profoundly deaf children (below 12 years) who had associated cardiac problems and underwent cochlear implantation in our institution were included in our study. Overall cardiac disease was identified in 30 out of 500 implantees (16.6%) in our experience. The cardiac disease can be categorized into 3 groups: candidates with isolated Patent Ductus Arteriosus (PDA) as Group A (8/30), candidates with syndrome and other anomalies with PDA association as Group B (18/30), and candidates with syndromes without PDA association as Group C (4/30). RESULTS The overall incidence of cardiac problems in profoundly deaf candidates is identified. Descriptive profile of the same has been created and appropriate management for the same described. CONCLUSIONS A protocol for management of cardiac co-morbidities influencing cochlear implantation has been designed and detailed insight for the optimal management of these issues has been discussed with cardiologist's perspective.
Collapse
|
36
|
Ehmann H, Hartwich H, Salzig C, Hartmann N, Clément-Ziza M, Ushakov K, Avraham KB, Bininda-Emonds ORP, Hartmann AK, Lang P, Friauf E, Nothwang HG. Time-dependent gene expression analysis of the developing superior olivary complex. J Biol Chem 2013; 288:25865-25879. [PMID: 23893414 DOI: 10.1074/jbc.m113.490508] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The superior olivary complex (SOC) is an essential auditory brainstem relay involved in sound localization. To identify the genetic program underlying its maturation, we profiled the rat SOC transcriptome at postnatal days 0, 4, 16, and 25 (P0, P4, P16, and P25, respectively), using genome-wide microarrays (41,012 oligonucleotides (oligos)). Differences in gene expression between two consecutive stages were highest between P4 and P16 (3.6%) and dropped to 0.06% between P16 and P25. To identify SOC-related genetic programs, we also profiled the entire brain at P4 and P25. The number of differentially expressed oligonucleotides between SOC and brain almost doubled from P4 to P25 (4.4% versus 7.6%). These data demonstrate considerable molecular specification around hearing onset, which is rapidly finalized. Prior to hearing onset, several transcription factors associated with the peripheral auditory system were up-regulated, probably coordinating the development of the auditory system. Additionally, crystallin-γ subunits and serotonin-related genes were highly expressed. The molecular repertoire of mature neurons was sculpted by SOC-related up- and down-regulation of voltage-gated channels and G-proteins. Comparison with the brain revealed a significant enrichment of hearing impairment-related oligos in the SOC (26 in the SOC, only 11 in the brain). Furthermore, 29 of 453 SOC-related oligos mapped within 19 genetic intervals associated with hearing impairment. Together, we identified sequential genetic programs in the SOC, thereby pinpointing candidates that may guide its development and ensure proper function. The enrichment of hearing impairment-related genes in the SOC may have implications for restoring hearing because central auditory structures might be more severely affected than previously appreciated.
Collapse
Affiliation(s)
- Heike Ehmann
- From the Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Heiner Hartwich
- the Neurogenetics Group, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christian Salzig
- the Department of System Analysis, Prognosis, and Control, Fraunhofer Institute for Industrial Mathematics (ITWM), D-67663 Kaiserslautern, Germany
| | - Nadja Hartmann
- From the Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | - Kathy Ushakov
- the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karen B Avraham
- the Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Alexander K Hartmann
- the Computational Theoretical Physics Group, University of Oldenburg, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany, and
| | - Patrick Lang
- the Department of System Analysis, Prognosis, and Control, Fraunhofer Institute for Industrial Mathematics (ITWM), D-67663 Kaiserslautern, Germany
| | - Eckhard Friauf
- From the Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Hans Gerd Nothwang
- the Neurogenetics Group, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany,; the Center for Neuroscience, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany,; the Center of Excellence Hearing4all, 26111 Oldenburg, Germany.
| |
Collapse
|
37
|
Tan J, Prakash MD, Kaiserman D, Bird PI. Absence of SERPINB6A causes sensorineural hearing loss with multiple histopathologies in the mouse inner ear. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:49-59. [PMID: 23669344 DOI: 10.1016/j.ajpath.2013.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 11/26/2022]
Abstract
A homozygous mutation of SERPINB6, a gene encoding an intracellular protease inhibitor, has recently been associated with post-lingual, autosomal-recessive, nonsyndromic hearing loss in humans (DFNB91). Herein, we describe the physiological changes underlying SERPINB6 deficiency by analyzing mutant mice in which the orthologous gene is replaced by enhanced green fluorescent protein. SERPINB6A is present in the neurosensory epithelium, lateral wall, and spiral limbus of the cochlea, with highest levels in the inner and outer hair cells of the organ of Corti, cells lining the inner sulcus, and supporting cells distributed along the epithelial gap junction layer to the outer sulcus. Measurements of hearing thresholds in these mice demonstrated age-related hearing loss in all homozygous-null, but not heterozygous, mice. Hearing impairment was first detected at 3 weeks of age, affecting only high frequencies before spreading to other frequencies as the mice aged. The defect is associated with progressive cellular degeneration within the cochlea. This begins with the hair cells, then involves the primary auditory neurons, and, finally, the fibrocytes in the lateral wall. These findings establish these mutant mice as a suitable model system to elucidate how SERPINB6 deficiency causes deafness in humans.
Collapse
Affiliation(s)
- Justin Tan
- Department of Otolaryngology, University of Melbourne, East Melbourne, Australia
| | | | | | | |
Collapse
|
38
|
Muniak MA, Rivas A, Montey KL, May BJ, Francis HW, Ryugo DK. 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J Comp Neurol 2013; 521:1510-32. [PMID: 23047723 PMCID: PMC3992438 DOI: 10.1002/cne.23238] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 08/29/2012] [Accepted: 10/02/2012] [Indexed: 02/02/2023]
Abstract
The relationship between structure and function is an invaluable context with which to explore biological mechanisms of normal and dysfunctional hearing. The systematic and topographic representation of frequency originates at the cochlea, and is retained throughout much of the central auditory system. The cochlear nucleus (CN), which initiates all ascending auditory pathways, represents an essential link for understanding frequency organization. A model of the CN that maps frequency representation in 3D would facilitate investigations of possible frequency specializations and pathologic changes that disturb frequency organization. Toward this goal, we reconstructed in 3D the trajectories of labeled auditory nerve (AN) fibers following multiunit recordings and dye injections in the anteroventral CN of the CBA/J mouse. We observed that each injection produced a continuous sheet of labeled AN fibers. Individual cases were normalized to a template using 3D alignment procedures that revealed a systematic and tonotopic arrangement of AN fibers in each subdivision with a clear indication of isofrequency laminae. The combined dataset was used to mathematically derive a 3D quantitative map of frequency organization throughout the entire volume of the CN. This model, available online (http://3D.ryugolab.com/), can serve as a tool for quantitatively testing hypotheses concerning frequency and location in the CN.
Collapse
Affiliation(s)
- Michael A Muniak
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Filling the silent void: genetic therapies for hearing impairment. GENETICS RESEARCH INTERNATIONAL 2013; 2012:748698. [PMID: 23304527 PMCID: PMC3529436 DOI: 10.1155/2012/748698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/27/2012] [Accepted: 11/04/2012] [Indexed: 12/02/2022]
Abstract
The inner ear cytoarchitecture forms one of the most intricate and delicate organs in the human body and is vulnerable to the effects of genetic disorders, aging, and environmental damage. Owing to the inability of the mammalian cochlea to regenerate sensory hair cells, the loss of hair cells is a leading cause of deafness in humans. Millions of individuals worldwide are affected by the emotionally and financially devastating effects of hearing impairment (HI). This paper provides a brief introduction into the key role of genes regulating inner ear development and function. Potential future therapies that leverage on an improved understanding of these molecular pathways are also described in detail.
Collapse
|
40
|
An epidemiological study on children with syndromic hearing loss. Indian J Otolaryngol Head Neck Surg 2012; 56:208-12. [PMID: 23120076 DOI: 10.1007/bf02974352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES To study the epidemiological factors in children with syndromic hearing loss. STUDY DESIGN Interview based prospective study. SETTINGS Govt. ENT Hospital, AYJNIHH, NIMH-SEC, and Schools for the Deaf-in Hyderabad and SecunderabadPatients: Children aged below 14 years, with hearing loss, their parents/guardians. INTERVENTION(S) The study revealed type and degree of hearing impairment. In high risk groups genetic counseling was offered. RESULTS Epidemiological studies were carried out in 743 children below 14 years with hearing impairment and 138 (18.57%) were found to have syndromic deafness. Majority of the children with hearing loss have an association of ocular abnormality (22.46%, n=31) followed by skeletal anomalies 14.49% (n=20) and dental anomalies (10.86%). We observed 24 cases (3.21%) with genetically well recognized syndromes. CONCLUSION Data is generated on epidemiological and etiology of Hearing Impairment. Hearing Impairment is due to both environmental and genetic causes. Environmental factors in 17 (13.77%), genetically inherited 21 cases (15.22%) and the cause is not known in the remaining cases. Such a data is required in order to offer genetic counseling to reduce the genetic burden.
Collapse
|
41
|
Satheesh SV, Kunert K, Rüttiger L, Zuccotti A, Schönig K, Friauf E, Knipper M, Bartsch D, Nothwang HG. Retrocochlear function of the peripheral deafness gene Cacna1d. Hum Mol Genet 2012; 21:3896-909. [PMID: 22678062 DOI: 10.1093/hmg/dds217] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Hearing impairment represents the most common sensory deficit in humans. Genetic mutations contribute significantly to this disorder. Mostly, only malfunction of the ear is considered. Here, we assessed the role of the peripheral deafness gene Cacna1d, encoding the L-type channel Ca(v)1.3, in downstream processing of acoustic information. To this end, we generated a mouse conditional Cacna1d-eGFP(flex) allele. Upon pairing with Egr2::Cre mice, Ca(v)1.3 was ablated in the auditory brainstem, leaving the inner ear intact. Structural assessment of the superior olivary complex (SOC), an essential auditory brainstem center, revealed a dramatic volume reduction (43-47%) of major nuclei in young adult Egr2::Cre;Cacna1d-eGFP(flex) mice. This volume decline was mainly caused by a reduced cell number (decline by 46-56%). Abnormal formation of the lateral superior olive was already present at P4, demonstrating an essential perinatal role of Ca(v)1.3 in the SOC. Measurements of auditory brainstem responses demonstrated a decreased amplitude in the auditory nerve between 50 and 75 dB stimulation in Egr2::Cre;Cacna1d-eGFP(flex) knockout mice and increased amplitudes in central auditory processing centers. Immunohistochemical studies linked the amplitude changes in the central auditory system to reduced expression of K(v)1.2. No changes were observed for K(v)1.1, KCC2, a determinant of inhibitory neurotransmission, and choline acetyltransferase, a marker of efferent olivocochlear neurons. Together, these analyses identify a crucial retrocochlear role of Ca(v)1.3 and demonstrate that mutations in deafness genes can affect sensory cells and neurons alike. As a corollary, hearing aids have to address central auditory processing deficits as well.
Collapse
Affiliation(s)
- Somisetty V Satheesh
- Department of Neurogenetics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Expression of deafness protein Tmie in postnatal developmental stages of C57BL/6J mice. Lab Anim Res 2012; 28:147-50. [PMID: 22787490 PMCID: PMC3389840 DOI: 10.5625/lar.2012.28.2.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 11/29/2022] Open
Abstract
Loss-of function mutations in the transmembrane inner ear expressed (Tmie/TMIE) gene have been shown to cause deafness in mice and humans (DFNB6). Previous studies report that the circling mouse can be an animal model for DFNB6. However, the expression pattern of Tmie protein in postnatal developmental stages has not been clearly revealed. In this study we tried to investigate the expression of Tmie protein in the liver, spleen, kidney, and lung, as well as in the cochlea. We examined various tissue samples from five different age groups of C57BL/6J animals. Using western blotting analysis, the expression of Tmie protein in these organs has been identified. The results show that Tmie protein expression in the cochlea has been increased in postnatal developmental stages, indicating that Tmie plays an important role in not only the development and also in the function of the cochlea. The expression pattern of Tmie in adult mouse organs such as the liver, spleen, kidney, and spleen significantly vary in adult rats. The order of Tmie expression level in mice (63 days after birth) was spleen, liver, lung, cochlea, and kidney, whereas in the adult rat it was liver, cochlea, lung, spleen, and kidney.
Collapse
|
43
|
Manji SSM, Miller KA, Williams LH, Dahl HHM. Identification of three novel hearing loss mouse strains with mutations in the Tmc1 gene. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1560-9. [PMID: 22330676 DOI: 10.1016/j.ajpath.2011.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/11/2011] [Accepted: 12/22/2011] [Indexed: 11/25/2022]
Abstract
We report the identification of three new mouse models, baringo, nice, and stitch, with recessively inherited sensorineural deafness due to novel mutations in the transmembrane channel-like gene 1 (Tmc1). These strains were generated by N-ethyl-N-nitrosourea mutagenesis. DNA sequence analysis revealed changes in c.545A>G, c.1345T>C, and c.1661G>T, causing p.Y182C, p.Y449H, and p.W554L amino acid substitutions in baringo, nice, and stitch mutants, respectively. The mutations affect amino acid residues that are evolutionarily conserved across species. Similar to the previously reported Beethoven Tmc1 mutant, both p.Y182C and p.W554L are located outside a predicted transmembrane domain, whereas the p.Y449H mutation resides in the predicted transmembrane domain 4. Homozygous stitch-mutant mice have severe hearing loss at the age of 4 weeks and are deaf by the age of 8 weeks, whereas both baringo and nice mutants are profoundly deaf at the age of 4 weeks. None of the strains displays signs of vestibular dysfunction. Scanning electron microscopy revealed degeneration of outer hair cells in the basal region of baringo, nice, and stitch mutants. Immunolocalization studies revealed expression of TMC1 protein in the hair cells, spiral ganglion neurons, supporting cells, and stria ligament in the inner ear. Reduced levels of TMC1 protein were observed in the spiral ligament of mutants when compared with wild-type animals. These three allelic mutants provide valuable models for studying nonsyndromic recessive sensorineural hearing loss (DFNB7/11) in humans.
Collapse
Affiliation(s)
- Shehnaaz S M Manji
- Genetic Hearing Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
44
|
Murphy CFB, Pontes F, Stivanin L, Picoli E, Schochat E. Auditory processing in children and adolescents in situations of risk and vulnerability. SAO PAULO MED J 2012; 130:151-8. [PMID: 22790547 PMCID: PMC10876193 DOI: 10.1590/s1516-31802012000300004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 05/12/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022] Open
Abstract
CONTEXT AND OBJECTIVE Children and adolescents who live in situations of social vulnerability present a series of health problems. Nonetheless, affirmations that sensory and cognitive abnormalities are present are a matter of controversy. The aim of this study was to investigate aspects to auditory processing, through applying the brainstem auditory evoked potential (BAEP) and behavioral auditory processing tests to children living on the streets, and comparison with a control group. DESIGN AND SETTING Cross-sectional study in the Laboratory of Auditory Processing, School of Medicine, Universidade de São Paulo. METHODS The auditory processing tests were applied to a group of 27 individuals, subdivided into 11 children (7 to 10 years old) and 16 adolescents (11 to 16 years old), of both sexes, in situations of social vulnerability, compared with an age-matched control group of 10 children and 11 adolescents without complaints. The BAEP test was also applied to investigate the integrity of the auditory pathway. RESULTS For both children and adolescents, there were significant differences between the study and control groups in most of the tests applied, with significantly worse performance in the study group, except in the pediatric speech intelligibility test. Only one child had an abnormal result in the BAEP test. CONCLUSIONS The results showed that the study group (children and adolescents) presented poor performance in the behavioral auditory processing tests, despite their unaltered auditory brainstem pathways, as shown by their normal results in the BAEP test.
Collapse
Affiliation(s)
- Cristina Ferraz Borges Murphy
- Department of Physical Therapy, Speech Therapy and Occupational Therapy, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
45
|
Estimation of carrier frequencies of six autosomal-recessive Mendelian disorders in the Korean population. J Hum Genet 2011; 57:139-44. [PMID: 22170460 DOI: 10.1038/jhg.2011.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although many studies have been performed to identify mutations in Korean patients with various autosomal-recessive Mendelian disorders (AR-MDs), little is known about the carrier frequencies of AR-MDs in the Korean population. Twenty common mutations from six AR-MDs, including Wilson disease (WD), non-syndromic hearing loss (NSHL), glycogen storage disease type Ia (GSD Ia), phenylketonuria (PKU), congenital hypothyroidism (CH), and congenital lipoid adrenal hyperplasia (CLAH) were selected to screen for based on previous studies. A total of 3057 Koreans were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry followed by confirmation using the Sanger sequencing. We found 201 and 8 carriers with either one or two mutations in different genes, respectively, yielding a total carrier frequency of 1 in 15 (6.7%). Of the six AR-MDs, NSHL has the highest carrier frequency followed by WD, CH, CLAH, GSD Ia, and PKU. As carrier screening tests are becoming prevalent and the number of mutations known and tested is rising, a priori data on the carrier frequencies in different ethnic groups is mandatory to plan a population screening program and to estimate its efficiency. In light of this, the present results can be used as a basis to establish a screening policy for common AR-MRs in the Korean population.
Collapse
|
46
|
Cheng J, Zhu Y, He S, Lu Y, Chen J, Han B, Petrillo M, Wrzeszczynski KO, Yang S, Dai P, Zhai S, Han D, Zhang MQ, Li W, Liu X, Li H, Chen ZY, Yuan H. Functional mutation of SMAC/DIABLO, encoding a mitochondrial proapoptotic protein, causes human progressive hearing loss DFNA64. Am J Hum Genet 2011; 89:56-66. [PMID: 21722859 DOI: 10.1016/j.ajhg.2011.05.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/03/2011] [Accepted: 05/25/2011] [Indexed: 11/29/2022] Open
Abstract
SMAC/DIABLO is a mitochondrial proapoptotic protein that is released from mitochondria during apoptosis and counters the inhibitory activities of inhibitor of apoptosis proteins, IAPs. By linkage analysis and candidate screening, we identified a heterozygous SMAC/DIABLO mutation, c.377C>T (p.Ser126Leu, refers to p.Ser71Leu in the mature protein) in a six-generation Chinese kindred characterized by dominant progressive nonsyndromic hearing loss, designated as DFNA64. SMAC/DIABLO is highly expressed in human embryonic ears and is enriched in the developing mouse inner-ear hair cells, suggesting it has a role in the development and homeostasis of hair cells. We used a functional study to demonstrate that the SMAC/DIABLO(S71L) mutant, while retaining the proapoptotic function, triggers significant degradation of both wild-type and mutant SMAC/DIABLO and renders host mitochondria susceptible to calcium-induced loss of the membrane potential. Our work identifies DFNA64 as the human genetic disorder associated with SMAC/DIABLO malfunction and suggests that mutant SMAC/DIABLO(S71L) might cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jing Cheng
- Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
da Silva-Costa SM, Martins FTA, Pereira T, Pomilio MCA, Marques-de-Faria AP, Sartorato EL. Searching for digenic inheritance in deaf Brazilian individuals using the multiplex ligation-dependent probe amplification technique. Genet Test Mol Biomarkers 2011; 15:849-53. [PMID: 21728791 DOI: 10.1089/gtmb.2011.0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the genes coding for connexin 26 (Cx26), connexin 30 (Cx30), and connexin 31 (Cx31) are the main cause of autosomal recessive nonsyndromic sensorineural hearing loss (AR-NSNHL). The 35delG mutation is the most frequent in the majority of Caucasian populations and may account for up to 70% of all GJB2 mutations. As a large number of affected individuals (10%-40%) with GJB2 mutations carry only one mutant allele, it has been postulated that the presence of additional mutations in the GJB6 gene (Cx30) explains the deafness condition found in these patients. In the present study, we screened the c.35delG mutation in ~600 unrelated Brazilian patients, with moderate to profound AR-NSNHL. Other point mutations in the coding region of the GJB2 gene were screened by sequencing analysis as well as the IVS 1+1 G>A splice site mutation in the same gene. Digenic mutations including large deletions and duplications were investigated in the Cx26, 30, and 31 genes in monoallelic individuals for mutations in the GJB2 gene. Large deletions and duplications were assessed by multiplex ligation-dependent probe amplification. We found 46 patients with mutations in only one GJB2 allele. Different pathogenic mutations associated with c.35delG were found in 13 patients. Two patients were identified with digenic heterozygous mutations. Our findings contributed to more accurate diagnosis and more appropriate genetic counseling in 28% of patients studied (13/46).
Collapse
Affiliation(s)
- Sueli M da Silva-Costa
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz s/n, Barão Geraldo, Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Kabahuma RI, Ouyang X, Du LL, Yan D, Hutchin T, Ramsay M, Penn C, Liu XZ. Absence of GJB2 gene mutations, the GJB6 deletion (GJB6-D13S1830) and four common mitochondrial mutations in nonsyndromic genetic hearing loss in a South African population. Int J Pediatr Otorhinolaryngol 2011; 75:611-7. [PMID: 21392827 PMCID: PMC4303037 DOI: 10.1016/j.ijporl.2011.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the prevalence of mutations in the GJB2 gene, the GJB6-D13S1830 deletion and the four common mitochondrial mutations (A1555G, A3243G, A7511C and A7445G) in a South African population. METHODS Using single-strand conformation polymorphism and direct sequencing for screening GJB2 mutation; Multiplex PCR Amplification for GJB6-D13S1830 deletion and Restriction Fragment-Length Polymorphism (PCR-RFLP) analysis for the four common mtDNA mutations. We screened 182 hearing impaired students to determine the frequency of these mutations in the population. RESULTS None of the reported disease causing mutations in GJB2 nor any novel pathogenic mutations in the coding region were detected, in contrast to the findings among Caucasians. The GJB6-D13S1830 deletion and the mitochondrial mutations were not observed in this group. CONCLUSION These results suggest that GJB2 may not be a significant deafness gene among sub-Saharan Africans, pointing to other unidentified genes as responsible for nonsyndromic hearing loss in these populations.
Collapse
Affiliation(s)
- Rosemary I. Kabahuma
- Department of Speech Pathology and Audiology, University of Witwatersrand, Johannesburg, South Africa,Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of Witwatersrand, Johannesburg, South Africa,Department of Otorhinolaryngology, Polokwane/Mankweng Hospital Complex, Polokwane, Limpopo Province, South Africa
| | - Xiaomei Ouyang
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Li Lin Du
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Tim Hutchin
- Birmingham Children’s Hospital, Birmingham, UK
| | - Michele Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of Witwatersrand, Johannesburg, South Africa,Corresponding author at: Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of Witwatersrand, PO Box 1038, Johannesburg 2000, South Africa. Tel.: +27 011 489 9214; fax: +27 011 498 9226. (M. Ramsay)
| | - Claire Penn
- Department of Speech Pathology and Audiology, University of Witwatersrand, Johannesburg, South Africa
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami, Miami, FL, USA,Corresponding author at: Department of Otolaryngology (D-48), University of Miami, 1666 NW 12th Avenue, Miami, FL 33136, USA. Tel.: +1 305 243 5695; fax: +1 305 243 4925. (X.-Z. Liu)
| |
Collapse
|
49
|
Sheng–li L, Zong–fang L, Robert–connelly, Yin–zheng Q. A Model of Spontaneous Chronic Otitis Media with Effusion in Mice with ENU Induced Mutations. J Otol 2010. [DOI: 10.1016/s1672-2930(10)50018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
Schutz M, Auth T, Gehrt A, Bosen F, Korber I, Strenzke N, Moser T, Willecke K. The connexin26 S17F mouse mutant represents a model for the human hereditary keratitis-ichthyosis-deafness syndrome. Hum Mol Genet 2010; 20:28-39. [DOI: 10.1093/hmg/ddq429] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|