1
|
Cheng YY, Worley BL, Javed Z, Elhaw AT, Tang PW, Al-Saad S, Kamlapurkar S, White S, Uboveja A, Mythreye K, Aird KM, Czyzyk TA, Hempel N. Loss of the predicted cell adhesion molecule MPZL3 promotes EMT and chemoresistance in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623672. [PMID: 39605523 PMCID: PMC11601277 DOI: 10.1101/2024.11.14.623672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Myelin protein zero-like 3 (MPZL3) is an Immunoglobulin-containing transmembrane protein with predicted cell adhesion molecule function. Loss of 11q23, where the MPZL3 gene resides, is frequently observed in cancer, and MPZL3 copy number alterations are frequently detected in tumor specimens. Yet the role and consequences of altered MPZL3 expression have not been explored in tumor development and progression. We addressed this in ovarian cancer, where both MPZL3 amplification and deletions are observed in respective subsets of high-grade serous specimens. While high and low MPZL3 expressing populations were similarly observed in primary ovarian tumors from an independent patient cohort, metastatic omental tumors largely displayed decreased MPZL3 expression, suggesting that MPZL3 loss is associated with metastatic progression. MPZL3 knock-down leads to strong upregulation of vimentin and an EMT gene signature that is associated with poor patient outcomes. Moreover, MPZL3 is necessary for homotypic cancer cell adhesion, and decreasing MPZL3 expression enhances invasion and clearance of mesothelial cell monolayers. In addition, MPZL3 loss abrogated cell cycle progression and proliferation. This was associated with increased resistance to Cisplatin and Olaparib and reduced DNA damage and apoptosis in response to these agents. Enhanced Cisplatin resistance was further validated in vivo . These data demonstrate for the first time that MPZL3 acts as an adhesion molecule and that MPZL3 loss results in EMT, decreased proliferation, and drug resistance in ovarian cancer. Our study suggests that decreased MPZL3 expression is a phenotype of ovarian cancer tumor progression and metastasis and may contribute to treatment failure in advanced-stage patients.
Collapse
|
2
|
Koster AK, Yarishkin O, Dubin AE, Kefauver JM, Pak RA, Cravatt BF, Patapoutian A. Chemical mapping of the surface interactome of PIEZO1 identifies CADM1 as a modulator of channel inactivation. Proc Natl Acad Sci U S A 2024; 121:e2415934121. [PMID: 39356664 PMCID: PMC11474052 DOI: 10.1073/pnas.2415934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The propeller-shaped blades of the PIEZO1 and PIEZO2 ion channels partition into the plasma membrane and respond to indentation or stretching of the lipid bilayer, thus converting mechanical forces into signals that can be interpreted by cells, in the form of calcium flux and changes in membrane potential. While PIEZO channels participate in diverse physiological processes, from sensing the shear stress of blood flow in the vasculature to detecting touch through mechanoreceptors in the skin, the molecular details that enable these mechanosensors to tune their responses over a vast dynamic range of forces remain largely uncharacterized. To survey the molecular landscape surrounding PIEZO channels at the cell surface, we employed a mass spectrometry-based proteomic approach to capture and identify extracellularly exposed proteins in the vicinity of PIEZO1. This PIEZO1-proximal interactome was enriched in surface proteins localized to cell junctions and signaling hubs within the plasma membrane. Functional screening of these interaction candidates by calcium imaging and electrophysiology in an overexpression system identified the adhesion molecule CADM1/SynCAM that slows the inactivation kinetics of PIEZO1 with little effect on PIEZO2. Conversely, we found that CADM1 knockdown accelerates inactivation of endogenous PIEZO1 in Neuro-2a cells. Systematic deletion of CADM1 domains indicates that the transmembrane region is critical for the observed effects on PIEZO1, suggesting that modulation of inactivation is mediated by interactions in or near the lipid bilayer.
Collapse
Affiliation(s)
- Anna K. Koster
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
- Department of Chemistry, Scripps Research, La Jolla, CA92037
| | - Oleg Yarishkin
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Adrienne E. Dubin
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Jennifer M. Kefauver
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | - Ryan A. Pak
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| | | | - Ardem Patapoutian
- HHMI, Scripps Research, La JollaCA92037
- Department of Neuroscience, Scripps Research, La Jolla, CA92037
| |
Collapse
|
3
|
Yoshida M, Yuan J, Kihara T, Kimura N, Yamasaki T, Ohkouchi M, Hashikura Y, Isozaki K, Hagiyama M, Ito A, Hirota S. Anti-tumor effect of antibody-drug conjugate targeting cell adhesion molecule 1 on GIST cells representing small intestinal GIST. Exp Mol Pathol 2024; 139:104922. [PMID: 39096891 DOI: 10.1016/j.yexmp.2024.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the alimentary tract. The prognosis depends on the primary site, and small intestinal GISTs have a worse prognosis than gastric GISTs. Molecularly targeted drugs to inhibit tyrosine kinase activity of KIT were used for unresectable or recurrent GISTs. However, secondary resistance to the drugs is often acquired, and treatments based on other mechanisms are needed. Previously, we reported that cell adhesion molecule 1 (CADM1) was highly expressed in most of small intestinal GISTs but not in most of gastric GISTs. In the present study, we examined whether the antibody-drug conjugate (ADC) with anti-CADM1 antibody and monomethyl auristatin E (anti-CAD-ADC) shows anti-tumor effect on CADM1-expressing human GIST cells. The ADC adhibited in this study was previously used for CADM1-expressing human mesothelioma cells and showed anti-tumor effect for them in vitro. GIST-T1 cell line of gastric origin which scarcely expresses CADM1 and GIST-T1 cells transfected with CADM1 cDNA (GIST-T1-CAD cells) which highly expresses CADM1 and represents small intestinal GIST were used. In vitro, anti-CAD-ADC showed remarkable cytotoxic activity on GIST-T1-CAD cells, but control ADC did not. Both anti-CAD-ADC and control ADC did not show anti-tumor effect on original GIST-T1 cells. When GIST-T1-CAD cells were subcutaneously injected to the nude mice, intravenous administration of anti-CAD-ADC showed inhibitory effect for tumor enlargement. Tumor of GIST-T1 cells grew even after anti-CAD-ADC injection. When GIST-T1-CAD cells were injected into peritoneal cavity of the SCID mice, intraperitoneal administration of anti-CAD-ADC showed reduction of the peritoneal tumor. On the other hand, peritoneal tumor grew after control ADC administration. Tissue and organ damage due to administration of anti-CAD-ADC was not apparent by macroscopic and histological examinations in mice. These results indicate that anti-CAD-ADC could have apparent anti-tumor effect on CADM1-expressing human GIST cells both in in vitro and in vivo mouse models.
Collapse
Affiliation(s)
- Makoto Yoshida
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Jiayin Yuan
- Department of Pathology, First People's Hospital of Foshan, Foshan City, Guangdong 528000, China
| | - Takako Kihara
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Neinei Kimura
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Takashi Yamasaki
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Mizuka Ohkouchi
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Yuka Hashikura
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Koji Isozaki
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Ono-Higashi, Osaka-Sayama, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Ono-Higashi, Osaka-Sayama, Osaka, Japan.
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
4
|
Hagiyama M, Yoneshige A, Otani T, Wada A, Takeuchi F, Shoya Y, Inoue T, Ito A. An antibody-drug conjugate for endometrioid carcinoma based on the expression of cell adhesion molecule 1. Mol Cell Oncol 2024; 11:2399379. [PMID: 39252827 PMCID: PMC11382700 DOI: 10.1080/23723556.2024.2399379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is expressed in endometrial glandular cells highly during the proliferative phase but lowly during the secretory phase. Previously, a CADM1-targeting antibody-drug conjugate (ADC) was generated, in which a humanized anti-CADM1 ectodomain antibody h3E1 was linked with monomethyl auristatin E (h3E1-MMAE ADC). The present study aimed at probing whether this ADC could be useful for the treatment of endometrial neoplasm. Firstly, immunohistochemistry for CADM1 was conducted on proliferative-phase endometrium (n = 13), endometrial hyperplasia (n = 35), and endometrioid carcinoma at various stages (n = 166). CADM1 immunostaining intensity was highest in atypical endometrial hyperplasia and endometrioid carcinoma confined within the endometrium and was decreased stepwise as the carcinoma stage progressed. Next, h3E1-MMAE ADC was examined for its cytotoxicity in vitro using human endometrial adenocarcinoma cell lines expressing CADM1; HEC-1B, HEC-50B, JHUM-3, and OMC-2. The ADC killed these cells in a dose-dependent manner with half maximal inhibitory concentration (IC50) of 12.02 nM for HEC-1B and 2.04 nM for HEC-50B. Collectively, h3E1-MMAE ADC may serve as a noninvasive alternative to simple hysterectomy in the treatment of endometrioid carcinoma confined within the endometrium.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Akihiro Wada
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Fuka Takeuchi
- Division of Molecular Pathology, Graduate School of Medicine, Kindai University, Osaka-sayama, Osaka, Japan
| | - Yuji Shoya
- Division of Molecular Pathology, Graduate School of Medicine, Kindai University, Osaka-sayama, Osaka, Japan
- Pharma Foods International Co., Ltd., Ohara, Nishikyo-Ku, Kyoto, Japan
| | - Takao Inoue
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
- Division of Molecular Pathology, Graduate School of Medicine, Kindai University, Osaka-sayama, Osaka, Japan
| |
Collapse
|
5
|
Hagiyama M, Yoneshige A, Wada A, Kimura R, Ito S, Inoue T, Takeuchi F, Ito A. Efficient intracellular drug delivery by co-administration of two antibodies against cell adhesion molecule 1. J Control Release 2024; 371:603-618. [PMID: 38782061 DOI: 10.1016/j.jconrel.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Cell adhesion molecule 1 (CADM1), a single-pass transmembrane protein, is involved in oncogenesis. We previously demonstrated the therapeutic efficacy of anti-CADM1 ectodomain monoclonal antibodies against mesothelioma; however, the underlying mechanism is unclear. In the present study, we explored the molecular behavior of anti-CADM1 antibodies in CADM1-expressing tumor cells. Sequencing analyses revealed that the anti-CADM1 chicken monoclonal antibodies 3E1 and 9D2 are IgY and IgM isotype antibodies, respectively. Co-administration of 3E1 and 9D2 altered the subcellular distribution of CADM1 from the detergent-soluble fraction to the detergent-resistant fraction in tumor cells. Using recombinant chicken-mouse chimeric antibodies that had been isotype-switched from IgG to IgM, we demonstrated that the combination of the variable region of 3E1 and the constant region of IgM was required for CADM1 relocation. Cytochemical studies showed that 3E1 colocalized with late endosomes/lysosomes after co-administration with 9D2, suggesting that the CADM1-antibody complex is internalized from the cell surface to intracellular compartments by lipid-raft mediated endocytosis. Finally, 3E1 was conjugated with the antimitotic agent monomethyl auristatin E (MMAE) via a cathepsin-cleavable linker. Co-administration of 3E1-monomethyl auristatin E and 9D2 suppressed the growth of multiple types of tumor cells, and this anti-tumor activity was confirmed in a syngeneic mouse model of melanoma. 3E1 and 9D2 are promising drug delivery vehicles for CADM1-expressing tumor cells.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan.
| | - Akihiro Wada
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Fuka Takeuchi
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan.
| |
Collapse
|
6
|
Zhang L, Wei X. SynCAMs in Normal Vertebrate Neural Development and Neuropsychiatric Disorders: from the Perspective of the OCAs. Mol Neurobiol 2024; 61:358-371. [PMID: 37607992 DOI: 10.1007/s12035-023-03579-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Neuronal synaptic junctions connect neurons to enable neuronal signal transmission in the nervous system. The proper establishment of synaptic connections required many adhesion molecules. Malfunctions of these adhesion molecules can result in neural development disorders and neuropsychiatric disorders. How specific synapses are established by various adhesion molecules for proper neural circuitry is a fundamental question of neuroscience. SynCAMs, also named CADMs, Necl, etc., are among the many adhesion proteins found in synapses. Here, we review the current understanding of the physical properties of SynCAMs and their roles in axon pathfinding, myelination, synaptogenesis, and synaptic plasticity. In addition, we discuss the involvement of SynCAMs in neuropsychiatric disorders. Finally, we propose that SynCAM functions can be better viewed and understood from the perspective of orientational cell adhesions (OCAs). In particular, we discuss the possibilities of how SynCAMs can be regulated at the cell-type specific expression, transcription variants, posttranslational modification, and subcellular localization to modulate the diversity of SynCAMs as OCA molecules. Being major components of the synapses, SynCAMs continue to be an important research topic of neuroscience, and many outstanding questions are waiting to be answered.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, Dalian, China.
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
8
|
Xie B, Zhao L, Zhang Z, Zhou C, Tian Y, Kang Y, Chen J, Wei H, Li L. CADM1 impairs the effect of miR-1246 on promoting cell cycle progression in chemo-resistant leukemia cells. BMC Cancer 2023; 23:955. [PMID: 37814227 PMCID: PMC10561441 DOI: 10.1186/s12885-023-11458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
The interruption of normal cell cycle execution acts as an important part to the development of leukemia. It was reported that microRNAs (miRNAs) were closely related to tumorigenesis and progression, and their aberrant expression had been demonstrated to play a crucial role in numerous types of cancer. Our previous study showed that miR-1246 was preferentially overexpressed in chemo-resistant leukemia cell lines, and participated in process of cell cycle progression and multidrug resistant regulation. However, the underlying mechanism remains unclear. In present study, bioinformatics prediction and dual luciferase reporter assay indicated that CADM1 was a direct target of miR-1246. Evidently decreased expression of CADM1 was observed in relapsed primary leukemia patients and chemo-resistant cell lines. Our results furtherly proved that inhibition of miR-1246 could significantly enhance drug sensitivity to Adriamycin (ADM), induce cell cycle arrest at G0/G1 phase, promote cell apoptosis, and relieve its suppression on CADM1 in K562/ADM and HL-60/RS cells. Interference with CADM1 could reduce the increased drug sensitivity induced by miR-1246 inhibition, and notably restore drug resistance by promoting cell cycle progression and cell survival via regulating CDKs/Cyclins complexes in chemo-resistant leukemia cells. Above all, our results demonstrated that CADM1 attenuated the role of miR-1246 in promoting cell cycle progression and cell survival, thus influencing multidrug resistance within chemo-resistant leukemia cells via CDKs/Cyclins. Higher expression of miR-1246 and lower expression of CADM1 might be risk factors for leukemia.
Collapse
Affiliation(s)
- Bei Xie
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China.
| | - Lei Zhao
- Shaanxi Meili Omni-Honesty Animal Health Co., Ltd, Xi'an, 710000, Shaanxi, China
| | - Zhewen Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Cunmin Zhou
- The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ye Tian
- The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingying Kang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Jing Chen
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Hulai Wei
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu, China.
| | - Linjing Li
- The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
9
|
Neinaa YMEH, El-Maadawy IH, Atteia IA, Mohamed DAEA. Cell adhesion molecule 1 expression in mycosis fungoides versus parapsoriasis versus inflammatory dermatosis: an immunohistochemical comparative study. Arch Dermatol Res 2023; 315:2403-2411. [PMID: 36943432 DOI: 10.1007/s00403-023-02600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Cell adhesion molecule 1 (CADM1) is one of the immunoglobulin super family adhesion molecules, that is proposed to contribute in the pathogenesis of various types of cutaneous T-cell lymphoma, including mycosis fungoides (MF). In this work, we decided to examine the immunohistochemical expression of CADM1 in MF specimens compared to premycotic parapsoriasis, benign inflammatory dermatosis and normal control skin specimens. 125 participants were enrolled (50 MF, 25 parapsoriasis, 25 inflammatory dermatosis, and 25 healthy controls). Patients were selected from the Outpatient Clinic of Dermatology and Venereology Department, Tanta University Hospitals. From all, 4 mm punch skin biopsies were taken and examined for CADM1 immunohistochemical expression. The current study revealed statistically significant upregulation of CADM1 expression in MF specimens in comparison to parapsoriasis, inflammatory dermatosis, and normal control specimens. Additionally, there was statistically significant positive correlation between CADM1 expression and progression of TNMB staging of MF disease. Therefore, it is possible to recommend CADM1 as a beneficial diagnostic immunohistochemical marker for differentiation between early stages of MF and both the premycotic parapsoriasis and benign inflammatory dermatosis. Moreover, it may be of value in early detection of neoplastic transformation of parapsoriasis as well as in assessment of MF progression.
Collapse
Affiliation(s)
- Yomna Mazid El-Hamd Neinaa
- Dermatology and Venereology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
- Dermatopathology Unit, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Iman Hamed El-Maadawy
- Dermatology and Venereology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
10
|
Wu X, Azizan EAB, Goodchild E, Garg S, Hagiyama M, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Kuan JL, Tiang Z, David A, Murakami M, Mein CA, Wozniak E, Zhao W, Marker A, Buss F, Saleeb RS, Salsbury J, Tezuka Y, Satoh F, Oki K, Udager AM, Cohen DL, Wachtel H, King PJ, Drake WM, Gurnell M, Ceral J, Ryska A, Mustangin M, Wong YP, Tan GC, Solar M, Reincke M, Rainey WE, Foo RS, Takaoka Y, Murray SA, Zennaro MC, Beuschlein F, Ito A, Brown MJ. Somatic mutations of CADM1 in aldosterone-producing adenomas and gap junction-dependent regulation of aldosterone production. Nat Genet 2023; 55:1009-1021. [PMID: 37291193 PMCID: PMC10260400 DOI: 10.1038/s41588-023-01403-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/20/2023] [Indexed: 06/10/2023]
Abstract
Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.
Collapse
Affiliation(s)
- Xilin Wu
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Elena A B Azizan
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Emily Goodchild
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Sumedha Garg
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- Clinical Pharmacology Unit, University of Cambridge, Cambridge, UK
| | - Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Claudia P Cabrera
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | | | - Jyn Ling Kuan
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Alessia David
- Centre for Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Masanori Murakami
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Charles A Mein
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Eva Wozniak
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Wanfeng Zhao
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Alison Marker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Rebecca S Saleeb
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jackie Salsbury
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Yuta Tezuka
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Debbie L Cohen
- Renal Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Wachtel
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J King
- Department of Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - William M Drake
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mark Gurnell
- Metabolic Research Laboratories, Welcome Trust-MRC Institute of Metabolic Science, and NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Jiri Ceral
- 1st Department of Internal Medicine-Cardioangiology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ales Ryska
- Department of Pathology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Muaatamarulain Mustangin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Miroslav Solar
- 1st Department of Internal Medicine-Cardioangiology, Charles University Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - William E Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Roger S Foo
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Yutaka Takaoka
- Department of Computational Drug Design and Mathematical Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyoma, Japan
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maria-Christina Zennaro
- Université Paris Cité, PARCC, Inserm, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Umekita K, Hashikura Y, Takaki A, Kimura M, Kawano K, Iwao C, Miyauchi S, Kawaguchi T, Matsuda M, Hashiba Y, Hidaka T. HAS-Flow May Be an Adequate Method for Evaluating Human T-Cell Leukemia Virus Type 1 Infected Cells in Human T-Cell Leukemia Virus Type 1-Positive Rheumatoid Arthritis Patients Receiving Antirheumatic Therapies: A Retrospective Cross-Sectional Observation Study. Viruses 2023; 15:v15020468. [PMID: 36851682 PMCID: PMC9967177 DOI: 10.3390/v15020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The study aims to assess the usefulness of human T-cell leukemia virus type 1 (HTLV-1)-infected cell analysis using flow cytometry (HAS-Flow) as a monitoring method for adult T-cell leukemia (ATL) development in HTLV-1-positive patients with rheumatoid arthritis (RA) under treatment with antirheumatic therapies. A total of 13 HTLV-1-negative and 57 HTLV-1-positive RA patients participated in this study, which was used to collect clinical and laboratory data, including HAS-Flow and HTLV-1 proviral load (PVL), which were then compared between the two groups. CADM1 expression on CD4+ cells in peripheral blood (PB) was used to identify HTLV-1-infected cells. The population of CADM1+ CD4+ cells was significantly higher in HTLV-1-positive RA patients compared to HTLV-1-negative RA patients. The population of CADM1+ CD4+ cells was correlated with HTLV-1 PVL values. There were no antirheumatic therapies affecting both the expression of CADM1 on CD4+ cells and PVLs. Six HTLV-1-positive RA patients who indicated both high HTLV-1 PVL and a predominant pattern of CADM1+ CD7neg CD4+ cells in HAS-Flow can be classified as high-risk for ATL progression. HAS-Flow could be a useful method for monitoring high-risk HTLV-1-positive RA patients who are at risk of developing ATL during antirheumatic therapies.
Collapse
Affiliation(s)
- Kunihiko Umekita
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
- Correspondence: ; Tel.: +81-985-85-7284
| | - Yuki Hashikura
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Akira Takaki
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Masatoshi Kimura
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Katsumi Kawano
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Chihiro Iwao
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Shunichi Miyauchi
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Takeshi Kawaguchi
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Motohiro Matsuda
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Yayoi Hashiba
- Institute of Rheumatology, Miyazaki Zenjinkai Hospital, Miyazaki 880-0834, Japan
| | - Toshihiko Hidaka
- Institute of Rheumatology, Miyazaki Zenjinkai Hospital, Miyazaki 880-0834, Japan
| |
Collapse
|
12
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
13
|
Sharan M, Jha M, Chandel R, Syeda S, Mathur R, Jha NK, Jha SK, Goel H, Shrivastava A, Chauhan S, Pamidimarri S, Jha AK. Demethylation of CADM1 and SOCS1 using capsaicin in cervical cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:649-657. [PMID: 36441265 DOI: 10.1007/s00210-022-02340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
Cervical cancer is one of the leading causes of women's mortality in developing countries. The prevalence of cervical cancer is higher in developing countries like India and continents like Africa. Hyper-methylation of tumor suppressor genes through human papillomavirus (HPV) infection is known to be one of the major causes of cervical cancer. The promoter hypermethylation of the cell adhesion molecule 1 (CADM1) and suppressor of cytokine signalling (SOCS1) genes due to DNMT1 overexpression leads to their epigenetic silencing followed by gene repression causing cervical cancer. In silico study on the inhibition effect of capsaicin on DNMT1 was simulated by different servers. The binding energy was observed to be -7.8 kcal/mol. In vitro studies on the effect of capsaicin on aberrant methylation of CADM1 and SOCS1 were performed on the adenocarcinoma cervical cancer cell line, HeLa. The IC50 of capsaicin was observed to be 160 μM through crystal violet assay. DNA methylation of the CADM1 and SOCS1 was analyzed by methylation-specific PCR along with their reversal using capsaicin (20 μM) by treating the cells for 72 h and 6 days. In silico results suggested that capsaicin has an inhibitory effect on DNMT1, which regulates DNA methylation leading to the hypermethylation of CADM1 and SOCS1 genes. The in vitro studies suggested that hypermethylation leads to the inhibition of CADM1 and SOCS1 expression, which could be reversed using capsaicin with visible changes in methylation-specific and unmethylation-specific bands in MS-PCR, respectively. The present study shows the reversal of methylation of CADM1 and SOCS1 after 72 h which showed a further increase in case of 6 days of treatment using 20 μM capsaicin, which makes capsaicin a potent candidate for causing demethylation of CADM1 and SOCS1 genes that may lead to the reactivation of the downregulated gene.
Collapse
Affiliation(s)
- Mahek Sharan
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Meenakshi Jha
- Department of Biotechnology, Amity University, Raipur, Chhattisgarh, India
| | | | - Saima Syeda
- Department of Zoology, Delhi University, Delhi, India
| | - Runjhun Mathur
- A.P.J Abdul Kalam University, Lucknow, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Harsh Goel
- Laboratory of the Oncology Unit, Dr. B.R.A, Institute Rotary Cancer Hospital, AIIMS, Delhi, India
| | | | - Sushma Chauhan
- Department of Biotechnology, Amity University, Raipur, Chhattisgarh, India
| | - Sudheer Pamidimarri
- Department of Molecular Biology and Genetics, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
14
|
Engelmann C, Schuhmachers P, Zdimerova H, Virdi S, Hauri-Hohl M, Pachlopnik Schmid J, Grundhoff A, Marsh RA, Wong WWL, Münz C. Epstein Barr virus-mediated transformation of B cells from XIAP-deficient patients leads to increased expression of the tumor suppressor CADM1. Cell Death Dis 2022; 13:892. [PMID: 36270981 PMCID: PMC9587222 DOI: 10.1038/s41419-022-05337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.
Collapse
Affiliation(s)
- Christine Engelmann
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Hana Zdimerova
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sanamjeet Virdi
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Mathias Hauri-Hohl
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Adam Grundhoff
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Rebecca A. Marsh
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati, Cincinnati, OH USA
| | - Wendy Wei-Lynn Wong
- grid.7400.30000 0004 1937 0650Cell Death and Regulation of Inflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Combined Liquid Biopsy Methylation Analysis of CADM1 and MAL in Cervical Cancer Patients. Cancers (Basel) 2022; 14:cancers14163954. [PMID: 36010947 PMCID: PMC9406083 DOI: 10.3390/cancers14163954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women, which is associated in >95% with a high-risk human papillomavirus (HPV) infection. Methylation of specific genes has been closely associated with the progress of cervical high-grade dysplastic lesions to invasive carcinomas. Therefore, DNA methylation has been proposed as a triage for women infected with high-risk HPV. Methylation analyses of cervical cancer tissue have shown that cell adhesion molecule 1 (CADM1) and myelin and lymphocyte protein (MAL) methylation are present in over 90% of all cervical high-grade neoplasias and invasive cervical cancers. Here, we established a liquid biopsy-based assay to detect MAL and CADM1 methylation in cell free (cf)DNA of cervical cancer. Methylation of the target gene was validated on bisulfite converted smear-DNA from cervical dysplasia patients and afterward applied to cfDNA using quantitative real-time PCR. In 52 smears, a combined analysis of CADM1 and/or MAL (CADM1/MAL) showed methylation in 86.5% of the cases. In cfDNA samples of 24 cervical cancer patients, CADM1/MAL methylation was detected in 83.3% of the cases. CADM1/MAL methylation was detected already in 81.8% of stage I-II patients showing the high sensitivity of this liquid biopsy assay. In combination with a specificity of 95.5% towards healthy donors (HD) and an area under the curve (AUC) of 0.872 in the receiver operating characteristic (ROC) analysis, CADM1/MAL cfDNA methylation detection might represent a novel and promising liquid biopsy marker in cervical cancer.
Collapse
|
16
|
Kasai Y, Gan SP, Funaki T, Ohashi‐Kumagai Y, Tominaga M, Shiu S, Suzuki D, Matsubara D, Sakamoto T, Sakurai‐Yageta M, Ito T, Murakami Y. Trans-homophilic interaction of CADM1 promotes organ infiltration of T-cell lymphoma by adhesion to vascular endothelium. Cancer Sci 2022; 113:1669-1678. [PMID: 35213073 PMCID: PMC9128163 DOI: 10.1111/cas.15307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
The initial step of organ infiltration of malignant cells is the interaction with host vascular endothelial cells, which is often mediated by specific combinations of cell adhesion molecules. Cell adhesion molecule 1 (CADM1) is overexpressed in adult T-cell leukemia/lymphoma (ATL) and provides a cell-surface diagnostic marker. CADM1 promotes the adhesion of ATL cells to vascular endothelial cells and multiple organ infiltration in mice. However, its binding partner on host cells has not yet been identified. In this study, we show that CADM1 promotes transendothelial migration of ATL cells in addition to the adhesion to vascular endothelial cells. Moreover, CADM1 enhances liver infiltration of mouse T-cell lymphoma cells, EL4, after tail vein injection, whereas a CADM1 mutant lacking adhesive activity did not. Among the known CADM1-binding proteins expressed in primary endothelial cells, only CADM1 and CADM4 could induce morphological extension of ATL cells when plated onto glass coated with these proteins. Furthermore, CADM1-mediated liver infiltration of EL4 cells was canceled in conventional and vascular endothelium-specific Cadm1 knockout mice, whereas it was not canceled in Cadm4 knockout mice. These results suggest that CADM1 on host vascular endothelial cells is required for organ infiltration of ATL and other T-cell lymphomas expressing CADM1.
Collapse
Affiliation(s)
- Yutaka Kasai
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Siew Pey Gan
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Toko Funaki
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yuki Ohashi‐Kumagai
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Mizuki Tominaga
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Shu‐Jen Shiu
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Daisuke Suzuki
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Daisuke Matsubara
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Diagnostic PathologyUniversity of TsukubaTsukubaJapan
| | - Takeharu Sakamoto
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Cancer BiologyInstitute of Biomedical ScienceKansai Medical UniversityHirakataJapan
| | - Mika Sakurai‐Yageta
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Takeshi Ito
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yoshinori Murakami
- Division of Molecular PathologyThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Goetze S, Schüffler P, Athanasiou A, Koetemann A, Poyet C, Fankhauser CD, Wild PJ, Schiess R, Wollscheid B. Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer. Clin Proteomics 2022; 19:9. [PMID: 35477343 PMCID: PMC9044739 DOI: 10.1186/s12014-022-09349-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Non-invasive liquid biopsies could complement current pathological nomograms for risk stratification of prostate cancer patients. Development and testing of potential liquid biopsy markers is time, resource, and cost-intensive. For most protein targets, no antibodies or ELISAs for efficient clinical cohort pre-evaluation are currently available. We reasoned that mass spectrometry-based prescreening would enable the cost-effective and rational preselection of candidates for subsequent clinical-grade ELISA development. Methods Using Mass Spectrometry-GUided Immunoassay DEvelopment (MS-GUIDE), we screened 48 literature-derived biomarker candidates for their potential utility in risk stratification scoring of prostate cancer patients. Parallel reaction monitoring was used to evaluate these 48 potential protein markers in a highly multiplexed fashion in a medium-sized patient cohort of 78 patients with ground-truth prostatectomy and clinical follow-up information. Clinical-grade ELISAs were then developed for two of these candidate proteins and used for significance testing in a larger, independent patient cohort of 263 patients. Results Machine learning-based analysis of the parallel reaction monitoring data of the liquid biopsies prequalified fibronectin and vitronectin as candidate biomarkers. We evaluated their predictive value for prostate cancer biochemical recurrence scoring in an independent validation cohort of 263 prostate cancer patients using clinical-grade ELISAs. The results of our prostate cancer risk stratification test were statistically significantly 10% better than results of the current gold standards PSA alone, PSA plus prostatectomy biopsy Gleason score, or the National Comprehensive Cancer Network score in prediction of recurrence. Conclusion Using MS-GUIDE we identified fibronectin and vitronectin as candidate biomarkers for prostate cancer risk stratification. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09349-x.
Collapse
Affiliation(s)
- Sandra Goetze
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland.,ETH PHRT Swiss Multi-Omics Center (SMOC), 8093, Zurich, Switzerland
| | - Peter Schüffler
- Institute of General and Surgical Pathology, Technical University of Munich, 81675, Munich, Germany
| | | | - Anika Koetemann
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Cedric Poyet
- Clinic of Urology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | | | - Peter J Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland. .,Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590, Frankfurt, Germany. .,Frankfurt Institute for Advanced Studies (FIAS), 60438, Frankfurt, Germany. .,WILDLAB, University Hospital Frankfurt MVZ GmbH, 60590, Frankfurt, Germany.
| | | | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland. .,ETH PHRT Swiss Multi-Omics Center (SMOC), 8093, Zurich, Switzerland.
| |
Collapse
|
18
|
Decreased Expression of Cell Adhesion Molecule 4 in Gastric Adenocarcinoma and Its Prognostic Implications. Diagnostics (Basel) 2022; 12:diagnostics12040941. [PMID: 35453989 PMCID: PMC9026560 DOI: 10.3390/diagnostics12040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cell adhesion molecule 4 (CADM4) is a novel tumor suppressor candidate. The prognostic implications of CADM4 in gastric cancer have not been conclusively elucidated. Therefore, we evaluated the clinicopathological significance and prognostic value of CADM4 expression in a large series of patients with gastric adenocarcinoma. Immunohistochemical staining for CADM4 was performed on 534 gastric adenocarcinomas. We evaluated the associations between CADM4 expression and the clinicopathological and molecular characteristics of the adenocarcinomas. The prognostic effect of CADM4 expression was evaluated by survival analyses. Low CADM4 expression was significantly associated with young age (p = 0.046), aggressive histological type (p < 0.001), high pT category (p < 0.001), nodal metastasis (p < 0.001), high stage (p = 0.002), lymphovascular invasion (p = 0.001), and perineural invasion (p = 0.001). Low CADM4 expression was more frequently observed in tumors without human epidermal growth factor receptor 2 (HER2) amplification (p = 0.002). Low CADM4 expression was associated with worse overall survival (p = 0.007) and recurrence-free survival (p = 0.005) in the survival analyses. Low CADM4 expression was associated with aggressive clinicopathological features and poor clinical outcomes. CADM4 can act as a tumor suppressor in gastric adenocarcinoma and can be considered a prognostic biomarker.
Collapse
|
19
|
Phillips S, Cassells K, Garland SM, Machalek DA, Roberts JM, Templeton DJ, Jin F, Poynten IM, Hillman RJ, Grulich AE, Murray GL, Tabrizi SN, Molano M, Cornall AM. Gene methylation of CADM1 and MAL identified as a biomarker of high grade anal intraepithelial neoplasia. Sci Rep 2022; 12:3565. [PMID: 35241698 PMCID: PMC8894372 DOI: 10.1038/s41598-022-07258-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Human papillomavirus (HPV) is detected in up to 96% of anal squamous cell cancers, where screening programs needed. However, the best methodology is still undetermined. Host DNA methylation markers CADM1, MAL and miR124 have been identified in cervical disease, but not anal disease. Anal swabs varying by disease grade were assessed for DNA methylation of CADM1, MAL and miR124-2. Each marker was compared across disease grades, stratified by HPV and HIV status. Receiver operating characteristic curves identified the predictive value of significant gene candidates. CADM1 methylation was significantly higher in high-grade squamous intraepithelial lesions (HSIL) compared with low-grade (LSIL) (p = 0.005) or normal (p < 0.001) samples with 67.2% correctly identified as HSIL. MAL methylation was significantly (p = 0.002) increased in HSIL compared with LSIL in HIV positive participants with 79.8% correctly indicated as HSIL. Gene miR124-2, showed no difference between disease grades. Biomarkers with established diagnostic value in cervical disease have limited utility in the prediction of anal disease, with CADM1 identified as a marker with screening potential in a gay and bisexual men (GBM) population and MAL in HIV positive GBM population. New markers specific to the anal mucosa are required to improve triage of high-risk individuals.
Collapse
Affiliation(s)
- Samuel Phillips
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, 3052, Australia. .,Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, VIC, 3052, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
| | - Kahli Cassells
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Suzanne M Garland
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, 3052, Australia.,Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Dorothy A Machalek
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,HIV Epidemiology and Prevention Program, The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | | | - David J Templeton
- HIV Epidemiology and Prevention Program, The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia.,Department of Sexual Health Medicine, Sydney Local Health District, Camperdown, NSW, 2050, Australia.,Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fengyi Jin
- HIV Epidemiology and Prevention Program, The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | - I Mary Poynten
- HIV Epidemiology and Prevention Program, The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Richard J Hillman
- HIV Epidemiology and Prevention Program, The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia.,Dysplasia and Anal Cancer Services, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Andrew E Grulich
- HIV Epidemiology and Prevention Program, The Kirby Institute, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Gerald L Murray
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, 3052, Australia.,Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Sepehr N Tabrizi
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, 3052, Australia.,Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Monica Molano
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Alyssa M Cornall
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, 3052, Australia.,Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | | |
Collapse
|
20
|
Yuan J, Kihara T, Kimura N, Yamasaki T, Yoshida M, Isozaki K, Ito A, Hirota S. CADM1 promotes adhesion to vascular endothelial cells and transendothelial migration in cultured GIST cells. Oncol Lett 2022; 23:86. [PMID: 35126728 PMCID: PMC8805184 DOI: 10.3892/ol.2022.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract. Small intestinal GISTs appear to be associated with poorer prognosis and higher metastasis rate than gastric GISTs of the same size and mitotic index. Recently, we reported that cell adhesion molecule 1 (CADM1) is expressed specifically in most small intestinal GISTs, but not in most gastric GISTs, suggesting that this difference in CADM1 expression between gastric GISTs and small intestinal GISTs might influence the difference in clinical behavior between them. The aim of the present study was to examine whether high CADM1 expression affected proliferation, migration, invasion, adhesion to endothelial cells and transendothelial migration of cultured GIST cells by comparing original GIST-T1 cells with very low CADM1 expression with GIST-T1 cells with high CADM1 expression induced by CADM1 cDNA transfection (GIST-T1-CAD cells). GIST-T1-CAD cells had reduced ability to proliferate, migrate and invade compared with the original GIST-T1 cells, but showed significantly higher ability to adhere to human umbilical vein endothelial cells and migrate through endothelial cell monolayers. Thus, CADM1 may contribute to higher metastasis rates in small intestinal GISTs facilitating tumor cell adhesion to vascular endothelial cell and transendothelial migration of tumor cells. CADM1 might serve as a potential target for inhibition of metastasis in small intestinal GISTs.
Collapse
Affiliation(s)
- Jiayin Yuan
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Takako Kihara
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Neinei Kimura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Takashi Yamasaki
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Makoto Yoshida
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Koji Isozaki
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka 589-8511, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
21
|
Lafage-Pochitaloff M, Gerby B, Baccini V, Largeaud L, Fregona V, Prade N, Juvin PY, Jamrog L, Bories P, Hébrard S, Lagarde S, Mansat-De Mas V, Dovey OM, Yusa K, Vassiliou GS, Jansen JH, Tekath T, Rombaut D, Ameye G, Barin C, Bidet A, Boudjarane J, Collonge-Rame MA, Gervais C, Ittel A, Lefebvre C, Luquet I, Michaux L, Nadal N, Poirel HA, Radford-Weiss I, Ribourtout B, Richebourg S, Struski S, Terré C, Tigaud I, Penther D, Eclache V, Fontenay M, Broccardo C, Delabesse, E. The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11. Blood Adv 2022; 6:386-398. [PMID: 34638130 PMCID: PMC8791575 DOI: 10.1182/bloodadvances.2021005311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies.
Collapse
Affiliation(s)
- Marina Lafage-Pochitaloff
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique Hématologique, Centre Hospitalier Universitaire (CHU) de Marseille, Aix-Marseille University, Marseille, France
| | - Bastien Gerby
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Véronique Baccini
- Groupe Francophone d’Hématologie Cellulaire (GFHC) and
- Laboratoire d’hématologie, CHU de Guadeloupe, Inserm Unité Mixte de Recherche 1134, Pointe à Pitre, France
| | - Laetitia Largeaud
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Department of Hematology, University Toulouse III, Toulouse, France
| | - Vincent Fregona
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Naïs Prade
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Pierre-Yves Juvin
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Laura Jamrog
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Pierre Bories
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Sylvie Hébrard
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Stéphanie Lagarde
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Véronique Mansat-De Mas
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 8, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Oliver M. Dovey
- Gene Editing, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - George S. Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, UK
- Wellcome-Medical Research Council Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - David Rombaut
- Institut Cochin, Université de Paris, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Paris, France
| | - Geneviève Ameye
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Belgium Cancer Registry, Brussels, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven and Universitair Ziekenhuis, Leuven, Belgium
| | - Carole Barin
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Tours, France
| | - Audrey Bidet
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, CHU de Bordeaux, Bordeaux, France
| | - John Boudjarane
- Laboratoire de Cytogénétique Hématologique, Centre Hospitalier Universitaire (CHU) de Marseille, Aix-Marseille University, Marseille, France
| | - Marie-Agnès Collonge-Rame
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Besançon, Besançon, France
| | - Carine Gervais
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Strasbourg, Strasbourg, France
| | - Antoine Ittel
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Département de Biopathologie, Institut Paoli-Calmettes, Marseille, France
| | - Christine Lefebvre
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Grenoble, Grenoble, France
| | - Isabelle Luquet
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Laboratoire de Cytogénétique, CHU de Reims, Reims, France
| | - Lucienne Michaux
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Department of Human Genetics, Katholieke Universiteit Leuven and Universitair Ziekenhuis, Leuven, Belgium
| | - Nathalie Nadal
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Saint-Etienne, Saint-Etienne, France
| | - Hélène A. Poirel
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Belgium Cancer Registry, Brussels, Belgium
| | - Isabelle Radford-Weiss
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Paris-Necker, Paris, France
| | - Bénédicte Ribourtout
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France
| | - Steven Richebourg
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Nantes, Nantes, France
| | - Stéphanie Struski
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Christine Terré
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CH de Versailles, Le Chesnay, France
| | - Isabelle Tigaud
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Lyon, Lyon, France
| | - Dominique Penther
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, Centre Henri-Becquerel, Rouen, France
| | - Virginie Eclache
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, CHU Avicenne, Bobigny, France
- Groupe Francophone des Myélodysplasies (GFM); and
| | - Michaela Fontenay
- Institut Cochin, Université de Paris, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Paris, France
- Groupe Francophone des Myélodysplasies (GFM); and
- Laboratoire d’hématologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Paris, France
| | - Cyril Broccardo
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Eric Delabesse,
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| |
Collapse
|
22
|
Acute benzo[a]pyrene exposure induced oxidative stress, neurotoxicity and epigenetic change in blood clam Tegillarca granosa. Sci Rep 2021; 11:18744. [PMID: 34548601 PMCID: PMC8455545 DOI: 10.1038/s41598-021-98354-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The blood clam (Tegillarca granosa) is being developed into a model bivalve mollusc for assessing and monitoring marine pollution on the offshore seabed. However, the information on the response of blood clam to PAHs, an organic pollutant usually deposited in submarine sediment, remains limited. Herein, we employed multiple biomarkers, including histological changes, oxidative stress, neurotoxicity and global DNA methylation, to investigate the effects of 10 and 100 μg/L Bap exposure on the blood clams under laboratory conditions, as well as the potential mechanisms. Acute Bap exposure can induce significant morphological abnormalities in gills as shown through hematoxylin–eosin (H.E) staining, providing an intuitive understanding on the effects of Bap on the structural organization of the blood clams. Meanwhile, the oxidative stress was significantly elevated as manifested by the increase of antioxidants activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST), lipid peroxidation (LPO) level and 8-hydroxy-2′-deoxyguanosine (8-OHdG) content. The neurotoxicity was also strengthened by Bap toxicity manifested as inhibited acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activities. In addition, the global DNA methylation level was investigated, and a significant DNA hypomethylation was observed in Bap exposed the blood clam. The correlation analysis showed that the global DNA methylation was negatively correlated with antioxidants (SOD, CAT and POD) activities, but positively correlated choline enzymes (AChE and ChAT) activities. These results collectively suggested that acute Bap exposure can cause damage in gills structures in the blood clam possibly by generating oxidative stress and neurotoxicity, and the global DNA methylation was inhibited to increase the transcriptional expression level of antioxidants genes and consequently elevate antioxidants activities against Bap toxicity. These results are hoped to shed some new light on the study of ecotoxicology effect of PAHs on marine bivalves.
Collapse
|
23
|
Bhattacharya A, Santhoshkumar A, Kurahara H, Harihar S. Metastasis Suppressor Genes in Pancreatic Cancer: An Update. Pancreas 2021; 50:923-932. [PMID: 34643607 DOI: 10.1097/mpa.0000000000001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), has for long remained a deadly form of cancer characterized by high mortality rates resulting from metastasis to multiple organs. Several factors, including the late manifestation of the disease, partly amplified by lack of efficient screening methods, have hampered the drive to design an effective therapeutic strategy to treat this deadly cancer. Understanding the biology of PDAC progression and identifying critical genes regulating these processes are essential to overcome the barriers toward effective treatment. Metastasis suppressor genes have been shown to inhibit multiple steps in the metastatic cascade without affecting primary tumor formation and are considered to hold promise for treating metastatic cancers. In this review, we catalog the bona fide metastasis suppressor genes reported in PDAC and discuss their known mechanism of action.
Collapse
Affiliation(s)
- Arnav Bhattacharya
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anirudh Santhoshkumar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima, Japan
| | - Sitaram Harihar
- From the Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
24
|
Li H, Gao J, Zhang S. Functional and Clinical Characteristics of Cell Adhesion Molecule CADM1 in Cancer. Front Cell Dev Biol 2021; 9:714298. [PMID: 34395444 PMCID: PMC8361327 DOI: 10.3389/fcell.2021.714298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The cell adhesion molecule CADM1, which participates in cell adhesion and signal transduction, has a regulatory effect on the development of tumors. CADM1 is often involved in malignant tumors of multiple organ systems, such as the respiratory and digestive systems. Upregulated CADM1 promotes tumor cell apoptosis and inhibits malignant proliferation. Along with cell cycle-related proteins, it participates in regulating signaling pathways, such as EMT, STAT3, and AKT, and plays an important role in inhibiting invasion and migration. Considering clinical characteristics, low CADM1 expression is associated with aggressive tumors and poor prognosis. In addition, some long non-coding RNAs (lncRNAs) or miRNAs directly or indirectly act on CADM1 to regulate tumor growth and motility. Interestingly, CADM1 function differs in adult T-cell leukemia/lymphoma (ATLL), and NF-κB is thought to be involved in this process. Taken together, CADM1 could be a potential biomarker for early diagnosis and a target for cancer treatment in future clinical practices.
Collapse
Affiliation(s)
- Hongxu Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
25
|
Duraivelan K, Samanta D. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways. Biochim Biophys Acta Rev Cancer 2021; 1876:188589. [PMID: 34237351 DOI: 10.1016/j.bbcan.2021.188589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Tumour cells achieve maximum survival by modifying cellular machineries associated with processes such as cell division, migration, survival, and apoptosis, resulting in genetically complex and heterogeneous populations. While nectin and nectin-like cell adhesion molecules control development and maintenance of multicellular organisation in higher vertebrates by mediating cell-cell adhesion and related signalling processes, recent studies indicate that they also critically regulate growth and development of different types of cancers. In this review, we detail current knowledge about the role of nectin family members in various tumours. Furthermore, we also analyse the seemingly opposing roles of some members of nectin family in tumour-associated pathways, as they function as both tumour suppressors and oncogenes. Understanding this functional duality of nectin family in tumours will further our knowledge of molecular mechanisms regulating tumour development and progression, and contribute to the advancement of tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
26
|
Wang Y, Huang P, Hu Y, Guo K, Jia X, Huang B, Liu X, He X, Huang F. An oncolytic adenovirus delivering TSLC1 inhibits Wnt signaling pathway and tumor growth in SMMC-7721 xenograft mice model. Acta Biochim Biophys Sin (Shanghai) 2021; 53:766-774. [PMID: 33928346 DOI: 10.1093/abbs/gmab048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor suppressor in lung cancer-1 (TSLC1) was first identified as a tumor suppressor for lung cancer, and frequently downregulated in various types of cancers including hepatocellular carcinoma (HCC). The Wnt pathway plays a critical role in tumorigenesis, migration, and invasion in HCC. However, the function of TSLC1 in modulating Wnt signaling in HCC is unclear. In this study, we evaluated the effect of TSLC1-armed oncolytic adenovirus (S24-TSLC1) on the Wnt/β-catenin pathway, cell viability, invasion and migration abilities of HCC in vitro and the growth of SMMC-7721-xenografted tumor in mice model. We detected the expression of TSLC1 in tumor samples and HCC cell lines. The results showed that TSLC1 expression was low in HCC, but high in pericarcinomatous tissue and normal cells, which implied that TSLC1 is a tumor suppressor of liver cancer. S24-TSLC1 exhibited an antitumor effect on HCC cell growth in vitro, but did little damage to normal liver cells. Overexpression of TSLC1 downregulated the transcriptional activity of TCF4/β-catenin and inhibited the mRNA or protein expression of Wnt target genes cyclinD1 and c-myc. S24-TSLC1 also inhibited the invasion and migration of HCC cells. Animal experiments further confirmed that S24-TSLC1 significantly inhibited tumor growth of the SMMC-7721-xenografted tumor. In conclusion, TSLC1 could downregulate the Wnt signal pathway and suppress HCC cell growth, migration and invasion, suggesting that S24-TSLC1 may be a potent antitumor agent for future clinical trials in liver cancer treatment.
Collapse
Affiliation(s)
- Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Panpan Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yanping Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Keni Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyuan Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou 311402, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou 311402, China
| |
Collapse
|
27
|
Saito-Sasaki N, Sawada Y, Okada E, Nakamura M. Cell Adhesion Molecule 1 (CADM1) Is an Independent Prognostic Factor in Patients with Cutaneous Squamous Cell Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11050830. [PMID: 34064472 PMCID: PMC8147986 DOI: 10.3390/diagnostics11050830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecular 1 (CADM1) is a multifunctional cell adhesion molecule belonging to the immunoglobulin superfamily, which suppresses malignant solid tumor development. However, the correlation between CADM1 expression and prognosis in cutaneous squamous cell carcinoma (cSCC) patients remains unclear. In a retrospective analysis of 88 patients diagnosed with cSCC at our institution between January 2006 and December 2016, the degree of CADM1 expression in tumor cells was evaluated by immunostaining. Fifty-five and 33 patients had tumors with high and low CADM1 expression, respectively. Low CADM1 expression on the tumor was associated with poor differentiation, whereas the Kaplan–Meier curve and log-lank test indicated a favorable prognosis with high CADM1 expression. Multivariate analysis excluding the effect of the degree of differentiation and clinical stages showed that the hazard ratio (HR) of survival was significantly increased with low CADM1 expression. Thus, CADM1 expression is an independent prognostic factor for cSCC patients.
Collapse
Affiliation(s)
- Natsuko Saito-Sasaki
- Correspondence: (N.S.-S.); (Y.S.); Tel.: +81-93-691-7445 (N.S.-S. & Y.S.); Fax: +81-93-691-0907 (N.S.-S. & Y.S.)
| | - Yu Sawada
- Correspondence: (N.S.-S.); (Y.S.); Tel.: +81-93-691-7445 (N.S.-S. & Y.S.); Fax: +81-93-691-0907 (N.S.-S. & Y.S.)
| | | | | |
Collapse
|
28
|
Yuan J, Kihara T, Kimura N, Hashikura Y, Ohkouchi M, Isozaki K, Takahashi T, Nishida T, Ito A, Hirota S. Differential Expression of CADM1 in Gastrointestinal Stromal Tumors of Different Sites and with Different Gene Abnormalities. Pathol Oncol Res 2021; 27:602008. [PMID: 34257559 PMCID: PMC8262239 DOI: 10.3389/pore.2021.602008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Gastrointestinal stromal tumor (GIST), the most common mesenchymal tumor of the human gastrointestinal tract, differentiating toward the interstitial cell of Cajal (ICC), arises predominantly in the stomach and small intestine. Small intestinal GISTs appear to have worse prognosis than gastric GISTs. In a pilot study of a cDNA expression chip using several GISTs, we found that Cell Adhesion Molecule 1 (CADM1), which could contribute to tumor growth and infiltration, is expressed more strongly in small intestinal GISTs than gastric GISTs. In the present study, we examined CADM1 expression in GISTs of different sites and with different gene abnormalities using a large number of gastric and small intestinal GISTs. First, immunoblotting confirmed significantly higher CADM1 expression in small intestinal GISTs with exon 11 c-kit mutation than gastric GISTs with exon 11 c-kit mutation. Real-time PCR also revealed that small intestinal GISTs with exon 11 c-kit mutation showed significantly higher CADM1 mRNA than gastric GISTs with exon 11 c-kit mutation. Although most small intestinal GISTs showed high CADM1 mRNA expression regardless of gene abnormality types, different CADM1 expression was detected between gastric GISTs with c-kit mutation and those with PDGFRA mutation. Immunohistochemistry showed that many small intestinal GISTs were CADM1-positive but most gastric GISTs CADM1-negative or -indefinite. In the normal gastric and small intestinal walls, immunoreactivity of CADM1 was detected only in nerves, but neither in gastric ICCs nor small intestinal ICCs, indicating that the high CADM1expression in small intestinal GISTs might be acquired during tumorigenesis. Different CADM1 expression between gastric and small intestinal GISTs might be related to different prognoses between them. Further functional experiments are needed to elucidate the role of CADM1 on GIST biology, and there is a possibility that targeting therapy against CADM1 has a preventive effect for tumor spreading in small intestinal GISTs.
Collapse
Affiliation(s)
- Jiayin Yuan
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takako Kihara
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Neinei Kimura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuka Hashikura
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mizuka Ohkouchi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Koji Isozaki
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuyoshi Takahashi
- Departtment of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshirou Nishida
- Japan Community Healthcare Organization (JCHO) Osaka Hospital, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
29
|
Nakahata S, Syahrul C, Nakatake A, Sakamoto K, Yoshihama M, Nishikata I, Ukai Y, Matsuura T, Kameda T, Shide K, Kubuki Y, Hidaka T, Kitanaka A, Ito A, Takemoto S, Nakano N, Saito M, Iwanaga M, Sagara Y, Mochida K, Amano M, Maeda K, Sueoka E, Okayama A, Utsunomiya A, Shimoda K, Watanabe T, Morishita K. Clinical significance of soluble CADM1 as a novel marker for adult T-cell leukemia/lymphoma. Haematologica 2021; 106:532-542. [PMID: 32054656 PMCID: PMC7849584 DOI: 10.3324/haematol.2019.234096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adult T-cell leukemia/leukemia (ATLL) is an aggressive peripheral T-cell malignancy, caused by infection with the human T-cell leukemia virus type 1 (HTLV-1). We recently showed that the cell adhesion molecule 1 (CADM1), a member of the immunoglobulin superfamily, is specifically and consistently overexpressed in ATLL cells, and functions as a novel cell surface marker. In this study, we first show that a soluble form of CADM1 (sCADM1) is secreted from ATLL cells by mainly alternative splicing. After developing the Alpha linked immunosorbent assay (AlphaLISA) for sCADM1, we show that plasma sCADM1 concentrations gradually increased during disease progression from indolent to aggressive ATLL. Although other known biomarkers of tumor burden such as soluble interleukin-2 receptor α (sIL-2Rα) also increased with sCADM1 during ATLL progression, multivariate statistical analysis of biomarkers revealed that only plasma sCADM1 was selected as a specific biomarker for aggressive ATLL, suggesting that plasma sCADM1 may be a potential risk factor for aggressive ATLL. In addition, plasma sCADM1 is a useful marker for monitoring response to chemotherapy as well as for predicting relapse of ATLL. Furthermore, the change in sCADM1 concentration between indolent and aggressive type ATLL was more prominent than the change in the percentage of CD4+CADM1+ ATLL cells. As plasma sCADM1 values fell within normal ranges in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients with higher levels of serum sIL-2Rα, the measurement of sCADM1 may become a useful tool to discriminate between ATLL and other inflammatory diseases, including HAM/TSP.
Collapse
Affiliation(s)
- Shingo Nakahata
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Chilmi Syahrul
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Ayako Nakatake
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Kuniyo Sakamoto
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Maki Yoshihama
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Ichiro Nishikata
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | | | | | - Takuro Kameda
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kotaro Shide
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akira Kitanaka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University School of Medicine, Osaka, Japan
| | - Shigeki Takemoto
- National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | | | - Masako Iwanaga
- Dept of Frontier Life Science, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yasuko Sagara
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Kosuke Mochida
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Amano
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kouichi Maeda
- Internal Medicine, National Hospital Organization Miyakonojo Medical Center, Miyazaki, Japan
| | - Eisaburo Sueoka
- Department of Laboratory Medicine, Saga University Hospital, Saga, Japan
| | - Akihiko Okayama
- Dept. of Infectious Diseases and Laboratory Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kazuya Shimoda
- Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, University of Tokyo, Japan
| | | |
Collapse
|
30
|
Funaki T, Ito T, Tanei ZI, Goto A, Niki T, Matsubara D, Murakami Y. CADM1 promotes malignant features of small-cell lung cancer by recruiting 4.1R to the plasma membrane. Biochem Biophys Res Commun 2021; 534:172-178. [PMID: 33298314 DOI: 10.1016/j.bbrc.2020.11.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
Cell adhesion molecule 1 (CADM1), which mediates intercellular adhesion between epithelial cells, is shown to be highly expressed in small-cell lung cancer (SCLC) and to enhance tumorigenicity of SCLC cells in nude mice. Here, we investigated the molecular mechanism underlying the oncogenic role of CADM1 in SCLC. CADM1 promoted colony formation of SCLC cells in soft agar. Analysis of deletion and point mutants of the conserved protein-binding motifs in CADM1 revealed that the 4.1 protein-binding motif in the cytoplasmic domain is responsible for the promotion of colony formation. Among the actin-binding 4.1 proteins, 4.1R was the only protein whose localization to the plasma membrane is dependent on CADM1 expression in SCLC cells. Knockdown of 4.1R suppressed the colony formation enhanced by CADM1, suggesting that 4.1R is required for the oncogenic role of CADM1 in SCLC. In primary SCLC, CADM1 expression was correlated with membranous localization of 4.1R, as was observed in a SCLC cell line. Moreover, membranous co-localization of CADM1 and 4.1R was associated with more advanced tumor stage. These results suggest that the formation of CADM1-4.1R complex would promote malignant features of SCLC.
Collapse
Affiliation(s)
- Toko Funaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke Matsubara
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
Sawada Y, Mashima E, Saito-Sasaki N, Nakamura M. The Role of Cell Adhesion Molecule 1 (CADM1) in Cutaneous Malignancies. Int J Mol Sci 2020; 21:E9732. [PMID: 33419290 PMCID: PMC7766610 DOI: 10.3390/ijms21249732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion ability is one of the components to establish cell organization and shows a great contribution to human body construction consisting of various types of cells mixture to orchestrate tissue specific function. The cell adhesion molecule 1 (CADM1) is a molecule of cell adhesion with multiple functions and has been identified as a tumor suppressor gene. CADM1 has multifunctions on the pathogenesis of malignancies, and other normal cells such as immune cells. However, little is known about the function of CADM1 on cutaneous cells and cutaneous malignancies. CADM1 plays an important role in connecting cells with each other, contacting cells to deliver their signal, and acting as a scaffolding molecule for other immune cells to develop their immune responses. A limited number of studies reveal the contribution of CADM1 on the development of cutaneous malignancies. Solid cutaneous malignancies, such as cutaneous squamous cell carcinoma and malignant melanoma, reduce their CADM1 expression to promote the invasion and metastasis of the tumor. On the contrary to these cutaneous solid tumors except for Merkel cell carcinoma, cutaneous lymphomas, such as adult-T cell leukemia/lymphoma, mycosis fungoides, and Sézary syndrome, increase their CADM1 expression for the development of tumor environment. Based on the role of CADM1 in the etiology of tumor development, the theory of CADM1 contribution will desirably be applied to skin tumors according to other organ malignancies, however, the characteristics of skin as a multicomponent peripheral organ should be kept in mind to conclude their prognoses.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (E.M.); (N.S.-S.); (M.N.)
| | | | | | | |
Collapse
|
32
|
Huang Y, Feng G. MiR-423-5p aggravates lung adenocarcinoma via targeting CADM1. Thorac Cancer 2020; 12:210-217. [PMID: 33205911 PMCID: PMC7812070 DOI: 10.1111/1759-7714.13745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background At present, microRNAs and its downstream genes have been regarded as influential indicators in various malignancies. Therefore, the aim of this study was to explore the relationship and molecular mechanism of the miR‐423‐5p and its downstream gene CADM1 in the LUAD. Methods The pcDNA‐CADM1 was used to construct the CADM1 overexpressed cell model. The cell proliferation was determined by CCK‐8 and EdU assays and the cell metastasis was performed by wound scratch and transwell chamber assays. The relationship between miR‐423‐5p and CADM1 were determined by bioinformatics, luciferase reporter and western blot assays. Results The results revealed that the CADM1 was downregulated in LUAD tissues and cell lines. CADM1 overexpression markedly repressed the cell proliferation, migration and invasion. Moreover, the results of bioinformatics, luciferase reporter and WB assays showed that CADM1 was a target gene of miR‐423‐5p and the miR‐423‐5p expression was negatively associated with CADM1 in LUAD cell lines. Finally, rescue experiments revealed that downregulation of CADM1 could antagonize the functions of miR‐423‐5p inhibitor on cell proliferation and metastasis. These results indicated that miR‐423‐5p aggravated lung adenocarcinoma via downregulation of CADM1 expression. Conclusions Downregulation of CADM1 could antagonize the functions of miR‐423‐5p inhibitor on cell proliferation and metastasis. miR‐423‐5p aggravated lung adenocarcinoma via downregulation of CADM1 expression.
Collapse
Affiliation(s)
- Yuzhen Huang
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ganzhu Feng
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Identification of rare variants in CADM1 in patients with anorexia nervosa. Psychiatry Res 2020; 291:113191. [PMID: 32544712 DOI: 10.1016/j.psychres.2020.113191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/24/2023]
Abstract
As a polygenic psychiatric disorder, the genetics of anorexia nervosa (AN) remains largely unexplored. Recently a large GWAS meta-analysis identified a significant SNP (rs6589488) as associated with AN. We suggested that rs6589488 might have gotten its association as being in linkage disequilibrium with unknown variants or functional intronic variants. In a selective cohort containing 51 patients diagnosed with restrictive subtype AN, we screened the whole coding region of the CADM1gene by Sanger sequencing and further investigated if these variants are associated with specific outcome. Only 13 single nucleotide polymorphisms, including 2 missense variants, 2 synonymous variants, 2 variants located at 5'-UTR and 7 intronic variants, including rs6589488, were identified in our AN cohort. The 2 missense variants, p.Val5Leu and p.Asp285Glu were not predicted to be deleterious. In conclusion, the intronic initial variant appears to be not associated with causative coding variant in the vicinity. If CADM1 is not the AN predisposition factor, the causative variant probably lies within 1 Mb of CADM1. Interestingly, among the 7 closest genes to CADM1, the nicotinamide N-methyltransferase (NNMT) gene is known to be associated with obesity. We suggest that the intronic variant in CADM1 could be in linkage disequilibrium with other causative variants located in NNMT.
Collapse
|
34
|
Development of anti-human CADM1 monoclonal antibodies as a potential therapy for adult T-cell leukemia/lymphoma. Int J Hematol 2020; 112:496-503. [PMID: 32656636 DOI: 10.1007/s12185-020-02939-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/12/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a highly invasive and refractory T-cell malignancy, with poor prognosis. We previously identified that cell adhesion molecule 1 (CADM1) is overexpressed consistently in ATLL cells, and that CADM1 expression increases the adhesion capacity of ATLL cells to endothelial cells and promotes the organ invasion of ATLL cells in a xenograft mouse model. In this study, we first show that newly developed several anti-human CADM1 antibodies, which were complete human IgG antibodies generated by phage display method, specifically recognize CADM1 on ATLL cells. Although most of the CADM1 antibodies did not have a direct cytotoxic effect against CADM1-positive ATLL cells, clone 089-084 exhibited weak but significant antibody-dependent cell-mediated cytotoxic activity. Moreover, clone 103-189 effectively inhibits the interaction between endothelial cells and CADM1-positive ATLL cells. Furthermore, in mice bearing intra-splenic transplantation of EL4 mouse lymphoma cells expressing CADM1, the treatment of 103-189 significantly suppressed the organ invasion of CADM1-positive EL4 cells, resulting in improved survival time of mice. Therefore, since the anti-CADM1 antibody may be useful for the suppression of organ invasion in ATLL patients, combination use of the anti-CADM1 antibody with chemotherapy drugs could be beneficial for the efficient elimination of ATLL cells.
Collapse
|
35
|
Tsuboi Y, Oyama M, Kozuka-Hata H, Ito A, Matsubara D, Murakami Y. CADM1 suppresses c-Src activation by binding with Cbp on membrane lipid rafts and intervenes colon carcinogenesis. Biochem Biophys Res Commun 2020; 529:854-860. [PMID: 32616310 DOI: 10.1016/j.bbrc.2020.05.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Cell adhesion molecules act as tumor suppressors primarily by cell attachment activity, but additional mechanisms modifying signal transduction are suggested in some cases. Cell adhesion molecule 1 (CADM1), a membrane-spanning immunoglobulin superfamily, mediates intercellular adhesion by trans-homophilic interaction and acts as a tumor suppressor. Here, we investigated CADM1-associated proteins comprehensively using proteomic analysis of immune-precipitates of CADM1 by mass spectrometry and identified a transmembrane adaptor protein, Csk-binding protein (Cbp), known to suppress Src-mediated transformation, as a binding partner of CADM1. CADM1 localizes to detergent-resistant membrane fractions and co-immunoprecipitated with Cbp and c-Src. Suppression of CADM1 expression using siRNA reduces the amount of co-immunoprecipitated c-Src with Cbp and activates c-Src in colon cancer cells expressing both CADM1 and Cbp. On the other hand, co-replacement of CADM1 and Cbp in colon cancer cells lacking CADM1 and Cbp expression suppresses c-Src activation, wound healing and tumorigenicity in nude mice. Furthermore, expression of Cbp and CADM1 was lost in 55% and 83% of human colon cancer, respectively, preferentially in tumors with larger size and/or lymph node metastasis. CADM1 would act as a colon tumor suppressor by intervening oncogenic c-Src signaling through binding with Cbp besides its authentic cell adhesion activity.
Collapse
Affiliation(s)
- Yumi Tsuboi
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daisuke Matsubara
- Division of Integrative Pathology, Jichii Medical University, Shimotsuke, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
Hagiyama M, Kimura R, Yoneshige A, Inoue T, Otani T, Ito A. Cell Adhesion Molecule 1 Contributes to Cell Survival in Crowded Epithelial Monolayers. Int J Mol Sci 2020; 21:ijms21114123. [PMID: 32527032 PMCID: PMC7312920 DOI: 10.3390/ijms21114123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
When epithelial cells in vivo are stimulated to proliferate, they crowd and often grow in height. These processes are likely to implicate dynamic interactions among lateral membranous proteins, such as cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member. Pulmonary epithelial cell lines that express CADM1, named NCI-H441 and RLE-6TN, were grown to become overconfluent in the polarized 2D culture system, and were examined for the expression of CADM1. Western analyses showed that the CADM1 expression levels increased gradually up to 3 times in a cell density-dependent manner. Confocal microscopic observations revealed dense immunostaining for CADM1 on the lateral membrane. In the overconfluent monolayers, CADM1 knockdown was achieved by two methods using CADM1-targeting siRNA and an anti-CADM1 neutralizing antibody. Antibody treatment experiments were also done on 6 other epithelial cell lines expressing CADM1. The CADM1 expression levels were reduced roughly by half, in association with cell height decrease by half in 3 lines. TUNEL assays revealed that the CADM1 knockdown increased the proportion of TUNEL-positive apoptotic cells approximately 10 folds. Increased expression of CADM1 appeared to contribute to cell survival in crowded epithelial monolayers.
Collapse
|
37
|
Baliova M, Jursky F. Comparison of SynCAM1/CADM1 PDZ interactions with MUPP1 using mammalian and bacterial pull-down systems. Brain Behav 2020; 10:e01587. [PMID: 32108449 PMCID: PMC7177587 DOI: 10.1002/brb3.1587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/20/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Synaptic cell adhesion molecule 1 (SynCAM1) also known as cell adhesion molecule 1 (CADM1) is a transmembrane cell adhesion protein that operates in a variety of physiological and pathological cellular contexts, and its interaction with the PDZ signalling protein MUPP1 have been previously implicated in autism spectrum disorder (ASD). METHODS We used in vitro pull-down systems based on the bacterial and mammalian extracts to study SynCAM1/CADM1 PDZ interactions with MUPP1 at various conditions. RESULTS So far, the investigated interaction of SynCAM1/CADM1 with MUPP1 has been mostly attributed to an unspecified region of MUPP1 PDZ domains 1-5 or exclusively to domain 2, using a yeast two-hybrid system. We also confirmed the single interaction of native synaptosomal CADM1 with PDZ domain 2. However, in this work, using recombinant proteins overexpressed in bacteria, we found an in vitro pull-down conditions in which all first five domains and, to a much lesser extent, MUPP1 domains 7 and 11 significantly interacted with the whole C-terminal domain of SynCAM1/CADM1. These PDZ interactions were confirmed by a pull-down assay using the last seven amino acids of the SynCAM1/CADM1 PDZ motif and using two fusion partners. Multiple interactions were additionally replicated using the continuous N-terminal MUPP1 protein fragment, which included first five PDZ domains, containing either intact or mutated domain 2. CONCLUSIONS We hypothesize that multiple interactions might exist in vivo, representing transient low-affinity interactions or alternative binding sites on MUPP1 when domain 2 is occupied or occluded by the interaction with other ligands. This newly identified interactions extend the potential genetic mutations, possibly affecting SynCAM1/CADM1/MUPP1 function. Possible reasons for the absence of some of the identified CADM1 PDZ interactions in mammalian extracts are discussed.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
38
|
Gewaily MS, Kassab M, Farrag FA, Almadaly EA, Atta MS, Abd-Elmaksoud A, Wakayama T. Comparative expression of cell adhesion molecule1 (CADM1) in the testes of experimental mice and some farm animals. Acta Histochem 2020; 122:151456. [PMID: 31635798 DOI: 10.1016/j.acthis.2019.151456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Cell adhesion molecule1 (CADM1) is a member of the immunoglobulin superfamily (IGSF) that has been found in mammalian testis and plays a substantial role in cell-to-cell interaction via either hemophilic (between spermatogenic cells) or heterophilic (between spermatogenic and somatic Sertoli cells) binding. The present study investigated the immunohistochemical localization of CADM1 in the testes of adult mice (Mus musculus), as well as sexually mature bull (Bos taurus), camel (Camelus dromedarius), and donkey (Equus asinus), using immunohistochemical techniques. The results revealed that CADM1 expression was observed in the spermatogonia and early spermatocytes as well as elongated spermatids in the mice testes; however, in the bull testis, its expression was restricted to the elongated spermatids. This expression was found in some of the early spermatocytes and elongated spermatids of the rutting camel testis but only found in the elongated spermatids of the non-rutting camel testis. Interestingly, CADM1 expression was detected in the spermatogonia, early spermatocytes, and elongated spermatids of the donkey testis. On the other hand, there was no expression of CADM1 observed in the Sertoli or interstitial cells. In conclusion, the expression of CADM1 during spermatogenesis differed among species and between rutting and non-rutting camel. Accordingly, this study emphasized the crucial role of CADM1 in the process of spermatogenesis and how it is related to sexual activity in both experimental and farm animals.
Collapse
|
39
|
CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR pathway. Biomed Pharmacother 2019; 123:109717. [PMID: 31865146 DOI: 10.1016/j.biopha.2019.109717] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is frequently inactivated but functions as a tumor suppressor in many solid tumors. However, the characterization of CADM1 expression in ovarian cancer cells and the mechanisms of its tumor suppressor function are not fully understood. We generated ovarian cancer cell lines in which CADM1 was stably upregulated or downregulated. CADM1 expression was significantly decreased in ovarian cancer tissue and cells lines. Functionally, knockdown of CADM1 promoted the growth, migration and invasion of ovarian cancer cells. Conversely, further experimental evidence indicated that overexpression of CADM1 inhibited the migration and invasion of ovarian cancer cells potentially through inhibition of the PI3K/Akt/mTOR signaling pathway by regulating upstream regulators (LXR/RXR, IGF1, IFI44L and C4BPA) and downstream effectors (APP, EDN1, TGFBI and Rap1A). In conclusion, CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR signaling pathway. CADM1 could be a potential therapeutic target for ovarian cancer.
Collapse
|
40
|
Makiyama J, Kobayashi S, Watanabe E, Ishigaki T, Kawamata T, Nakashima M, Yamagishi M, Nakano K, Tojo A, Watanabe T, Uchimaru K. CD4 + CADM1 + cell percentage predicts disease progression in HTLV-1 carriers and indolent adult T-cell leukemia/lymphoma. Cancer Sci 2019; 110:3746-3753. [PMID: 31642546 PMCID: PMC6890436 DOI: 10.1111/cas.14219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
We recently took advantage of the universal expression of cell adhesion molecule 1 (CADM1) by CD4+ cells infected with HTLV‐1 and the downregulation of CD7 expression that corresponds with the oncogenic stage of HTLV‐1‐infected cells to develop a flow cytometric system using CADM1 versus CD7 plotting of CD4+ cells. We risk‐stratified HTLV‐1 asymptomatic carriers (AC) and indolent adult T‐cell leukemia/lymphoma (ATL) cases based on the CADM1+ percentage, in which HTLV‐1‐infected clones are efficiently enriched. AC and indolent ATL cases were initially classified according to their CADM1+ cell percentage. Follow‐up clinical and flow cytometric data were obtained for 71 cases. In G1 (CADM1+ ≤ 10%) and G2 (10% < CADM1+ ≤ 25%) cases, no apparent clinical disease progression was observed. In G3 (25% < CADM1+ ≤ 50%) cases, five out of nine (55.5%) cases progressed from AC to smoldering‐type ATL. In G4 (50% < CADM1+) cases, the cumulative incidence of receiving systemic chemotherapy at 3 years was 28.4%. Our results indicate that the percentage of the CD4+CADM1+ population predicts clinical disease progression: G1 and G2 cases, including AC cases, are stable and considered to be at low risk; G3 cases, including advanced AC cases and smoldering‐type ATL cases based on the Shimoyama criteria, are considered to have intermediate risk; and G4 cases, which are mainly indolent ATL cases, are unstable and at high risk of acute transformation.
Collapse
Affiliation(s)
- Junya Makiyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiichiro Kobayashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- IMSUT Clinical Flow Cytometry Laboratory, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ishigaki
- Department of Laboratory Medicine, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toyotaka Kawamata
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Future Center Initiative, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Yamaguchi M, Morizane S, Hamada T, Miyake T, Sugaya M, Iwata H, Fujii K, Haramoto‐Shiratsuki R, Nakagawa Y, Miura M, Ohshima K, Morishita K, Takahashi T, Imada M, Okada K, Uehara J, Sowa‐Osako J, Iwatsuki K. The expression of cell adhesion molecule 1 and its splicing variants in Sézary cells and cell lines from cutaneous T‐cell lymphoma. J Dermatol 2019; 46:967-977. [DOI: 10.1111/1346-8138.15078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mari Yamaguchi
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Shin Morizane
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Toshihisa Hamada
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Tomoko Miyake
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Makoto Sugaya
- Department of Dermatology Faculty of Medicine University of Tokyo Tokyo Japan
| | - Hiroaki Iwata
- Department of Dermatology Hokkaido University Graduate School of Medicine Sapporo Japan
| | - Kazuyasu Fujii
- Department of Dermatology Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | | | - Yuki Nakagawa
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Mayumi Miura
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Koichi Ohshima
- Department of Pathology Kurume University School of Medicine Kurume Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry Department of Medical Sciences Faculty of Medicine University of Miyazaki Miyazaki Japan
| | | | - Masahide Imada
- Division of Medical Support Okayama University Hospital Okayama Japan
- Central Clinical Laboratory Kawasaki Medical School Hospital Okayama Japan
| | - Ken Okada
- Division of Medical Support Okayama University Hospital Okayama Japan
| | - Jiro Uehara
- Department of Dermatology Asahikawa Medical University Asahikawa Japan
| | - Junko Sowa‐Osako
- Department of Dermatology Osaka City University Graduate School of Medicine Osaka Japan
| | - Keiji Iwatsuki
- Department of Dermatology Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
42
|
Zhang G, Zhong L, Luo H, Wang S. MicroRNA-155-3p promotes breast cancer progression through down-regulating CADM1. Onco Targets Ther 2019; 12:7993-8002. [PMID: 31579252 PMCID: PMC6773971 DOI: 10.2147/ott.s206180] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/PURPOSE Cell adhesion molecule 1 (CADM1) functions as a tumor suppressor and has been identified to be frequently inactivated in breast cancer, and closely associated with patients' poor prognosis and advanced TNM stage. However, the mechanisms underlying CADM1 in breast cancer progression remains incompletely clear. miR-155, a predicted modulator of CADM1 was reported to be overexpressed in breast cancer, and its high expression level was closely related to the malignant progression of breast cancer. The present study aimed to explore whether miR-155-3p could modulate CADM1 expression and then involved in the progression of breast cancer. METHODS The expression patterns of miR-155-3p in breast cancer tissues and cell lines were determined by RT-PCR technology. The relationship between CADM1 and miR-155-3p were determined by the luciferase gene reporter and Western Blot (WB) assays. Cell proliferation, apoptosis rates and tumorigenesis were determined by CCK-8, flow cytometry and in vivo xenotransplanation experiments, respectively. RESULTS miR-155-3p was up-regulated in breast cancer tissues and cells when compared to the adjacent normal tissues and normal breast MCF 10A cells. The mRNA and protein levels of CADM1 showed opposite expression patterns to that of miR-155-3p expression detected, and miR-155-3p could negatively regulate CADM1 expression in breast cancer MCF-7 cells. Moreover, gain-of function assay showed that overexpression of miR-155-3p promoted cell proliferation, tumorigenesis and repressed cell apoptosis, but these effects were all significantly impaired when the cells were simultaneously transfected with OE-CADM1, the overexpressing vector of CADM1. CONCLUSION This study revealed that miR-155-3p could accelerate the progression of breast cancer via down-regulation of CADM1 expression.
Collapse
Affiliation(s)
- Guochao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| | - Lele Zhong
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| | - Hao Luo
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| | - Shibing Wang
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| |
Collapse
|
43
|
Xu F, Si X, Du J, Xu F, Yang A, Zhang C, Zhang X, Yang Y. Downregulating SynCAM and MPP6 expression is associated with ovarian cancer progression. Oncol Lett 2019; 18:2477-2483. [PMID: 31402947 PMCID: PMC6676726 DOI: 10.3892/ol.2019.10542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Synaptic cell adhesion molecules (SynCAMs) are single transmembrane proteins that belong to the immunoglobulin superfamily of cell adhesion molecules. In the present study, a decrease in SynCAM levels in ovarian tumor tissues compared with normal tissues is reported; the downregulation was accompanied by the grade malignancy. The observations suggested that SynCAM may be essential for important novel functions in ovarian cancer. Further experiments showed that low SynCAM expression inhibited membrane palmitoylated protein 6 (MPP6) expression, a member of the palmitoylated membrane protein subfamily of peripheral membrane-associated guanylate kinases. In addition, low levels of MPP6 in ovarian tumor tissues correlated with shorter patient survival. A SynCAM-regulated pathway may provide molecular targets for the treatment of ovarian cancer and novel biomarkers to be used in clinical diagnosis.
Collapse
Affiliation(s)
- Feixue Xu
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoqiang Si
- Department of Plastic Surgery, The Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jingran Du
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Feihua Xu
- Department of Labor and Environmental Health, The School of Public Health of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Aihong Yang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Caixia Zhang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiucai Zhang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yongxiu Yang
- Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
44
|
Ito T, Nakamura A, Tanaka I, Tsuboi Y, Morikawa T, Nakajima J, Takai D, Fukayama M, Sekido Y, Niki T, Matsubara D, Murakami Y. CADM1 associates with Hippo pathway core kinases; membranous co-expression of CADM1 and LATS2 in lung tumors predicts good prognosis. Cancer Sci 2019; 110:2284-2295. [PMID: 31069869 PMCID: PMC6609799 DOI: 10.1111/cas.14040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
Cell adhesion molecule‐1 (CADM1) is a member of the immunoglobulin superfamily that functions as a tumor suppressor of lung tumors. We herein demonstrated that CADM1 interacts with Hippo pathway core kinases and enhances the phosphorylation of YAP1, and also that the membranous co–expression of CADM1 and LATS2 predicts a favorable prognosis in lung adenocarcinoma. CADM1 significantly repressed the saturation density elevated by YAP1 overexpression in NIH3T3 cells. CADM1 significantly promoted YAP1 phosphorylation on Ser 127 and downregulated YAP1 target gene expression at confluency in lung adenocarcinoma cell lines. Moreover, CADM1 was co–precipitated with multiple Hippo pathway components, including the core kinases MST1/2 and LATS1/2, suggesting the involvement of CADM1 in the regulation of the Hippo pathway through cell‐cell contact. An immunohistochemical analysis of primary lung adenocarcinomas (n = 145) revealed that the histologically low‐grade subtype frequently showed the membranous co–expression of CADM1 (20/22, 91% of low‐grade; 61/91, 67% of intermediate grade; and 13/32, 41% of high‐grade subtypes; P < 0.0001) and LATS2 (22/22, 100% of low‐grade; 44/91, 48% of intermediate‐grade; and 1/32, 3% of high‐grade subtypes; P < 0.0001). A subset analysis of disease‐free survival revealed that the membranous co–expression of CADM1 and LATS2 was a favorable prognosis factor (5‐year disease‐free survival rate: 83.8%), even with nuclear YAP1‐positive expression (5‐year disease‐free survival rate: 83.7%), whereas nuclear YAP1‐positive cases with the negative expression of CADM1 and LATS2 had a poorer prognosis (5‐year disease‐free survival rate: 33.3%). These results indicate that the relationship between CADM1 and Hippo pathway core kinases at the cell membrane is important for suppressing the oncogenic role of YAP1.
Collapse
Affiliation(s)
- Takeshi Ito
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsuko Nakamura
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yumi Tsuboi
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Morikawa
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo, Tokyo, Japan
| | - Daiya Takai
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Daisuke Matsubara
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Rong G, Zhang M, Xia W, Li D, Miao J, Wang H. Plasma CADM1 promoter hypermethylation and D-dimer as novel metastasis predictors of cervical cancer. J Obstet Gynaecol Res 2019; 45:1251-1259. [PMID: 30945386 DOI: 10.1111/jog.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/09/2019] [Indexed: 12/28/2022]
Abstract
AIM Cervical cancer (CC) is the fourth malignant tumor in women worldwide. The metastasis is still the major reason for the treatment failures of most CC patients. Cell adhesion molecule 1 (CADM1) promoter methylation and plasma D-dimer levels have been reported to be increased in many types of cancers. The purpose of this study was to investigate the value of combinatorial assay of plasma CADM1 promoter hypermethylation and D-dimer as a metastasis marker in CC. METHODS Two hundred and ninety-two patients with newly diagnosed cervical diseases and 70 healthy women were enrolled. A validation set comprised 36 Stage I CC patients and followed for 3 years. Plasma CADM1 promoter methylation and D-dimer levels were detected. RESULTS The total coincidence rate of CADM1 promoter methylation status was 93.3% between 45 pair-matched tissue and plasma samples. Plasma CADM1 methylation levels in CC patients were higher than other benign disease groups (P = 0.000). Plasma CADM1 methylation levels had statistically differences between CC patients with and without lymph node metastasis (P = 0.049) or in CC patients with and without distant metastasis (P = 0.000). Similarly, plasma D-dimer levels in CC patients were higher than other benign disease groups (P < 0.05). D-dimer levels were only statistically different between CC patients with and without distant metastasis (P = 0.003). Combined assay of the two parameters for metastasis prediction has high sensitivity (80.4%) and specificity (90.5%). CONCLUSION Combinatorial assay of plasma CADM1 methylation and D-dimer is a promising metastasis marker in cervical cancer.
Collapse
Affiliation(s)
- Guodong Rong
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Donghua Li
- Department of obstetrics and gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Miao
- Department of obstetrics and gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
46
|
Hartsough EJ, Weiss MB, Heilman SA, Purwin TJ, Kugel CH, Rosenbaum SR, Erkes DA, Tiago M, HooKim K, Chervoneva I, Aplin AE. CADM1 is a TWIST1-regulated suppressor of invasion and survival. Cell Death Dis 2019; 10:281. [PMID: 30911007 PMCID: PMC6433918 DOI: 10.1038/s41419-019-1515-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
Metastatic cancer remains a clinical challenge; however, patients diagnosed prior to metastatic dissemination have a good prognosis. The transcription factor, TWIST1 has been implicated in enhancing the migration and invasion steps within the metastatic cascade, but the range of TWIST1-regulated targets is poorly described. In this study, we performed expression profiling to identify the TWIST1-regulated transcriptome of melanoma cells. Gene ontology pathway analysis revealed that TWIST1 and epithelial to mesenchymal transition (EMT) were inversely correlated with levels of cell adhesion molecule 1 (CADM1). Chromatin immunoprecipitation (ChIP) studies and promoter assays demonstrated that TWIST1 physically interacts with the CADM1 promoter, suggesting TWIST1 directly represses CADM1 levels. Increased expression of CADM1 resulted in significant inhibition of motility and invasiveness of melanoma cells. In addition, elevated CADM1 elicited caspase-independent cell death in non-adherent conditions. Expression array analysis suggests that CADM1 directed non-adherent cell death is associated with loss of mitochondrial membrane potential and subsequent failure of oxidative phosphorylation pathways. Importantly, tissue microarray analysis and clinical data from TCGA indicate that CADM1 expression is inversely associated with melanoma progression and positively correlated with better overall survival in patients. Together, these data suggest that CADM1 exerts tumor suppressive functions in melanoma by reducing invasive potential and may be considered a biomarker for favorable prognosis.
Collapse
Affiliation(s)
- Edward J Hartsough
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,Sidney Kimmel Cancer Center at Jefferson, Philadelphia, PA, 19107, USA.,Department of Pharmacology and Physiology at Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Michele B Weiss
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shea A Heilman
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Curtis H Kugel
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Dan A Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kim HooKim
- Departments of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Inna Chervoneva
- Sidney Kimmel Cancer Center at Jefferson, Philadelphia, PA, 19107, USA.,Division of Biostatistics in Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,Sidney Kimmel Cancer Center at Jefferson, Philadelphia, PA, 19107, USA.
| |
Collapse
|
47
|
Yin GW, Xia XX, Song FJ, Huang YH. Expression of Wnt-1 and TSLC1 in condyloma acuminatum. Clin Exp Dermatol 2019; 44:620-624. [PMID: 30793382 DOI: 10.1111/ced.13862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Despite its high contagiousness, high recurrence rate and potential for malignant transformation, effective treatments for condyloma acuminatum (CA) have not yet been developed. Accordingly, it is necessary to clarify the mechanisms underlying CA development. AIM To investigate the expression and significance of the proteins Wnt-1 and TSLC1 in patients with CA and in normal foreskin controls. METHODS Wnt-1 and TSLC1 were assessed by immunohistochemistry in 45 patients with CA. RESULTS Positive expression rates of Wnt-1 and TSLC1 were 82.22% (37/45) and 37.78% (17/45), respectively, in CA tissues, and 29.17% (7/24) and 91.67% (22/24), respectively, in normal foreskin controls. Wnt-1 expression intensity in CA was markedly higher (positive to strongly positive) than that in normal controls (negative to weakly positive), whereas TSLC1 expression intensity ranged from weakly positive to positive in CA, and nearly strongly positive in the normal control group. The differences in the positive expression rate and expression intensity of Wnt-1 and TSLC1 between the two groups were statistically significant (P < 0.05). In addition, Wnt-1 and TSLC1 were negatively correlated. (r = -0.336, P < 0.05). CONCLUSIONS Overexpression of Wnt-1 and low expression of TSLC1 may be associated with the growth of CA. These findings may provide a basis for the development of therapies to prevent recurrence or malignant transformation of CA.
Collapse
Affiliation(s)
- G W Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X X Xia
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F J Song
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y H Huang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Structure of the heterophilic interaction between the nectin-like 4 and nectin-like 1 molecules. Proc Natl Acad Sci U S A 2019; 116:2068-2077. [PMID: 30674679 DOI: 10.1073/pnas.1810969116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nectin-like (Necl) molecules are Ca2+-independent Ig-like transmembrane cell adhesion molecules that participate in junctions between different cell types. The specific cell-cell adhesions mediated by Necl proteins are important in neural development and have been implicated in neurodegenerative diseases. Here, we present the crystal structure of the mouse Necl-4 full ectodomain and the structure of the heterophilic Necl ectodomain complex formed by the mNecl-4 and mNecl-1 ectodomains. We demonstrate that, while the ectodomain of mNecl-4 is monomeric, it forms a stable heterodimer with Ig1 of mNecl-1, with an affinity significantly higher than that observed for self-dimerization of the mNecl-1 ectodomain. We validated our structural characterizations by performing a surface plasmon resonance assay and an Fc fusion protein binding assay in mouse primary dorsal root ganglia neurites and Schwann cells and identified a selection of residues important for heterophilic interactions. Finally, we proposed a model of Necl binding specificity that involves an induced-fit conformational change at the dimerization interface.
Collapse
|
49
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
50
|
Barrett AN, Fong CY, Subramanian A, Liu W, Feng Y, Choolani M, Biswas A, Rajapakse JC, Bongso A. Human Wharton's Jelly Mesenchymal Stem Cells Show Unique Gene Expression Compared with Bone Marrow Mesenchymal Stem Cells Using Single-Cell RNA-Sequencing. Stem Cells Dev 2019; 28:196-211. [PMID: 30484393 DOI: 10.1089/scd.2018.0132] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Wharton's jelly stem cells (hWJSCs) isolated from the human umbilical cord are a unique population of mesenchymal stem cells (MSCs) with significant clinical utility. Their broad differentiation potential, high rate of proliferation, ready availability from discarded cords, and prolonged maintenance of stemness properties in culture make them an attractive alternative source of MSCs with therapeutic value compared with human bone marrow MSCs (hBMMSCs). We aimed to characterize the differences in gene expression profiles between these two stem cell types using single-cell RNA sequencing (scRNA-Seq) to determine which pathways are involved in conferring hWJSCs with their unique properties. We identified 436 significantly differentially expressed genes between the two cell types, playing roles in processes, including immunomodulation, angiogenesis, wound healing, apoptosis, antitumor activity, and chemotaxis. Expression of immune molecules is particularly high in hWJSCs compared with hBMMSCs. These differences in gene expression may help to explain many of the advantages that hWJSCs have over hBMMSCs for clinical application. Although cell surface protein marker expression indicates that isolated hWJSCs and hBMMSCs are both homogenous populations, using scRNA-Seq we can clearly identify extreme variability in expression levels between individual cells within a certain cell type. If the cells are examined as bulk populations, it is not possible to appreciate that a single cell may be making a major unique contribution to the apparent overall expression level. We demonstrated how the fine tuning of expression within hWJSCs and hBMMSCs may be achieved by expression of molecules with opposing function between two cells. We hypothesize that a greater understanding of these differences in gene expression between the two cell types may aid in the development of new therapies using hWJSCs.
Collapse
Affiliation(s)
- Angela N Barrett
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Chui-Yee Fong
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arjunan Subramanian
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Wenting Liu
- 2 Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Yirui Feng
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mahesh Choolani
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Jagath C Rajapakse
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ariff Bongso
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| |
Collapse
|