1
|
Afsar B, Afsar RE. Mitochondrial Damage and Hypertension: Another Dark Side of Sodium Excess. Curr Nutr Rep 2023; 12:495-507. [PMID: 37386238 DOI: 10.1007/s13668-023-00486-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE OF REVIEW Essential or primary hypertension (HT) is a worldwide health problem with no definitive cure. Although the exact pathogenesis of HT is not known, genetic factors, increased renin-angiotensin and sympathetic system activity, endothelial dysfunction, oxidative stress, and inflammation play a role in its development. Environmental factors such as sodium intake are also important for BP regulation, and excess sodium intake in the form of salt (NaCl, sodium chloride) increases blood pressure in salt-sensitive people. Excess salt intake increases extracellular volume, oxidative stress, inflammation, and endothelial dysfunction. Recent evidence suggests that increased salt intake also disturbs mitochondrial function both structurally and functionally which is important as mitochondrial dysfunction is associated with HT. In the current review, we have summarized the experimental and clinical data regarding the impact of salt intake on mitochondrial structure and function. RECENT FINDINGS Excess salt intake damage mitochondrial structure (e.g., shorter mitochondria with less cristae, increased mitochondrial fission, increased mitochondrial vacuolization). Functionally, high salt intake impairs mitochondrial oxidative phosphorylation and electron transport chain, ATP production, mitochondrial calcium homeostasis, mitochondrial membrane potential, and mitochondrial uncoupling protein function. Excess salt intake also increases mitochondrial oxidative stress and modifies Krebs cycle protein expressions. Studies have shown that high salt intake impairs mitochondrial structure and function. These maladaptive mitochondrial changes facilitate the development of HT especially in salt-sensitive individuals. High salt intake impairs many functional and structural components of mitochondria. These mitochondrial alterations along with increased salt intake promote the development of hypertension.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Unveiling the Role of the Proton Gateway, Uncoupling Proteins (UCPs), in Cancer Cachexia. Cancers (Basel) 2023; 15:cancers15051407. [PMID: 36900198 PMCID: PMC10000250 DOI: 10.3390/cancers15051407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Uncoupling proteins (UCPs) are identified as carriers of proton ions between the mitochondrial inner membrane and the mitochondrial matrix. ATP is mainly generated through oxidative phosphorylation in mitochondria. The proton gradient is generated across the inner mitochondrial membrane and the mitochondrial matrix, which facilitates a smooth transfer of electrons across ETC complexes. Until now, it was thought that the role of UCPs was to break the electron transport chain and thereby inhibit the synthesis of ATP. UCPs allow protons to pass from the inner mitochondrial membrane to the mitochondrial matrix and decrease the proton gradient across the membrane, which results in decreased ATP synthesis and increased production of heat by mitochondria. In recent years, the role of UCPs in other physiological processes has been deciphered. In this review, we first highlighted the different types of UCPs and their precise location across the body. Second, we summarized the role of UCPs in different diseases, mainly metabolic disorders such as obesity and diabetes, cardiovascular complications, cancer, wasting syndrome, neurodegenerative diseases, and kidney complications. Based on our findings, we conclude that UCPs play a major role in maintaining energy homeostasis, mitochondrial functions, ROS production, and apoptosis. Finally, our findings reveal that mitochondrial uncoupling by UCPs may treat many diseases, and extensive clinical studies are required to meet the unmet need of certain diseases.
Collapse
|
3
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
4
|
Yang Y, Wang D, Wan J, Ran F, Yang L, Chen S, Wang F, Liu S, Dai X, Zhou P, Wang P. The role of transient receptor potential ankyrin 1 in age-related endothelial dysfunction. Exp Gerontol 2021; 154:111517. [PMID: 34419618 DOI: 10.1016/j.exger.2021.111517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Oxidative stress plays a key role in age-related vascular disease. The present study aimed to investigate the role of an antioxidant channel, transient receptor potential ankyrin 1 (TRPA1), in age-related endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) were grown to induce replicative senescence, and 6-month-old young, 12-month-old middle-aged, and 24-month-old aged mice were used. TRPA1 was downregulated in senescent HUVECs, so were endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), and uncoupling protein 2 (UCP2). Activating TRPA1 with cinnamaldehyde prevented downregulation of eNOS, Nrf2, and UCP2, inhibited superoxide production and apoptosis, and preserved nitric oxide bioavailability in senescent HUVECs. TRPA1, phosphorylated eNOS, Nrf2 and UCP2 were significantly downregulated in aged aortas compared with young aortas after a compensatory upregulation in middle-aged aortas. Dietary administration of cinnamaldehyde for 12 months prevented mitochondrial dysfunction, improved endothelium-dependent relaxation, and increased expression of eNOS, Nrf2, and UCP2 in aged aortas. Importantly, the effects of cinnamaldehyde can be blocked by a TRPA1 antagonist HC-030031. These findings suggest that TRPA1 may play a critical role in age-related endothelial dysfunction and may become a therapeutic target for the treatment and prevention of age-related vascular disease.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Dan Wang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Jindong Wan
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Fei Ran
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Lun Yang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Shizhao Chen
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Fang Wang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Sen Liu
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Xiaozhen Dai
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Peng Zhou
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China
| | - Peijian Wang
- Department of Cardiology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China; Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan 610500, China.
| |
Collapse
|
5
|
Forte M, Bianchi F, Cotugno M, Marchitti S, Stanzione R, Maglione V, Sciarretta S, Valenti V, Carnevale R, Versaci F, Frati G, Volpe M, Rubattu S. An interplay between UCP2 and ROS protects cells from high-salt-induced injury through autophagy stimulation. Cell Death Dis 2021; 12:919. [PMID: 34625529 PMCID: PMC8501098 DOI: 10.1038/s41419-021-04188-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
The mitochondrial uncoupling protein 2 (UCP2) plays a protective function in the vascular disease of both animal models and humans. UCP2 downregulation upon high-salt feeding favors vascular dysfunction in knock-out mice, and accelerates cerebrovascular and renal damage in the stroke-prone spontaneously hypertensive rat. Overexpression of UCP2 counteracts the negative effects of high-salt feeding in both animal models. We tested in vitro the ability of UCP2 to stimulate autophagy and mitophagy as a mechanism mediating its protective effects upon high-salt exposure in endothelial and renal tubular cells. UCP2 silencing reduced autophagy and mitophagy, whereas the opposite was true upon UCP2 overexpression. High-salt exposure increased level of reactive oxygen species (ROS), UCP2, autophagy and autophagic flux in both endothelial and renal tubular cells. In contrast, high-salt was unable to induce autophagy and autophagic flux in UCP2-silenced cells, concomitantly with excessive ROS accumulation. The addition of an autophagy inducer, Tat-Beclin 1, rescued the viability of UCP2-silenced cells even when exposed to high-salt. In summary, UCP2 mediated the interaction between high-salt-induced oxidative stress and autophagy to preserve viability of both endothelial and renal tubular cells. In the presence of excessive ROS accumulation (achieved upon UCP2 silencing and high-salt exposure of silenced cells) autophagy was turned off. In this condition, an exogenous autophagy inducer rescued the cellular damage induced by excess ROS level. Our data confirm the protective role of UCP2 toward high-salt-induced vascular and renal injury, and they underscore the role of autophagy/mitophagy as a mechanism counteracting the high-salt-induced oxidative stress damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Isernia, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | | | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, Isernia, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy. .,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Association of uncoupling protein gene polymorphisms with essential hypertension in a northeastern Han Chinese population. J Hum Hypertens 2018; 33:524-530. [PMID: 30518806 DOI: 10.1038/s41371-018-0141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 11/08/2022]
Abstract
Uncoupling proteins (UCPs) belong to the family of mitochondrial transporter proteins and mediate regulated proton leak across the inner mitochondrial membrane. The UCPs play an important role in energy homeostasis and reactive oxygen species (ROS) release, and have been established as candidate genes for obesity, diabetes and hypertension. This study examined the possible association between the single nucleotide polymorphisms (SNPs) of UCP1-3 genes and essential hypertension (EH) in a northeastern Han Chinese population. A total of 2207 Chinese Han subjects were enrolled, including 1045 normotensives and 1162 hypertensives. Genotyping of UCP1 rs1800592, UCP1 rs12502572, UCP2 rs659366, UCP2 rs660339, and UCP3 rs3781907 was detected using Sequenom MassArray System. SHEsis was used to analyze linkage disequilibrium and haplotype. No evident association was observed between the genotype distributions and allele frequencies of individual SNPs and EH. Haplotype analysis showed the haplotype GAATA (rs1800592-rs12502572-rs659366-rs660339-rs3781907) was significantly associated with lower EH risk (p = 0.001, χ2 = 10.861, OR = 0.634, 95% CI = 0.483-0.833), and AGATG was associated with increased EH risk (p = 0.012, χ2 = 6.287, OR = 1.265, 95% CI = 1.052-1.521). These findings suggest haplotypes of UCP1-3 genes are linked to EH risk in a northeastern Han Chinese population. Further investigation with larger sample size in multiethnic population is needed to confirm our results.
Collapse
|
7
|
Tian XY, Ma S, Tse G, Wong WT, Huang Y. Uncoupling Protein 2 in Cardiovascular Health and Disease. Front Physiol 2018; 9:1060. [PMID: 30116205 PMCID: PMC6082951 DOI: 10.3389/fphys.2018.01060] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Uncoupling protein 2 (UCP2) belongs to the family of mitochondrial anion carrier proteins. It uncouples oxygen consumption from ATP synthesis. UCP2 is ubiquitously expressed in most cell types to reduce oxidative stress. It is tightly regulated at the transcriptional, translational, and post-translational levels. UCP2 in the cardiovascular system is being increasingly recognized as an important molecule to defend against various stress signals such as oxidative stress in the pathology of vascular dysfunction, atherosclerosis, hypertension, and cardiac injuries. UCP2 protects against cellular dysfunction through reducing mitochondrial oxidative stress and modulation of mitochondrial function. In view of the different functions of UCP2 in various cell types that contribute to whole body homeostasis, cell type-specific modification of UCP2 expression may offer a better approach to help understanding how UCP2 governs mitochondrial function, reactive oxygen species production and transmembrane proton leak and how dysfunction of UCP2 participates in the development of cardiovascular diseases. This review article provided an update on the physiological regulation of UCP2 in the cardiovascular system, and also discussed the involvement of UCP2 deficiency and associated oxidative stress in the pathogenesis of several common cardiovascular diseases. Drugs targeting UCP2 expression and activity might serve another effective strategy to ameliorate cardiovascular dysfunction. However, more detailed mechanistic study will be needed to dissect the role of UCP2, the regulation of UCP2 expression, and the cellular responses to the changes of UCP2 expression in normal and stressed situations at different stages of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Yu Tian
- School of Biomedical Sciences, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Gary Tse
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Rubattu S, Cotugno M, Bianchi F, Sironi L, Gelosa P, Stanzione R, Forte M, De Sanctis C, Madonna M, Marchitti S, Pignieri A, Sciarretta S, Volpe M. A differential expression of uncoupling protein-2 associates with renal damage in stroke-resistant spontaneously hypertensive rat/stroke-prone spontaneously hypertensive rat-derived stroke congenic lines. J Hypertens 2018; 35:1857-1871. [PMID: 28399045 DOI: 10.1097/hjh.0000000000001374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Uncoupling protein-2 (UCP2), a mitochondrial anion transporter involved in mitochondrial uncoupling, limiting reactive oxygen species formation, is significantly downregulated in kidneys of high-salt-fed stroke-prone spontaneously hypertensive rat (SHRSP), where it associates with increased renal damage occurrence. METHODS We aimed at establishing whether UCP2 differential expression associates with renal damage in two stroke-resistant spontaneously hypertensive rat (SHRSR)/SHRSP-derived stroke congenic lines. For this purpose, SHRSR, SHRSP, and two reciprocal stroke congenic lines carrying the (D1Rat134-Mt1pa) segment of chromosome 1 were fed with Japanese style diet for 8 weeks. At 4, 6, and 8 weeks of Japanese diet, kidneys were removed and analyzed for UCP2 gene and protein expression [UCP2 maps within (D1Rat134-Mt1pa)]; nuclear factor kappa-light-chain-enhancer of activated B cells protein expression; oxidized total protein levels; mitochondrial function; gene expression of cubulin, megalin, and nephrin. At 6 and 8 weeks of Japanese diet, histological damage and percentage of high molecular weight urinary proteins excretion were assessed. RESULTS Introgression of UCP2 in the SHRSP configuration within the SHRSR genome led to UCP2 downregulation upon Japanese diet, as compared with the SHRSR, with significantly reduced ATP levels, increased rate of inflammation, oxidative stress, renal damage, and excretion of high molecular weight proteins. The opposite phenomena were observed in the reciprocal congenic line, compared with the SHRSP. In vitro, high-NaCl medium led to UCP2 downregulation, increased apoptosis/necrosis, and reduced viability in primary renal proximal tubular epithelial cells isolated from SHRSP. Exposure of the SHRSP/proximal tubular epithelial cells to recombinant UCP2 rescued the high-salt-dependent deleterious effects. CONCLUSION A differential UCP2 expression associates with different degree of renal damage upon Japanese diet in two SHRSR/SHRSP-derived stroke congenic lines through modulation of mitochondrial function, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Speranza Rubattu
- aIRCCS Neuromed, Pozzilli, Isernia bDepartment of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome cDepartment of Pharmacological and Biomolecular Sciences, University of Milan dCentro Cardiologico Monzino IRCCS, Milan eDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pierelli G, Stanzione R, Forte M, Migliarino S, Perelli M, Volpe M, Rubattu S. Uncoupling Protein 2: A Key Player and a Potential Therapeutic Target in Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7348372. [PMID: 29163755 PMCID: PMC5661070 DOI: 10.1155/2017/7348372] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/19/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
Abstract
Uncoupling protein 2 (UCP2) is an inner mitochondrial membrane protein that belongs to the uncoupling protein family and plays an important role in lowering mitochondrial membrane potential and dissipating metabolic energy with prevention of oxidative stress accumulation. In the present article, we will review the evidence that UCP2, as a consequence of its roles within the mitochondria, represents a critical player in the predisposition to vascular disease development in both animal models and in humans, particularly in relation to obesity, diabetes, and hypertension. The deletion of the UCP2 gene contributes to atherosclerosis lesion development in the knockout mice, also showing significantly shorter lifespan. The UCP2 gene downregulation is a key determinant of higher predisposition to renal and cerebrovascular damage in an animal model of spontaneous hypertension and stroke. In contrast, UCP2 overexpression improves both hyperglycemia- and high-salt diet-induced endothelial dysfunction and ameliorates hypertensive target organ damage in SHRSP. Moreover, drugs (fenofibrate and sitagliptin) and several vegetable compounds (extracts from Brassicaceae, berberine, curcumin, and capsaicin) are able to induce UCP2 expression level and to exert beneficial effects on the occurrence of vascular damage. As a consequence, UCP2 becomes an interesting therapeutic target for the treatment of common human vascular diseases.
Collapse
Affiliation(s)
- Giorgia Pierelli
- Department of Cardiovascular Disease, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Serena Migliarino
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marika Perelli
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Massimo Volpe
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Zhang Y, Zhang Y, Li W, Wang P, Gu R, Feng Y, Wei S, Peng K, Zhang Y, Su L, Wang Q, Li D, Yang D, Wong WT, Yang Y, Ma S. Uncoupling Protein 2 Inhibits Myointimal Hyperplasia in Preclinical Animal Models of Vascular Injury. J Am Heart Assoc 2017; 6:JAHA.117.006593. [PMID: 29025747 PMCID: PMC5721816 DOI: 10.1161/jaha.117.006593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Intracoronary stent restenosis, characterized by excessive smooth muscle cell (SMC) proliferation and myointimal hyperplasia, remains a clinical challenge. Mitochondrial membrane potential has been linked to the proliferative rate of SMCs. This study aimed to screen a critical gene regulating mitochondrial potential and to confirm its effects on myointimal formation in preclinical animal models. METHODS AND RESULTS We performed transcriptome screening for genes differentially expressed in ligated versus unligated mouse carotid arteries. We observed that uncoupling protein 2 gene (Ucp2) mRNA, encoding UCP2, was transiently upregulated during the first 3 days after ligation and then significantly downregulated from day 7 through day 21, during which time neointima formed remarkably. The UCP2 protein level also declined after day 7 of ligation. In ligated carotid arteries, Ucp2-/- mice, compared with wild-type littermates, exhibited accelerated myointimal formation, which was associated with increased superoxide production and can be attenuated by treatment with antioxidant 4-hydroxy-2,2,6,6-tetramethyl-piperidinoxyl (TEMPOL). Knockdown of UCP2 enhanced human aortic SMC migration and proliferation that can also be attenuated by TEMPOL, whereas UCP2 overexpression inhibited SMC migration and proliferation, along with decreased activity of nuclear factor-κB. Moreover, nuclear factor-κB inhibitor attenuated UCP2 knockdown-enhanced SMC proliferation. Adenovirus-mediated overexpression of UCP2 inhibited myointimal formation in balloon-injured carotid arteries of rats and rabbits and in-stent stenosis of porcine coronary arteries. Moreover, UCP2 overexpression also suppressed neointimal hyperplasia in cultured human saphenous vein ex vivo. CONCLUSIONS UCP2 inhibits myointimal hyperplasia after vascular injury, probably through suppressing nuclear factor-κB-dependent SMC proliferation and migration, rendering UCP2 a potential therapeutic target against restenosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yaolei Zhang
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Wei Li
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Rui Gu
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yaxing Feng
- Medical Central Laboratory, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Shujie Wei
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Ke Peng
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yunrong Zhang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Linan Su
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Shuangtao Ma
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China .,Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
11
|
Xiong S, Wang B, Lin S, Zhang H, Li Y, Wei X, Cui Y, Wei X, Lu Z, Gao P, Li L, Zhao Z, Liu D, Zhu Z. Activation of Transient Receptor Potential Melastatin Subtype 8 Attenuates Cold-Induced Hypertension Through Ameliorating Vascular Mitochondrial Dysfunction. J Am Heart Assoc 2017; 6:JAHA.117.005495. [PMID: 28768647 PMCID: PMC5586416 DOI: 10.1161/jaha.117.005495] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Environmental cold‐induced hypertension is common, but how to treat cold‐induced hypertension remains an obstacle. Transient receptor potential melastatin subtype 8 (TRPM8) is a mild cold‐sensing nonselective cation channel that is activated by menthol. Little is known about the effect of TRPM8 activation by menthol on mitochondrial Ca2+ homeostasis and the vascular function in cold‐induced hypertension. Methods and Results Primary vascular smooth muscle cells from wild‐type or Trpm8−/− mice were cultured. In vitro, we confirmed that sarcoplasmic reticulum–resident TRPM8 participated in the regulation of cellular and mitochondrial Ca2+ homeostasis in the vascular smooth muscle cells. TRPM8 activation by menthol antagonized angiotensin II induced mitochondrial respiratory dysfunction and excess reactive oxygen species generation by preserving pyruvate dehydrogenase activity, which hindered reactive oxygen species–triggered Ca2+ influx and the activation of RhoA/Rho kinase pathway. In vivo, long‐term noxious cold stimulation dramatically increased vasoconstriction and blood pressure. The activation of TRPM8 by dietary menthol inhibited vascular reactive oxygen species generation, vasoconstriction, and lowered blood pressure through attenuating excessive mitochondrial reactive oxygen species mediated the activation of RhoA/Rho kinase in a TRPM8‐dependent manner. These effects of menthol were further validated in angiotensin II–induced hypertensive mice. Conclusions Long‐term dietary menthol treatment targeting and preserving mitochondrial function may represent a nonpharmaceutical measure for environmental noxious cold–induced hypertension.
Collapse
Affiliation(s)
- Shiqiang Xiong
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Bin Wang
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Shaoyang Lin
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Hexuan Zhang
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Yingsha Li
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xing Wei
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Yuanting Cui
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xiao Wei
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zongshi Lu
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Li Li
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases Department of Hypertension and Endocrinology Daping Hospital Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
12
|
Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat. Cell Death Dis 2017. [PMID: 28640254 PMCID: PMC5520932 DOI: 10.1038/cddis.2017.278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP.
Collapse
|
13
|
Leskov I, Neville A, Shen X, Pardue S, Kevil CG, Granger DN, Krzywanski DM. Nicotinamide nucleotide transhydrogenase activity impacts mitochondrial redox balance and the development of hypertension in mice. ACTA ACUST UNITED AC 2016; 11:110-121. [PMID: 28087333 DOI: 10.1016/j.jash.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023]
Abstract
Oxidant stress contributes to the initiation and progression of hypertension (HTN) by enhancing endothelial dysfunction and/or causing perturbations in nitric oxide homeostasis. Differences in mitochondrial function may augment this process and provide insight into why age of onset and clinical outcomes differ among individuals from distinct ethnic groups. We have previously demonstrated that variation in normal mitochondrial function and oxidant production exists in endothelial cells from individuals of Caucasian and African-American ethnicity and that this variation contributes to endothelial dysfunction. To model these distinct mitochondrial redox phenotypes, we used C57Bl/6N (6N) and C57Bl/6J (6J) mice that also display unique mitochondrial functional properties due to the differential expression nicotinamide nucleotide transhydrogenase (NNT). We demonstrate that the absence of NNT in 6J cells led to distinct mitochondrial bioenergetic profiles and a pro-oxidative mitochondrial phenotype characterized by increased superoxide production and reduced glutathione peroxidase activity. Interestingly, we found that 6J animals have significantly higher systolic blood pressure compared to 6N animals, and this difference is exacerbated by angiotensin II treatment. The changes in pressure were accompanied by both mitochondrial and vascular dysfunction revealed by impaired respiratory control ratios and endothelial-dependent vessel dilation. All end points could be significantly ameliorated by treatment with the mitochondria-targeted superoxide dismutase mimetic MitoTEMPO demonstrating a critical role for the production of mitochondrial reactive oxygen species in the development of HTN in these animals. Taken together, these data indicate that the absence of NNT leads to variation in mitochondrial function and contributes to a unique mitochondrial redox phenotype that influences susceptibility to HTN by contributing to endothelial and vascular dysfunction.
Collapse
Affiliation(s)
- Igor Leskov
- Department of Cellular Biology and Anatomy, School of Medicine, Shreveport, LA, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Amber Neville
- Department of Cellular Biology and Anatomy, School of Medicine, Shreveport, LA, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Xinggui Shen
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department of Pathology, School of Medicine, Shreveport, LA, USA
| | - Sibile Pardue
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department of Pathology, School of Medicine, Shreveport, LA, USA
| | - Christopher G Kevil
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department of Pathology, School of Medicine, Shreveport, LA, USA
| | - D Neil Granger
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department of Molecular and Cellular Physiology, School of Medicine, Shreveport, LA, USA
| | - David M Krzywanski
- Department of Cellular Biology and Anatomy, School of Medicine, Shreveport, LA, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
14
|
Zhang YQ, Shen X, Xiao XL, Liu MY, Li SL, Yan J, Jin J, Gao JL, Zhen CL, Hu N, Zhang XZ, Tai Y, Zhang LS, Bai YL, Dong DL. Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving K ATP channel activation in smooth muscle cells of arteries. Br J Pharmacol 2016; 173:3145-3158. [PMID: 27534899 DOI: 10.1111/bph.13578] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The effects and mechanisms of chemical mitochondrial uncouplers on vascular function have never been identified. Here, we characterized the effects of the typical mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) on vascular function in rat mesenteric arteries and aorta and elucidated the potential mechanisms. EXPERIMENTAL APPROACH Isometric tension of mesenteric artery and thoracic aorta was recorded by using a multiwire myograph system. Protein levels were measured by western blot analyses. Cytosolic [Ca2+ ]i , mitochondrial ROS (mitoROS) and mitochondrial membrane potential of smooth muscle cells (A10) were measured by laser scanning confocal microscopy. KEY RESULTS Acute treatment with CCCP relaxed phenylephrine (PE)- and high K+ (KPSS)-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Pretreatment with CCCP prevented PE- and KPSS-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Similarly, CCCP prevented PE- and KPSS-induced constriction of rat thoracic aorta. CCCP increased the cellular ADP/ATP ratio in vascular smooth muscle cells (A10) and activated AMPK in A10 cells and rat thoracic aorta tissues. CCCP-induced aorta relaxation was attenuated in AMPK α1 knockout (-/-) mice. SERCA inhibitors thapsigargin and cyclopiazonic acid (CPA) but not the KATP channel blocker glibenclamide partially inhibited CCCP-induced vasorelaxation in endothelium-denuded rat mesenteric arteries. CCCP increased cytosolic [Ca2+ ]i , mitoROS production and depolarized mitochondrial membrane potential in A10 cells. FCCP, the analogue of CCCP, had similar vasoactivity as CCCP in rat mesenteric arteries. CONCLUSIONS AND IMPLICATIONS CCCP induces vasorelaxation by a mechanism that does not involve KATP channel activation in smooth muscle cells of arteries.
Collapse
Affiliation(s)
- Yan-Qiu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xin Shen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Ming-Yu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Shan-Liang Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jie Yan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jing Jin
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Chang-Lin Zhen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Xin-Zi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Yu Tai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Liang-Shuan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - Yun-Long Bai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
15
|
Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1067801. [PMID: 27594970 PMCID: PMC4993945 DOI: 10.1155/2016/1067801] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension.
Collapse
|
16
|
Toral M, Romero M, Jiménez R, Robles-Vera I, Tamargo J, Martínez MC, Pérez-Vizcaíno F, Duarte J. Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction. Biochem Pharmacol 2016; 110-111:25-36. [DOI: 10.1016/j.bcp.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022]
|
17
|
Protective effects of Brassica oleracea sprouts extract toward renal damage in high-salt-fed SHRSP: role of AMPK/PPARα/UCP2 axis. J Hypertens 2016; 33:1465-79. [PMID: 25807219 DOI: 10.1097/hjh.0000000000000562] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Renal damage precedes occurrence of stroke in high-sodium/low-potassium-fed stroke-prone spontaneously hypertensive rat (SHRSP). We previously reported a marked suppression of uncoupling protein-2 (UCP2) upon high-salt Japanese-style diet in SHRSP kidneys. Vegetable compounds are known to exert protective effects in cardiovascular diseases. We aimed at evaluating the impact of Brassica oleracea sprouts juice toward renal damage in Japanese diet-fed SHRSP and exploring the role of 5'-adenosine monophosphate-activated protein kinase (AMPK)/NAD-dependent deacetylase sirtuin-1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α)/peroxisome proliferator-activated receptor-α (PPARα)/UCP2 axis. METHODS SHRSP received Japanese diet for 4 weeks. A group of SHRSP received Japanese diet and B. oleracea. A third group received Japanese diet, B. oleracea, and PPARα inhibitor (GW6471). A group of SHRSP fed with regular diet served as control. RESULTS Japanese diet induced marked increases of oxidative stress, inflammation, and proteinuria, along with glomerular and tubular damage, as compared with regular diet. A significant suppression of AMPK/UCP2 pathway was observed. Despite Japanese diet feeding, concomitant administration of B. oleracea prevented oxidative stress accumulation, inflammation, renal damage, and proteinuria. All components of the UCP2 regulatory pathway were significantly increased by B. oleracea. Superoxide dismutase 2 and phosphoendothelial nitric oxide synthase were also stimulated. Addition of PPARα inhibitor to B. oleracea and Japanese diet significantly reduced the B. oleracea beneficial effects. SBP levels were comparable among the different groups of rats.In vitro, UCP2 inhibition by genipin offset the antioxidant effect of B. oleracea in renal mesangial and proximal tubular cells. CONCLUSION B. oleracea administration prevented renal damage in salt-loaded SHRSP, independently from SBP, with parallel stimulation of AMPK/SIRT1/PGC1α/PPARα/UCP2 axis. Stimulation of the latter mechanism may provide relevant renal protective effect and play a therapeutic role in target organ damage progression in hypertension.
Collapse
|
18
|
Rubattu S, Bianchi F, Busceti CL, Cotugno M, Stanzione R, Marchitti S, Di Castro S, Madonna M, Nicoletti F, Volpe M. Differential modulation of AMPK/PPARα/UCP2 axis in relation to hypertension and aging in the brain, kidneys and heart of two closely related spontaneously hypertensive rat strains. Oncotarget 2015; 6:18800-18. [PMID: 26023797 PMCID: PMC4662457 DOI: 10.18632/oncotarget.4033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES We examined expression protein of AMPK/SIRT1/PGC1α/PhoxO3a/PPARα/UCP2 pathway in brain, kidneys and heart of stroke-prone spontaneously hypertensive rat (SHRSP) vs stroke-resistant SHR (SHRSR) at different weeks of age, up to one year, in order to test the hypothesis that abnormalities within this pathway could associate with higher susceptibility of SHRSP to develop hypertension-related vascular damage. BACKGROUND SHRSP develops severe hypertension and related target organ damage. Marked reduction of uncoupling protein 2 (UCP2) expression upon high salt-low potassium diet associates with increased renal injury in SHRSP. UCP2 may represent a key mitochondrial protein involved in cardiovascular damage. RESULTS At 2 months of age a significant down-regulation of UCP2 expression at both mRNA and protein levels was found, along with reduced protein expression of all components of UCP2 regulatory pathway, in tissues of SHRSP but not of SHRSR, that progressed with hypertension development and aging. A significant increase of both oxidative stress and inflammation was detected in tissues of SHRSP as a function of age. SBP levels were significantly higher in SHRSP than SHRSR at 3 months of age and thereafter. At one year of age, higher degree of renal damage, with proteinuria and severe glomerular and tubulo-interstitial fibrosis, of cerebral damage, with significant vessel extravasation and stroke occurrence, and of myocardial damage was detected in SHRSP than SHRSR. CONCLUSIONS The early significant reduced expression of the antioxidant AMPK/PPARα/UCP2 pathway that progressed throughout lifetime may contribute to explain higher predisposition of SHRSP to oxidative stress dependent target organ damage in the context of severe hypertension.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S. Andrea, Rome
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Franca Bianchi
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Carla Letizia Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Maria Cotugno
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Rosita Stanzione
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Simona Marchitti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Sara Di Castro
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Michele Madonna
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S. Andrea, Rome
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Località Camerelle, Pozzilli, Italy
| |
Collapse
|
19
|
Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2. J Cardiovasc Pharmacol 2015; 64:497-506. [PMID: 25490415 DOI: 10.1097/fjc.0000000000000143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.
Collapse
|
20
|
Liu L, Liu J, Tian XY, Wong WT, Lau CW, Xu A, Xu G, Ng CF, Yao X, Gao Y, Huang Y. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress. Antioxid Redox Signal 2014; 21:1571-81. [PMID: 24328731 PMCID: PMC4174421 DOI: 10.1089/ars.2013.5519] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Although uncoupling protein 2 (UCP2) negatively regulates intracellular reactive oxygen species (ROS) production and protects vascular function, its participation in vascular benefits of drugs used to treat cardiometabolic diseases is largely unknown. This study investigated whether UCP2 and associated oxidative stress reduction contribute to the improvement of endothelial function by a dipeptidyl peptidase-4 inhibitor, sitagliptin, in hypertension. RESULTS Pharmacological inhibition of cyclooxygenase-2 (COX-2) but not COX-1 prevented endothelial dysfunction, and ROS scavengers reduced COX-2 mRNA and protein expression in spontaneously hypertensive rats (SHR) renal arteries. Angiotensin II (Ang II) evoked endothelium-dependent contractions (EDCs) in C57BL/6 and UCP2 knockout (UCP2KO) mouse aortae. Chronic sitagliptin administration attenuated EDCs in SHR arteries and Ang II-infused C57BL/6 mouse aortae and eliminated ROS overproduction in SHR arteries, which were reversed by glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin 9-39, AMP-activated protein kinase (AMPK)α inhibitor compound C, and UCP2 inhibitor genipin. By contrast, sitagliptin unaffected EDCs in Ang II-infused UCP2KO mice. Sitagliptin increased AMPKα phosphorylation, upregulated UCP2, and downregulated COX-2 expression in arteries from SHR and Ang II-infused C57BL/6 mice. Importantly, exendin 9-39, compound C, and genipin reversed the inhibitory effect of GLP-1R agonist exendin-4 on Ang II-stimulated mitochondrial ROS rises in SHR endothelial cells. Moreover, exendin-4 improved the endothelial function of renal arteries from SHR and hypertensive patients. INNOVATION We elucidate for the first time that UCP2 serves as an important signal molecule in endothelial protection conferred by GLP-1-related agents. UCP2 could be a useful target in treating hypertension-related vascular events. CONCLUSIONS UCP2 inhibits oxidative stress and downregulates COX-2 expression through GLP-1/GLP-1R/AMPKα cascade.
Collapse
Affiliation(s)
- Limei Liu
- 1 Department of Physiology and Pathophysiology, Peking University Health Science Center , Peking, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-δ Upregulation. PPAR Res 2014; 2014:491963. [PMID: 25152753 PMCID: PMC4131514 DOI: 10.1155/2014/491963] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/20/2014] [Indexed: 12/30/2022] Open
Abstract
High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors δ (PPAR-δ) play an important role in metabolic myocardium remodeling. However, it remains unknown whether activation of TRPV1 could alleviate cardiac hypertrophy and fibrosis and the effect of cross-talk between TRPV1 and PPAR-δ on suppressing high-salt diet-generated oxidative stress. In this study, high-salt diet-induced cardiac hypertrophy and fibrosis are characterized by significant enhancement of HW/BW%, LVEDD, and LVESD, decreased FS and EF, and increased collagen deposition. These alterations were associated with downregulation of PPAR-δ, UCP2 expression, upregulation of iNOS production, and increased oxidative/nitrotyrosine stress. These adverse effects of long-term high-salt diet were attenuated by chronic treatment with capsaicin. However, this effect of capsaicin was absent in TRPV1−/− mice on a high-salt diet. Our finding suggests that chronic dietary capsaicin consumption attenuates long-term high-salt diet-induced cardiac hypertrophy and fibrosis. This benefit effect is likely to be caused by TRPV1 mediated upregulation of PPAR-δ expression.
Collapse
|
22
|
Li L, Wang F, Wei X, Liang Y, Cui Y, Gao F, Zhong J, Pu Y, Zhao Y, Yan Z, Arendshorst WJ, Nilius B, Chen J, Liu D, Zhu Z. Transient receptor potential vanilloid 1 activation by dietary capsaicin promotes urinary sodium excretion by inhibiting epithelial sodium channel α subunit-mediated sodium reabsorption. Hypertension 2014; 64:397-404. [PMID: 24890824 DOI: 10.1161/hypertensionaha.114.03105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High salt (HS) intake contributes to the development of hypertension. Epithelial sodium channels play crucial roles in regulating renal sodium reabsorption and blood pressure. The renal transient receptor potential vanilloid 1 (TRPV1) cation channel can be activated by its agonist capsaicin. However, it is unknown whether dietary factors can act on urinary sodium excretion and renal epithelial sodium channel (ENaC) function. Here, we report that TRPV1 activation by dietary capsaicin increased urinary sodium excretion through reducing sodium reabsorption in wild-type (WT) mice on a HS diet but not in TRPV1(-/-) mice. The effect of capsaicin on urinary sodium excretion was involved in inhibiting αENaC and its related with-no-lysine kinase 1/serum- and glucocorticoid-inducible protein kinase 1 pathway in renal cortical collecting ducts of WT mice. Dietary capsaicin further reduced the increased αENaC activity in WT mice attributed to the HS diet. In contrast, this capsaicin effect was absent in TRPV1(-/-) mice. Immunoprecipitation study indicated αENaC specifically coexpressed and functionally interact with TRPV1 in renal cortical collecting ducts of WT mice. Additionally, ENaC activity and expression were suppressed by capsaicin-mediated TRPV1 activation in cultured M1-cortical collecting duct cells. Long-term dietary capsaicin prevented the development of high blood pressure in WT mice on a HS diet. It concludes that TRPV1 activation in the cortical collecting ducts by capsaicin increases urinary sodium excretion and avoids HS diet-induced hypertension through antagonizing αENaC-mediated urinary sodium reabsorption. Dietary capsaicin may represent a promising lifestyle intervention in populations exposed to a high dietary salt intake.
Collapse
Affiliation(s)
- Li Li
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Fei Wang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Xing Wei
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Yi Liang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Yuanting Cui
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Feng Gao
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Jian Zhong
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Yunfei Pu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Yu Zhao
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Zhencheng Yan
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - William J Arendshorst
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Bernd Nilius
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Jing Chen
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Daoyan Liu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.)
| | - Zhiming Zhu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China (L.L., F.W., X.W., Y.L., Y.C., F.G., J.Z., Y.P., Y.Z., Z.Y., J.C., D.L., Z.Z.); Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill (W.J.A.); and Department of Cell Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.).
| |
Collapse
|
23
|
Ma S, Zhang Y, Wang Q, Yang D, Li D, Tang B, Yang Y. Ablation of uncoupling protein 2 exacerbates salt-induced cardiovascular and renal remodeling associated with enhanced oxidative stress. Int J Cardiol 2014; 175:206-10. [PMID: 24833471 DOI: 10.1016/j.ijcard.2014.04.256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Shuangtao Ma
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China.
| | - Yan Zhang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Bing Tang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Sun J, Yang T, Wang P, Ma S, Zhu Z, Pu Y, Li L, Zhao Y, Xiong S, Liu D, Zhu Z. Activation of cold-sensing transient receptor potential melastatin subtype 8 antagonizes vasoconstriction and hypertension through attenuating RhoA/Rho kinase pathway. Hypertension 2014; 63:1354-63. [PMID: 24637663 DOI: 10.1161/hypertensionaha.113.02573] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Environmental cold is a nonmodifiable hypertension risk factor. Transient receptor potential melastatin subtype 8 (TRPM8) is a cold-sensing cation channel that can be activated by menthol, a compound with a naturally cold sensation in mint. Little is known about the effect of TRPM8 activation on vascular function and blood pressure. Here, we report that TRPM8 is abundantly expressed in the vasculature. TRPM8 activation by menthol attenuated vasoconstriction via RhoA/Rho kinase pathway inhibition in wild-type mice, but the effect was absent in TRPM8(-/-) mice. Chronic dietary menthol blunted mesenteric arterial constriction and lowered blood pressure in genetic hypertensive rats via inhibition of RhoA/Rho kinase expression and activity in the vivo study. TRPM8 effect was associated with inhibition of intracellular calcium release from the sarcoplasmic reticulum, RhoA/Rho kinase activity, and sustained arterial contraction in the vitro study. Importantly, 8-week chronic menthol capsule treatment moderately lowered systolic blood pressure and diastolic blood pressure in prehypertensive individuals compared with the placebo group. Furthermore, chronic menthol capsule administration also improved flow-mediated dilatation in prehypertensive individuals, but not in the placebo group. In conclusion, our study demonstrates that TRPM8 activation by menthol benefits vascular function and blood pressure by inhibiting calcium signaling-mediated RhoA/Rho kinase activation in the vasculature. These findings add to the evidence that long-term dietary menthol treatment had favorable effects on hypertension treatment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tahir TA, Singh H, Brindle NPJ. The RNA binding protein hnRNP-K mediates post-transcriptional regulation of uncoupling protein-2 by angiopoietin-1. Cell Signal 2014; 26:1379-84. [PMID: 24642125 PMCID: PMC4039131 DOI: 10.1016/j.cellsig.2014.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 12/01/2022]
Abstract
Angiopoietin-1 (Ang1) is a ligand for the receptor tyrosine kinase Tie2 and has key roles in the development of the vascular system and vascular protection. In a screen to define signalling pathways regulated by Ang1 in endothelial cells we found the RNA-binding protein hnRNP-K to be phosphorylated in response to Ang1. The ligand stimulated both tyrosine phosphorylation of hnRNP-K and recruitment of the tyrosine kinase Src to the RNA-binding protein. In endothelial cells hnRNP-K was found bound to mRNA encoding the mitochondrial protein uncoupling protein-2 (UCP2). Ang1 stimulation of cells resulted in the release of UCP2 mRNA from hnRNP-K. Using in vitro assays we confirmed direct binding between hnRNP-K and UCP2 mRNA. Furthermore Src induced phosphorylation of purified hnRNP-K and prevented UCP2 mRNA binding. Tyrosine 458 in the RNA-binding protein was found to be required for suppression of UCP2 mRNA binding by Src phosphorylation. In addition to releasing UCP2 mRNA from hnRNP-K, Ang1 induced an increase in UCP2 protein expression in endothelial cells without affecting total UCP2 mRNA levels. Consistent with the known effects of UCP2 to suppress generation of reactive oxygen species, Ang1 limited ROS production in endothelium stimulated with tumour necrosis factor-α. Taken together these data suggest that UCP2 mRNA is present in endothelial cells bound to hnRNP-K, which holds it in a translationally inactive state, and that Ang1 stimulates Src interaction with hnRNP-K, phosphorylation of the RNA-binding protein, release of these transcripts and upregulation of UCP2 protein expression. This study demonstrates a new mechanism for post-transcriptional regulation of UCP2 by the vascular protective ligand Ang1. The ability to rapidly upregulate UCP2 protein expression may be important in protecting endothelial cells from excessive generation of potentially damaging reactive oxygen species.
Collapse
Affiliation(s)
- Tariq A Tahir
- Departments of Cardiovascular Sciences and Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Harprit Singh
- Departments of Cardiovascular Sciences and Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicholas P J Brindle
- Departments of Cardiovascular Sciences and Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
26
|
Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats. Exp Gerontol 2014; 56:37-44. [PMID: 24607516 DOI: 10.1016/j.exger.2014.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 01/22/2023]
Abstract
Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging.
Collapse
|
27
|
Ma S, Wang Q, Zhang Y, Yang D, Li D, Tang B, Yang Y. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress. Am J Hypertens 2014; 27:345-54. [PMID: 24304655 DOI: 10.1093/ajh/hpt225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. METHODS UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. RESULTS The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. CONCLUSIONS These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.
Collapse
Affiliation(s)
- Shuangtao Ma
- Department of Cardiology, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Based on mosaic theory, hypertension is a multifactorial disorder that develops because of genetic, environmental, anatomical, adaptive neural, endocrine, humoral, and hemodynamic factors. It has been recently proposed that oxidative stress may contribute to all of these factors and production of reactive oxygen species (ROS) play an important role in the development of hypertension. Previous studies focusing on the role of vascular NADPH oxidases provided strong support of this concept. Although mitochondria represent one of the most significant sources of cellular ROS generation, the regulation of mitochondrial ROS generation in the cardiovascular system and its pathophysiological role in hypertension are much less understood. In this review, the role of mitochondrial oxidative stress in the pathophysiology of hypertension and cross talk between angiotensin II signaling, pathways involved in mechanotransduction, NADPH oxidases, and mitochondria-derived ROS are considered. The possible benefits of therapeutic strategies that have the potential to attenuate mitochondrial oxidative stress for the prevention/treatment of hypertension are also discussed.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Clinical Pharmacology, Free Radicals in Medicine Core, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | |
Collapse
|
29
|
Dromparis P, Paulin R, Sutendra G, Qi AC, Bonnet S, Michelakis ED. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res 2013; 113:126-36. [PMID: 23652801 DOI: 10.1161/circresaha.112.300699] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RATIONALE Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²⁺m levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. OBJECTIVE We hypothesized that UCP2 deficiency reduces Ca²⁺m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. METHODS AND RESULTS Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²⁺ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²⁺-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. CONCLUSIONS This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.
Collapse
Affiliation(s)
- Peter Dromparis
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Sun J, Pu Y, Wang P, Chen S, Zhao Y, Liu C, Shang Q, Zhu Z, Liu D. TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction. Cardiovasc Diabetol 2013; 12:69. [PMID: 23607427 PMCID: PMC3644255 DOI: 10.1186/1475-2840-12-69] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic cardiovascular complications are characterised by oxidative stress-induced endothelial dysfunction. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial reactive oxygen species (ROS) generation and can antagonise oxidative stress, but approaches that enhance the activity of UCP2 to inhibit ROS are scarce. Our previous studies show that activation of transient receptor potential vanilloid 1 (TRPV1) by capsaicin can prevent cardiometabolic disorders. In this study, we conducted experiments in vitro and in vivo to investigate the effect of capsaicin treatment on endothelial UCP2 and oxidative stress. We hypothesised that TRPV1 activation by capsaicin attenuates hyperglycemia-induced endothelial dysfunction through a UCP2-mediated antioxidant effect. Methods TRPV1-/-, UCP2 -/- and db/db mice, as well as matched wild type (WT) control mice, were included in this study. Some mice were subjected to dietary capsaicin for 14 weeks. Arteries isolated from mice and endothelial cells were cultured. Endothelial function was examined, and immunohistological and molecular analyses were performed. Results Under high-glucose conditions, TRPV1 expression and protein kinase A (PKA) phosphorylation were found to be decreased in the cultured endothelial cells, and the effects of high-glucose on these molecules were reversed by the administration of capsaicin. Furthermore, high-glucose exposure increased ROS production and reduced nitric oxide (NO) levels both in endothelial cells and in arteries that were evaluated respectively by dihydroethidium (DHE) and DAF-2 DA fluorescence. Capsaicin administration decreased the production of ROS, restored high-glucose-induced endothelial dysfunction through the activation of TRPV1 and acted in a UCP2-dependent manner in vivo. Administration of dietary capsaicin for 14 weeks increased the levels of PKA phosphorylation and UCP2 expression, ameliorated the vascular oxidative stress and increased NO levels observed in diabetic mice. Prolonged dietary administration of capsaicin promoted endothelium-dependent relaxation in diabetic mice. However, the beneficial effect of capsaicin on vasorelaxation was absent in the aortas of UCP2 -/- mice exposed to high-glucose levels. Conclusion TRPV1 activation by capsaicin might protect against hyperglycemia-induced endothelial dysfunction through a mechanism involving the PKA/UCP2 pathway.
Collapse
Affiliation(s)
- Jing Sun
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Di Castro S, Scarpino S, Marchitti S, Bianchi F, Stanzione R, Cotugno M, Sironi L, Gelosa P, Duranti E, Ruco L, Volpe M, Rubattu S. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet. Hypertension 2013; 61:534-41. [PMID: 23297375 DOI: 10.1161/hypertensionaha.111.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The stroke-prone spontaneously hypertensive rat (SHRsp) represents an animal model of increased susceptibility to high-salt diet-induced cerebral and renal vascular injuries. High blood pressure and genetic factors are viewed as major contributing factors. In high-salt-loaded SHRsp and stroke-resistant SHR animals, we determined blood pressure levels, degree of kidney lesions, renal uncoupling protein 2 (UCP2) gene and protein expression levels along with rattus norvegicus (rno)-microRNA (miR) 24 and 34a gene expression, nuclear factor-κB protein levels, and oxidative stress. In vitro, UCP2 gene silencing was performed in renal mesangial cells. We found more severe degree of renal damage in SHRsp at the end of 4-week high-salt dietary treatment as compared with stroke-resistant SHR, despite comparable blood pressure levels, along with increased rate of inflammation and oxidative stress. Kidney UCP2 gene and protein expression levels were significantly downregulated under high-salt diet in SHRsp, but not in stroke-resistant SHR. Differential UCP2 regulation was paralleled by differential expression of kidney rno-miR 24 and 34a, known to target UCP2 gene, in the 2 strains. UCP2 gene silencing in renal mesangial cells led to increased rate of reactive oxygen species generation, increased inflammation and apoptosis, reduced cell vitality, and increased necrosis. In conclusion, high-salt diet downregulates the antioxidant UCP2-dependent mechanism in kidneys of SHRsp, but not of stroke-resistant SHR. A parallel differential kidney miR regulation under high-salt diet in the 2 strains may contribute to the differential UCP2 modulation. UCP2 is a critical protein to prevent oxidative stress damage in renal mesangial cells in vitro.
Collapse
|
32
|
Abstract
The eukaryote's mitochondrial network is perhaps the cell's most sophisticated and dynamic responsive sensing system. Integrating metabolic, oxygen, or danger signals with inputs from other organelles, as well as local and systemic signals, mitochondria have a profound impact on vascular function in both health and disease. This review highlights recently discovered aspects of mitochondrial function (oxygen sensing, inflammation, autophagy, and apoptosis) and discusses their role in diseases of both systemic and pulmonary vessels. We also emphasize the role of mitochondria as therapeutic targets for vascular disease. We highlight the intriguing similarities of mitochondria-driven molecular mechanisms in terms of both pathogenesis and therapies in very diverse diseases, such as atherosclerosis, pulmonary hypertension, and cancer, to support the foundation of a new field in medicine: mitochondrial medicine.
Collapse
Affiliation(s)
- Peter Dromparis
- Department of Medicine, University of Alberta, Edmonton, T6G2B7, Canada
| | | |
Collapse
|
33
|
Tian XY, Wong WT, Xu A, Lu Y, Zhang Y, Wang L, Cheang WS, Wang Y, Yao X, Huang Y. Uncoupling protein-2 protects endothelial function in diet-induced obese mice. Circ Res 2012; 110:1211-6. [PMID: 22461387 DOI: 10.1161/circresaha.111.262170] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Previous studies indicate uncoupling protein-2 (UCP2) as an antioxidant defense against endothelial dysfunction in hypertension. UCP2 also regulates insulin secretion and action. However, the role of UCP2 in endothelial dysfunction associated with diabetes and obesity is unclear. OBJECTIVE UCP2 protects against endothelial dysfunction induced by high-fat diet through inhibition of reactive oxygen species (ROS) production, and subsequent increase of nitric oxide bioavailability. METHODS AND RESULTS Endothelium-dependent relaxation (EDR) in aortae and mesenteric arteries in response to acetylcholine was measured in wire myograph. Flow-mediated vasodilatation in 2(nd)-order mesenteric arteries was measured in pressure myograph. ROS production is measured by CM-H(2)DCFDA and DHE fluorescence. High-glucose exposure reduced EDR in mouse aortae, which was exaggerated in UCP2 knockout (KO) mice, whereas UCP2 overexpression by adenoviral infection (AdUCP2) restored the impaired EDR. Impairment of EDR and flow-mediated vasodilatation in aortae and mesenteric arteries from high-fat diet-induced obese mice (DIO) was exaggerated in UCP2KO DIO mice compared with wild-type DIO littermates, whereas AdUCP2 i.v. injection restored both EDR and flow-mediated vasodilatation in DIO mice. Improved EDR in mesenteric arteries was inhibited by nitric oxide synthase inhibitor. UCP2 overexpression also inhibited intracellular ROS production in the en face endothelium of aorta and mesenteric artery of DIO mice, whereas UCP2 deficiency enhanced ROS production. CONCLUSIONS UCP2 preserves endothelial function through increasing nitric oxide bioavailability secondary to the inhibition of ROS production in the endothelium of obese diabetic mice.
Collapse
Affiliation(s)
- Xiao Yu Tian
- Institute of Vascular Medicine, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu X, Wang P, Zhao Z, Cao T, He H, Luo Z, Zhong J, Gao F, Zhu Z, Li L, Yan Z, Chen J, Ni Y, Liu D, Zhu Z. Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Stroke 2011; 42:3245-51. [PMID: 21852608 DOI: 10.1161/strokeaha.111.618306] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies show that endothelial nitric oxide synthase (eNOS) plays a prominent role in maintaining cerebral blood flow and preventing stroke. Capsaicin in hot pepper can increase the phosphorylation of eNOS in endothelial cells. We test the hypothesis that chronic dietary capsaicin can prevent stroke through activation of cerebrovascular transient receptor potential vanilloid 1 (TRPV1) channels in stroke-prone spontaneously hypertensive rats (SHRsp). METHODS SHRsp were fed dietary capsaicin, and their onset of stroke was examined. TRPV1 knockout and transgenic mice were used for determining the function of TRPV1 channels. Expression of eNOS and cerebrovascular reactivity were examined. RESULTS Immunofluorescence showed TRPV1 channels and eNOS coexpression in cerebral arterioles. Administration of capsaicin significantly increased phosphorylated eNOS in carotid arteries from wild-type mice but not in TRPV1 knockout mice. Inhibition of eNOS using N(G)-nitro-L-arginine methyl ester, removal of endothelium, or mutant TRPV1 significantly reduced capsaicin-induced endothelium-dependent relaxation of basilar arteries in mice. Chronic dietary capsaicin also remarkably increased eNOS expression in carotid arteries from SHRsp. Compared with Wistar-Kyoto rats, SHRsp had impaired endothelium-dependent relaxation of basilar arteries. Administration of capsaicin or L-arginine significantly improved the endothelium-dependent relaxation of basilar arteries in SHRsp. SHRsp had hypertrophy of cerebral arterioles, which was reversed by dietary capsaicin. Importantly, long-term administration of capsaicin significantly delayed the onset of stroke and increased the survival time in SHRsp. CONCLUSIONS Activation of TRPV1 channels by dietary capsaicin mediated increases in phosphorylation of eNOS and could represent a novel target for dietary intervention of stroke.
Collapse
Affiliation(s)
- Xingsen Xu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Palm F, Nordquist L. Renal oxidative stress, oxygenation, and hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1229-41. [PMID: 21832206 DOI: 10.1152/ajpregu.00720.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertension is closely associated with progressive kidney dysfunction, manifested as glomerulosclerosis, interstitial fibrosis, proteinuria, and eventually declining glomerular filtration. The postulated mechanism for development of glomerulosclerosis is barotrauma caused by increased capillary pressure, but the reason for development of interstitial fibrosis and the subsequently reduced kidney function is less clear. However, it has been hypothesized that tissue hypoxia induces fibrogenesis and progressive renal failure. This is very interesting, since recent reports highlight several different mechanisms resulting in altered oxygen handling and availability in the hypertensive kidney. Such mechanisms include decreased renal blood flow due to increased vascular tone induced by ANG II that limits oxygen delivery and increases oxidative stress, resulting in increased mitochondrial oxygen usage, increased oxygen usage for tubular electrolyte transport, and shunting of oxygen from arterial to venous blood in preglomerular vessels. It has been shown in several studies that interventions to prevent oxidative stress and to restore kidney tissue oxygenation prevent progression of kidney dysfunction. Furthermore, inhibition of ANG II activity, by either blocking ANG II type 1 receptors or angiotensin-converting enzyme, or by preventing oxidative stress by administration of antioxidants also results in improved blood pressure control. Therefore, it seems likely that tissue hypoxia in the hypertensive kidney contributes to progression of kidney damage, and perhaps also persistence the high blood pressure.
Collapse
Affiliation(s)
- Fredrik Palm
- Dept. of Medical Cell Biology, Uppsala Univ., Biomedical Center, Box 571, 751 23 Uppsala, Sweden.
| | | |
Collapse
|
36
|
TRPV1 activation prevents high-salt diet-induced nocturnal hypertension in mice. Pflugers Arch 2011; 461:345-53. [DOI: 10.1007/s00424-011-0921-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/26/2010] [Accepted: 12/31/2010] [Indexed: 11/26/2022]
|
37
|
Kanbay M, Chen Y, Solak Y, Sanders PW. Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr Opin Nephrol Hypertens 2011; 20:37-43. [PMID: 21088577 PMCID: PMC3089903 DOI: 10.1097/mnh.0b013e32834122f1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Investigation into the underlying mechanisms of salt sensitivity has made important advances in recent years. This review examines in particular the effects of sodium and potassium on vascular function. RECENT FINDINGS Sodium chloride (salt) intake promotes cutaneous lymphangiogenesis mediated through tissue macrophages and directly alters endothelial cell function, promoting increased production of transforming growth factor-β (TGF-β) and nitric oxide. In the setting of endothelial dysfunction, such as occurs with aging, diminished nitric oxide production exacerbates the vascular effects of TGF-β, promoting decreased arterial compliance and hypertension. Dietary potassium intake may serve as an important countervailing influence on the effects of salt in the vasculature. SUMMARY There is growing appreciation that, independently of alterations in blood pressure, dietary intake of sodium and potassium promotes functional changes in the vasculature and lymphatic system. These changes may protect against development of salt-sensitive hypertension. While salt sensitivity cannot be ascribed exclusively to these factors, perturbation of these processes promotes hypertension during high-salt intake. These studies add to the list of genetic and environmental factors that are associated with salt sensitivity, but in particular provide insight into adaptive mechanisms during high salt intake.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Fatih University School of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
38
|
Uncoupling protein 2 (UCP2): Another player in the complex drama of vascular salt sensitivity. Am J Hypertens 2010; 23:816. [PMID: 20644528 DOI: 10.1038/ajh.2010.86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|