1
|
Afifi A, Olpin S, Dalton A, Bishop N, Grabowski PS. Failure to repair the c.338C>T mutation in carnitine palmitoyl transferase 2 deficient skin fibroblasts using chimeraplasty. Mol Genet Metab 2008; 93:347-9. [PMID: 18024217 DOI: 10.1016/j.ymgme.2007.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/06/2007] [Indexed: 11/29/2022]
Abstract
Chimeraplasty, using oligonucleotides to target gene repair, was heralded as an efficient alternative approach to conventional gene therapy. We designed oligonucleotides to target a common mutation in the carnitine palmitoyl transferase 2 gene and developed a specific and sensitive assay to detect gene repair in human skin fibroblasts homozygous for the mutation. We failed to repair the gene under a variety of conditions and believe this approach is of little value until cellular DNA repair mechanisms are much better understood.
Collapse
Affiliation(s)
- Amal Afifi
- Academic Unit of Child Health, University of Sheffield, Stephenson Wing, Sheffield Children's NHS Trust, Damer Street, Sheffield S10 2TH, UK
| | | | | | | | | |
Collapse
|
2
|
Miller DG, Wang PR, Petek LM, Hirata RK, Sands MS, Russell DW. Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol 2006; 24:1022-6. [PMID: 16878127 DOI: 10.1038/nbt1231] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 06/15/2006] [Indexed: 12/28/2022]
Abstract
Therapeutic gene delivery typically involves the addition of a transgene expression cassette to mutant cells. This approach is complicated by transgene silencing, aberrant transcriptional regulation and insertional mutagenesis. An alternative strategy is to correct mutations through homologous recombination, allowing for normal regulation of gene expression from the endogenous locus. Adeno-associated virus (AAV) vectors containing single-stranded DNA efficiently transduce cells in vivo and have been shown to target homologous chromosomal sequences in cultured cells. To determine whether AAV-mediated gene targeting can occur in vivo, we developed a mouse model that contains a mutant, nuclear-localized lacZ gene inserted at the ubiquitously expressed ROSA26 locus. Foci of beta-galactosidase-positive hepatocytes were observed in these mice after injection with an AAV vector containing a lacZ gene fragment, and precise correction of the 4-bp deletion was demonstrated by gene sequencing. We also used AAV gene-targeting vectors to correct the naturally occurring GusB gene mutation responsible for murine mucopolysaccharidosis type VII.
Collapse
Affiliation(s)
- Daniel G Miller
- Department of Pediatrics, Division of Genetics and Developmental Medicine, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7720, USA
| | | | | | | | | | | |
Collapse
|
3
|
De Meyer SF, Pareyn I, Baert J, Deckmyn H, Vanhoorelbeke K. False positive results in chimeraplasty for von Willebrand Disease. Thromb Res 2006; 119:93-104. [PMID: 16457874 DOI: 10.1016/j.thromres.2005.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 12/09/2005] [Accepted: 12/10/2005] [Indexed: 11/30/2022]
Abstract
Chimeraplasty or the use of chimeric RNA/DNA oligonucleotides (RDOs) to correct single-base mutations emerged in the field of gene therapy with reported base pair conversions of up to 40%. We investigated the applicability of chimeraplasty to correct a point mutation in the von Willebrand Factor (VWF) gene resulting in a von Willebrand Disease (VWD) type 3 phenotype. Although we have access to VWD type 3 dogs, we used wild type endothelial cells for in vitro studies, as isolation of endothelial cells from VWD type 3 dogs is not straightforward due to the bleeding diathesis. RDOs to convert the wild type VWF gene into VWD type 3 gDNA were constructed and used in various transfection conditions. However, no gene conversion could be detected either in the RNA or in the DNA isolated from transfected cells, not even with the sensitive colony hybridisation technique, despite the presence of RDOs in the cell nucleus. On the other hand, sequence analysis of isolated DNA of transfected cells did reveal the presence of VWF type 3 DNA. However, this apparent conversion is very likely not the result of RDO-mediated nucleotide conversion as the same VWF type 3 DNA sequence was also detected in negative control experiments where no RDO was used. Our negative results are in line with the emerging reports of chimeraplasty failure and can contribute to the call for an international "chimeraplasty consortium" with free exchange of results to clarify the controversy about the applicability of the RDO-mediated base conversion.
Collapse
Affiliation(s)
- Simon F De Meyer
- Laboratory for Thrombosis Research, IRC, KU Leuven Campus Kortrijk, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | | | | | | | | |
Collapse
|
4
|
Yin W, Kren B, Steer C. Site-specific base changes in the coding or promoter region of the human beta- and gamma-globin genes by single-stranded oligonucleotides. Biochem J 2005; 390:253-61. [PMID: 15828874 PMCID: PMC1184579 DOI: 10.1042/bj20050045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SSOs (single-stranded oligonucleotides) can mediate site-specific alteration of base-pairs in episomal and chromosomal target genes in mammalian cells. The TNE (targeted nucleotide exchange) can result in either repair or mutation of a gene sequence and is mediated through endogenous DNA repair pathway(s). Thus the approach provides a technique for the treatment of monogenic disorders associated with specific point mutations such as SCD (sickle cell disease). We studied the potential application of SSOs for SCD by introducing either an A to T substitution at the sixth codon of the human beta-globin gene (sickle locus) or a C to G mutation at -202 of the Ggamma-globin gene promoter region. The latter TNE is an alternative strategy to ameliorate the clinical manifestations of sickle cell anaemia by re-activating fetal haemoglobin gene expression in adult erythrocytes. A sensitive and valid PCR assay system was developed, which allows detection of point mutations as low as 0.01% at these sites. Using this system, TNE between 0.01 and 0.1% at the sickle locus or gamma-globin gene promoter region was detected after transfection with SSOs in cultured human cell lines. TNE in the Ggamma-globin promoter region exhibited varying degrees of strand bias that was dependent on SSO design and the cell's DNA mismatch repair activity. The results suggest that the endogenous DNA repair machinery may permit SSO correction of the sickle defect by modification of the beta- and/or gamma-globin genes.
Collapse
Affiliation(s)
- Wenxuan Yin
- *Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
| | - Betsy T. Kren
- *Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
| | - Clifford J. Steer
- *Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
- †Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
5
|
Tagalakis AD, Dickson JG, Owen JS, Simons JP. Correction of the neuropathogenic human apolipoprotein E4 (APOE4) gene to APOE3 in vitro using synthetic RNA/DNA oligonucleotides (chimeraplasts). J Mol Neurosci 2005; 25:95-103. [PMID: 15781970 DOI: 10.1385/jmn:25:1:095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 06/22/2004] [Indexed: 11/11/2022]
Abstract
Apolipoprotein E (apoE) is a multifunctional circulating 34-kDa protein, whose gene encodes single-nucleotide polymorphisms linked to several neurodegenerative diseases. Here, we evaluate whether synthetic RNA/DNA oligonucleotides (chimeraplasts) can convert a dysfunctional gene, APOE4 (C, A and E, T, Cys112Arg), a risk factor for Alzheimer's disease and other neurological disorders, into wild-type APOE3. In preliminary experiments, we treated recombinant Chinese hamster ovary (CHO) cells stably secreting apoE4 and lymphocytes from a patient homozygous for the epsilon 4 allele with a 68-mer apoE4-to-apoE3 chimeraplast, complexed to the cationic delivery reagent, polyethyleneimine. Genotypes were analyzed after 48 h by routine polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and by genomic sequencing. Clear conversions of APOE4 to APOE3 were detected using either technique, although high concentrations of chimeraplast were needed (> or =800 nM). Spiking experiments of PCR reactions or CHO-K1 cells with the chimeraplast confirmed that the repair was not artifactual. However, when treated recombinant CHO cells were passaged for 10 d and then subcloned, no conversion could be detected when >90 clones were analyzed by locus-specific PCR-RFLP. We conclude that the apparent efficient repair of the APOE4 gene in CHO cells or lymphocytes 48 h post-treatment is unstable, possibly because the high levels of chimeraplast and polyethyleneimine that were needed to induce nucleotide substitution are cytotoxic.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Department of Anatomy and Developmental Biology, Royal Free and University College Medical School, London, UK
| | | | | | | |
Collapse
|
6
|
Yin WX, Wu XS, Liu G, Li ZH, Watt RM, Huang JD, Liu DP, Liang CC. Targeted correction of a chromosomal point mutation by modified single-stranded oligonucleotides in a GFP recovery system. Biochem Biophys Res Commun 2005; 334:1032-41. [PMID: 16039616 DOI: 10.1016/j.bbrc.2005.06.193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 11/29/2022]
Abstract
Synthetic oligonucleotides had been employed in DNA repair and promised great potentials in gene therapy. To test the ability of single-stranded oligonucleotide (SSO)-mediated gene repair within a chromosomal site in human cells, a HeLa cell line stably integrated with mutant enhanced green fluorescence protein gene (mEGFP) in the genome was established. Transfection with specific SSOs successfully repaired the mEGFP gene and resulted in the expression of functional fluorescence proteins, which could be detected by fluorescence microscopy and FACS assay. Western blot showed that EGFP was only present in the cells transfected with correction SSOs rather than the control SSOs. Furthermore, DNA sequencing confirmed that phenotype change resulted from the designated nucleotide correction at the target site. Using this reporter system, we determined the optimal structure of SSO by investigating the effect of length, modifications, and polarities of SSOs as well as the positions of the mismatch-forming nucleotide on the efficiency of SSO-mediated gene repair. Interestingly, we found that SSOs with mismatch-forming nucleotide positioned at different positions have varying potencies that homology at the 5'-end of SSOs was more crucial for the SSO's activity. These results provided guidance for designing effective SSOs as tools for treating monogenic inherited diseases.
Collapse
Affiliation(s)
- Wen-Xuan Yin
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100005, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Andrieu-Soler C, Casas M, Faussat AM, Gandolphe C, Doat M, Tempé D, Giovannangeli C, Behar-Cohen F, Concordet JP. Stable transmission of targeted gene modification using single-stranded oligonucleotides with flanking LNAs. Nucleic Acids Res 2005; 33:3733-42. [PMID: 16002788 PMCID: PMC1174897 DOI: 10.1093/nar/gki686] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Targeted mutagenesis directed by oligonucleotides (ONs) is a promising method for manipulating the genome in higher eukaryotes. In this study, we have compared gene editing by different ONs on two new target sequences, the eBFP and the rd1 mutant photoreceptor βPDE cDNAs, which were integrated as single copy transgenes at the same genomic site in 293T cells. Interestingly, antisense ONs were superior to sense ONs for one target only, showing that target sequence can by itself impart strand-bias in gene editing. The most efficient ONs were short 25 nt ONs with flanking locked nucleic acids (LNAs), a chemistry that had only been tested for targeted nucleotide mutagenesis in yeast, and 25 nt ONs with phosphorothioate linkages. We showed that LNA-modified ONs mediate dose-dependent target modification and analyzed the importance of LNA position and content. Importantly, when using ONs with flanking LNAs, targeted gene modification was stably transmitted during cell division, which allowed reliable cloning of modified cells, a feature essential for further applications in functional genomics and gene therapy. Finally, we showed that ONs with flanking LNAs aimed at correcting the rd1 stop mutation could promote survival of photoreceptors in retinas of rd1 mutant mice, suggesting that they are also active in vivo.
Collapse
Affiliation(s)
- Charlotte Andrieu-Soler
- INSERM U598, Institut Biomédical des Cordeliers15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
| | - Mariana Casas
- Département Génétique et Développement, Institut Cochin, INSERM U567, CNRS UMR810424 rue du Faubourg St-Jacques, 75014 Paris, France
| | - Anne-Marie Faussat
- INSERM U598, Institut Biomédical des Cordeliers15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
| | - Christelle Gandolphe
- INSERM U598, Institut Biomédical des Cordeliers15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
| | - Marc Doat
- INSERM U598, Institut Biomédical des Cordeliers15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
| | - Denis Tempé
- Département Génétique et Développement, Institut Cochin, INSERM U567, CNRS UMR810424 rue du Faubourg St-Jacques, 75014 Paris, France
| | - Carine Giovannangeli
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM, U565, CNRS UMR 51537505 Paris, France
| | - Francine Behar-Cohen
- INSERM U598, Institut Biomédical des Cordeliers15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France
- Fondation Ophtalmologique RothschildParis, France
| | - Jean-Paul Concordet
- Département Génétique et Développement, Institut Cochin, INSERM U567, CNRS UMR810424 rue du Faubourg St-Jacques, 75014 Paris, France
- To whom correspondence should be addressed. Tel: +33 1 44412436; Fax: +33 1 44412421;
| |
Collapse
|
8
|
Abstract
During the last decade, chimeric RNA-DNA oligonucleotides (RDOs) and single-stranded oligodeoxynucleotides have been used to make permanent and specific sequence changes in the genome, with the ultimate goal of curing human genetic disorders caused by mutations. There have been large variations observed in the rate of gene repair in these studies. This has been due, at least in part, to the lack of standardized assay conditions and the paucity of mechanistic studies in the early developmental stages. Previously, it was proposed that strand pairing is the rate-limiting step and mismatch DNA repair is involved in the gene repair process. We propose an alternative model, in which an oligonucleotide is assimilated to the target DNA during active transcription, leading to formation of a transient D-loop. The trafficking of RNA polymerase is interrupted by the D-loop, and the stalled RNA polymerase complex may signal for recruitment of DNA repair proteins, including transcription-coupled DNA repair and nucleotide-excision repair. Thus, oligonucleotides can be considered as a class of DNA-damaging agents that cause a transient but major structural change in DNA. Understanding of the recognition and repair pathways to process this unusual DNA structure may have relevance in physiologic processes, transcription, and DNA replication.
Collapse
Affiliation(s)
- Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
9
|
Wu XS, Xin L, Yin WX, Shang XY, Lu L, Watt RM, Cheah KSE, Huang JD, Liu DP, Liang CC. Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression. Proc Natl Acad Sci U S A 2005; 102:2508-13. [PMID: 15695590 PMCID: PMC548982 DOI: 10.1073/pnas.0406991102] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Targeted gene modification mediated by single-stranded oligonucleotides (SSOs) holds great potential for widespread use in a number of biological and biomedical fields, including functional genomics and gene therapy. By using this approach, specific genetic changes have been created in a number of prokaryotic and eukaryotic systems. In mammalian cells, the precise mechanism of SSO-mediated chromosome alteration remains to be established, and there have been problems in obtaining reproducible targeting efficiencies. It has previously been suggested that the chromatin structure, which changes throughout the cell cycle, may be a key factor underlying these variations in efficiency. This hypothesis prompted us to systematically investigate SSO-mediated gene repair at various phases of the cell cycle in a mammalian cell line. We found that the efficiency of SSO-mediated gene repair was elevated by approximately 10-fold in thymidine-treated S-phase cells. The increase in repair frequency correlated positively with the duration of SSO/thymidine coincubation with host cells after transfection. We supply evidence suggesting that these increased repair frequencies arise from a thymidine-induced slowdown of replication fork progression. Our studies provide fresh insight into the mechanism of SSO-mediated gene repair in mammalian cells and demonstrate how its efficiency may be reliably and substantially increased.
Collapse
Affiliation(s)
- Xue-Song Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Terunuma A, Ye J, Emmert S, Khan SG, Kraemer KH, Vogel JC. Ultraviolet light selection assay to optimize oligonucleotide correction of mutations in endogenous xeroderma pigmentosum genes. Gene Ther 2005; 11:1729-34. [PMID: 15334113 DOI: 10.1038/sj.gt.3302344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Various oligonucleotide (ODN)-based approaches have been proposed for their ability to correct mutated genes at the normal chromosomal locations. However, the reported gene correction frequencies of these approaches have varied markedly in different experimental settings, including when different tissues or cell types are targeted. In order to find the optimal ODN-based approach for a specific target tissue, an assay system that allows direct comparison of the different methods on that tissue is necessary. Herein, we describe an XP-UVC selection assay that can be used to evaluate and compare gene correction frequencies in different cell types obtained from a xeroderma pigmentosum (XP) patient, following treatment by different ODN-based approaches. As an experimental example, the XP-UVC selection assay was used to assess the ability of chimeric RNA/DNA ODN to correct point mutations in the XPA gene. This assay can be used to assess and evaluate other types of ODN-based approaches, and to further optimize them.
Collapse
Affiliation(s)
- A Terunuma
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
11
|
Parekh-Olmedo H, Kmiec EB. Targeted nucleotide exchange in the CAG repeat region of the human HD gene. Biochem Biophys Res Commun 2003; 310:660-6. [PMID: 14521962 DOI: 10.1016/j.bbrc.2003.09.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is marked by the expansion of a tract of repeated CAG codons in the HD-gene, IT15. Once expressed, the expanded poly Q region of the huntingtin protein (Htt), which is normally soluble, becomes insoluble, leading to the formation of intracellular inclusions and ultimately to neuronal degeneration. Interruption of the pure poly Q tract at the genetic level should undermine the transition from Htt solubility to Htt insolubility. Modified single-stranded oligonucleotides were used to direct the nucleotide exchange of an A residue to a T residue in the second codon of the HD-gene, resulting in the creation of a leucine residue among the poly Q tract. Consistent with results from other groups, we provide evidence that short synthetic DNA molecules can modify the HD-gene directly, preliminarily offering a potential therapeutic approach to Huntington's disease.
Collapse
Affiliation(s)
- Hetal Parekh-Olmedo
- Department of Biology, University of Delaware, Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | | |
Collapse
|
12
|
Abstract
A technique that can direct the repair of a genetic mutation in a human chromosome using the DNA repair machinery of the cell is under development. Although this approach is not as mature as other forms of gene therapy and fundamental problems continue to arise, it promises to be the ultimate therapy for many inherited disorders. There is a continuing effort to understand the potential and the limitations of this controversial approach.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
13
|
Manzano A, Mohri Z, Sperber G, Ogris M, Graham I, Dickson G, Owen JS. Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts). J Gene Med 2003; 5:795-802. [PMID: 12950070 DOI: 10.1002/jgm.403] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Elevated plasma high-density lipoprotein (HDL), and its major constituent apolipoprotein AI (apoAI), are cardioprotective. Paradoxically, two natural variants of apoAI, termed apoAI(Milano) and apoAI(Paris), are associated with low HDL, but nevertheless provide remarkable protection against heart disease for heterozygous carriers and may even lead to longevity. Both variants arise from point mutations and have Arg(173) and Arg(151) to Cys substitutions, respectively, which allow disulphide-linked dimers to form. Potentially, synthetic RNA/DNA oligonucleotides (chimeraplasts) can permanently correct single point mutations in genomic DNA. Here, we use a variation of such targeted gene repair technology, 'gain-of-function chimeraplasty', and attempt to enhance the biological activity of apoAI by altering a single genomic base to generate the atheroprotective phenotypes, apoAI(Milano) and apoAI(Paris). METHODS We targeted two cultured cell lines that secrete human apoAI, hepatoblastoma HepG2 cells and recombinant CHO-AI cells, using standard 68-mer chimeraplasts with polyethyleneimine (PEI) as carrier and then systematically varied several experimental conditions. As a positive control we targeted the dysfunctional APOE2 gene, which we have previously converted to wild-type APOE3. RESULTS Conversion of wild-type apoAI to apoAI(Milano) proved refractory, with limited correction in CHO-AI cells only. However, a successful conversion to apoAI(Paris) was achieved, as demonstrated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis and direct genomic sequencing. Unexpectedly, attempts with a new batch of 68-mer chimeraplast to enhance conversion, by using different delivery vehicles, including chemically modified PEI, failed to show a base change; nor could conversion be detected with an 80-mer or a 52-76-mer series. In contrast, when a co-culture of CHO-E2 and CHO-AI cells was co-targeted, a clear conversion of apoE2 to apoE3 was seen, whereas no apoAI(Paris) could be detected. When the individual chimeraplasts were analysed by denaturing electrophoresis only the active apoE2-to-E3 chimeraplast gave a sharp band. CONCLUSIONS Our findings suggest that different batches of chimeraplasts have variable characteristics and that their quality may be a key factor for efficient targeting and/or base conversion. We conclude that, although an evolving technology with enormous potential, chimeraplast-directed gene repair remains problematical.
Collapse
Affiliation(s)
- Anna Manzano
- Department of Medicine, Royal Free and University College Medical School, London NW3 2PF, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Biased gene repair needs unbiased review. Nat Rev Genet 2003. [DOI: 10.1038/nrg1156-c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Kochevenko A, Willmitzer L. Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate syntase gene. PLANT PHYSIOLOGY 2003; 132:174-84. [PMID: 12746523 PMCID: PMC166963 DOI: 10.1104/pp.102.016857] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 12/03/2002] [Accepted: 02/12/2003] [Indexed: 05/20/2023]
Abstract
Single amino acid substitutions at either of two crucial positions in acetolactate synthase (ALS) result in a chlorsulfuron-insensitive form of this enzyme and, as a consequence, a herbicide-resistant phenotype. Here, we describe the successful in vivo targeting of endogenous tobacco (Nicotiana tabacum) ALS genes using chimeric RNA/DNA and all-DNA oligonucleotides at two different locations. Similar number of conversion events with two different chimeras indicates the absence of restricting influence of genomic target sequence on the gene repair in tobacco. Chlorsulfuron-resistant plants were regenerated from calli after mesophyll protoplast electroporation or leaf tissue particle bombardment with these specifically constructed chimeras. Sequence analysis and enzyme assays proved the resulting alterations to ALS at both DNA and protein levels. Furthermore, foliar application of chlorsulfuron confirmed the development of resistant phenotypes. Lines with proline-196-alanine, threonine, glutamine, or serine substitutions or with tryptophan-573-leucine substitutions were highly resistant at both cellular and whole plant levels, whereas lines with proline-196-leucine substitutions were less resistant. The stability of these modifications was demonstrated by the continuous growth of calli on chlorsulfuron-containing medium and by the transmission of herbicide resistance to progeny in a Mendelian manner. Ability of haploid state to promote chimera-mediated conversions is discussed.
Collapse
Affiliation(s)
- Andrej Kochevenko
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany.
| | | |
Collapse
|
16
|
Abstract
The nature of DNA, the sequence of the human genome and our increased understanding of the genetic basis of many inherited and acquired disorders have made the possibility of curing diseases a reality. The modulation of a host's genome is now the ultimate goal in the treatment of genetic diseases. Historically, gene therapy recognized two very different approaches: gene replacement or augmentation and gene repair. Gene repair precisely targets and corrects the chromosomal mutation responsible for a genetic and/or acquired disorder. Many recent advances have been made in this area of research.
Collapse
Affiliation(s)
- Betsy T Kren
- Department of Medicine, University of Minnesota Medical School MMC 36, Mayo Building A536, 420 Delaware Street, Minneapolis, MN 55455, USA
| | | |
Collapse
|
17
|
Abstract
Transgenic animals have been used for years to study gene function and to create models for the study of human diseases. This approach has become still more justified after the complete sequencing of several genomes. Transgenic animals are ready to become industrial bioreactors for the preparation of pharmaceuticals in milk and probably in the future in egg white. Improvement of animal production by transgenesis is still in infancy. Despite its intensive use, animal transgenesis is still suffering from technical limitations. The generation of transgenics has recently become easier or possible for different species thanks to the use of transposons or retrovirus, to incubation of sperm which DNA followed by fertilization by intracellular sperm injection or not and to the use of the cloning technique using somatic cells in which genes have been added or inactivated. The Cre-LoxP system is more and more used to withdraw a given sequence from the genome or to target the integration of a foreign DNA. The tetracycline system has been improved and can more and more frequently be used to obtain faithful expression of transgenes. Several tools: RNA forming a triple helix with DNA, antisense RNA including double strand RNA inducing RNA interference and ribozymes, and also expression of proteins having a negative transdominant effect, are tentatively being improved to inhibit specifically the expression of host or viral genes.All these techniques are expected to offer experimenters new and more precise models to study gene function even in large animals. Improvement of breeding by transgenesis has become more plausible including through the precise allele replacement in farm animals.
Collapse
Affiliation(s)
- Louis-Marie Houdebine
- Biologie du Développement et Biotechnologies, Institut National de la Recherche Agronomique, 78352 Jouy en JosasCedex, France.
| |
Collapse
|
18
|
|
19
|
Abstract
The main strategy of gene therapy has traditionally been focused on gene augmentation. This approach typically involves the introduction of an expression system designed to express a specific protein in the transfected cell. Both the basic and clinical sciences have generated enough information to suggest that gene therapy would eventually alter the fundamental practice of modern medicine. However, despite progress in the field, widespread clinical applications and success have not been achieved. The myriad deficiencies associated with gene augmentation have resulted in the development of alternative approaches to treat inherited and acquired genetic disorders. One, derived primarily from the pioneering work of homologous recombination, is gene repair. Simply stated, the process involves targeting the mutation in situ for gene correction and a return to normal gene function. Site-specific genetic repair has many advantages over augmentation although it too is associated with significant limitations. This review outlines the advantages and disadvantages of gene correction. In particular, we discuss technologies based on chimeric RNA/DNA oligonucleotides, single-stranded and triplex-forming oligonucleotides, and small fragment homologous replacement. While each of these approaches is different, they all share a number of common characteristics, including the need for efficient delivery of nucleic acids to the nucleus. In addition, we review the potential application of a novel and exciting nonviral gene augmentation strategy--the Sleeping Beauty transposon system.
Collapse
Affiliation(s)
- Paul D Richardson
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MH 55455, USA
| | | | | | | |
Collapse
|
20
|
Graham IR, Dickson G. Gene repair and mutagenesis mediated by chimeric RNA-DNA oligonucleotides: chimeraplasty for gene therapy and conversion of single nucleotide polymorphisms (SNPs). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:1-6. [PMID: 12009417 DOI: 10.1016/s0925-4439(02)00068-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gene augmentation is an attractive and viable approach in treatment of inherited diseases, despite its limitations, such as the eliciting of host immune response, and the sustainability of gene expression. Therefore, alternative therapeutic approaches are being investigated, such as the use of chimeric RNA-DNA oligonucleotides (chimeraplasts), in which a mutated allele that already exists in an affected individual can be corrected. Although the only gene defects that can be corrected by chimeraplasty are point mutations, and the correction frequencies are variable, it has been observed that intracellular delivery of oligonucleotides is likely to be more efficient than that of plasmid DNA or viral vectors. Furthermore, corrected genes are expressed from their autologous promoters, thus ensuring correct spatial and temporal expression. Here we report on the recent progress made in the field of chimeraplasty, and the problems encountered.
Collapse
Affiliation(s)
- Ian R Graham
- Centre for Biomedical Science, School of Biological Sciences, Royal Holloway-University of London, Egham TW20 0EX, UK.
| | | |
Collapse
|
21
|
Braasch DA, Corey DR. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry 2002; 41:4503-10. [PMID: 11926811 DOI: 10.1021/bi0122112] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antisense oligonucleotides have the potential to make revolutionary contributions to basic science and medicine. Oligonucleotides can bind mRNA and inhibit translation. Because they can be rapidly synthesized to be complementary to any sequence, they offer ideal tools for exploiting the massive amount of genome information now available. However, until recently, this potential was largely theoretical, and antisense experiments often produced inconclusive or misleading outcomes. This review will discuss the chemical and biological properties of some of the different types of oligomers now available and describe the challenges confronting in vitro and in vivo use of oligonucleotides. Oligomers with improved chemical properties, combined with advances in cell biology and success in clinical trials, are affording powerful new options for basic research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Dwaine A Braasch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
22
|
Thorpe PH, Stevenson BJ, Porteous DJ. Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med 2002; 4:195-204. [PMID: 11933220 DOI: 10.1002/jgm.249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gene correction is an alternative approach to replacement gene therapy. By correcting mutations within the genome, some of the barriers to effective gene therapy are avoided. Homologous nucleic acid sequences can correct mutations by inducing recombination or mismatch repair. Recently, encouraging data have been presented using both short DNA fragments (SDFs) and RNA-DNA oligonucleotides (RDOs) in experimental strategies to realize clinical gene correction. METHODS The delivery of labelled SDFs and RDOs to a variety of cell lines was tested using both FACS analysis and confocal microscopy. A GFP-based reporter system was constructed, containing a nonsense mutation, to allow quantitation of gene correction in living cells. This reporter was used to compare efficiencies of functional gene correction using SDFs and RDOs in arange of mammalian cell lines. RESULTS The delivery experiments highlight the inefficient delivery of SDFs and RDOs to the nucleus using polyethylenimine (PEI) transfection. This study compared the episomal correction efficiency of the reporter plasmid mediated by SDFs and RDOs within different cell types; low levels of functional correction were detected in cell culture. CONCLUSIONS Whilst delivery of PEI-complexed SDFs or RDOs to the cell is highly effective, nuclear entry appears to be a limiting factor. SDFs elicited episomal GFP correction across a range of cell lines, whereas RDOs only corrected the reporter in a cell line that overexpresses RAD51.
Collapse
Affiliation(s)
- P H Thorpe
- Medical Genetics Section, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | |
Collapse
|
23
|
|
24
|
|