1
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Tenaillon O, Matic I. L’impact des mutations neutres sur l’évolvabilité et l’évolution des génomes. Med Sci (Paris) 2022; 38:777-785. [DOI: 10.1051/medsci/2022122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Les mutations bénéfiques à forts effets sont rares et les mutations délétères sont éliminées par la sélection naturelle. La majorité des mutations qui s’accumulent dans les génomes ont donc des effets sélectifs très faibles, voire nuls ; elles sont alors appelées mutations neutres. Au cours des deux dernières décennies, il a été montré que les mutations, même en l’absence d’effet sur la valeur sélective des organismes, affectent leur évolvabilité, en donnant accès à de nouveaux phénotypes par le biais de mutations apparaissant ultérieurement, et qui n’auraient pas été disponibles autrement. En plus de cet effet, de nombreuses mutations neutres – indépendamment de leurs effets sélectifs – peuvent affecter la mutabilité de séquences d’ADN voisines, et moduler l’efficacité de la recombinaison homologue. De telles mutations ne modifient pas le spectre des phénotypes accessibles, mais plutôt la vitesse à laquelle de nouveaux phénotypes seront produits, un processus qui a des conséquences à long terme mais aussi potentiellement à court terme, en lien avec l’émergence de cancers.
Collapse
|
3
|
Bozdag GO, Ono J. Evolution and molecular bases of reproductive isolation. Curr Opin Genet Dev 2022; 76:101952. [PMID: 35849861 PMCID: PMC10210581 DOI: 10.1016/j.gde.2022.101952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The most challenging problem in speciation research is disentangling the relative strength and order in which different reproductive barriers evolve. Here, we review recent developments in the study of reproductive isolation in yeasts. With over a thousand genome-sequenced isolates readily available for testing the viability, sterility, and fitness of both intraspecies and interspecies hybrid crosses, Saccharomyces yeasts are an ideal model to study such fundamental questions. Our survey demonstrates that, while chromosomal-level mutations are widespread at the intraspecific level, anti-recombination-driven chromosome missegregation is the primary reproductive barrier between species. Finally, despite their strength, all of these postzygotic barriers can be resolved through the asexual life history of hybrids.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. https://twitter.com/ozan_g_b
| | - Jasmine Ono
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Radman M. Speciation of Genes and Genomes: Conservation of DNA Polymorphism by Barriers to Recombination Raised by Mismatch Repair System. Front Genet 2022; 13:803690. [PMID: 35295946 PMCID: PMC8918686 DOI: 10.3389/fgene.2022.803690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Some basic aspects of human and animal biology and evolution involve the establishment of biological uniqueness of species and individuals within their huge variety. The discrimination among closely related species occurs in their offspring at the level of chromosomal DNA sequence homology, which is required for fertility as the hallmark of species. Biological identification of individuals, i.e., of their biological “self”, occurs at the level of protein sequences presented by the MHC/HLA complex as part of the immune system that discriminates non-self from self. Here, a mechanistic molecular model is presented that can explain how DNA sequence divergence and the activity of key mismatch repair proteins, MutS and MutL, lead to 1) genetic separation of closely related species (sympatric speciation) (Fitch and Ayala, Proceedings of the National Academy of Sciences, 1994, 91, 6717–6720), 2) the stability of genomes riddled by diverged repeated sequences, and 3) conservation of highly polymorphic DNA sequence blocks that constitute the immunological self. All three phenomena involve suppression of recombination between diverged homologies, resulting in prevention of gene sharing between closely related genomes (evolution of new species) as well as sequence sharing between closely related genes within a genome (e.g., evolution of immunoglobulin, MHC, and other gene families bearing conserved polymorphisms).
Collapse
Affiliation(s)
- Miroslav Radman
- Mediterranean Institute for Life Sciences—MedILS, Split, Croatia
- Faculty of Medicine, University R. Descartes, Paris, France
- NAOS Institute for Life Sciences, Aix-en-Provence, France
- School of Medicine, University of Split, Split, Croatia
- *Correspondence: Miroslav Radman,
| |
Collapse
|
5
|
Abstract
Beneficial mutations are rare and deleterious mutations are purged by natural selection. As a result, the vast majority of mutations that accumulate in genomes belong to the class of neutral mutations. Over the last two decades, neutral mutations, despite their null effect on fitness, have been shown to affect evolvability by providing access to new phenotypes through subsequent mutations that would not have been available otherwise. Here we propose that in addition, many mutations - independent of their selective effects - can affect the mutability of neighboring DNA sequences and modulate the efficacy of homologous recombination. Such mutations do not change the spectrum of accessible phenotypes, but rather the rate at which new phenotypes will be produced. Therefore, neutral mutations that accumulate in genomes have an important long-term impact on the evolutionary fate of genomes.
Collapse
|
6
|
Semmler L, Reiter-Brennan C, Klein A. BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J Breast Cancer 2019; 22:1-14. [PMID: 30941229 PMCID: PMC6438831 DOI: 10.4048/jbc.2019.22.e6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/30/2018] [Indexed: 12/24/2022] Open
Abstract
Since the first cloning of BRCA1 in 1994, many of its cellular interactions have been elucidated. However, its highly specific role in tumorigenesis in the breast tissue—carriers of BRCA1 mutations are predisposed to life-time risks of up to 80%—relative to many other tissues that remain unaffected, has not yet been fully enlightened. In this article, we have applied a universal model of tissue-specificity of cancer genes to BRCA1 and present a systematic review of proposed concepts classified into 4 categories. Firstly, tissue-specific differences in levels of BRCA1 expression and secondly differences in expression of proteins with redundant functions are outlined. Thirdly, cell-type specific interactions of BRCA1 are presented: its regulation of aromatase, its interaction with Progesterone- and receptor activator of nuclear factor-κB ligand-signaling that controls proliferation of luminal progenitor cells, and its influence on cell differentiation via modulation of the key regulators jagged 1-NOTCH and snail family transcriptional repressor 2. Fourthly, factors specific to the cell-type as well as the environment of the breast tissue are elucidated: distinct frequency of losses of heterozygosity, interaction with X inactivation specific transcript RNA, estrogen-dependent induction of genotoxic metabolites and nuclear factor (erythroid-derived 2)-like 2, and regulation of sirtuin 1. In conclusion, the impact of these concepts on the formation of hormone-sensitive and -insensitive breast tumors is outlined.
Collapse
Affiliation(s)
- Lukas Semmler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| | - Cara Reiter-Brennan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| | - Andreas Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
7
|
Sedic M, Kuperwasser C. BRCA1-hapoinsufficiency: Unraveling the molecular and cellular basis for tissue-specific cancer. Cell Cycle 2016; 15:621-7. [PMID: 26822887 DOI: 10.1080/15384101.2016.1141841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the past 20 years tremendous progress has been made in understanding the function of BRCA1 gene products. Yet one question still remains: why is mutation of BRCA1 typically associated with preferential development of breast and ovarian cancers and not tumors in other tissues? Here we discuss recent evidence documenting the effect of BRCA1-haploinsufficiency in different cells and tissues and synthesize a model for how mutations in a single BRCA1 allele in human cells might preferentially confer increased cancer risk in breast epithelial cells.
Collapse
Affiliation(s)
- Maja Sedic
- a Department of Developmental , Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston , MA , USA.,b Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine , Boston , MA , USA.,c Molecular Oncology Research Institute, Tufts Medical Center , Boston , MA , USA
| | - Charlotte Kuperwasser
- a Department of Developmental , Chemical, and Molecular Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine , Boston , MA , USA.,b Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine , Boston , MA , USA.,c Molecular Oncology Research Institute, Tufts Medical Center , Boston , MA , USA
| |
Collapse
|
8
|
Grygoryev D, Gauny S, Lasarev M, Ohlrich A, Kronenberg A, Turker MS. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells. Mutat Res 2016; 788:32-40. [PMID: 27055360 DOI: 10.1016/j.mrfmmm.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing (48)Ti ions (1GeV/amu, LET=107 keV/μm), (56)Fe ions (1GeV/amu, LET=151 keV/μm) ions, or sparsely ionizing protons (1GeV, LET=0.24 keV/μm). The lowest doses for (48)Ti and (56)Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3-5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the (48)Ti and (56)Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Stacey Gauny
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michael Lasarev
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Anna Ohlrich
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
9
|
Kim YJ, Ahn KS, Kim M, Kim MJ, Ahn JS, Ryu J, Heo SY, Park SM, Kang JH, Choi YJ, Shim H. Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:439-445. [PMID: 27165032 PMCID: PMC5337925 DOI: 10.5713/ajas.16.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/09/2016] [Accepted: 03/29/2016] [Indexed: 11/30/2022]
Abstract
Objective Production of alpha-1,3-galactosyltransferase (αGT)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous αGT knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce αGT-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. Methods Miniature pig fibroblasts were transfected with αGT gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous αGT gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-α-1,3-galactose, an epitope produced by αGT. Using magnetic activated cell sorting, cells with monoallelic disruption of αGT were removed. Remaining cells with LOH carrying biallelic disruption of αGT were used for the second round NT to produce homozygous αGT gene-targeted piglets. Results Monoallelic mutation of αGT gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous αGT gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous αGT knockout piglets. Conclusion The present study demonstrates that the time required for the production of αGT-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.
Collapse
Affiliation(s)
- Young June Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea.,Institute of Green Bioscience and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Kwang Sung Ahn
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Minjeong Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Min Ju Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jin Seop Ahn
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Junghyun Ryu
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Soon Young Heo
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Sang-Min Park
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jee Hyun Kang
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - You Jung Choi
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Hosup Shim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea.,Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Korea.,Department of Physiology, Dankook University School of Medicine, Cheonan 31116, Korea
| |
Collapse
|
10
|
Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells. PLoS One 2015; 10:e0136041. [PMID: 26295470 PMCID: PMC4546575 DOI: 10.1371/journal.pone.0136041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022] Open
Abstract
It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3’ portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation frequency, thus reducing inter-individual variation.
Collapse
|
11
|
Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 2015; 31:382-92. [PMID: 25910407 DOI: 10.1016/j.tig.2015.03.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022]
Abstract
Nearly all of the genetic material among cells within an organism is identical. However, single-nucleotide variants (SNVs), small insertions/deletions (indels), copy-number variants (CNVs), and other structural variants (SVs) continually accumulate as cells divide during development. This process results in an organism composed of countless cells, each with its own unique personal genome. Thus, every human is undoubtedly mosaic. Mosaic mutations can go unnoticed, underlie genetic disease or normal human variation, and may be transmitted to the next generation as constitutional variants. We review the influence of the developmental timing of mutations, the mechanisms by which they arise, methods for detecting mosaic variants, and the risk of passing these mutations on to the next generation.
Collapse
|
12
|
Ruan X, Liu H, Boardman L, Kocher JPA. Genome-wide analysis of loss of heterozygosity in breast infiltrating ductal carcinoma distant normal tissue highlights arm specific enrichment and expansion across tumor stages. PLoS One 2014; 9:e95783. [PMID: 24748104 PMCID: PMC3991715 DOI: 10.1371/journal.pone.0095783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023] Open
Abstract
Studies have shown concurrent loss of heterozygosity (LOH) in breast infiltrating ductal carcinoma (IDC) and adjacent or distant normal tissue. However, the overall extent of LOH in normal tissue and their significance to tumorigenesis remain unknown, as existing studies are largely based on selected microsatellite markers. Here we present the first autosome-wide study of LOH in IDC and distant normal tissue using informative loci deduced from SNP array-based and sequencing-based techniques. We show a consistently high LOH concurrence rate in IDC (mean = 24%) and distant normal tissue (m = 54%), suggesting for most patients (31/33) histologically normal tissue contains genomic instability that can be a potential marker of increased IDC risk. Concurrent LOH is more frequent in fragile site related genes like WWOX (9/31), NTRK2 (10/31), and FHIT (7/31) than traditional genetic markers like BRCA1 (0/23), BRCA2 (2/29) and TP53 (1/13). Analysis at arm level shows distant normal tissue has low level but non-random enrichment of LOH (topped by 8p and 16q) significantly correlated with matched IDC (Pearson r = 0.66, p = 3.5E-6) (topped by 8p, 11q, 13q, 16q, 17p, and 17q). The arm-specific LOH enrichment was independently observed in tumor samples from 548 IDC patients when stratified by tumor size based T stages. Fine LOH structure from sequencing data indicates LOH in low order tissues non-randomly overlap (∼67%) with LOH that usually has longer tract length (the length of genomic region affected by LOH) in high order tissues. The consistent observations from multiple datasets suggest progressive LOH in the development of IDC potentially through arm-specific pile up effect with discernible signature in normal tissue. Our finding also suggests that LOH detected in IDC by comparing to paired adjacent or distant normal tissue are more likely underestimated.
Collapse
Affiliation(s)
- Xiaoyang Ruan
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Hongfang Liu
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Lisa Boardman
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jean-Pierre A. Kocher
- Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ruan X, Kocher JPA, Pommier Y, Liu H, Reinhold WC. Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap Trios, and relation to fragile site location. PLoS One 2012; 7:e31628. [PMID: 22347499 PMCID: PMC3276511 DOI: 10.1371/journal.pone.0031628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/15/2012] [Indexed: 12/27/2022] Open
Abstract
Runs of homozygosity (ROH) represents extended length of homozygotes on a long genomic distance. In oncology, it is known as loss of heterozygosity (LOH) if identified exclusively in cancer cell rather than in matched control cell. Studies have identified several genomic regions which show consistent ROH in different kinds of carcinoma. To query whether this consistency can be observed on broader spectrum, both in more cancer types and in wider genomic regions, we investigated ROH patterns in the National Cancer Institute 60 cancer cell line panel (NCI-60) and HapMap Caucasian healthy trio families. Using results from Affymetrix 500 K SNP arrays, we report a genome wide significant association of ROH regions between the NCI-60 and HapMap samples, with much a higher level of ROH (11 fold) in the cancer cell lines. Analysis shows that more severe ROH found in cancer cells appears to be the extension of existing ROH in healthy state. In the HapMap trios, the adult subgroup had a slightly but significantly higher level (1.02 fold) of ROH than did the young subgroup. For several ROH regions we observed the co-occurrence of fragile sites (FRAs). However, FRA on the genome wide level does not show a clear relationship with ROH regions.
Collapse
Affiliation(s)
- Xiaoyang Ruan
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jean-Pierre A. Kocher
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hongfang Liu
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (HL); (WCR)
| | - William C. Reinhold
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (HL); (WCR)
| |
Collapse
|
14
|
Abstract
Colon cancer closely follows the paradigm of a single "gatekeeper gene." Mutations inactivating the APC (adenomatous polyposis coli) gene are found in approximately 80% of all human colon tumors and heterozygosity for such mutations produces an autosomal dominant colon cancer predisposition in humans and in murine models. However, this tight association between a single genotype and phenotype belies a complex association of genetic and epigenetic factors that together generate the broad phenotypic spectrum ofboth familial and sporadic colon cancers. In this Chapter, we give a general overview of the structure, function and outstanding issues concerning the role of Apc in human and experimental colon cancer. The availability of increasingly close models for human colon cancer in genetically tractable animal species enables the discovery and eventual molecular identification of genetic modifiers of the Apc-mutant phenotypes, connecting the central role of Apc in colon carcinogenesis to the myriad factors that ultimately determine the course of the disease.
Collapse
|
15
|
Turker MS, Connolly L, Dan C, Lasarev M, Gauny S, Kwoh E, Kronenberg A. Comparison of Autosomal Mutations in Mouse Kidney Epithelial Cells Exposed to Iron IonsIn Situor in Culture. Radiat Res 2009; 172:558-66. [DOI: 10.1667/rr1805.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Fujimura T, Takahagi Y, Shigehisa T, Nagashima H, Miyagawa S, Shirakura R, Murakami H. Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells. Mol Reprod Dev 2008; 75:1372-8. [PMID: 18288673 DOI: 10.1002/mrd.20890] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objective of the present study was to isolate alpha 1,3-galactosyltransferase (GalGT)-gene double knockout (DKO) cells using a novel simple method of cell selection method. To obtain GalGT-DKO cells, GalGT-gene single knockout (SKO) fetal fibroblast cells were cultured for three to nine passages and GalGT-null cells were separated using a biotin-labeled IB4 lectin attached to streptavidin-coated magnetic beads. After 15-17 days of additional cultivation, seven GalGT-DKO cell colonies were obtained from a total of 2.5 x 10(7) GalGT-SKO cells. A total of 926 somatic nuclear transferred embryos reconstructed with the DKO cells were transferred into eight recipient pigs, producing four farrowed, three liveborns, and six stillborns. Absence of GalGT gene in the cloned pigs was confirmed by PCR and Southern blotting. Flow cytometric analysis revealed that alphaGal antigens were not present in the cells of the cloned DKO pigs.
Collapse
Affiliation(s)
- Tatsuya Fujimura
- The Animal Engineering Research Institute, Midorigahara, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sgura A, De Amicis A, Stronati L, Cinelli S, Pacchierotti F, Tanzarella C. Chromosome aberrations and telomere length modulation in bone marrow and spleen cells of melphalan-treated p53+/- mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:467-475. [PMID: 18481314 DOI: 10.1002/em.20405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The p53 gene regulates cell cycle and apoptotic pathways after induction of DNA damage. Telomeres, capping chromosome ends, are involved in maintaining chromosome stability; alterations of their length have been related to increased levels of chromosomal aberrations. To study a possible interaction between chromosome aberrations, telomere dysfunction, and p53, we investigated via painting analysis the induction and persistence of chromosome aberrations in bone marrow and spleen cells of p53+/- (and wild type) mice exposed for 4, 13, or 26 weeks to 2 mg/kg melphalan (MLP), a chemotherapeutic agent with carcinogenic potential. In addition, telomere length was evaluated in bone marrow cells by quantitative fluorescence in situ hybridization (Q-FISH). Chromosome aberrations were significantly increased in both tissues after MLP treatment. The p53 genotype did not influence the response of spleen cells, whereas a slight but significant increase of the aberration frequency was measured in the bone marrow of p53+/- mice exposed to MLP for 13 weeks with respect to the level detected in the matched wild-type group. The main finding of our still preliminary results on telomere length modulation was again a difference between the two genotypes. In bone marrow cells of wild-type mice, MLP treatment was associated with telomere shortening, while in p53+/- mice telomere elongation was the prevalent response to MLP exposure. In agreement with previous literature data, our in vivo study suggests that even the lack of a single functional copy of the p53 gene might have an impact on the quantity and quality of chromosome alterations induced in cycling cells by a clastogenic exposure.
Collapse
|
18
|
Guggisberg A, Baroux C, Grossniklaus U, Conti E. Genomic origin and organization of the allopolyploid Primula egaliksensis investigated by in situ hybridization. ANNALS OF BOTANY 2008; 101:919-27. [PMID: 18308718 PMCID: PMC2710232 DOI: 10.1093/aob/mcn026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/20/2007] [Accepted: 02/04/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Earlier studies have suggested that the tetraploid Primula egaliksensis (2n = 40) originated from hybridization between the diploids P. mistassinica (2n = 18) and P. nutans (2n = 22), which were hypothesized to be the maternal and paternal parent, respectively. The present paper is aimed at verifying the hybrid nature of P. egaliksensis using cytogenetic tools, and to investigate the extent to which the parental genomes have undergone genomic reorganization. METHODS Genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) with ribosomal DNA (rDNA) probes, together with sequencing of the internal transcribed spacer (ITS) region of the rDNA, were used to identify the origin of P. egaliksensis and to explore its genomic organization, particularly at rDNA loci. KEY RESULTS GISH showed that P. egaliksensis inherited all chromosomes from P. mistassinica and P. nutans and did not reveal major intergenomic rearrangements between the parental genomes (e.g. interchromosomal translocations). However, karyological comparisons and FISH experiments suggested small-scale rearrangements, particularly at rDNA sites. Primula egaliksensis lacked the ITS-bearing heterochromatic knobs characteristic of the maternal parent P. mistassinica and maintained only the rDNA loci of P. nutans. These results corroborated sequence data indicating that most ITS sequences of P. egaliksensis were of the paternal repeat type. CONCLUSIONS The lack of major rearrangements may be a consequence of the considerable genetic divergence between the putative parents, while the rapid elimination of the ITS repeats from the maternal progenitor may be explained by the subterminal location of ITS loci or a potential role of nucleolar dominance in chromosome stabilization. These small-scale rearrangements may be indicative of genome diploidization, but further investigations are needed to confirm this assumption.
Collapse
Affiliation(s)
- Alessia Guggisberg
- Institut für Systematische Botanik & Zürich-Basel Plant Science Center, Universität Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | | | | | |
Collapse
|
19
|
Barrera-Oro J, Liu TY, Gorden E, Kucherlapati R, Shao C, Tischfield JA. Role of the mismatch repair gene, Msh6, in suppressing genome instability and radiation-induced mutations. Mutat Res 2008; 642:74-9. [PMID: 18538799 DOI: 10.1016/j.mrfmmm.2008.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
Abstract
Mismatch repair (MMR) is critical for preserving genomic integrity. Failure of this system can accelerate somatic mutation and increase the risk of developing cancer. MSH6, in complex with MSH2, is the MMR protein that mediates DNA repair through the recognition of 1- and 2-bp mismatches. To evaluate the effects of MSH6 deficiency on genomic stability we compared the frequency of in vivo loss of heterozygosity (LOH) between MSH6-proficient and deficient, 129S2xC57BL/6 F1 hybrid mice that were heterozygous for our reporter gene Aprt. We recovered mutant cells that had functionally lost APRT protein activity and categorized the spectrum of mutations responsible for the LOH events. We also measured the mutant frequency at the X-linked gene, Hprt, as a second reporter for point mutation. In Msh6-/-Aprt+/- mice, mutation frequency at Aprt was elevated in both T cells and fibroblasts by 2.5-fold and 5.7-fold, respectively, over Msh6+/+Aprt+/- littermate controls. While a modest increase in mitotic recombination (MR) was observed in MSH6-deficient fibroblasts compared to wild type controls, point mutation was the predominant mechanism leading to APRT deficiency in both cell types. Base substitution, consisting of multiple types of transitions, accounted for all of the point mutations identified within the Aprt coding region. We also assessed the role of MSH6 in preventing mutations caused by a common environmental mutagen, ionizing radiation (IR). In Msh6-/-Aprt+/- mice, 4Gy of X-irradiation induced a significant increase in point mutations at both Aprt and Hprt in T cells, but not in fibroblasts. These findings indicate that MutS alpha reduces spontaneous and IR-induced mutation in a cell type-dependant manner.
Collapse
Affiliation(s)
- Julio Barrera-Oro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rapid Induction of Large Chromosomal Deletions by a Cre/Inverted loxP System in Mouse ES Cell Hybrids. J Mol Biol 2008; 378:328-36. [DOI: 10.1016/j.jmb.2008.01.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/21/2022]
|
21
|
Loewe L, Lamatsch DK. Quantifying the threat of extinction from Muller's ratchet in the diploid Amazon molly (Poecilia formosa). BMC Evol Biol 2008; 8:88. [PMID: 18366680 PMCID: PMC2292145 DOI: 10.1186/1471-2148-8-88] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 03/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available. RESULTS Here we quantify genomic decay in this fish by using a simple model of Muller's ratchet with the most realistic parameter combinations available employing the evolution@home global computing system. We also describe simple extensions of the standard model of Muller's ratchet that allow us to deal with selfing diploids, triploids and mitotic recombination. We show that Muller's ratchet creates a threat of extinction for the Amazon molly for many biologically realistic parameter combinations. In most cases, extinction is expected to occur within a time frame that is less than previous estimates of the age of the species, leading to a genomic decay paradox. CONCLUSION How then does the Amazon molly survive? Several biological processes could individually or in combination solve this genomic decay paradox, including paternal leakage of undamaged DNA from sexual sister species, compensatory mutations and many others. More research is needed to quantify the contribution of these potential solutions towards the survival of the Amazon molly and other (ancient) asexual species.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK
- Centre for Systems Biology Edinburgh, School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Edinburgh EH9 3JU, UK
| | - Dunja K Lamatsch
- Universität Würzburg, Institute of Physiological Chemistry I, Biocenter, Würzburg, 97074 Würzburg, Germany
- Freshwater Biology, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B – 1000 Brussels, Belgium
- University of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
- Austrian Academy of Sciences, Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
22
|
Kasameyer E, Connolly L, Lasarev M, Turker MS. The spectra of large second-step mutations are similar for two different mouse autosomes. Mutat Res 2008; 637:66-72. [PMID: 17714739 PMCID: PMC2233933 DOI: 10.1016/j.mrfmmm.2007.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 07/05/2007] [Accepted: 07/11/2007] [Indexed: 11/16/2022]
Abstract
Loss of tumor suppressor gene expression via mutations plays a critical role in cancer development, particularly when occurring in heterozygous cells. These so-called "second-step" mutational events are often large in size and arise most often from chromosome loss, mitotic recombination, or interstitial deletion. An open question in cancer research is whether different chromosomes are equally susceptible to formation of large mutations, or alternatively if the unique sequence of each chromosome will lead to chromosome-specific mutational spectra. To address this question, the spectra of second-step mutations were determined for chromosomes 8 and 11 in Aprt and Tk mutants, respectively, isolated from primary kidney clones heterozygous for both loci. The results showed that the spectra of large mutational events were essentially the same. This observation suggests that internal and external cellular environments provide the driving force for large autosomal mutational events, and that chromosome structure per se is the substrate upon which these forces act.
Collapse
Affiliation(s)
- Elizabeth Kasameyer
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Sciences University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
23
|
Abstract
A loss-of-function mutation in the APC gene initiates colorectal carcinogenesis. Although the molecular mechanism of tumor initiation is complex, several modifier genes have been identified using mouse models, including the ApcMin mouse. Among the familial adenomatous polyposis mouse lines carrying a truncation mutation at codon 580 in Apc (Apc580D), one line (line19-Apc(580D/+)) showed a remarkably reduced incidence of intestinal adenomas (<5% compared with other lines). Extensive genetic analysis identified a deletion in the alpha-catenin (Ctnna1) gene as the cause of this suppression. Notably, the suppression only occurred when the Ctnna1 deletion was in cis-configuration with the Apc580D mutation. In all adenomas generated in line19-Apc(580D/+), somatic recombination between the Apc and Ctnna1 loci retained the wild-type Ctnna1 allele. These data strongly indicate that simultaneous inactivation of alpha-catenin and Apc during tumor initiation suppresses adenoma formation in line19-Apc(580D/+), suggesting that alpha-catenin plays an essential role in the initiation of intestinal adenomas. Although accumulating evidence obtained from human colon tumors with invasive or metastatic potential has established a tumor-suppressive role for alpha-catenin in late-stage tumorigenesis, the role of alpha-catenin in the initiation of intestinal tumorigenesis is not well documented, especially compared with that of beta-catenin. A mouse model used in this study focused on the early stage of tumor initiation and clearly indicated an essential role for alpha-catenin. Thus, alpha-catenin has dual roles in intestinal tumorigenesis, a supporting role in tumor initiation, and a suppressive role in tumor progression.
Collapse
|
24
|
Abstract
DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old.
Collapse
Affiliation(s)
- Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | |
Collapse
|
25
|
Kwong LN, Shedlovsky A, Biehl BS, Clipson L, Pasch CA, Dove WF. Identification of Mom7, a novel modifier of Apc(Min/+) on mouse chromosome 18. Genetics 2007; 176:1237-44. [PMID: 17435219 PMCID: PMC1894587 DOI: 10.1534/genetics.107.071217] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Apc(Min) mouse model of colorectal cancer provides a discrete, quantitative measurement of tumor multiplicity, allowing for robust quantitative trait locus analysis. This advantage has previously been used to uncover polymorphic modifiers of the Min phenotype: Mom1, which is partly explained by Pla2g2a; Mom2, a spontaneous mutant modifier; and Mom3, which was discovered in an outbred cross. Here, we describe the localization of a novel modifier, Mom7, to the pericentromeric region of chromosome 18. Mom7 was mapped in crosses involving four inbred strains: C57BL/6J (B6), BTBR/Pas (BTBR), AKR/J (AKR), and A/J. There are at least two distinct alleles of Mom7: the recessive, enhancing BTBR, AKR, and A/J alleles and the dominant, suppressive B6 allele. Homozygosity for the enhancing alleles increases tumor number by approximately threefold in the small intestine on both inbred and F(1) backgrounds. Congenic line analysis has narrowed the Mom7 region to within 7.4 Mb of the centromere, 28 Mb proximal to Apc. Analysis of SNP data from various genotyping projects suggests that the region could be as small as 4.4 Mb and that there may be five or more alleles of Mom7 segregating among the many strains of inbred mice. This has implications for experiments involving Apc(Min) and comparisons between different or mixed genetic backgrounds.
Collapse
Affiliation(s)
- Lawrence N. Kwong
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Alexandra Shedlovsky
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Bryan S. Biehl
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Linda Clipson
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Cheri A. Pasch
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - William F. Dove
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Corresponding author: McArdle Laboratory for Cancer Research, 1400 University Ave., Madison, WI 53706. E-mail:
| |
Collapse
|
26
|
Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ. Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 2007; 614:48-55. [PMID: 16914171 DOI: 10.1016/j.mrfmmm.2006.06.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutation frequencies at some loci in mammalian somatic cells in vivo approach 10(-4). The majority of these events occur as a consequence of loss of heterozygosity (LOH) due to mitotic recombination. Such high levels of DNA damage in somatic cells, which can accumulate with age, will cause injury and, after a latency period, may lead to somatic disease and ultimately death. This high level of DNA damage is untenable for germ cells, and by extrapolation for embryonic stem (ES) cells, that must recreate the organism. ES cells cannot tolerate such a high frequency of damage since mutations will immediately impact the altered cell, and subsequently the entire organism. Most importantly, the mutations may be passed on to future generations. ES cells, therefore, must have robust mechanisms to protect the integrity of their genomes. We have examined two such mechanisms. Firstly, we have shown that mutation frequencies and frequencies of mitotic recombination in ES cells are about 100-fold lower than in adult somatic cells or in isogenic mouse embryonic fibroblasts (MEFs). A second complementary protective mechanism eliminates those ES cells that have acquired a mutational burden, thereby maintaining a pristine population. Consistent with this hypothesis, ES cells lack a G1 checkpoint, and the two known signaling pathways that mediate the checkpoint are compromised. The checkpoint kinase, Chk2, which participates in both pathways is sequestered at centrosomes in ES cells and does not phosphorylate its substrates (i.e. p53 and Cdc25A) that must be modified to produce a G1 arrest. Ectopic expression of Chk2 does not rescue the p53-mediated pathway, but does restore the pathway mediated by Cdc25A. Wild type ES cells exposed to ionizing radiation do not accumulate in G1 but do so in S-phase and in G2. ES cells that ectopically express Chk2 undergo cell cycle arrest in G1 as well as G2, and appear to be protected from apoptosis.
Collapse
Affiliation(s)
- Y Hong
- Department of Cell biology, Neurobiology and Anatomy, University of Cincinnati Medical Center, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | | | | | | | | |
Collapse
|
27
|
Koehler KE, Schrump SE, Cherry JP, Hassold TJ, Hunt PA. Near-human aneuploidy levels in female mice with homeologous chromosomes. Curr Biol 2006; 16:R579-80. [PMID: 16890511 DOI: 10.1016/j.cub.2006.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Fischer JM, Robbins SB, Kannamkumarath SS, Al-Zoughool M, Stringer SL, Talaska G, Caruso JA, Stambrook PJ, Stringer JR. Exposure of mice to arsenic and/or benzo[a]pyrene does not increase the frequency of Aprt-deficient cells recovered from explanted skin of Aprt heterozygous mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:334-44. [PMID: 16649189 DOI: 10.1002/em.20212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exposure to inorganic arsenic in drinking water is linked to cancer in humans, but the mechanism of arsenic-induced cancer is not clear. Arsenic is not a powerful point mutagen, but can cause chromosome malsegregation and mitotic recombination, two events that can cause loss of tumor suppressor alleles and thereby contribute to the evolution of cancerous cells. To determine whether arsenic increases the frequency of allele loss due to either malsegregation or mitotic recombination in vivo, Aprt(+/-) hybrid mice were exposed to sodium arsenite (10 mg/L) in their drinking water for 10 weeks. To determine whether arsenic enhances the action of a known mutagen, half of the arsenic-treated mice were exposed to benzo[a]pyrene (BaP) for 8 weeks by skin painting (500 nmoles/week). Cells were taken from painted dorsal skin and cultured in the presence of 2,6-diaminopurine (DAP), to select colonies lacking adenosine phosphoribosyl transferase (Aprt) activity. The frequency of DAP-resistant (DAP(r)) colonies varied substantially within the treatment groups, but there was no significant difference between the groups. Analysis of DNA from DAP(r) colonies suggested that mitotic recombination contributed to the loss of wild-type Aprt allele. Whether arsenic or BaP enhanced or diminished the frequency of this process could not be deduced from these data.
Collapse
Affiliation(s)
- Jared M Fischer
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Q, Ponomareva ON, Lasarev M, Turker MS. High frequency induction of mitotic recombination by ionizing radiation in Mlh1 null mouse cells. Mutat Res 2006; 594:189-98. [PMID: 16343558 DOI: 10.1016/j.mrfmmm.2005.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/22/2005] [Accepted: 09/22/2005] [Indexed: 05/05/2023]
Abstract
Mitotic recombination in somatic cells involves crossover events between homologous autosomal chromosomes. This process can convert a cell with a heterozygous deficiency to one with a homozygous deficiency if a mutant allele is present on one of the two homologous autosomes. Thus mitotic recombination often represents the second mutational step in tumor suppressor gene inactivation. In this study we examined the frequency and spectrum of ionizing radiation (IR)-induced autosomal mutations affecting Aprt expression in a mouse kidney cell line null for the Mlh1 mismatch repair (MMR) gene. The mutant frequency results demonstrated high frequency induction of mutations by IR exposure and the spectral analysis revealed that most of this response was due to the induction of mitotic recombinational events. High frequency induction of mitotic recombination was not observed in a DNA repair-proficient cell line or in a cell line with an MMR-independent mutator phenotype. These results demonstrate that IR exposure can initiate a process leading to mitotic recombinational events and that MMR function suppresses these events from occurring.
Collapse
Affiliation(s)
- Qi Wang
- Center for Research on Occupational and Environmental Toxicology, L606, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
30
|
Shao C, Deng L, Chen Y, Kucherlapati R, Stambrook PJ, Tischfield JA. Mlh1 mediates tissue-specific regulation of mitotic recombination. Oncogene 2005; 23:9017-24. [PMID: 15480418 DOI: 10.1038/sj.onc.1208148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitotic recombination (MR) between chromosome homologs in somatic cells is a major pathway to the loss of heterozygosity (LOH), which may cause cancer if tumor suppressor genes are involved. MR can be suppressed by DNA sequence heterology (homeology) in hybrid mice from matings between species or between subspecies. We now report that MR is relatively suppressed in F1 hybrids between inbred strains C57BL/6 and 129S2. The frequency of MR in fibroblasts is lower in F1 hybrid mice than in either of the two parental strains. However, MR in T cells is not affected by strain background. Thus, relatively small genetic differences are capable of restricting MR in a tissue-specific manner. Using Mlh1-deficient mice, we tested the role of mismatch repair in MR in two isogenic cell types. In fibroblasts of C57BL/6 x 129S2 F1 mice, the suppression of MR is alleviated in the absence of MLH1. In contrast, MR is not affected by Mlh1 status in T cells. The frequency of point mutations at the reporter gene loci Aprt and Hprt, on the other hand, is significantly increased in both T cells and fibroblasts of Mlh1(-/-) mice. Thus, different cell types respond differently to MLH1 deficiency, and the contribution of MR to tumorigenesis may be tissue-dependent in the absence of mismatch repair.
Collapse
Affiliation(s)
- Changshun Shao
- Department of Genetics, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Leder A, McMenamin J, Fontaine K, Bishop A, Leder P. zeta-/- Thalassemic mice are affected by two modifying loci and display unanticipated somatic recombination leading to inherited variation. Hum Mol Genet 2005; 14:615-25. [PMID: 15649944 DOI: 10.1093/hmg/ddi058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thalassemia is a disease caused by a variety of mutations affecting both the adult and embryonic alpha- and beta-globin loci. A mouse strain carrying an embryonic zeta-globin gene disrupted by the insertion of a PGK-Neo cassette displays an alpha-thalassemia-like syndrome. Embryonic survival of this zeta-null mouse is variable and strongly influenced by genetic background, the 129/SvEv mouse strain displaying a more severe phenotype than C57BL/6. We have identified two modifying loci on C57BL/6 chromosomes 2 and 5, which affect the penetrance of embryonic lethality in the 129/SvEv mouse. Through this work, we were able to observe an interesting effect on somatic recombination events in thalassemic embryos. We show that these events can occur on multiple chromosomes in very early embryonic cells, prior to their allocation to the germline. Our results demonstrate that somatic recombination events can be transmitted to subsequent generations.
Collapse
Affiliation(s)
- Aya Leder
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Khrustaleva LI, de Melo PE, van Heusden AW, Kik C. The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid allium population. Genetics 2005; 169:1673-85. [PMID: 15654085 PMCID: PMC1449564 DOI: 10.1534/genetics.104.038687] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrated mapping in large-genome monocots has been carried out on a limited number of species. Furthermore, integrated maps are difficult to construct for these species due to, among other reasons, the specific plant populations needed. To fill these gaps, Alliums were chosen as target species and a new strategy for constructing suitable populations was developed. This strategy involves the use of trihybrid genotypes in which only one homeolog of a chromosome pair is recombinant due to interspecific recombination. We used genotypes from a trihybrid Allium cepa x (A. roylei x A. fistulosum) population. Recombinant chromosomes 5 and 8 from the interspecific parent were analyzed using genomic in situ hybridization visualization of recombination points and the physical positions of recombination were integrated into AFLP linkage maps of both chromosomes. The integrated maps showed that in Alliums recombination predominantly occurs in the proximal half of chromosome arms and that 57.9% of PstI/MseI markers are located in close proximity to the centromeric region, suggesting the presence of genes in this region. These findings are different from data obtained on cereals, where recombination rate and gene density tends to be higher in distal regions.
Collapse
Affiliation(s)
- L I Khrustaleva
- Plant Research International, Wageningen University and Research Center, The Netherlands
| | | | | | | |
Collapse
|
33
|
KOVARIK A, MATYASEK R, LIM KY, SKALICKÁ K, KOUKALOVÁ B, KNAPP S, CHASE M, LEITCH AR. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2004.00345.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Blackburn AC, McLary SC, Naeem R, Luszcz J, Stockton DW, Donehower LA, Mohammed M, Mailhes JB, Soferr T, Naber SP, Otis CN, Jerry DJ. Loss of Heterozygosity Occurs via Mitotic Recombination in Trp53+/− Mice and Associates with Mammary Tumor Susceptibility of the BALB/c Strain. Cancer Res 2004; 64:5140-7. [PMID: 15289317 DOI: 10.1158/0008-5472.can-03-3435] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of heterozygosity (LOH) occurs commonly in cancers causing disruption of tumor suppressor genes and promoting tumor progression. BALB/c-Trp53(+/-) mice are a model of Li-Fraumeni syndrome, exhibiting a high frequency of mammary tumors and other tumor types seen in patients. However, the frequency of mammary tumors and LOH differs among strains of Trp53(+/-) mice, with mammary tumors occurring only on a BALB/c genetic background and showing a high frequency of LOH, whereas Trp53(+/-) mice on a 129/Sv or (C57BL/6 x 129/Sv) mixed background have a very low frequency of mammary tumors and show LOH for Trp53 in only approximately 50% of tumors. We have performed studies on tumors from Trp53(+/-) mice of several genetic backgrounds to examine the mechanism of LOH in BALB/c-Trp53(+/-) mammary tumors. By Southern blotting, 96% (24 of 25) of BALB/c-Trp53(+/-) mammary tumors displayed LOH for Trp53. Karyotype analysis indicated that cells lacking one copy of chromosome 11 were present in all five mammary tumors analyzed but were not always the dominant population. Comparative genomic hybridization analysis of these five tumors indicated either loss or retention of the entire chromosome 11. Thus chromosome loss or deletions within chromosome 11 do not account for the LOH observed by Southern blotting. Simple sequence length polymorphism analysis of (C57BL/6 x BALB/c) F1-Trp53(+/-) mammary tumors showed that LOH occurred over multiple loci and that a combination of maternal and paternal alleles were retained, indicating that mitotic recombination is the most likely mechanism of LOH. Nonmammary tumors of BALB/c mice also showed a high frequency of LOH (22 of 26, 85%) indicating it was not a mammary tumor specific phenomenon but rather a feature of the BALB/c strain. In (C57BL/6 x BALB/c) F1-Trp53(+/-) mice LOH was observed in 93% (13 of 14) of tumors, indicating that the high frequency of LOH was a dominant genetic trait. Thus the high frequency of LOH for Trp53 in BALB/c-Trp53(+/-) mammary tumors occurs via mitotic recombination and is a dominant genetic trait that associates with the occurrence of mammary tumors in (C57BL/6 x BALB/c) F1-Trp53(+/-) mice. These results further implicate double-strand DNA break repair machinery as important contributors to mammary tumorigenesis.
Collapse
Affiliation(s)
- Anneke C Blackburn
- Department of Veterinary and Animal Sciences, Paige Laboratory, University of Massachusetts, Amherst, MA 01003-6410, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kolber-Simonds D, Lai L, Watt SR, Denaro M, Arn S, Augenstein ML, Betthauser J, Carter DB, Greenstein JL, Hao Y, Im GS, Liu Z, Mell GD, Murphy CN, Park KW, Rieke A, Ryan DJJ, Sachs DH, Forsberg EJ, Prather RS, Hawley RJ. Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci U S A 2004; 101:7335-40. [PMID: 15123792 PMCID: PMC409919 DOI: 10.1073/pnas.0307819101] [Citation(s) in RCA: 356] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperacute rejection of porcine organs by old world primate recipients is mediated through preformed antibodies against galactosyl-alpha-1,3-galactose (Galalpha-1,3-Gal) epitopes expressed on the pig cell surface. Previously, we generated inbred miniature swine with a null allele of the alpha-1,3-galactosyltransferase locus (GGTA1) by nuclear transfer (NT) with gene-targeted fibroblasts. To expedite the generation of GGTA1 null pigs, we selected spontaneous null mutant cells from fibroblast cultures of heterozygous animals for use in another round of NT. An unexpectedly high rate of spontaneous loss of GGTA1 function was observed, with the vast majority of null cells resulting from loss of the WT allele. Healthy piglets, hemizygous and homozygous for the gene-targeted allele, were produced by NT by using fibroblasts that had undergone deletional and crossover/gene conversion events, respectively. Aside from loss of Galalpha-1,3-Gal epitopes, there were no obvious phenotypic differences between these null piglets and WT piglets from the same inbred lines. In fact, congenital abnormalities observed in the heterozygous NT animals did not reappear in the serially produced null animals.
Collapse
|
36
|
Yeadon PJ, Bowring FJ, Catcheside DEA. Sequence heterology and gene conversion at his-3 of Neurospora crassa. Curr Genet 2004; 45:289-301. [PMID: 15007624 DOI: 10.1007/s00294-004-0491-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 01/15/2004] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
Although sequence heterology clearly reduces crossing over in yeast, conflicting studies suggest that mismatches may increase or decrease gene conversion. To investigate this issue in an additional species, we measured the effect of local sequence heterology on conversion in his-3 of Neurospora crassa. Mismatches close to the cog recombination initiator or within his-3 reduce conversion to 70% and 30% of the homologous level, respectively, while heterologous insertions between his-3 and cog increase conversion by 20%. We suggest that, in both Neurospora and yeast, mismatches reduce the efficiency of the establishment and resolution stages of recombination, but substantial heterology may increase the progress of already established events by preventing repair synthesis from switching between templates. These data provide additional support that recombination at his-3 (and perhaps at yeast hotspots) proceeds by a synthesis-dependent strand-annealing mechanism, during which synthesis can switch templates, with the process being more tolerant of sequence mismatch in Neurospora.
Collapse
Affiliation(s)
- P Jane Yeadon
- School of Biological Sciences, Flinders University, PO Box 2100, 5001, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
37
|
Ira G, Malkova A, Liberi G, Foiani M, Haber JE. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 2004; 115:401-11. [PMID: 14622595 PMCID: PMC4493758 DOI: 10.1016/s0092-8674(03)00886-9] [Citation(s) in RCA: 461] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Very few gene conversions in mitotic cells are associated with crossovers, suggesting that these events are regulated. This may be important for the maintenance of genetic stability. We have analyzed the relationship between homologous recombination and crossing-over in haploid budding yeast and identified factors involved in the regulation of crossover outcomes. Gene conversions unaccompanied by a crossover appear 30 min before conversions accompanied by exchange, indicating that there are two different repair mechanisms in mitotic cells. Crossovers are rare (5%), but deleting the BLM/WRN homolog, SGS1, or the SRS2 helicase increases crossovers 2- to 3-fold. Overexpressing SRS2 nearly eliminates crossovers, whereas overexpression of RAD51 in srs2Delta cells almost completely eliminates the noncrossover recombination pathway. We suggest Sgs1 and its associated topoisomerase Top3 remove double Holliday junction intermediates from a crossover-producing repair pathway, thereby reducing crossovers. Srs2 promotes the noncrossover synthesis-dependent strand-annealing (SDSA) pathway, apparently by regulating Rad51 binding during strand exchange.
Collapse
Affiliation(s)
- Grzegorz Ira
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Anna Malkova
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Giordano Liberi
- Istituto F.I.R.C. di Oncologia Molecolare, Via Serio 21, 20141 Milano, Italy
- Dipartimento di Genetica e di Biologia dei Microrganismi, Universita degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Marco Foiani
- Istituto F.I.R.C. di Oncologia Molecolare, Via Serio 21, 20141 Milano, Italy
- Dipartimento di Genetica e di Biologia dei Microrganismi, Universita degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - James E. Haber
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
- Correspondence:
| |
Collapse
|
38
|
Abstract
Recent evidence indicates that BRCA1, a gene product associated with breast and ovarian cancer susceptibility, is an important component of the cellular response to DNA damage. Despite being expressed ubiquitously in adult tissues, germline mutations in BRCA1 predispose individuals to breast and ovarian tumors with only minor effects on the predisposition to cancer in other sites. The reason for this tissue specificity of BRCA1 carcinomas must be found if we are to understand fully why these tumors occur and to enable us to design efficient preventive and therapeutic regimens. Here I propose that tissue-specific rates of loss of heterozygosity in the BRCA1 locus could contribute to tissue specificity in tumor development.
Collapse
Affiliation(s)
- Alvaro N A Monteiro
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
39
|
Abstract
The concept of field effects in cancer is old, but recent molecular data have substantiated it. Clones of cells that carry well-defined genetic or epigenetic aberrations, but which have not yet acquired the morphological hallmarks of neoplasia, have been documented in the precursor tissues of some of the most common pediatric and adult malignancies. Here I review this evidence, focusing on loss of heterozygosity (LOH) and gain of DNA methylation.
Collapse
Affiliation(s)
- Benjamin Tycko
- Institute for Cancer Genetics and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
40
|
Haigis KM, Dove WF. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat Genet 2003; 33:33-9. [PMID: 12447373 DOI: 10.1038/ng1055] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/24/2002] [Indexed: 11/08/2022]
Abstract
In mammals, loss of APC/Apc gatekeeper function initiates intestinal tumorigenesis. Several different mechanisms have been shown or proposed to mediate functional loss of APC/Apc: mutation in APC/Apc, non-disjunction, homologous somatic recombination and epigenetic silencing. The demonstration that, in the C57BL/6 (B6) Apc(Min/+) mouse model of inherited intestinal cancer, loss of Apc function can occur by loss of heterozygosity (LOH) through somatic recombination between homologs presents an opportunity to search for polymorphisms in the homologous somatic recombination pathway. We report that the Robertsonian translocation Rb(7.18)9Lub (Rb9) suppresses the multiplicity of intestinal adenomas in this mouse model. As the copy number of Rb9 increases, the association with the interphase nucleolus of the rDNA repeats centromeric to the Apc locus on Chromosome 18 is increasingly disrupted. Our analysis shows that homologous somatic recombination is the principal pathway for LOH in adenomas in B6 Apc(Min/+) mice. These studies provide additional evidence that neoplastic growth can initiate in the complete absence of canonical genomic instability.
Collapse
Affiliation(s)
- Kevin M Haigis
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin-Madison, 1400 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
41
|
|
42
|
Stark JM, Jasin M. Extensive loss of heterozygosity is suppressed during homologous repair of chromosomal breaks. Mol Cell Biol 2003; 23:733-43. [PMID: 12509470 PMCID: PMC151548 DOI: 10.1128/mcb.23.2.733-743.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic alteration in tumors and often extends several megabases to encompass multiple genetic loci or even whole chromosome arms. Based on marker and karyotype analysis of tumor samples, a significant fraction of LOH events appears to arise from mitotic recombination between homologous chromosomes, reminiscent of recombination during meiosis. As DNA double-strand breaks (DSBs) initiate meiotic recombination, a potential mechanism leading to LOH in mitotically dividing cells is DSB repair involving homologous chromosomes. We therefore sought to characterize the extent of LOH arising from DSB-induced recombination between homologous chromosomes in mammalian cells. To this end, a recombination reporter was introduced into a mouse embryonic stem cell line that has nonisogenic maternal and paternal chromosomes, as is the case in human populations, and then a DSB was introduced into one of the chromosomes. Recombinants involving alleles on homologous chromosomes were readily obtained at a frequency of 4.6 x 10(-5); however, this frequency was substantially lower than that of DSB repair by nonhomologous end joining or the inferred frequency of homologous repair involving sister chromatids. Strikingly, the majority of recombinants had LOH restricted to the site of the DSB, with a minor class of recombinants having LOH that extended to markers 6 kb from the DSB. Furthermore, we found no evidence of LOH extending to markers 1 centimorgan or more from the DSB. In addition, crossing over, which can lead to LOH of a whole chromosome arm, was not observed, implying that there are key differences between mitotic and meiotic recombination mechanisms. These results indicate that extensive LOH is normally suppressed during DSB-induced allelic recombination in dividing mammalian cells.
Collapse
Affiliation(s)
- Jeremy M Stark
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
43
|
Abstract
Somatic mosaicism -- the presence of genetically distinct populations of somatic cells in a given organism -- is frequently masked, but it can also result in major phenotypic changes and reveal the expression of otherwise lethal genetic mutations. Mosaicism can be caused by DNA mutations, epigenetic alterations of DNA, chromosomal abnormalities and the spontaneous reversion of inherited mutations. In this review, we discuss the human disorders that result from somatic mosaicism, as well as the molecular genetic mechanisms by which they arise. Specifically, we emphasize the role of selection in the phenotypic manifestations of mosaicism.
Collapse
Affiliation(s)
- Hagop Youssoufian
- Department of Clinical Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08543-4000, USA.
| | | |
Collapse
|
44
|
Koelsch BU, Kindler-Röhrborn A, Held S, Zabel S, Rajewsky MF. Loss of heterozygosity in malignant rat schwannomas chemically induced in hybrids of inbred rat strains with differential tumor susceptibility. Carcinogenesis 2002; 23:1033-7. [PMID: 12082026 DOI: 10.1093/carcin/23.6.1033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Rats of the inbred BD strains strongly differ in their susceptibility to the induction of tumors of the central (CNS) and peripheral nervous system (PNS) by N-ethyl-N-nitrosourea (EtNU). Malignant schwannomas induced in (BDIX x BDIV) and (BDIX x BDVI) rat hybrids were analyzed to identify genetic alterations associated with EtNU-induced tumorigenesis in the PNS. EtNU-induced schwannomas exclusively exhibit an A:T T:A transversion mutation of the neu/Erbb-2 gene located on chromosome 10, with subsequent loss of the wild-type neu/Erbb-2 allele at a post-initiation stage. Targeted allelic deletion mapping previously revealed losses of heterozygosity (LOH) at the distal end of chromosome 10 in a large majority of (BDIX x BDIV) schwannomas. The aims of the present study were (i) to scan the whole genome for further LOHs; (ii) to narrow down the consensus regions of frequently occurring allelic deletions using tumors from different crosses of BD rats; and (iii) to determine the sequence of genetic alterations during schwannoma development. A limited number of (BDIX x BDIV) F(1) tumors were initially screened for LOH and microsatellite instability (MI) by amplifying 58 microsatellite markers spanning the whole genome. LOHs on chromosome 5 were detected in 9/17 tumors, with random loss of the parental alleles. Ninety-two schwannomas from different BD rat-crosses were then analyzed to solidify these data and to determine the consensus region of frequent LOHs. The results indicate that LOHs on chromosomes 10 and 5 are required for the development of EtNU-induced malignant schwannomas from immature neu/Erbb-2 mutant glial cells, and that putative tumor suppressor genes are localized on chromosome 10q32.3, corresponding to human chromosome 17q25.3, and the telomeric region of mouse chromosome 11, and on the telomeric quarter of chromosome 5. MI was detected in <0.2% of cases.
Collapse
Affiliation(s)
- Bernd U Koelsch
- Institute of Cell Biology (Cancer Research), University of Essen Medical School and West German Cancer Center Essen, Hufeland-Strasse 55, D-45122 Essen, Germany
| | | | | | | | | |
Collapse
|
45
|
Shao C, Yin M, Deng L, Stambrook PJ, Doetschman T, Tischfield JA. Loss of heterozygosity and point mutation at Aprt locus in T cells and fibroblasts of Pms2-/- mice. Oncogene 2002; 21:2840-5. [PMID: 11973643 DOI: 10.1038/sj.onc.1205358] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Revised: 01/21/2002] [Accepted: 02/22/2002] [Indexed: 01/09/2023]
Abstract
Mice null for the Pms2 mismatch repair (MMR) gene exhibit a predisposition to lymphoma, microsatellite repeat instability, and failure of spermatogenesis. To study the role of Pms2 in the maintenance of in vivo genomic integrity in somatic cells, we characterized Aprt mutations in T cells and fibroblasts of 129 x C3H Pms2-/-Aprt+/- mice. The spontaneous frequency of DAP-resistant T lymphocytes, as a consequence of APRT-deficiency, was increased threefold. Point mutation, which accounted for less than 20% of the DAP(r) mutant clones in Pms2+/+ mice, was predominant in the mutant T cell clones from Pms2-/- mice. These point mutations were predominantly TA to CG transitions. Fibroblasts of Pms2-/- mice exhibited only a modest increase in the frequency of clones with point mutations, such that mitotic recombination was still the primary cause of APRT deficiency. Thus, the mutator phenotype as a consequence of PMS2 deficiency is tissue-dependent, which may be related to the tissue-specific tumor proneness of Pms2-/- mice.
Collapse
Affiliation(s)
- Changshun Shao
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, NJ 08854-8082, USA
| | | | | | | | | | | |
Collapse
|
46
|
Albanese C, Hulit J, Sakamaki T, Pestell RG. Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol 2002; 13:129-41. [PMID: 12240598 DOI: 10.1016/s1084-9521(02)00021-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to accurately analyze gene function in transgenic mice, as well as to generate credible murine models of human diseases, the ability to regulate temporal- and spatial-specific expression of target genes is absolutely critical. Pioneering work in inducible transgenics, begun in the 1980s and continuing to the present, has led to the development of a variety of different inducible systems dedicated to this goal, the shared basis of which is the accurate conditional expression of a given transgene. Recent advances in inducible transgene expression in mice are discussed.
Collapse
Affiliation(s)
- Chris Albanese
- Department of Developmental and Molecular Biology, The Albert Einstein Cancer Center, Division of Hormone-Dependent Tumor Biology, Albert Einstein College of Medicine, Bronkx, NY 10461, USA.
| | | | | | | |
Collapse
|
47
|
Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci U S A 2002; 99:3586-90. [PMID: 11891338 PMCID: PMC122567 DOI: 10.1073/pnas.062527199] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pluripotent embryonic stem (ES) cells have been used to produce genetically modified mice as experimental models of human genetic diseases. Increasingly, human ES cells are being considered for their potential in the treatment of injury and disease. Here we have shown that mutation in murine ES cells, heterozygous at the selectable Aprt locus, differs from that in embryonic somatic cells. The mutation frequency in ES cells is significantly lower than that in mouse embryonic fibroblasts, which is similar to that in adult cells in vivo. The distribution of spontaneous mutagenic events is remarkably different between the two cell types. Although loss of the functional allele is the predominant mutation type in both cases, representing about 80% of all events, mitotic recombination accounted for all loss of heterozygosity events detected in somatic cells. In contrast, mitotic recombination in ES cells appeared to be suppressed and chromosome loss/reduplication, leading to uniparental disomy (UPD), represented more than half of the loss of heterozygosity events. Extended culture of ES cells led to accumulation of cells with adenine phosphoribosyltransferase deficiency and UPD. Because UPD leads to reduction to homozygosity at multiple recessive disease loci, including tumor suppressor loci, in the affected chromosome, the increased risk of tumor formation after stem cell therapy should be viewed with concern.
Collapse
Affiliation(s)
- Rachel B Cervantes
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Vontz Center for Molecular Studies, Cincinnati, OH 45267-052, USA
| | | | | | | | | |
Collapse
|
48
|
Wu Y, Renard CA, Apiou F, Huerre M, Tiollais P, Dutrillaux B, Buendia MA. Recurrent allelic deletions at mouse chromosomes 4 and 14 in Myc-induced liver tumors. Oncogene 2002; 21:1518-26. [PMID: 11896580 DOI: 10.1038/sj.onc.1205208] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 11/12/2001] [Accepted: 11/28/2001] [Indexed: 02/02/2023]
Abstract
Transgenic mice expressing the c-Myc oncogene driven by woodchuck hepatitis virus (WHV) regulatory sequences develop hepatocellular carcinoma with a high frequency. To investigate genetic lesions that cooperate with Myc in liver carcinogenesis, we conducted a genome-wide scan for loss of heterozygosity (LOH) and mutational analysis of beta-catenin in 37 hepatocellular adenomas and carcinomas from C57BL/6 x castaneus F1 transgenic mice. In a subset of these tumors, chromosome imbalances were examined by comparative genomic hybridization (CGH). Allelotyping with 99 microsatellite markers spanning all autosomes revealed allelic imbalances at one or more chromosomes in 83.8% of cases. The overall fractional allelic loss was rather low, with a mean index of 0.066. However, significant LOH rates involved chromosomes 4 (21.6% of tumors), 14, 9 and 1 (11 to 16%). Interstitial LOH on chromosome 4 was mapped at band C4-C7 that contains the INK4a/ARF and INK4b loci, and on chromosome 14 at band B-D including the RB locus. In man, the homologous chromosomal regions 9p21, 13q14 and 8p21-23 are frequently deleted in liver cancer. LOH at chromosomes 1 and 14, and beta-catenin mutations (12.5% of cases) were seen only in HCCs. All tumors examined were found to be aneuploid. CGH analysis of 10 representative cases revealed recurrent gains at chromosomes 16 and 19, but losses or deletions involving mostly chromosomes 4 and 14 generally prevailed over gains. Thus, Myc activation in the liver might select for inactivation of tumor suppressor genes on regions of chromosomes 4 and 14 in a context of low genomic instability. Myc transgenic mice provide a useful model for better defining crosstalks between oncogene and tumor suppressor pathways in liver tumorigenesis.
Collapse
MESH Headings
- Adenoma, Liver Cell/etiology
- Adenoma, Liver Cell/genetics
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Chromosome Mapping
- Cytoskeletal Proteins/genetics
- DNA Mutational Analysis
- DNA, Neoplasm/analysis
- Flow Cytometry
- Genes, myc
- Hepatitis B Virus, Woodchuck/genetics
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/genetics
- Loss of Heterozygosity
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Nucleic Acid Hybridization
- Ploidies
- Trans-Activators
- beta Catenin
Collapse
Affiliation(s)
- Yuanfei Wu
- Unité de Recombinaison et Expression Génétique (Inserm U163), Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
|